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Abstract. We study Banach spaces over a non-spherically complete non-Archimedean valued
field K. We prove that a non-Archimedean Banach space over K which contains a linearly
homeomorphic copy of *° (hence [* itself) is not a K-space. We discuss the three-space problem
for a few properties of non-Archimedean Banach spaces.

1. Introduction. Throughout this paper, K will denote a non-Archimedean complete
valued field with a non-trivial valuation |.|. A valued field K is said to be spherically com-
plete if every shrinking sequence of closed balls in K has a non-empty intersection. Clearly,
the spherical completeness implies completeness; the converse is not true (see [13]).

Normed (quasinormed) spaces over K are defined in a natural way. We say that a
norm (quasinorm) ||.|| on a vector space E is non-Archimedean if it satisfies 'the strong
triangle inequality’, i.e. ||z + y|| < max{||z|, ||y||} for all z,y € E. We say that a normed
(quasinormed) space is non-Archimedean if its topology is defined by a non-Archimedean
norm (quasinorm). Note that there exist Banach spaces over K for which the normed
topology cannot be defined by a non-Archimedean norm (e.g. I? for p > 1, cf. [7]). We
call a subset X of a Banach space F over K a base if for every a € FE, there exists a
unique map f, : X — K such that a =) _y fao(x)x.

Real and complex K-spaces were introduced by N. J. Kalton and N. T. Peck in 1979
([5], see also [6]). These objects were studied in connection with the lifting theorems. The
question whether every locally convex F-space is a K-space has been solved negatively
by Kalton ([4]), Ribe (|10]) and Roberts ([11]), who proved that the real Banach space
' is not a K-space.

J. Martinez-Maurica and C. Perez-Garcia developed K-spaces on the non-Archimed-
ean ground. They proved (Theorem 5 of [8]) that all non-Archimedean Banach spaces over
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a spherically complete K are K-spaces and that the local K-convexity is a three-space
property in the category of complete locally bounded spaces over spherically complete
valued fields (Theorem 6 of [8]). The same authors showed that every Banach space over
K which has a base is a K-space (Theorem 3 of [7]). In particular, in contrast to the
classical results, the sequence space I! over K is a K-space. However, there are known
quotients of {! which are not K-spaces (see Proposition 7 of [7]).

In this paper we study non-Archimedean Banach spaces over a non-spherically com-
plete K. Assuming that card(K) is nonmeasurable, we prove that the sequence space [* is
not a K-space (Theorem 5), and that every Banach space over K which contains a linearly
homeomorphic copy of [ is not a K-space, either (Corollary 6). Additionally, we discuss
the three-space problem for a few properties of non-Archimedean Banach spaces (Propo-
sition 8). In particular, we give the answer to the question of van Rooij and Schikhof
(Problem 8 of [14]) concerning the reflexivity of non-Archimedean Banach spaces.

2. Preliminaries. From now on, in this paper all vector spaces are over K. The notion
of F-space has the usual meaning, i.e. an F-space is a complete metrizable topological
vector space (Definition 3.46 of [9]). By E’ we denote the topological dual of an F-
space E. We say that an F-space E is a K-space if, whenever X is an F-space and
L is a one-dimensional subspace of X such that X/L ~ E (i.e. X/L and E are linearly
homeomorphic), then L is complemented in X (Chapter 5 of [6]). Following [7] and [8], we
recall that if X is a locally bounded space and Y is an F-space such that Y/L ~ X, then Y’
must be locally bounded and quasinormable (local boundeness implies quasinormability
as in the usual case). Hence, an equivalent condition for a Banach space to be a K-space is
the following: a Banach space E is a K-space if whenever X is a quasi-Banach space and
L is a subspace of X with dimension one, such that X/L ~ F, then L is complemented
in X (see Definition 1 of [7]).

A topological vector space (E,7) is called locally K-convex (Definition 3.10 of [9]) if
7 has a basis of neighborhoods of the origin, consisting of K-convex sets; a subset U C F
is said to be K-convez (Definition 3.8 of [9]) if Az + py + vz € U, whenever z,y,z € E,
A, v € Kand |\ <1,|p <1,|v] <1, \+p+v = 1. Recall that every non-Archimedean
Banach space is locally K-convex. The sequence space ! is an example of a Banach space
which is not locally K-convex (cf. [7], [8]).

We say that a subspace D of an F-space E has the weak extension property (WEP)
in F if for every continuous linear functional f : D — K there is a continuous linear
extension g : F — K of f. If K is spherically complete, then every linear subspace D of
a locally K-convex space E has the WEP (see Theorem 4.12 of [9]). For the case when
K is not spherically complete, there are many examples of closed subspaces of Banach
spaces without the WEP (e.g. ¢y does not have the WEP in [*°, see Theorem 4.15 of [13]).
Observe that if every closed linear subspace of E has the WEP, then every closed linear
subspace of F is weakly closed and F has a separating dual (cf. [1]). A closed linear sub-
space D C E is weakly closed if and only if E/D is dual-separating (Theorem 3.2 of [1]).

The following theorems, proved by Kalton and Peck for the real and complex case,
work in our context:
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THEOREM 1 (Theorem 5.2 of [5]). If E is an F-space and D is a closed subspace of E
such that E/D is a K-space, then D has the WEP in E.

THEOREM 2 (Theorem 5.3 of [5]). Let E be an F-space. If E is a K-space and D C E
is a closed subspace with the WEP, then E/D is a K-space.

Let I be a set. Denote by co(I) the linear space of bounded maps x : I — K such that
for every £ > 0 there exist only finitely many elements ¢ of I for which |z(i)| > €. ¢o(I)
is a Banach space under the sup-norm ||.||o, defined by ||z|c := sup{|z(i)| : i € I},
x € ¢o(I). For every set I the space co(I) has a base (cf. [13]). If K is non-spherically
complete and card(I) is nonmeasurable, then ¢o([) is reflexive (Theorem 4.22 of [13]).

Let E be a non-Archimedean Banach space. Following van Rooij ([12]), we denote
by m(FE) the smallest one among the cardinalities of those subsets X of E for which
[X] = E. By Theorem 3.4 of [12], for every set I with card(I) > m(E) there exists a
quotient map co(I) — E.

REMARK 3. Note that the result obtained by J. Martinez-Maurica and C. Perez-Garcia
(Theorem 5, [8]), which shows that every non-Archimedean Banach space over a spher-
ically complete K is a K-space, follows directly from Theorem 3 of [8], Theorem 2,
Theorem 3.4 of [12] and Ingleton’s theorem (Theorem 4.12 of [9]):

Let E be a non-Archimedean Banach space over a spherically complete K. By Theo-
rem 3.4 of [12], there exists a set I and a quotient map 7 : ¢g(I) — E. Since c¢o(I) has a
base, it follows from Theorem 3 of [8] that ¢q([) is a K-space. Next, by Theorem 4.12
of [9], we get that kerm, a closed linear subspace of ¢(I), has the WEP in ¢o(I). Thus,
from Theorem 2 we conclude that E is a K-space.

For other notations and conventions that we will use in the sequel we refer the reader
to [6], [9], [13].

3. Results. We start with the following Proposition, which shows some properties of
K-spaces:

PROPOSITION 4. Let E be a non-Archimedean Banach space. If K is non-spherically
complete, we assume that card(m(E)) is nonmeasurable. If E is a K-space, then

1. E has a separating dual;
2. every closed linear subspace of E with the WEP in E is weakly closed in E;
3. every closed linear subspace of E is a K -space.

Proof. If K is spherically complete, then there is nothing to prove, as all non-Archimedean
Banach spaces possess properties 1)-3). Hence, we assume that K is non-spherically
complete. By Theorem 3.4 of [12], there exists a set I, where card(I) is nonmeasurable,
such that E = ¢q(I)/D for some closed linear subspace D of ¢y(I). It follows from Theorem
1 that D has the WEP in ¢y([). By Theorems 4.22, 5.9 of [13] and by Lemma 2.2 of [15],
D is weakly closed in ¢o(I). We get that co(I)/D, thus E, has a separating dual.

Let G be a closed linear subspace of E which has the WEP in E. From Theorem 2
we get that F/G is a K-space, and by 1) F/G has a separating dual. Thus, we conclude
that G is weakly closed in FE.
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Let H be a closed linear subspace of E. Then there exists a closed linear subspace
Hy C ¢o(I) such that D C Hy and H =~ Hy/D. Since D, by Theorem 1, has the WEP in
¢o(I), D has the WEP in Hy. By Theorem 5.9 of [13], Hy = ¢o(J) for some set J with
card(J) < card(I) and by Theorem 3 of [7], Hy is a K-space. Finally, it follows from
Theorem 2 that Hy/D, thus H, is a K-space. =

THEOREM 5. Let K be non-spherically complete and let card(K) be nonmeasurable. Then
[*° is not a K-space.
Proof. Note that card(I*®) = card(K) (see [3], proof of Lemma 2.1). Hence m(I*°) is
nonmeasurable. To prove that [*° is not a K-space, it is enough to find a proper closed
and weakly dense linear subspace of [*° with the WEP in [*°. Assume that H C [*° is
such a subspace and [*° is a K-space. Then, by Theorem 2, the quotient {*°/H is a
K-space and by Proposition 4 it has a separating dual. But (I°°/H)" = {0}, since H is
weakly dense in [*°, a contradiction.

We apply the subspace of [*° constructed by van Rooij, presented in Example 4.J of
[13] but in a different context (see also Lemma 1.4.21 of [2]). Let F be the collection of

all sets M C N for which
card(M N [1,n])

lim =0.
n—oo n
Let D be the set of all z € [* (z = (2,)52,) such that for every ¢ > 0 we have

{n:|z,| > e} € F. It is easy to see that D is a closed linear subspace of [*°. Observe
that if € ¢y (where z = (2,,)%2,), then for every ¢ > 0 the set {n : |z,| > e} is finite,
thus it belongs to f. Hence ¢y C D. Taking f € (I°°) with f(D) =0, we get f(co) = 0.
By Theorem 4.15 of [13], ¢q is weakly dense in [*°, thus f = 0 on [*°. Hence, we conclude
that D is weakly dense in [*°.

We show that D has the WEP in [*°. Obviously D # [*°. First, we prove that cq is
(D, D’)-dense in D. Take f € D’ with f(cg) =0. Let z € D (z = (2,)22,). Take ¢ > 0.
We prove that |f(z)| < - || f]|. Observe that the set S := {n:|z,| > e} belongs to F.
Denote by Dy := {y € I°° : y, = 0 whenever n ¢ S}. Then Dy is a subspace of D. Let
g = (2%)5, be an element of [°°, defined by

0 {0 ifnegs,

s x, ifnes.

Then zg € Dy and dist(x, Dy) < || — xg|| < €. Hence, we see that there exists zo € {*°
such that * = x5 + x¢ and ||zg|| < e. Thus, if we prove that f =0 on Dy, then using

[f(@)] = |f(xs + @o)| < max{[f(zs)],|f(zo)[}
< max {[f(zs)[, [[f] - [lzoll} <e- £,

we obtain that f = 0 on D. If S is finite then, since f(cy) = 0, we get that f(zs) = 0.
Assume that S is infinite, say S = {s1, s9,...} where s; < sy < .... The map ¢ given by
the following formula

0 ifke N\S,

U iijN, k':Sj,

P(u)y == {
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is an isometrical isomorphism [*® — Dy. Thus Dy /(coNDg) = 1°° /¢y and, since (I%°/cy)’ =
{0} by Theorem 4.15 of [13], (Do/(co N Dy))" = {0}. Hence, f = 0 on Dy, and finally
f=0onD.

Now we prove that there exists an isometrical isomorphism (I>°)’ — D’ (note that
co = (I°°)', i.e. ¢ and (I°°)" are isometrically isomorphic, by Exercise 3.Q of [13]). Let
y € co (y = (yn)iZy). We define the map y — f, by fy(z) = > o7 x,yn, where z =
(25)22, € D. Tt is easy to see that this map is a linear isometry. We prove surjectivity.
Let f € D’. We are going to find y € ¢¢ for which f = f,. Since ¢y C D, for = € ¢
(z = (2,)52;) we have f(z) = Y07, z,Yy, for some y = (y,)52; € [°°. We prove that
y € cp. If not, there exists € > 0 such that the set M := {m: |y,| > €} is infinite.
Therefore, M contains an infinite subset S := {s1, $2, ...} € F, where $1 < s3 < .... As we
showed above, the map ¢ : [°° — D is a linear isometry. But f o ¢ € ({°°)" and therefore,
since ¢ is reflexive by Corollary 4.18 of [13], f o ¢ has the form u — Y~ % ay,, where
a = (am)X_q € ¢, u € I*°. By choosing for u successively the unit vectors, we obtain

la;| = |ysj| > ¢ for each j, a contradiction. Thus, y = (y,)52; € ¢ and the linear map

fyix— Zmnyn, r €D
n=1
is an element of D’, coinciding with f on ¢q. Since ¢ is o(D, D’)-dense in D, we obtain
that f, = f. Thus, it follows that D has the WEP in [*°. =

COROLLARY 6. Every non-Archimedean Banach space over non-spherically complete K
with nonmeasurable card(K), which contains a linearly homeomorphic copy of 1°° is not
a K-space.

Proof. This follows directly from Proposition 4 and Theorem 5. =

Let (P) be some property of an F-space. We say that the property (P) is a three-space
property if, whenever F is an F-space with a closed linear subspace D such that both D
and E/D have property (P), then E has property (P). The results obtained by Kalton
([4]), Ribe ([10]) and Roberts ([11]) show that the local convexity is not a three-space
property in the category of real or complex F'-spaces. Surprisingly, however, J. Martinez-
Maurica and C. Perez-Garcia proved that the local K-convexity is a three-space property
in the category of locally bounded spaces over spherically complete K (Theorem 6 of [8]).

Let K be non-spherically complete. Although there exist non-Archimedean Banach
spaces which are not K-spaces (even dual-separating, e.g. [*°), we do not know any
example of a locally bounded (or Banach) space E which is not locally K-convex, but
which possesses a locally K-convex closed linear subspace D such that E/D is a non-
Archimedean Banach space. We leave as an open problem the following question:

PROBLEM 7. Is the local K-convexity a three-space property in the category of locally
bounded spaces (or Banach spaces) over a non-spherically complete K ?

Observe that if K is not spherically complete, then the reflexivity is not a three-space
property:
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PROPOSITION 8. In the category of non-Archimedean Banach spaces over a non-spheric-
ally complete K with card(K) nonmeasurable, the properties for a Banach space E:

e E' separates the points of E,
o F is reflexive,

are not three-space properties.

Proof. Take E := [*°. There exists a set I, where card(I) is nonmeasurable, and a quotient
map 7 : ¢o(I) — E. Since F has a separating dual, D := ker 7 is a weakly closed linear
subspace of ¢y(I). By Theorem 5, E is not a K-space and it follows from Theorem 2 that
D does not have the WEP in ¢y(I). Thus, there exists f € D’ without any continuous
linear extension to the whole of ¢o(I). Let Dy := ker f. We can easily show that Dy is not
weakly closed in ¢o(I); in fact, if g € (co(I))’ is a linear functional with g(Dy) = 0 and
g(xo) # 0 for xg € D\ Dy, we can construct a continuous linear extension of f on c¢y(1),
a contradiction. Take Z := ¢o(I)/Dy, L := D/Dy. Then Z’' does not separate the points
of Z, although Z/L (E = Z/L) and L both have the separating duals. Obviously, Z is
not reflexive, however Z/L and L are reflexive (Theorem 4.21 of [13]). =

REMARK 9. Clearly, Proposition 8 is not true if K is spherically complete. In this case
every non-Archimedean Banach space is dual-separating, it follows from Theorem 4.12
of [9], and every infinite-dimensional non-Archimedean Banach space is non-reflexive, see
Theorem 4.16 of [13].

Note that the proof of Proposition 8 gives the negative answer to the question formu-
lated by A. van Rooij and W. Schikhof (Problem 8 of [14]):

PROBLEM 10. Let E be a non-Archimedean Banach space and a € E, a # 0. If E/[a] is
reflexive, must E itself be reflexive?

In general, there are not known necessary and sufficient conditions for a non-Archimed-
ean Banach space to be a K-space. All examples of non-Archimedean Banach spaces over
a non-spherically complete K which are K-spaces have a base. This fact leads us to the
following question:

PROBLEM 11. Let K be non-spherically complete and let E be a non-Archimedean Banach
space which is a K-space. Must E have a base?

It is easy to observe that this question is equivalent to the following one:

PROBLEM 12. Let K be non-spherically complete and let I be a set. Let D be a closed
linear subspace of co(I). Does D have the WEP in cy(I) if and only if D is complemented
inco(l)?
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