BANACH CENTER PUBLICATIONS, VOLUME 68
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2005

ORDER-BOUNDED OPERATORS FROM VECTOR-VALUED FUNCTION SPACES TO BANACH SPACES

MARIAN NOWAK

Faculty of Mathematics, Computer Science and Econometrics
University of Zielona Góra
Szafrana 4A, 65-516 Zielona Góra, Poland
E-mail: M.Nowak@wmie.uz.zgora.pl

Abstract. Let E be an ideal of L^0 over a σ -finite measure space (Ω, Σ, μ) . For a real Banach space $(X, \|\cdot\|_X)$ let E(X) be a subspace of the space $L^0(X)$ of μ -equivalence classes of strongly Σ -measurable functions $f \colon \Omega \to X$ and consisting of all those $f \in L^0(X)$ for which the scalar function $\|f(\cdot)\|_X$ belongs to E. Let $E(X)^{\sim}$ stand for the order dual of E(X). For $u \in E^+$ let $D_u = \{f \in E(X) : \|f(\cdot)\|_X \leq u\}$ stand for the order interval in E(X). For a real Banach space $(Y, \|\cdot\|_Y)$ a linear operator $T \colon E(X) \to Y$ is said to be order-bounded whenever for each $u \in E^+$ the set $T(D_u)$ is norm-bounded in Y. In this paper we examine order-bounded operators $T \colon E(X) \to Y$. We show that T is order-bounded iff T is $(\tau(E(X), E(X)^{\sim}), \|\cdot\|_Y)$ -continuous. We obtain that every weak Dunford-Pettis operator $T \colon E(X) \to Y$ is order-bounded. In particular, we obtain that if a Banach space Y has the Dunford-Pettis property, then T is order-bounded iff it is a weak Dunford-Pettis operator.

1. Introduction and preliminaries. P. G. Dodds [D] introduced and examined order-bounded operators from a vector lattice E to a Banach space Y. Recall that a linear operator $T: E \to Y$ is called order-bounded if the set T([-u, u]) is norm-bounded in Y for every $0 \le u \in E$. M. Duboux [Du] extended some of Dodd's results to the setting of Y being a locally convex space. Next, Z. Ercan [E] obtained some properties of order-bounded operators from a vector lattice E to a topological vector space Y.

In this paper we consider order-bounded operators from a vector-valued function space E(X) to a Banach space Y.

For the terminology concerning vector lattices and function spaces we refer to [AB₁], [AB₃] and [KA]. Given a topological vector space (L, τ) by $(L, \tau)^*$ we will denote its

²⁰⁰⁰ Mathematics Subject Classification: 47B38, 47B07, 46E40, 46A20.

Key words and phrases: vector-valued function spaces, Köthe-Bochner spaces, order-bounded operators, order intervals, the Dunford-Pettis property, weak Dunford-Pettis operators.

The paper is in final form and no version of it will be published elsewhere.

III. NOWAK

topological dual. We denote by $\sigma(L, K)$ and $\tau(L, K)$ the weak topology and the Mackey topology for a dual system (L, K) resp. By \mathbb{N} and \mathbb{R} we will denote the sets of all natural and real numbers.

Throughout the paper we assume that (Ω, Σ, μ) is a complete σ -finite measure space and L^0 denotes the corresponding space of μ -equivalence classes of all Σ -measurable real valued functions. Let χ_A stand for the characteristic function of a set A. Let E be an ideal in L^0 with supp $E = \Omega$ and let E^{\sim} stand for the order dual of E.

Let $(X, \|\cdot\|_X)$ be a real Banach space and let S_X stand for the unit sphere of X. By $L^0(X)$ we denote the set of μ -equivalence classes of all strongly Σ -measurable functions $f \colon \Omega \to X$. For $f \in L^0(X)$ let us set $\widetilde{f}(\omega) := \|f(\omega)\|_X$ for $\omega \in \Omega$. Let

$$E(X) = \{ f \in L^0(X) \colon \widetilde{f} \in E \}.$$

A subset H of E(X) is said to be *solid* whenever $\widetilde{f}_1 \leq \widetilde{f}_2$ and $f_1 \in E(X)$, $f_2 \in H$ imply $f_1 \in H$. A linear topology τ on E(X) is said to be *locally solid* if it has a local base at zero consisting of solid sets. A linear topology τ on E(X) that is at the same time locally solid and locally convex will be called a *locally convex-solid* topology on E(X) (see $[N_1]$).

Recall that the algebraic tensor product $E \otimes X$ is the subspace of E(X) spanned by the functions of the form $u \otimes x$, $(u \otimes x)(\omega) = u(\omega)x$, where $u \in E$, $x \in X$.

For each $u \in E^+$ the set $D_u = \{ f \in E(X) | \widetilde{f} \leq u \}$ will be called an *order interval* in E(X) (see [BL]).

Following [D] we are now ready to define some class of linear operators.

DEFINITION. Let E be an ideal of L^0 and $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ real Banach spaces. A linear operator $T: E(X) \to Y$ is said to be *order-bounded* whenever for each $u \in E^+$ the set $T(D_u)$ is norm-bounded in Y.

Now we recall terminology concerning the duality theory of the function spaces E(X) as set out in [B], [BL], [N₁], [N₂].

For a linear functional F on E(X) let us put

$$|F|(f) = \sup\{|F(h)| \colon h \in E(X), \widetilde{h} \le \widetilde{f}\} \quad \text{ for } f \in E(X).$$

The set

$$E(X)^{\sim}=\{F\in E(X)^{\#}\colon |F|(f)<\infty \text{ for all } f\in E(X)\}$$

will be called the order dual of E(X) (here $E(X)^{\#}$ denotes the algebraic dual of E(X)).

For $F_1, F_2 \in E(X)^{\sim}$ we will write $|F_1| \leq |F_2|$ whenever $|F_1|(f) \leq |F_2|(f)$ for all $f \in E(X)$. A subset A of $E(X)^{\sim}$ is said to be *solid* whenever $|F_1| \leq |F_2|$ with $F_1 \in E(X)^{\sim}$ and $F_2 \in A$ imply $F_1 \in A$.

Now we consider absolute weak topologies on E(X) and $E(X)^{\sim}$. For each $F \in E(X)^{\sim}$ let

$$\rho_F(f) = |F|(f) \quad \text{for } f \in E(X).$$

We define the absolute weak topology $\sigma|(E(X), E(X)^{\sim})$ on E(X) as the locally convex topology generated by the family $\{\rho_F: F \in E(X)^{\sim}\}$ of seminorms. Then $|\sigma|(E(X), E(X)^{\sim})$ is the topology of uniform convergence on sets of the form $\{G \in E(X)^{\sim}: |G| \leq |F|\}$ for every $F \in E(X)^{\sim}$ (see [N₁, Section 4]).

For each $f \in E(X)$ let

$$\rho_f(F) = |F|(f) \quad \text{for } F \in E(X)^{\sim}.$$

We define the absolute weak topology $|\sigma|(E(X)^{\sim}, E(X))$ on $E(X)^{\sim}$ as the locally convex topology generated by the family $\{\rho_f: f \in E(X)\}$ of seminorms. Clearly $|\sigma|(E(X)^{\sim}, E(X))$ is the topology of uniform convergence on the family of all order intervals D_u , where $u \in E^+$.

In particular, if $(E, \|\cdot\|_E)$ is a Banach function space then the space E(X) provided with the norm $\|f\|_{E(X)} := \|\widetilde{f}\|_E$ is a Banach space and it is usually called the Köthe-Bochner space. It is well known that $(E(X), \|\cdot\|_{E(X)})^* = E(X)^{\sim}$ (see [BL, §3, Lemma 12]).

2. Characterization of order-bounded operators. It is known that on every vector lattice E one can define the so-called *order-bounded* topology τ_0 as the finest locally convex topology on E for which every order interval is a bounded set (see [Na]). A local base at zero for τ_0 is given by the class of all absolutely convex subsets of E that absorb all order bounded sets in E. It is known that τ_0 coincides with the Mackey topology $\tau(E, E^{\sim})$ (see [F, 811(c)]).

Now let \mathcal{B}_0 be the family of all absolutely convex subsets of E(X) that absorb every order interval in E(X). Then \mathcal{B}_0 is a local base at zero for a locally convex topology τ_0 on E(X), which will be called an *order-bounded topology* on E(X).

We are ready to characterize order-bounded operators $T: E(X) \to Y$ in terms of the $(\tau_0, \|\cdot\|_Y)$ -continuity of T.

Theorem 2.1. For a linear operator $T: E(X) \to Y$ the following statements are equivalent:

- (i) T is order-bounded.
- (ii) T is $(\tau_0, \|\cdot\|_Y)$ -continuous.

Proof. (i) \Rightarrow (ii). Assume that T is order bounded and let r > 0 be given. We shall show that there is $V \in \mathcal{B}_0$ such that $T(V) \subset B_Y(r)$ (= $\{y \in Y : ||y||_Y \leq r\}$). In fact, let $V = T^{-1}(B_Y(r)) = \{f \in E(X) : ||T(f)||_Y \leq r\}$. Since $T(V) = T(T^{-1}(B_Y(r))) \subset B_Y(r)$, it is enough to show that V absorbs every order interval in E(X). Indeed, for given $u \in E^+$ there is $r_u > 0$ such that $T(D_u) \subset B_Y(r_u)$. Taking $\lambda_u = \frac{r}{r_u}$ for $f \in D_u$ we get $||T(\lambda_u f)||_Y \leq r$, so $\lambda_n f \in V$. This means that $\lambda_u D_u \subset V$.

(ii) \Rightarrow (i). Assume that T is $(\tau_0, \|\cdot\|_Y)$ -continuous. Then there is $V \in \mathcal{B}_0$ such that $T(V) \subset B_Y(1)$. Moreover, given $u \in E^+$ there is $\lambda_u > 0$ such that $\lambda_u D_u \subset V$. Hence $T(\lambda_u D_u) \subset B_Y(1)$, so $T(D_u) \subset B_Y(1/\lambda_u)$, as desired.

As an application of Theorem 2.1 we obtain:

COROLLARY 2.2. The order-bounded topology τ_0 on E(X) coincides with the Mackey topology $\tau(E(X), E(X)^{\sim})$, i.e., $\tau_0 = \tau(E(X), E(X)^{\sim})$.

Proof. In view of Theorem 2.1, $(E(X), \tau_0)^* = E(X)^{\sim}$, so by the Mackey-Arens theorem $\tau_0 \subset \tau(E(X), E(X)^{\sim})$.

To show that $\tau(E(X), E(X)^{\sim}) \subset \tau_0$, let $W \in \mathcal{B}_{\tau(E(X), E(X)^{\sim})}$ (= the local base at zero for $\tau(E(X), E(X)^{\sim})$). It is enough to show that W absorbs every order interval in E(X).

M. NOWAK

Since the Mackey topology $\tau(E(X), E(X)^{\sim})$ is locally solid (see [N₂, Theorem 3.7]), $W = {}^{0}A$ (= $\{f \in E(X): |F(f)| \leq 1 \text{ for all } F \in A\}$), where A is an absolutely convex, solid and $\sigma(E(X)^{\sim}, E(X))$ -compact subset of $E(X)^{\sim}$. But in view of [N₂, Theorem 3.5] A is $|\sigma|(E(X)^{\sim}, E(X))$ -bounded, so for each $f \in E(X)$ we have:

$$\sup\{|F|(f): F \in A\} < \infty.$$

Observe that

$${}^{0}A = \{ f \in E(X) \colon |F|(f) \le 1 \text{ for all } F \in A \}.$$

In fact, let $f \in {}^{0}A$, i.e., $|F(f)| \le 1$ for all $F \in A$. It is enough to show that $|F|(f) \le 1$ for all $F \in A$. Given $F_0 \in A$, for each $G \in E(X)^{\sim}$ with $|G| \le |F_0|$ we have that $G \in A$ because A is a solid subset of $E(X)^{\sim}$. Hence $|G(f)| \le 1$. But by $[N_1, Lemma 2.1]$ $F_0|(f) = \sup\{|G(f)|: G \in E(X)^{\sim}, |G| \le |F_0|\}$, so we obtain that $|F_0|(f) \le 1$, as desired.

Now, we are ready to show that W absorbs every order interval in E(X). In fact, let $u \in E^+$ and $x_0 \in S_X$. Hence in view of (*) sup $\{|F|(u \otimes x_0): F \in A\} = \lambda_u < \infty$. Then for $f \in D_u$ and all $F \in A$ we have:

$$|F|\left(\frac{1}{\lambda_u}f\right) = \frac{1}{\lambda_u}|F|(f) \le \frac{1}{\lambda_u}|F|(u \otimes x_0) \le 1,$$

so
$$\frac{1}{\lambda_u} f \in W$$
, i.e., $D_u \subset \lambda_u W$.

We say that a sequence (f_n) in E(X) is uniformly convergent to $f \in E(X)$ (in symbols, $f_n \to f(ru)$), if there exist $r \in E^+$ and a sequence (ε_n) of positive numbers with $\varepsilon_n \downarrow 0$ such that $||f_n(\omega) - f(\omega)||_X \le \varepsilon_n r(\omega) \mu$ -a.e. on Ω .

Making use of Theorem 2.1 and Corollary 2.2 we get:

Theorem 2.3. For a linear operator $T: E(X) \to Y$ the following statements are equivalent:

- (i) T is order bounded.
- (ii) T is $(\tau(E(X), E(X)^{\sim}), \|\cdot\|_{Y})$ -continuous.
- (iii) T is $(\sigma(E(X), E(X)^{\sim}), \sigma(Y, Y^*))$ -continuous.
- (iv) If $\widetilde{f}_n \leq u$ for some $u \in E^+$ and all $n \in \mathbb{N}$ and $f_n \to 0$ for $|\sigma|(E(X), E(X)^{\sim})$, then $\sup_n ||T(f_n)||_Y < \infty$.
- (v) If $f_n \to 0(ru)$, then $\sup_n ||T(f_n)||_Y < \infty$.

In particular, for a Banach function space $(E, \|\cdot\|_E)$ the statements (i)-(v) are equivalent to the following:

(vi) T is $(\|\cdot\|_{E(X)}, \|\cdot\|_Y)$ -continuous.

Proof. (i)⇔(ii). It follows from Theorem 2.1 and Corollary 2.2.

- (ii) \Leftrightarrow (iii). See [W, Corollary 11.1.3, Corollary 11.2.6].
- $(i)\Rightarrow(iv)$. It is obvious.
- (iv) \Rightarrow (i). Assume that (iv) holds and (i) fails. Hence there is $u_0 \in E^+$ such that $\sup\{\|T(f)\|_Y: f \in E(X), \widetilde{f} \leq u_0\} = \infty$. It follows that one can find a sequence (f_n) in E(X) such that $f_n \leq u_0$ for all $n \in \mathbb{N}$ and $\|T(f_n)\|_Y \geq n^2$ for all $n \in \mathbb{N}$. Hence putting $h_n = \frac{1}{n}f_n$ for $n \in \mathbb{N}$, we have $\widetilde{h}_n \leq \frac{1}{n}u_0 \leq u_0$ and $\|T(h_n)\|_Y \geq n$ for $n \in \mathbb{N}$. We shall

show that $h_n \to 0$ for $|\sigma|(E(X), E(X)^{\sim})$. Indeed, let $F \in E(X)^{\sim}$, and $x_0 \in S_X$. Then

$$\rho_F(h_n) = |F|(h_n) \le |F|\left(\frac{1}{n}(u_0 \otimes x_0)\right) = \frac{1}{n}|F|(u_0 \otimes x_0) \to 0.$$

Hence $h_n \to 0$ for $\sigma(E(X), E(X)^{\sim})$, so by (iv) $\sup_n ||T(h_n)||_Y < \infty$. This contradiction establishes that (iv) \Rightarrow (i).

- (i) \Rightarrow (v). Assume that (i) holds and (v) fails. Then there exists a sequence (f_n) in E(X) such that $f_n \to 0$ (ru) and $\sup_n \|T(f_n)\|_Y = \infty$. This means that there exist $r \in E^+$ and a sequence (ε_n) with $\varepsilon_n \downarrow 0$ such that $\widetilde{f_n} \leq \varepsilon_n r \leq \varepsilon_n r$ for all $n \in \mathbb{N}$. Hence by (i) $\sup_n \|T(f_n)\|_Y < \infty$, and we get a contradiction.
 - $(v)\Rightarrow(i)$. Assume that (i) fails. Hence there exists $u_0 \in E^+$ such that

$$\sup\{\|T(f)\|_{Y}: f \in E(X), \widetilde{f} \le u_0\} = \infty.$$

So, there exists a sequence (f_n) in E(X) such that $\widetilde{f}_n \leq u_0$ and $||T(f_n)||_Y \geq n^2$ for all $n \in \mathbb{N}$. Denoting $h_n = \frac{1}{n} f_n$ for $n \in \mathbb{N}$ we get $\widetilde{h}_n \leq \frac{1}{n} u_0$ for $n \in \mathbb{N}$, i.e., $h_n \to 0$ (ru) and $||T(h_n)||_Y \geq n$ for all $n \in \mathbb{N}$. It follows that (v) does not hold.

Now assume that $(E, \|\cdot\|_E)$ is a Banach function space. Then $(E(X), \|\cdot\|_{E(X)})^* = E(X)^{\sim}$ and the Mackey topology $\tau(E(X), E(X)^{\sim})$ coincides with the $\|\cdot\|_{E(X)}$ -norm topology. Hence (ii) \Leftrightarrow (vi).

Recall that a Banach space Y is said to have the *Dunford-Pettis property* if for sequences (y_n) in Y and (y_n^*) in Y^* , $y_n^*(y_n) \to 0$ whenever $y_n \xrightarrow{(w)} 0$ in Y and $y_n^* \xrightarrow{(w)} 0$ in Y* (see [AB₁, Section 19]).

Following ([AB₂], [AB₃, Section 19]) we say that a linear operator $T: E(X) \to Y$ is a weak Dunford-Pettis operator if $f_n \to 0$ in E(X) for $\sigma(E(X), E(X)^{\sim})$ and $y_n^* \xrightarrow{(w)} 0$ in Y^* imply $y_n^*(T(f_n)) \to 0$.

As an application of Theorem 2.3 we get (see [E, Theorem 1.4]):

THEOREM 2.4.

- (i) Every weak Dunford-Pettis operator $T: E(X) \to Y$ is order-bounded.
- (ii) If Y has the Dunford-Pettis property, then every order-bounded operator T: $E(X) \rightarrow Y$ is a weak Dunford-Pettis operator.

Proof. (i) Assume that $T: E(X) \to Y$ is a weak Dunford-Pettis operator and it is not order-bounded. Hence by Theorem 2.3 there exists a sequence (f_n) in E(X) such that $f_n \to 0$ (ru) and $\sup_n \|T(f_n)\|_Y = \infty$. This means that there exist $u_0 \in E^+$ and a sequence (ε_n) with $\varepsilon_n \downarrow 0$ such that $\widetilde{f}_n \leq \varepsilon_n u_0$ for all $n \in \mathbb{N}$ and the set $\{T(f_n): n \in \mathbb{N}\}$ in Y is not weakly bounded. Hence there exist $y_0^* \in Y^*$ and a subsequence (f_{k_n}) of (f_n) such that

$$(*) |y_0^*(T(f_{k_n}))| > n \text{for all } n \in \mathbb{N}.$$

One can observe that $f_n \to 0$ for $\sigma(E(X), E(X)^{\sim})$. Indeed, let $F \in E(X)^{\sim}$ and $x_0 \in S_X$. Then

$$|F(f_n)| \le |F|(f_n) \le |F|(\varepsilon_n(u_0 \otimes x_0)) = \varepsilon_n |F|(u_0 \otimes x_n),$$

M. NOWAK

so $F(f_n) \to 0$, as desired. On the other hand, since $\frac{1}{n}y_0^* \xrightarrow{(w)} 0$ in Y^* and T is supposed to be a weak Dunford-Pettis operator, we get $\frac{1}{n}y_0^*(T(f_{k_n})) \to 0$, which contradicts (*).

(ii) Assume that $T: E(X) \to Y$ is order-bounded. Then by Theorem 2.3 T is $(\sigma(E(X), E(X)^{\sim}), \sigma(Y, Y^{*}))$ -continuous. Let $f_n \to 0$ for $\sigma(E(X), E(X)^{\sim})$ and $y_n^{*} \xrightarrow{(w)} 0$ in Y^{*} .

Then $T(f_n) \xrightarrow{(w)} 0$ in Y, and since Y is supposed to have the Dunford-Pettis property, we conclude that $y_n^*(T(f_n)) \to 0$. This means that T is a weak Dunford-Pettis operator.

References

- [AB₁] C. D. Aliprantis and O. Burkinshaw, Locally Solid Riesz Spaces, Academic Press, New York, 1978.
- [AB₂] C. D. Aliprantis and O. Burkinshaw, Dunford-Pettis operators on Banach lattices, Trans. Amer. Math. Soc. 274 (1982), 227–238.
- [AB₃] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, Orlando, 1985.
- [B] A. V. Bukhvalov, On an analytic representation of operators with abstract norm, Izv. Vyss. Ucheb. Zaved. 11 (1975), 21–32 (in Russian).
- [BL] A. V. Bukhvalov and G. Ya. Lozanovskii, On sets closed in measure in spaces of measurable functions, Trans. Moscow Math. Soc. 2 (1978), 127–148.
- [D] P. G. Dodds, o-weakly compact mappings of Riesz spaces, Trans. Amer. Math. Soc. 214 (1975), 389–402.
- [Du] M. Duhoux, o-weakly compact mappings from a Riesz space to a locally convex space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 22 (70) (1978), 371–378.
- [E] Z. Ercan, Interval-bounded operators and order-weakly compact operators of Riesz spaces, Demonstr. Math. 31 (1998), 805–812.
- [F] D. Fremlin, Topological Riesz Spaces and Measure Theory, Camb. Univ. Press, 1974.
- [KA] L. V. Kantorovich and A. V. Akilov, Functional Analysis, Nauka, Moscow 1984 (3rd ed., in Russian).
- [Na] I. Namioka, Partially ordered linear topological spaces, Mem. Amer. Math. Soc. 24 (1957).
- [N₁] M. Nowak, Duality theory of vector valued function spaces I, Comment. Math. 37 (1997), 195-215.
- [N₂] M. Nowak, Duality theory of vector-valued function spaces II, Comment. Math. 37 (1997), 217–230.
- [W] A. Wilansky, Modern Methods in Topological Vector-Spaces, McGraw-Hill, 1978.