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Abstract. Let F be an ideal of L° over a o-finite measure space (92,%, u). For a real Banach
space (X, |- ||x) let E(X) be a subspace of the space L°(X) of u-equivalence classes of strongly
Y-measurable functions f: @ — X and consisting of all those f € L°(X) for which the scalar
function ||f(-)||x belongs to E. Let E(X)™~ stand for the order dual of E(X). For u € E7 let
D, (={f € E(X): |f(")|lx < u}) stand for the order interval in E(X). For a real Banach
space (Y, - ||y) a linear operator T: E(X) — Y is said to be order-bounded whenever for each
u € ET the set T'(D,,) is norm-bounded in Y. In this paper we examine order-bounded operators
T: E(X) — Y. We show that T is order-bounded iff T'is (7(E(X), E(X)"), || ||y )-continuous. We
obtain that every weak Dunford-Pettis operator T: E(X) — Y is order-bounded. In particular,
we obtain that if a Banach space Y has the Dunford-Pettis property, then T is order-bounded
iff it is a weak Dunford-Pettis operator.

1. Introduction and preliminaries. P. G. Dodds [D] introduced and examined order-
bounded operators from a vector lattice E to a Banach space Y. Recall that a linear
operator T: E — Y is called order-bounded if the set T'([—u,u]) is norm-bounded in Y
for every 0 < uw € E. M. Duboux [Du] extended some of Dodd’s results to the setting
of Y being a locally convex space. Next, Z. Ercan [E] obtained some properties of order-
bounded operators from a vector lattice E to a topological vector space Y.

In this paper we consider order-bounded operators from a vector-valued function space
E(X) to a Banach space Y.

For the terminology concerning vector lattices and function spaces we refer to [AB],
[ABs] and [KA]. Given a topological vector space (L,7) by (L,7)* we will denote its
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topological dual. We denote by o(L, K) and 7(L, K) the weak topology and the Mackey
topology for a dual system (L, K) resp. By N and R we will denote the sets of all natural
and real numbers.

Throughout the paper we assume that (2, X, 1) is a complete o-finite measure space
and L° denotes the corresponding space of y-equivalence classes of all Y-measurable real
valued functions. Let x4 stand for the characteristic function of a set A. Let E be an
ideal in L° with supp E = Q and let E~ stand for the order dual of E.

Let (X,]| - ||x) be a real Banach space and let Sx stand for the unit sphere of X. By
L°(X) we denote the set of u-equivalence classes of all strongly Y-measurable functions

f: Q— X.For f e LX) let us set f(w) := || f(w)]x for w € Q. Let
E(X)={f e L°(X): f € E}.

A subset H of E(X) is said to be solid whenever f; < fy and f; € E(X), fo € H
imply f1 € H. A linear topology 7 on E(X) is said to be locally solid if it has a local base
at zero consisting of solid sets. A linear topology 7 on E(X) that is at the same time
locally solid and locally convex will be called a locally convex-solid topology on E(X)
(see [Nq]).

Recall that the algebraic tensor product E'® X is the subspace of F(X) spanned by
the functions of the form u ® z, (u ® z)(w) = u(w)x, where u € E, z € X.

For each u € E* the set D, = {f € E(X) f < u} will be called an order interval in
E(X) (see [BL]).

Following [D] we are now ready to define some class of linear operators.
DEFINITION. Let E be an ideal of L° and (X, || - ||x) and (Y, | - ||y) real Banach spaces.

A linear operator T: E(X) — Y is said to be order-bounded whenever for each u € E*
the set T'(D,,) is norm-bounded in Y.

Now we recall terminology concerning the duality theory of the function spaces E(X)
as set out in [B], [BL], [N;], [Nag].
For a linear functional F' on E(X) let us put
IFI(f) = sup{|P(W)]: h € B(X),h <} for f € E(X).
The set
E(X)~ ={F € E(X)*: |F|(f) < oo for all f € E(X)}
will be called the order dual of E(X) (here E(X)# denotes the algebraic dual of F(X)).
For F1,F; € E(X)™~ we will write |F1| < |F3| whenever |Fy|(f) < |Fy|(f) for all
f € E(X). A subset A of E(X)"™ is said to be solid whenever |Fy| < |Fy| with F} € E(X)~
and Fy € A imply F; € A.
Now we consider absolute weak topologies on E(X) and E(X)~. For each F' € E(X)"™
let
pr(f) =|F|(f) for f € E(X).
We define the absolute weak topology o|(E(X), E(X)™) on E(X) as thelocally convex topol-
ogy generated by the family {pp: F € E(X)™~} of seminorms. Then |o|(E(X), E(X)")

is the topology of uniform convergence on sets of the form {G € E(X)~: |G| < |F|} for
every F' € E(X)™ (see [Ny, Section 4]).



NIV LIV DU UINU L UL ivfl Vv 444

For each f € E(X) let
pr(F) = |FI(f) for F € B(X)™.

We define the absolute weak topology |o|(F(X)~, E(X)) on E(X)™ as the locally convex
topology generated by the family {p;: f € E(X)} of seminorms. Clearly |o|(E(X)™, E(X))
is the topology of uniform convergence on the family of all order intervals D,, where
ue ET.

In particular, if (E, | - ||g) is a Banach function space then the space E(X) provided
with the norm || f|g(x) := | fllz is a Banach space and it is usually called the Kithe-
Bochner space. It is well known that (E(X), ||- | g(x))* = E(X)™ (see [BL, §3, Lemma 12]).

2. Characterization of order-bounded operators. It is known that on every vector
lattice E one can define the so-called order-bounded topology 7y as the finest locally
convex topology on E for which every order interval is a bounded set (see [Na]). A local
base at zero for 7y is given by the class of all absolutely convex subsets of E that absorb
all order bounded sets in E. It is known that 79 coincides with the Mackey topology
T(E,E™) (see [F, 811(c)]).

Now let By be the family of all absolutely convex subsets of E(X) that absorb every
order interval in E(X). Then By is a local base at zero for a locally convex topology 7
on F(X), which will be called an order-bounded topology on E(X).

We are ready to characterize order-bounded operators T: E(X) — Y in terms of the
(70, || - ||y )-continuity of T

THEOREM 2.1. For a linear operator T: E(X) — Y the following statements are equiva-
lent:

(i) T is order-bounded.
(ii) T s (70, | - ||y)-continuous.

Proof. (i)=-(ii). Assume that 7' is order bounded and let » > 0 be given. We shall show
that there is V' € By such that T(V) C By(r) (= {y € Y: |lylly < r}). In fact, let
V = T4 (By(r) = 1 € E(X): [T(H)ly < r}. Since T(V) = T(T~*(By(r))) € By (1),
it is enough to show that V absorbs every order interval in E(X). Indeed, for given
u € E* there is r, > 0 such that T(D,) C By (ry). Taking A, = ;= for f € D, we get
1T\ H)lly < 7,80 Apf € V. This means that A, D, C V.

(ii)=(i). Assume that T is (79, || - ||y )-continuous. Then there is V' € By such that
T(V) C By(1). Moreover, given u € E* there is A, > 0 such that A\, D, C V. Hence
T(AyDy) C By (1), s0 T(D,) C By(1/\,), as desired. m

As an application of Theorem 2.1 we obtain:

COROLLARY 2.2. The order-bounded topology 79 on E(X) coincides with the Mackey
topology T(E(X), E(X)™), i.e., 1o =T7(E(X), E(X)™).

Proof. In view of Theorem 2.1, (E(X), 79)* = E(X)"~, so by the Mackey-Arens theorem
o C T(E(X), E(X)™).

To show that 7(E(X), E(X)~) C 1o, let W € B, (g(x),p(x)~) (= thelocal base at zero
for 7(E(X), E(X)™) ). It is enough to show that W absorbs every order interval in F(X).
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Since the Mackey topology 7(E(X),E(X)™) is locally solid (see [Nz, Theorem 3.7]),
W =04 (= {f € E(X): |F(f)| <1 for all F € A}), where A is an absolutely convex,
solid and o(E(X)™, E(X))-compact subset of E(X)~. But in view of [Nz, Theorem 3.5]
Ais |o|(E(X)™, E(X))-bounded, so for each f € E(X) we have:

(%) sup{|F|(f): F € A} < oc.

Observe that
A= {fe B(X): |F|(f)<1forall Fe A}

In fact, let f € A, i.e., |F(f)] <1 for all F € A. It is enough to show that |F|(f) < 1
for all F € A. Given Fy € A, for each G € E(X)~ with |G| < |Fy| we have that
G € A because A is a solid subset of E(X)™~. Hence |G(f)| < 1. But by [N, Lemma 2.1]
Fol(f) =sup{|G(f)|: G € E(X)~,|G| < |Fo|}, so we obtain that |Fo|(f) < 1, as desired.

Now, we are ready to show that W absorbs every order interval in E(X). In fact, let
u € ET and zg € Sx. Hence in view of () sup{|F|(u ® z¢): F € A} = A, < oo. Then
for f € D, and all F € A we have:

FI(5f) = P00 < S Fltuan) <1

oxfeW,ie, Dy CAW. m

We say that a sequence (f,,) in E(X) is uniformly convergentto f € E(X) (in symbols,
fn — f(ru)), if there exist r € ET and a sequence (e,,) of positive numbers with €, | 0
such that || f(w) — f(W)||x < epr(w) p-a.e. on .

Making use of Theorem 2.1 and Corollary 2.2 we get:

THEOREM 2.3. For a linear operator T: E(X) — Y the following statements are equiva-
lent:

(i) T is order bounded.

(ii) T is (1(E(X), E(X)™), || - [ly)-continuous.

(iif) 7" is (o(E(X), E(X)7),0(Y,Y™))-continuous.

(iv) If fn < u for some u € EY and alln € N and f,, — 0 for |o|(E(X), E(X)™), then
sup, [|T(fn)lly < oo.

(V) If fn — O(ru), then sup,, [|T(fn)]ly < oo.

In particular, for a Banach function space (E,||-||g) the statements (1)—(v) are equiv-
alent to the following:

(vi) T is (|| - |ecx)s || - [ly)-continuous.

Proof. (i)<(ii). It follows from Theorem 2.1 and Corollary 2.2.

(ii)<(iii). See [W, Corollary 11.1.3, Corollary 11.2.6].

(i)=(iv). It is obvious.

(iv)=(i). Assume that (iv) holds and (i) fails. Hence there is ug € ET such that
sup{||T(f)ly: f € E(X),f < ug} = oc. It follows that one can find a sequence (f,) in
E(X) such that f, < g for all n € N and ||T(f,)|y > n? for all n € N. Hence putting

hy, = %fn for n € N, we have h,, < %uo < wp and || T(hy,)|ly = n for n € N. We shall



show that h,, — 0 for |o|(E(X), E(X)™). Indeed, let F € E(X)~, and 9 € Sx. Then
1 1
prlin) = |Fle) < 11 (300 a0) ) = 21Fl(uo © ) =0

Hence h,, — 0 for o|(E(X), E(X)"™), so by (iv) sup,, ||T'(h»)||y < oo. This contradiction
establishes that (iv)=-(i).

(i)=(v). Assume that (i) holds and (v) fails. Then there exists a sequence (f,) in
E(X) such that f, — 0 (ru) and sup,, ||T(fn)|]ly = oo. This means that there exist
r € ET and a sequence (g,) with &, | 0 such that fn < e,r < g,r for all n € N. Hence
by (i) sup,, |T(fx)|ly < oo, and we get a contradiction.

(v)=-(i). Assume that (i) fails. Hence there exists ug € ET such that

sup{[T()]lv: | € B(X), [ < up} = oc.
So, there exists a sequence (f,) in £(X) such that fn < up and || T(f,)|ly = n? for all

n € N. Denoting h,, = %fn for n € N we get h,, < %uo for n € N, ie., h, — 0 (ru) and
IT(hy)|ly > n for all n € N. It follows that (v) does not hold.

Now assume that (E, || - [|g) is a Banach function space. Then (E(X),| - [gx))* =
E(X)~ and the Mackey topology 7(E(X), E(X)™) coincides with the || - || g(x)-norm
topology. Hence (ii)<(vi). m

Recall that a Banach space Y is said to have the Dunford-Pettis property if for se-
quences (y,) in Y and (y)) in Y™*, y*(y,) — 0 whenever y, ) 0in Y and y )0 in
Y™ (see [ABq, Section 19]).

Following ([ABg2], [AB3, Section 19]) we say that a linear operator T : E(X) — Y is
a weak Dunford-Pettis operator if f, — 0 in E(X) for o(E(X), E(X)™) and y )0 in
Y imply gy, (T(fn)) — 0.

As an application of Theorem 2.3 we get (see [E, Theorem 1.4]):
THEOREM 2.4.

(i) BEvery weak Dunford-Pettis operator T: E(X) — Y is order-bounded.
(ii) If Y has the Dunford-Pettis property, then every order-bounded operator T: E(X)
— Y is a weak Dunford-Pettis operator.

Proof. (i) Assume that T: F(X) — Y is a weak Dunford-Pettis operator and it is not
order-bounded. Hence by Theorem 2.3 there exists a sequence (f,) in F(X) such that
fn — 0 (ru) and sup,, | T(f)|ly = oco. This means that there exist ug € ET and a
sequence (g,,) with e, | 0 such that f,, < e,up for all n € N and the set {T'(f,): n € N}
in Y is not weakly bounded. Hence there exist y5 € Y* and a subsequence (fx,) of (f»)
such that

(%) lus (T (fx,))] >n  forallneN.

One can observe that f, — 0 for o(E(X), E(X)"). Indeed, let F € E(X)™~ and zy € Sx.
Then

[E(fa)l < TEI(fn) < [F|(en(uo @ 0)) = en|F|(uo © ),
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so F(fn) — 0, as desired. On the other hand, since %y(}k L), 0in Y* and T is supposed

to be a weak Dunford-Pettis operator, we get 245 (T'(fx,)) — 0, which contradicts ().

(ii) Assume that T: E(X) — Y is order-bounded. Then by Theorem 2.3 T'is (o (E(X),

E(X)~),o(Y,Y*))-continuous. Let f, — 0 for o(E(X),E(X)~) and v}, )0 i ve,

Then T(f5) L), 0in Y, and since Y is supposed to have the Dunford-Pettis property, we
conclude that y(T(f,)) — 0. This means that T is a weak Dunford-Pettis operator. m
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