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Abstra
t.We prove that the Musielak-Orli
z sequen
e spa
e with the Orli
z norm has property
(β) i� it is re�exive. It is a generalization and essential extension of the respe
tive results from[3℄ and [5℄. Moreover, taking an arbitrary Musielak-Orli
z fun
tion instead of an N -fun
tion wedevelop new methods and te
hniques of proof and we 
onsider a wider 
lass of spa
es than in[3℄ and [5℄.1. Introdu
tion. Throughout this paper (X, ‖ · ‖X) is a real Bana
h spa
e. As usual,
S(X) and B(X) stand for the unit sphere and the unit ball of X, respe
tively. For anysubset A of X, we denote by conv(A) the 
onvex hull of A.The Bana
h spa
e X is said to be uniformly 
onvex (X ∈ (UC) for short), if for ea
h
ε > 0 there is δ > 0 su
h that for any x, y ∈ S(X) the inequality ‖x − y‖X ≥ ε implies
‖x+ y‖X ≤ 2(1 − δ) (see [2℄).De�ne for any x /∈ B(X) the drop D(x,B(X)) determined by x by D(x,B(X)) =

conv({x} ∪B(X)).Re
all that for any subset C of X, the Kuratowski measure of non-
ompa
tness of Cis the in�mum α(C) of ε > 0 for whi
h there is a 
overing of C by a �nite number of setsof diameter less than ε.Rolewi
z has proved that X ∈ (UC) i� for any ε > 0 there exists δ > 0 su
h that
1 < ‖x‖X < 1 + δ implies diam(D(x,B(X)) \ B(X)) < ε (see [20℄). In 
onne
tion withthis he has introdu
ed in [21℄ the following property.A Bana
h spa
e X has the property (β) (X ∈ (β)) if for any ε > 0 there exists δ > 0su
h that α(D(x,B(X)) \B(X)) < ε whenever 1 < ‖x‖X < 1 + δ.2000 Mathemati
s Subje
t Classi�
ation: 46B20, 46A45, 46B45.Key words and phrases: Köthe spa
e, Musielak-Orli
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e, property (β), order 
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80 P. KOLWICZA Bana
h spa
e is nearly uniformly 
onvex (X ∈ (NUC)) if for every ε > 0 thereexists δ ∈ (0, 1) su
h that for every sequen
e {xn} in B(X) with sep{xn} > ε, we have
conv({xn}) ∩ (1 − δ)B(X) 6= ∅. Rolewi
z proved the following impli
ations: (UC) ⇒
(β) ⇒ (NUC) (see [21℄). Moreover, the 
lass of Bana
h spa
es with an equivalent normwith property (β) 
oin
ides neither with that of superre�exive spa
es nor with the 
lassof nearly uniformly 
onvexi�able spa
es (see [5℄ for referen
es). Although property (β)was introdu
ed during studies on well-posed problems in optimization theory (see [19℄,[21℄), it has been widely and intensively developed from the geometri
 point of view (see[5℄, [13℄ and [14℄ for referen
es). One of the reasons that property (β) is important is thefa
t that if a Bana
h spa
e X has property (β), then both X and X∗ have the �xedpoint property (FPP ). The �rst fa
t follows from the impli
ations (β) ⇒ (NUC) and
(NUC) ⇒ (FPP ) (see [6℄ and [21℄). Moreover, if X ∈ (β), then X∗ has normal stru
ture(see [17℄). On the other hand, Kirk proved that normal stru
ture implies the weak �xedpoint property (WFPP ) (see [6℄). Sin
e (WFPP ) and (FPP ) 
oin
ide in re�exive spa
esand property (β) implies re�exivity, property (β) implies also the �xed point propertyfor the dual spa
e.A sequen
e {xn} ⊂ X is ε-separated for some ε > 0 if sep{xn} = inf{‖xn − xm‖X :

n 6= m} > ε.Although the primary de�nition of property (β) uses the Kuratowski measure of non-
ompa
tness, more 
onvenient in our 
onsiderations is the following equivalent 
onditionproved by Kutzarova in [16℄.Theorem 1. A Bana
h spa
e X has property (β) if and only if for every ε > 0 thereexists δ > 0 su
h that for ea
h element x ∈ B(X) and ea
h sequen
e (xn) in B(X) with
sep{xn} ≥ ε there is an index k for whi
h ‖x+ xk‖X ≤ 2(1 − δ).Denote by N, R and R+ the sets of natural, real and non-negative real numbers,respe
tively. Let (N, 2N,m) be the 
ounting measure spa
e and l0 = l0(m) the linearspa
e of all real sequen
es.Let E = (E,≤, ‖·‖E) be a Bana
h sequen
e latti
e over the measure spa
e (N, 2N,m),that is, E is a Bana
h spa
e whi
h is a subspa
e of l0 endowed with the natural 
oordi-natewise semi-order relation, and E satis�es the 
onditions:

(i) if x ∈ E, y ∈ l0, |y| ≤ |x|, i.e. |y(i)| ≤ |x(i)| for every i ∈ N, then y ∈ E and
‖y‖E ≤ ‖x‖E ,

(ii) there exists a sequen
e x in E that is positive on the whole N (see [11℄ and [18℄).Bana
h sequen
e latti
es are often 
alled Köthe sequen
e spa
es.A Köthe spa
e E is 
alled order 
ontinuous (E ∈ (OC)) if for every x ∈ E and ea
hsequen
e (xm) ∈ E su
h that 0 ≤ xm ≤ |x| and xm → 0 we have ‖xm‖E → 0 (see [11℄and [18℄).A fun
tion ϕ is 
alled an Orli
z fun
tion if ϕ: R → [0,∞] is 
onvex, even, ϕ(0) = 0and ϕ is not identi
ally equal to zero and in�nity. A sequen
e ϕ = (ϕi) of Orli
z fun
tions
ϕi is 
alled aMusielak-Orli
z fun
tion. We will write ϕ > 0 if ϕi(u) = 0 i� u = 0 for every
i ∈ N. Given a Musielak-Orli
z fun
tion ϕ we will denote by ϕ∗ the sequen
e (ϕ∗

i )
∞
i=1of fun
tions ϕ∗

i : R → [0,∞] that are 
omplementary to ϕi in the sense of Young, i.e.
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ϕ∗
i (v) = supu≥0{u|v| − ϕi(u)} for every v ∈ R and i ∈ N. De�ne on l0 a 
onvex modular

Iϕ by Iϕ(x) =
∑∞
i=1 ϕi(x(i)) for any x ∈ l0. By the Musielak-Orli
z spa
e lϕ we mean

lϕ = {x ∈ l0 : Iϕ(cx) <∞ for some c > 0}.This spa
e is usually 
onsidered with the Luxemburg norm ‖x‖ϕ = inf{ε > 0 :

Iϕ(x/ε) ≤ 1} (we write lϕ = (lϕ, ‖ · ‖ϕ)) or with the equivalent Orli
z norm ‖x‖Oϕ =

sup{|∑∞
i=1 x(i)y(i)| : Iϕ∗(y) ≤ 1} (we write lOϕ = (lϕ, ‖ · ‖Oϕ )). We 
onsider this spa
ewith the Amemiya norm ‖x‖Aϕ = infk>0{ 1

k
(1+Iϕ(kx))} (we write lAϕ = (lϕ, ‖ ·‖Aϕ )) whi
hseems to be equal to the Orli
z norm (but there is no proof of this fa
t in general). Inthe 
ase of Orli
z spa
es we have ‖x‖Aϕ = ‖x‖Oϕ for an arbitrary Orli
z fun
tion (see [9℄).However, the analogous argument as in the proof Theorem 1 in [9℄ givesLemma 1. Let ϕ be a �nitely valued Musielak-Orli
z fun
tion su
h that ϕi(u)/u→ ∞ as

u→ ∞ for ea
h i ∈ N. Then ‖x‖Aϕ = ‖x‖Oϕ for any x ∈ lϕ.We say that a Musielak-Orli
z fun
tion ϕ satis�es the δ2-
ondition (ϕ ∈ δ2) if thereare 
onstants k0, a0 > 0 and a sequen
e (c0i )
∞
i=1 of positive reals with ∑∞

i=1 c
0
i < ∞ su
hthat ϕi(2u) ≤ k0ϕi(u) + c0i for ea
h i ∈ N and u ∈ R satisfying ϕi(u) ≤ a0.The symbol pi stands for the right derivative of ϕi. For ea
h i ∈ N denote

si = sup{u ≥ 0 : ϕ∗
i (pi(u)) ≤ 1} and ai = sup{u ≥ 0 : ϕ∗

i (u) <∞}.Remark 1. If ϕ∗
i (ai) > 1 for any i ∈ N, then, without loss of generality, we may assumethat all fun
tions ϕi, for u ≥ si, are square fun
tions. Indeed, given a Musielak-Orli
zfun
tion ϕ with ϕ∗
i (ai) > 1, i ∈ N, take numbers wi with ϕ∗

i (wi) = 1. Obviously wi ≤
pi(si). Take

pi(t) =

{
pi(t) for 0 ≤ t < si
wi

si
t for t ≥ si

and ψi(u) =

∫ u

0

pi(t)dt. (1)The spa
es lOϕ and lOψ are isometri
, be
ause Iψ∗(y) ≤ 1 if and only if Iϕ∗(y) ≤ 1. Noti
ethat the right derivative pi of ψi is nonde
reasing, hen
e ψi is 
onvex on the whole R+(the situation of the respe
tive isometry for the Luxemburg norm is di�erent, see [10℄).In the whole paper we shall always assume that the Musielak-Orli
z fun
tion
ϕ satis�es the 
ondition ϕ∗

i (ai) > 1, i ∈ N, and we shall 
onsider the fun
tion
(ψi) instead of (ϕi) a

ording to the formula (1). Note that for the fun
tion
(ψi) we have pi(si) = wi.Then, 
learly, for ea
h i ∈ N a fun
tion ϕi is �nitely valued and ϕi(u)/u → ∞ as
u → ∞. Hen
e ‖x‖Aϕ = ‖x‖Oϕ for any x ∈ lϕ, by Lemma 1. Moreover, for any x ∈ lϕ\{0}the set {kx > 0 : ‖x‖Aϕ = 1

kx
(1 + Iϕ(kxx))} is nonempty and bounded (see [1℄ and [7℄).2. ResultsLemma 2. Assume that ϕ∗ ∈ δ2 and M = supi pi(si)si < ∞. Then for every η ∈

(0, 1) there are γ = γ(η) ∈ (0, 1) and a sequen
e h = (hi) of positive numbers with∑
i∈N

ϕi(hi) < ∞ su
h that for any α ∈ (0, η] the inequality ϕi(αu) ≤ (1 − γ)αϕi(u)holds for all i ∈ N and u ≥ hi.



82 P. KOLWICZProof. Although we argue analogously as in the proof of Lemma 3 in [4℄ we present theproof for the sake of 
onvenien
e. Sin
e ϕ∗ ∈ δ2, there are 
onstants a, k > 0 and sequen
es
b = (bi), d = (di) with ∑

i∈N
ϕ∗
i (bi) < ∞ and ϕ∗

i (di) = a su
h that ϕ∗
i (2u) ≤ kϕ∗

i (u) forea
h i and bi ≤ u ≤ di (see [4℄).We 
laim that there is k1 > 0 su
h that ϕ∗
i (2u) ≤ k1ϕ

∗
i (u)for ea
h i and u ≥ pi(si). We have wi = pi(si) and ϕ∗

i (u) = 1 + si

2wi
(u2 − w2

i ) for
u ≥ wi (see Remark 1). Set fi(u) = ϕ∗

i (2u)/ϕ
∗
i (u) for u ≥ wi. It is easy to 
he
kthat fi is in
reasing if siwi < 2 and fi is non-in
reasing if siwi ≥ 2. Moreover, forea
h i ∈ N, limu→∞ fi(u) = 4, ϕ∗

i (2wi) = 1 + 3
2siwi ≤ 1 + 3

2M and ϕ∗
i (wi) = 1. Thisproves the 
laim with k1 = max{4, 1 + 3

2M}. Let i ∈ N and u > di. Consequently, if
di ≥ pi(si) and u > di, then ϕ∗

i (2u) ≤ k1ϕ
∗
i (u). If di < pi(si) and di < u < pi(si), then

ϕ∗
i (2u) ≤ ϕ∗

i (2pi(si)) ≤ k1ϕ
∗
i (pi(si)) ≤ k1ϕ

∗
i (u)/a. Hen
e

ϕ∗
i (2u) ≤ k0ϕ

∗
i (u)for ea
h i and u ≥ bi, where k0 = max{k1, k1/a, k}. Analogously as in Lemma 3 in [4℄ weprove that there exists ξ > 1 su
h that

ϕi

(
u

2

)
≤ 1

2ξ
ϕi(u) + ϕ∗

i (bi), i ∈ N, u ∈ R.Taking numbers b̃i ≥ 0 su
h that ϕ∗
i (

2ξ√
ξ−1

bi) = ϕi(b̃i) we get ∑
i∈N

ϕi(b̃i) < ∞ be
ause
ϕ∗ ∈ δ2 and ∑

i∈N
ϕ∗
i (bi) <∞. Consequently, for ea
h i ∈ N and u ≥ b̃i, we get

ϕi

(
u

2

)
≤ 1

2ξ
ϕi(u) +

√
ξ − 1

2ξ
ϕ∗
i

(
2ξ√
ξ − 1

bi

)
=

1

2ξ
ϕi(u) +

√
ξ − 1

2ξ
ϕi(b̃i) ≤

1

2
√
ξ
ϕi(u).Modifying slightly the previous proof one 
an show that for ea
h η ∈ (0, 1) there are

γ = γ(η) ∈ (0, 1) and a sequen
e h = (hi) of positive numbers with ∑
i∈N

ϕi(hi) < ∞su
h that ϕi(ηu) ≤ (1 − γ)ηϕi(u) for all i ∈ N and u ≥ hi. Applying the fa
t that forevery i ∈ N the fun
tion ϕi(u)/u is nonde
reasing it is easy to �nish the proof.We want to thank Professor Henryk Hudzik for valuable remarks and suggestionsleading to Remark 1 and Lemma 2.It is known that the equivalen
e ‖xn‖ϕ → 0 i� Iϕ(xn) → 0 holds if and only if ϕ ∈ δ2and ϕ > 0 (Theorem 0.1 in [10℄). Dropping the assumption that ϕ > 0 we getLemma 3 (Lemma 7 in [14℄). The following statements are equivalent:
(i) ‖xn‖ϕ → 0 if and only if Iϕ(xn) → 0 for every sequen
e (xn) in lϕ with elements

xn having pairwise disjoint supports.
(ii) ϕ ∈ δ2.Sin
e the Orli
z and Luxemburg norms are equivalent, from Lemma 3 we 
on
ludeimmediatelyCorollary 1. If ϕ ∈ δ2, then for every ε > 0 there exists σ = σ(ε) > 0 su
h thatfor every sequen
e (xn) in lϕ with elements xn having pairwise disjoint supports andsatisfying ‖xn‖Oϕ ≥ ε for every n ∈ N the inequality Iϕ(xn) ≥ σ holds for almost every

n ∈ N.
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h p ∈ [0, 1) de�ne
k(p) = sup

1−p≤‖x‖A
ϕ≤1

{
kx : ‖x‖Aϕ =

1

kx
(1 + Iϕ(kxx))

}
. (2)It appears that the 
ondition k(0) < ∞ plays a 
ru
ial role in many proofs 
on
erninggeometri
 properties of Musielak-Orli
z spa
es with the Orli
z-Amemiya norm. However,the proof of this 
ondition uses essentially additional assumptions on the fun
tion ϕ, thatis: ϕ is an N -fun
tion, i.e. ϕ > 0 and ϕ(u)/u → 0 as u → 0 (see [1℄). Although someof these assumptions have been weakened by several authors in di�erent parti
ular 
ases(see [8℄ and [15℄), the assumption ϕ > 0 has not been dropped yet (as far as we know).Furthermore, the 
ase k(0) < ∞ for the Musielak-Orli
z sequen
e spa
es has not beensolved even for N -fun
tions. It 
an be seen that the assumption ϕ > 0 is 
ru
ial in allproofs of the fa
t k(0) <∞. On the other hand, it seems that lϕ may have property (β)even when fun
tions ϕ vanish outside zero (it has already been proved for the Luxemburgnorm�see [14℄). Thus it seems to be natural to try proving Theorem 2 below withoutthe assumption that ϕ > 0. In order to do it we prove that Theorem 1.35 from [1℄ is truenot only for N -fun
tions but for arbitrary Musielak-Orli
z fun
tions.Lemma 4. If ϕ∗ ∈ δ2 and supi pi(si)si <∞, then k(p) <∞ for ea
h p ∈ [0, 1).Proof. First we shall show that k(0) < ∞. Take a sequen
e h = (hi) and a number

γ ∈ (0, 1) from Lemma 2 for η = 1/2. Given a number σ > 0 de�ne
k1(σ) = sup

x∈B(σ)

{
k : ‖x‖Aϕ =

1

k
(1 + Iϕ(kx))

}
,where

B(σ) = {x ∈ lAϕ : ‖x‖Aϕ = 1 and Iϕ(2xχBx
) ≥ σ}, Bx = {i ∈ N : 2|x(i)| ≤ hi}.First we prove that

k1(σ) <∞ for ea
h σ > 0. (3)Suppose that this is not true. Then there is σ > 0, a sequen
e (xn) in B(σ) and asequen
e kn → ∞ with ‖xn‖Aϕ = 1
kn

(1 + Iϕ(knxn)). Then Iϕ(2xnχBxn
) ≥ σ, n ∈ N.We 
laim that there is i0 ∈ N and δ > 0 su
h that |xn(i0)| > δ for in�nitely many n.Otherwise xn → 0 pointwise. Then yn = 2xnχBxn

→ 0 pointwise. Moreover, |yn(i)| ≤ hifor ea
h i, n ∈ N and ∑
i∈N

ϕi(hi) <∞, so (ϕi(hi))
∞
i=1 ∈ l1. Sin
e l1 ∈ (OC), so Iϕ(yn) =

‖(ϕi(yn(i)))∞i=1‖l1 → 0 as n→ ∞. This 
ontradi
tion proves the 
laim. By Remark 1 wehave ϕi(u)
u

→ ∞ as u→ ∞ for any i. Consequently
1 = ‖xn‖Aϕ =

1

kn
(1 + Iϕ(knxn)) ≥

Iϕ(knxn)

kn
≥ ϕi0(knxn(i0))

kn
≥ ϕi0(knδ)

knδ
δ → ∞.This 
ontradi
tion proves (3).Take x ∈ lAϕ with ‖x‖Aϕ = 1 and k su
h that ‖x‖Aϕ = 1

k
(1 + Iϕ(kx)). Then Iϕ(2x) ≥ 1.We 
onsider two 
ases.I. If Iϕ(2xχBx

) ≥ 1/2, then k ≤ k1(1/2), by (3).II. Suppose that Iϕ(2xχN\Bx
) ≥ 1/2. Applying Lemma 2 it is easy to 
on
lude that

ϕi(2u) ≥ 2ξϕi(u) for every u ≥ hi/2, where ξ = 1/(1 − γ). Let m ∈ N be su
h that
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2m ≤ k ≤ 2m+1. Consequently
1 =

1

k
(1 + Iϕ(kx)) >

1

k
Iϕ(kxχN\Bx

) ≥ 1

2m+1
Iϕ(2m−12xχN\Bx

)

≥ 1

2m+1
(2ξ)m−1Iϕ(2xχN\Bx

). (4)Thus 1 ≥ ξm−1

8 , when
e k ≤ 2m+1 ≤ 2logξ(8)+2. This proves k(0) < ∞. Note that if
x ∈ lAϕ and k is su
h that ‖x‖Aϕ = 1

k
(1 + Iϕ(kx)), then taking y = λx for λ > 0 we have

‖y‖Aϕ = 1
kλ

(1 + Iϕ(kλy)), where kλ = k/λ. Thus k(p) <∞ for ea
h p ∈ [0, 1).Remark 2. The assumption supi pi(si)si <∞ in Lemma 4 
annot be dropped. Let
pi(t) =





t for 0 ≤ t < 1,

1 for 1 ≤ t < 2i,
2i+1+1
22i+1 t for t ≥ 2i.Then si = 2i and pi(si) = 1 + 1

2i+1 , when
e supi pi(si)si = ∞. Put ai = 1 + 1
2i+1 and

xi = 1
ai
ei. Then for ki = 2i + 1

2 we have Iϕ∗(p(kixi)) = 1 and 
onsequently ‖xi‖Oϕ =
1
ki
{1 + Iϕ(kixi)} = 1. Hen
e k(0) = ∞. Note also that ϕ,ϕ∗ ∈ δ2.Theorem 3 in [3℄ states that lOϕ is nearly uniformly 
onvex i� ϕ ∈ δ2 and ϕ∗ ∈ δ2,where ϕ = (ϕi) is a Musielak-Orli
z fun
tion with all ϕi being �nitely valued N -fun
tions,i.e. ea
h fun
tion ϕi vanishes only at zero and satis�es two 
onditions: ϕi(u)/u → ∞ as

u → ∞ and ϕi(u)/u → 0 as u → 0. The next theorem is an extension of this result.It also generalizes Theorem 2 from [5℄, whi
h has been proved only for N -fun
tions.Moreover, it is proved for essentially wider 
lass of Musielak-Orli
z fun
tions, sin
e inour 
onsideration fun
tions ϕi not satisfying the 
onditions: ϕi(u)/u → 0 as u → 0,

ϕi(u)/u → ∞ as u → ∞ , ϕ > 0, are not ex
luded. As a 
onsequen
e, in many parts ofthe proof new methods and te
hniques are developed.Theorem 2. Suppose that supi pi(si)si <∞. Then lOϕ ∈ (β) if and only if lOϕ is re�exive,i.e. ϕ ∈ δ2 and ϕ∗ ∈ δ2 .Proof. Ne
essity. If lOϕ ∈ (β), then lOϕ is re�exive and 
onsequently ϕ ∈ δ2 and ϕ∗ ∈ δ2.Su�
ien
y. Let ε > 0. Basing on Theorem 1 in [12℄, we 
on
lude that property (β)
an be equivalently 
onsidered on the unit sphere in pla
e of the unit ball. Take x, xn ∈
S(loϕ), n = 1, 2, ... su
h that sep{xn}lOϕ ≥ ε. Let σ = σ(ε/8) be from Corollary 1. ApplyingLemma 2 take the sequen
e (hi)

∞
i=1 and the number γ ∈ (0, 1) for η = k(1/4)/(1+k(1/4)),where k(1/4) is de�ned in (2). Next, to dedu
e inequalities (5) and (6) we apply the samemethods as in the proof of Theorem 4 in [14℄. Noti
e that lOϕ ∈ (OC), by ϕ ∈ δ2. Thenthere exists a set A ⊂ N with cardA <∞ su
h that

‖xχN\A‖Oϕ < min{γσ/4, 1/4}. (5)Passing to a subsequen
e of (xn) if ne
essary, we 
an �nd a sequen
e (An) of subsets of
N su
h that Ak ∩ Al = ∅ for any k 6= l, Ak ∩ A = ∅ for any k and ‖xnχAn

‖Oϕ ≥ ε/8 forea
h n ∈ N. By Corollary 1 we get
Iϕ(xnχAn

) ≥ σ (6)



PROPERTY (β) OF ROLEWICZ 85for almost every n ∈ N. Denote
A1
n = {i ∈ An : |xn(i)| ≥ hi} and A2

n = {i ∈ An : |xn(i)| < hi}.We 
laim that Iϕ(xn0
χA1

n0

) ≥ σ/2 for some n0 ∈ N. Suppose that
Iϕ(xnχA1

n
) < σ/2 for every n ∈ N. (7)We have Iϕ(xnχA2

n
) ≤ ∑

i∈A2
n
ϕi(hi) → 0 as n → ∞, be
ause ∑∞

i=1 ϕi(hi) < ∞ and
Ak ∩Al = ∅ for any k 6= l. Then Iϕ(xnχA2

n
) < σ/2 for su�
iently large n. Then, in viewof (6) and (7), we get a 
ontradi
tion, whi
h proves the 
laim. Denote x0 = xχA. Letnumbers k0 and kn0

be su
h that
‖x0‖Oϕ =

1

k0
{1 + Iϕ(k0x0)} and ‖xn0

‖Oϕ =
1

kn0

{1 + Iϕ(kn0
xn0

)}.Sin
e ‖x0‖Oϕ ≥ 3/4, by (5), so kn0
, k0 ∈ (1, k(1/4)), in view of Lemma 4. We have
k0

k0 + kn0

<
k(1/4)

1 + k(1/4)
.It follows by Lemma 2 that

k0 + kn0

k0kn0

ϕi

(
k0kn0

k0 + kn0

|xn0
(i)|

)
≤ (1 − γ)

(
ϕi(kn0

|xn0
(i)|)

kn0

) (8)for every i ∈ A1
n0
. Noti
e that the fun
tion f(u) = ϕ(u)/u is nonde
reasing. Hen
e, bythe 
onvexity of ϕi for every i ∈ N and inequality (8), we get

‖x0 + xn0
‖Oϕ ≤ k0 + kn0

k0kn0

{
1 + Iϕ

(
k0kn0

k0 + kn0

(x0 + xn0
)

)}

=
k0 + kn0

k0kn0

[
1 + Iϕ

(
k0kn0

k0 + kn0

(x0 + xn0
)χA1

n0

)
+ Iϕ

(
k0kn0

k0 + kn0

(x0 + xn0
)χN\A1

n0

)]

≤ k0 + kn0

k0kn0

+
Iϕ(k0x0)

k0
+
Iϕ(kn0

xn0
)

kn0

− γ
Iϕ(kn0

xn0
χA1

n0

)

kn0

≤ 1

k0
{1 + Iϕ(k0x0)} +

1

kn0

{1 + Iϕ(kn0
xn0

)} − γIϕ(xn0
χA1

n0

) ≤ 2 − γσ/2.Finally, by (5), ‖x+xn0
‖Oϕ ≤ 2−γσ/2+γσ/4 = 2−γσ/4. Hen
e lOϕ ∈ (β), by Theorem 1.A
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