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Abstract. We prove that the Musielak-Orlicz sequence space with the Orlicz norm has property
(B) iff it is reflexive. It is a generalization and essential extension of the respective results from
[3] and [5]. Moreover, taking an arbitrary Musielak-Orlicz function instead of an N-function we
develop new methods and techniques of proof and we consider a wider class of spaces than in
[3] and [5].

1. Introduction. Throughout this paper (X, | - ||x) is a real Banach space. As usual,
S(X) and B(X) stand for the unit sphere and the unit ball of X, respectively. For any
subset A of X, we denote by conv(A) the convex hull of A.

The Banach space X is said to be uniformly convex (X € (UC) for short), if for each
€ > 0 there is § > 0 such that for any z,y € S(X) the inequality ||z — y||x > € implies
o+ yllx < 2(1— ) (see [2]).

Define for any = ¢ B(X) the drop D(z, B(X)) determined by = by D(z, B(X)) =
conv({z} U B(X)).

Recall that for any subset C' of X, the Kuratowski measure of non-compactness of C
is the infimum «(C') of € > 0 for which there is a covering of C' by a finite number of sets
of diameter less than e.

Rolewicz has proved that X € (UC) iff for any € > 0 there exists 6 > 0 such that
1 < ||z||lx < 1+ ¢ implies diam(D(z, B(X)) \ B(X)) < € (see [20]). In connection with
this he has introduced in [21] the following property.

A Banach space X has the property (8) (X € (3)) if for any £ > 0 there exists § > 0
such that a(D(z, B(X)) \ B(X)) < € whenever 1 < |jz|x <1+ .
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A Banach space is nearly uniformly convez (X € (NUC)) if for every € > 0 there
exists § € (0,1) such that for every sequence {z,} in B(X) with sep{z,} > ¢, we have
conv({z,}) N (1 — §)B(X) # 0. Rolewicz proved the following implications: (UC) =
(8) = (NUC) (see [21]). Moreover, the class of Banach spaces with an equivalent norm
with property () coincides neither with that of superreflexive spaces nor with the class
of nearly uniformly convexifiable spaces (see [5] for references). Although property (53)
was introduced during studies on well-posed problems in optimization theory (see [19],
[21]), it has been widely and intensively developed from the geometric point of view (see
[5], [13] and [14] for references). One of the reasons that property (/) is important is the
fact that if a Banach space X has property (), then both X and X* have the fixed
point property (F'PP). The first fact follows from the implications (3) = (NUC) and
(NUC) = (FPP) (see [6] and [21]). Moreover, if X € (3), then X* has normal structure
(see [17]). On the other hand, Kirk proved that normal structure implies the weak fixed
point property (W FPP) (see [6]). Since (WFPP) and (FPP) coincide in reflexive spaces
and property () implies reflexivity, property (3) implies also the fixed point property
for the dual space.

A sequence {x,} C X is e-separated for some € > 0 if sep{x,} = inf{||z,, — 2| x :
n#m} > e.

Although the primary definition of property () uses the Kuratowski measure of non-
compactness, more convenient in our considerations is the following equivalent condition
proved by Kutzarova in [16].

THEOREM 1. A Banach space X has property () if and only if for every € > 0 there
exists § > 0 such that for each element v € B(X) and each sequence (z,,) in B(X) with
sep{zn} > € there is an index k for which ||z + zx|x < 2(1 —4).

Denote by N, R and R, the sets of natural, real and non-negative real numbers,
respectively. Let (N,2Y m) be the counting measure space and Iy = lo(m) the linear
space of all real sequences.

Let E = (E,<,|-||g) be a Banach sequence lattice over the measure space (N, 2N, m),
that is, F/ is a Banach space which is a subspace of [y endowed with the natural coordi-
natewise semi-order relation, and FE satisfies the conditions:

(i) if x € E,y € lo, |y| < |z|, ie. |y(@)] < |x(4)| for every ¢ € N, then y € E and
1ylle < [lz]z,
(49) there exists a sequence x in F that is positive on the whole N (see [11] and [18]).

Banach sequence lattices are often called Kéthe sequence spaces.

A Kéthe space E is called order continuous (E € (OC)) if for every x € E and each
sequence (z,,) € E such that 0 < z,,, < |z| and x,,, — 0 we have ||z,]|g — 0 (see [11]
and [18]).

A function ¢ is called an Orlicz function if p: R — [0, 00] is convex, even, p(0) = 0
and ¢ is not identically equal to zero and infinity. A sequence ¢ = (¢;) of Orlicz functions
v; is called a Musielak-Orlicz function. We will write ¢ > 0if ¢;(u) = 0 iff u = 0 for every
i € N. Given a Musielak-Orlicz function ¢ we will denote by ¢* the sequence (¢})2,
of functions ¢}: R — [0,00] that are complementary to ¢; in the sense of Young, i.e.
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©i(v) = sup,>o{ulv| — @i(u)} for every v € R and i € N. Define on Iy a convex modular
I, by I,(z) = > .2, i(x(i)) for any z € ly. By the Musielak-Orlicz space l, we mean

lo, ={z €ly:I,(cx) < oo for some ¢ > 0}.

This space is usually considered with the Luzemburg norm |z|, = inf{e > 0 :
I,(z/e) < 1} (we write L, = (Iy, || - [l,)) or with the equivalent Orlicz norm ||z[|Q =
sup{| Y_i2y z(i)y(i)| : L+ (y) < 1} (we write 9 = (I, ]| - [|9)). We consider this space
with the Amemiya norm [|z[|3 = infrsof (14 I, (kz))} (we write 12 = (I, |- [|)) which
seems to be equal to the Orlicz norm (but there is no proof of this fact in general). In
the case of Orlicz spaces we have ||z]|2 = ||z[| for an arbitrary Orlicz function (see [9]).
However, the analogous argument as in the proof Theorem 1 in [9] gives

LEMMA 1. Let ¢ be a finitely valued Musielak-Orlicz function such that v;(u)/u — oo as
u— oo for each i € N. Then ||z||3 = ||z|2 for any x € I,.

We say that a Musielak-Orlicz function ¢ satisfies the do-condition (p € d) if there
are constants ko, ap > 0 and a sequence ()22, of positive reals with Y =, ¢? < co such
that o;(2u) < kop;i(u) + ¢? for each i € N and u € R satisfying ¢;(u) < aq.

The symbol p; stands for the right derivative of ¢;. For each i € N denote
s;i =sup{u > 0: ¢! (p;i(u)) <1} and a; = sup{u > 0: ¢} (u) < 00}.

REMARK 1. If pf(a;) > 1 for any ¢ € N, then, without loss of generality, we may assume
that all functions ¢;, for © > s;, are square functions. Indeed, given a Musielak-Orlicz
function ¢ with ¢f(a;) > 1, i € N, take numbers w; with ¢! (w;) = 1. Obviously w; <
pi(s;). Take

_ o fpi(t) for0<t<s; P
O R R O )

The spaces [ and [} are isometric, because I« (y) < 1 if and only if I,-(y) < 1. Notice
that the right derivative P, of v, is nondecreasing, hence v; is convex on the whole R
(the situation of the respective isometry for the Luxemburg norm is different, see [10]).
In the whole paper we shall always assume that the Musielak-Orlicz function
¢ satisfies the condition ¢} (a;) > 1, i € N, and we shall consider the function
(1;) instead of (y;) according to the formula (1). Note that for the function
(1;) we have p,(s;) = w;.

Then, clearly, for each i € N a function ¢; is finitely valued and ¢;(u)/u — oo as
u — oo. Hence [|z[|4 = ||| for any = € I,,, by Lemma 1. Moreover, for any x € 1,\{0}
the set {k, > 0: ||:L'H£ = é(l + I, (kzx))} is nonempty and bounded (see [1] and [7]).

2. Results

LEMMA 2. Assume that ¢* € dy and M = sup,pi(s;)s; < oco. Then for every n €
(0,1) there are v = ~v(n) € (0,1) and a sequence h = (h;) of positive numbers with
Y ien @i(hi) < oo such that for any o € (0,n] the inequality p;(cu) < (1 — v)op;(u)
holds for all i € N and u > h;.
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Proof. Although we argue analogously as in the proof of Lemma 3 in [4] we present the
proof for the sake of convenience. Since p* € s, there are constants a, k > 0 and sequences
b= (b;), d = (d;) with }_, 7 (bi) < oo and ¢} (d;) = a such that ¢} (2u) < kyj (u) for
each i and b; < u < d; (see [4]). We claim that there is k; > 0 such that ¢} (2u) < k1] (u)
for each ¢ and u > p;(s;). We have w; = p;(s;) and pf(u) = 1+ ;Tq(uz — w?) for
u > w; (see Remark 1). Set fi(u) = ¢f(2u)/pf(u) for u > w;. It is easy to check
that f; is increasing if s;w; < 2 and f; is non-increasing if s;w; > 2. Moreover, for
each i € N, lim, o fi(u) = 4, ¢ (2w;) = 1+ %slwl <1+ %M and ¢} (w;) = 1. This
proves the claim with k; = max{4,1 + 3M}. Let i € N and u > d;. Consequently, if
d; > pi(s;) and uw > d;, then ¢! (2u) < k1¢} (u). If d; < pi(s;) and d; < w < p;(s;), then
27 2u) < @1 (2pi(s:)) < ki (pi(s1)) < kagef (u) /a. Hence
7 (2u) < kow; (u)

for each ¢ and u > b;, where ky = max{ky, k1/a, k}. Analogously as in Lemma 3 in [4] we
prove that there exists £ > 1 such that

@4(2) < i<,0(u) +oi(b), ieNueR

‘\2) 2™ L ’ '

Taking numbers b; > 0 such that gpf(%bz) = @i(b;) we get Y,y i(bi) < oo because

@* €6y and ), @5 (b;) < co. Consequently, for each i € N and v > E, we get
u 1 VE—1 [ 2 1 VE-1 ~ 1
%(5) < 2—5%("“) + 2 Vi <\/E 1b¢> = i%(u) + 2% pi(bi) < m%(“)-
Modifying slightly the previous proof one can show that for each n € (0,1) there are
v =7(n) € (0,1) and a sequence h = (h;) of positive numbers with », _ @i(hi) < oo
such that ;(nu) < (1 —y)np;(u) for all ¢ € N and u > h,;. Applying the fact that for
every i € N the function ¢;(u)/u is nondecreasing it is easy to finish the proof. m

We want to thank Professor Henryk Hudzik for valuable remarks and suggestions
leading to Remark 1 and Lemma 2.

It is known that the equivalence ||z, ||, — 0 iff I,(x,) — 0 holds if and only if ¢ € o
and ¢ > 0 (Theorem 0.1 in [10]). Dropping the assumption that ¢ > 0 we get

LEMMA 3 (Lemma 7 in [14]). The following statements are equivalent:

(@) [|lznlle — 0 if and only if I,(x,) — O for every sequence (z,,) in l, with elements
T, having pairwise disjoint supports.
(ZZ) Y € do.

Since the Orlicz and Luxemburg norms are equivalent, from Lemma 3 we conclude
immediately

COROLLARY 1. If ¢ € J9, then for every € > 0 there exists 0 = o(e) > 0 such that
for every sequence (xy) in l, with elements x,, having pairwise disjoint supports and
satisfying ||£Cn||8 > ¢ for every n € N the inequality I,(x,) > o holds for almost every
n € N.
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For each p € [0, 1) define

B0 = s fk el = 0 ) | ©)
1—p<lzlig <1 ©

It appears that the condition k(0) < oo plays a crucial role in many proofs concerning
geometric properties of Musielak-Orlicz spaces with the Orlicz- Amemiya norm. However,
the proof of this condition uses essentially additional assumptions on the function ¢, that
is: ¢ is an N-function, i.e. ¢ > 0 and ¢(u)/u — 0 as u — 0 (see [1]). Although some
of these assumptions have been weakened by several authors in different particular cases
(see [8] and [15]), the assumption ¢ > 0 has not been dropped yet (as far as we know).
Furthermore, the case k(0) < oo for the Musielak-Orlicz sequence spaces has not been
solved even for N-functions. It can be seen that the assumption ¢ > 0 is crucial in all
proofs of the fact k£(0) < co. On the other hand, it seems that I, may have property (53)
even when functions ¢ vanish outside zero (it has already been proved for the Luxemburg
norm—see [14]). Thus it seems to be natural to try proving Theorem 2 below without
the assumption that ¢ > 0. In order to do it we prove that Theorem 1.35 from [1] is true
not only for N-functions but for arbitrary Musielak-Orlicz functions.

LEMMA 4. If p* € 0y and sup, p;(s;)si < oo, then k(p) < oo for each p € [0,1).

Proof. First we shall show that k(0) < oco. Take a sequence h = (h;) and a number
~v € (0,1) from Lemma 2 for n = 1/2. Given a number o > 0 define

1
ki(o) = swp {k: lz)|5 = 7 +I¢(kx))},
rxeb(o

where
B(o)={x € lf;‘ : ||x||£ =1land I,(2zxB,) > 0}, By = {i € N:2|z(i)| < h;}.

First we prove that
k1(o) < oo for each o > 0. (3)

Suppose that this is not true. Then there is o > 0, a sequence (z,) in B(c) and a
sequence k, — oo with [lz,[|3 = ki(l + I, (knxy)). Then I,(22,XxB,, ) > o, n € N.
We claim that there is ig € N and § > 0 such that |z, (ig)| > ¢ for infinitely many n.
Otherwise x,, — 0 pointwise. Then y,, = 2z, xp, — 0 pointwise. Moreover, |y, (i)| < h;
for each i,n € Nand ), wi(h;i) < 00, s0 (@i(h;))§2; € l1. Since 1 € (OC), so I,(yn) =
1(0i(yn(2)))524llin — 0 as m — oo. This contradiction proves the claim. By Remark 1 we

wi(u .
— — o0 as u — oo for any i. Consequently

Ig;(knxn) > @io(knx’ﬂ(io)) > (pio(kn(s)
kn o kn - kn5

have

6 — 00.

1
L= a2 = (L L) >

This contradiction proves (3).

Take z € lﬁ with ||:L'H£ = 1 and k such that ||x||£ = +(1+4 I,(kz)). Then I,(2z) > 1.
We consider two cases.

L If I,(2zxB,) > 1/2, then k < k1(1/2), by (3).

IT. Suppose that I,(2xxw p,) > 1/2. Applying Lemma 2 it is easy to conclude that
vi(2u) > 2€p;(u) for every u > h;/2, where £ = 1/(1 — v). Let m € N be such that
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2™ < k < 2™+l Consequently
1 1 1 m—
1= E(l + Isa(k’.’lﬁ)) > EI@(k‘/I:XN\Br) > —2m+1 Lp(2 12xXN\BI)
1
> W(zﬁ) o (22X, )- (4)

Thus 1 > 57“8_1 whence k < 2m+1 < 2198:(8)+2 This proves k(0) < oco. Note that if

)

x € l£ and k is such that Hx||£ = +(1+ I (kz)), then taking y = Az for A > 0 we have
lylla = ﬁ(l + I,(kyy)), where ky = k/X. Thus k(p) < oo for each p € [0,1). m

REMARK 2. The assumption sup; p;(s;)s; < oo in Lemma 4 cannot be dropped. Let

t for 0 <t <1,
pi(t) =<1 for 1 <t <27,
%t for ¢ > 2.

Then s; = 2° and p;(s;) = 1 + g, whence sup, p;(s;)s; = o0. Put a; = 1 + 2@% and
T, = a%_ei. Then for k; = 2¢ + % we have I, (p(k;z;)) = 1 and consequently ||33z||g _
k%-{l + I,(kiz;)} = 1. Hence E(O) = o0o. Note also that o, * € Js.

Theorem 3 in [3] states that lg is nearly uniformly convex iff ¢ € J5 and p* € 6,
where ¢ = (;) is a Musielak-Orlicz function with all ¢; being finitely valued N-functions,
i.e. each function ¢; vanishes only at zero and satisfies two conditions: ¢;(u)/u — oo as
u — oo and ¢;(u)/u — 0 as u — 0. The next theorem is an extension of this result.
It also generalizes Theorem 2 from [5], which has been proved only for N-functions.
Moreover, it is proved for essentially wider class of Musielak-Orlicz functions, since in
our consideration functions ¢; not satisfying the conditions: ¢;(u)/u — 0 as u — 0,
wi(u)/u — 0o as u — 0o , > 0, are not excluded. As a consequence, in many parts of
the proof new methods and techniques are developed.

THEOREM 2. Suppose that sup; p;(s;)s; < co. Then lg € (B) if and only iflg 1s reflezive,
i.e. ¢ € 02 and p* € §y .

Proof. Necessity. If lg € (B), then lg is reflexive and consequently ¢ € d5 and ¢* € Jo.

Sufficiency. Let € > 0. Basing on Theorem 1 in [12], we conclude that property (03)
can be equivalently considered on the unit sphere in place of the unit ball. Take z, x,, €
S(l%),n = 1,2, ... such that sep{xn}lg > ¢e. Let 0 = 0(¢/8) be from Corollary 1. Applying
Lemma 2 take the sequence (h;)$2; and the number « € (0, 1) for n = k(1/4)/(1+k(1/4)),
where k(1/4) is defined in (2). Next, to deduce inequalities (5) and (6) we apply the same
methods as in the proof of Theorem 4 in [14]. Notice that lg € (0OC), by ¢ € 63. Then
there exists a set A C N with card A < oo such that

lzxmallg < min{yo/4,1/4}. (5)
Passing to a subsequence of (z,,) if necessary, we can find a sequence (4,,) of subsets of

N such that Ay N A; = 0 for any k # [, Ay N A = () for any k and HanAan > ¢/8 for
each n € N. By Corollary 1 we get

Ip(znxa,) >0 (6)
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for almost every n € N. Denote
Al ={ic A, :|z,(i)| > h} and A2 = {i € A, : |z, (i)] < hi}.
We claim that IW(x”DXA}zo) > /2 for some ng € N. Suppose that
Iy(znxay) < o/2 for every n € N. (7)

We have I(znxaz) < X jcaz #i(hi) — 0 as n — oo, because Yoo wi(hi) < oo and
AN Ay =0 for any k # I. Then I (xnxa2) < 0/2 for sufficiently large n. Then, in view
of (6) and (7), we get a contradiction, which proves the claim. Denote xy = xx4. Let
numbers ko and k,, be such that

1
o

Since [|zo]|9 > 3/4, by (5), 80 kn,, ko € (1,k(1/4)), in view of Lemma 4. We have
ko _ k(1/4)
ko +kny — 14+k(1/4)

1
onllg=kfo{1+qu(koxo)} and || = {1 + Lo (kno@ny)}-

It follows by Lemma 2 that

’f0+kno%< Fokng xno(i)> §(17)<%(kmm°(i)')> (8)

kokno kO + kno kno
for every i € A}, . Notice that the function f(u) = ¢(u)/u is nondecreasing. Hence, by
the convexity of ¢; for every i € N and inequality (8), we get

ko + k kok
O < 0 no 1 I 0hng
[zo + Tn,lly < 7k0kn0 + 1y oo+ Fore (w0 + Tn,)

kO + kng k’okn k‘okn
=—"1 I, —— 70 " h I _MORmg B
kokno |: + % (kO + kno (:I:O + T O)XA"O + © ko T kno (xo + X O)XN\A}LO

oot hng  Lo(horo) | Lo(kngn) Lo (koo Xay, )
= ok ko g 7 Fny
1

1
< g Ut Le(kozo)} AL 4 Lo hng@ng )} = V(o Xay, ) < 2= 70/2.

Mo
Finally, by (5), [|2+z,[| < 2—70/2+70/4 = 2—~0 /4. Hence [J € (), by Theorem 1. =
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