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Abstract. We consider the single layer potential associated to the fundamental solution of
the time-dependent Oseen system. It is shown this potential belongs to L?(0, 0o, H'(Q)?) and
to H'(0,00,V") if the layer function is in L?(9 x (0,00)®). (2 denotes the complement of a
bounded Lipschitz set; V denotes the set of smooth solenoidal functions in H{(€2)3.) This result
means that the usual weak solution of the time-dependent Oseen function with zero initial data
and zero body force may be represented by a single layer potential, provided a certain integral
equation involving the boundary data may be solved.

1. Introduction. Let Q be an open set in R?* with compact complement and with
Lipschitz boundary. (For the purposes of this article, we need not require that € is
connected. Thus € is only supposed to be an exterior set, but not an exterior domain.)
Put Zp :=Q x (0,T) and Sp := 90Q x (0,T) for T € (0, 00]. Then consider the following
initial-boundary value problem for the instationary Oseen system in Zp:

Ou—Apu~+7-0pu+Ver=f, divyau=0 in Zp, (1)
wl St =0, wu(z,t)—0 (|| = o00) for te€ (0,T), (2)
u(z,0) = a(zx) for z €Q, (3)

where the quantities 7 € (0, 00) (Reynolds number) and T' € (0, oo] are given, as are the
functions f : Zp — R3, a: Q+— R3 and b : Sy — R3. The velocity v : Z; — R3 and the
pressure 7 : Z7 — R are unknown.

In previous articles, problem (1) - (3) was usually solved by semigroup theory based
on estimates of the Oseen resolvent ([4], [5], [8], [10]). Recently reference [2] proposed
a potential theoretic approach which leads to solutions of (1) - (3) in the form of a
sum of certain volume potentials plus a single-layer potential. This approach is useful
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for deriving pointwise decay estimates of exterior Oseen flows (see [2, Lemma 18]), and
it may have other applications as well. For example, it may help to provide regularity
results for Oseen flows in Lipschitz domains, in analogy to the theory developed by Shen
[11] for evolutionary Stokes flows.

In the work at hand, we consider the single-layer potential appearing in the approach
from [2]. This potential solves (1) - (3) with f =0, a = 0, and may thus be considered
as a boundary-driven Oseen flow. The velocity part of this potential, which we denote by
V(TT) (®) (see Section 2 for a precise definition), is a C*°-function in (R?*\9Q) x ([0, T]|NR) =
(R3x ([0, T)NR))\ ST, for any layer function ® € L*(0, T, L'(9Q)3) and for any T € (0, 0o].
This follows immediately from the definition of ng ) (®) as a surface integral on St. In the
present article we are interested in a property of VEFT )(<I>) which is less obvious, namely
L?-integrability near St and for large values of |x| and ¢. In this respect, we will show
that

V(@) | Zr € L=(0,T, L2(Q)%), V()| Zr) € L*(Zr)°, (4)
8 (WVS(®)| Zr) € L2(0,T, V') for T € (0,], ® € L*(Sr)?,

where V is the space of solenoidal functions in Hg (2)3. Estimates of VEFT )((D) correspond-
ing to the relations in (4) will also be established; the right-hand sides of these estimates
consist of the product a constant times ||®||2, where the constant in question only de-
pends on € and 7, but not on T'. Actually, we will admit functions ® with somewhat less
regularity than L?-integrability on St; see Theorem 2.3 below for more details.

In order to indicate why this result is interesting, we recall that a weak solution
of (1) - (3) is typically defined in such a way that the velocity belongs to the space
L2(0,T, HY(Q)3) N H*(0,T, V'). We further recall this space is a uniqueness class for
weak solutions to (1) - (3) ([13, p. 172]). Thus our result means that a weak solution of
(1) - (3) with @ = 0 and f = 0 may be represented on 2 x (0,7) by the single layer
potential ‘Z]g,? )(CID), provided the layer function ® € L?(S7)? solves the integral equation

V(@) | Sr = b. (5)
Such a representation is useful in many respects. For example, it immediately implies
that in the case a = 0, f = 0, a weak solution to (1) - (3) belongs to C°°(Q2 x (0, 00))>.
Or it yields decay results for |z| — oo; see [2, Lemma 18] for a simple example in this
respect. But of course, all this is subordinate to solving the integral equation (5) on St

with unknown function ®. Some ideas on this problem may be found in [2, Section 3]. A
more complete study of equation (5) is in preparation.

2. Notations and some auxiliary results. Main theorem. If A C R3, we write A°
for the complement of A. The length a; + ag + a3 of a multi-index o € N3 is denoted by
|al1. We write e; for the unit vector (1,0,0). For r € (0,00), z € R3, we write B,.(z) for
the open ball with centre z and radius r. Put B, := B,(0).

The open set Q C R3 with compact complement Q¢ and with Lipschitz boundary 9§
will be kept fixed throughout. Without loss of generality, we may assume that 0 € Q¢
so that |y| < diam Q° for y € Q°. We put Ry := 4 - diam Q°, hence Q¢ C Bp,/o. Recall
the notations Zp := Q x (0,T) and Sy := 9Q x (0,T) for T € (0,00]. For R € (0, 00),
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we set Qg := BN Q. Let H'(Q) denote the usual Sobolev space of functions with weak
first order derivatives in L?(£2). The usual norm of H'(Q) is denoted by || ||1,2, that is,
lloll12 :== (||v]|3 —l—Zi:l 102, v[13)/2 for v € HY(2). By V, we designate the closure of the
set {¢ € C§°(Q)3 : divy = 0} in H*(Q)3. We define V' as the dual space of V, consisting
of linear forms which are bounded with respect to the norm || |1 2.

Following [7, p. 269/270, 305/306], we choose k(2) € N, a(f2) € (0, 00), orthonormal

matrices Agm, ...,A,(f(zg)z) € R3%3, vectors CFD, ...,Clis(g) € R3, and Lipschitz continuous
functions agﬂ), ...,a,(f(%) : [—a(2), a(2)]? — R such that the following properties hold

true: Defining the sets A7, A, U by
AT:=(y- (@), v o) A= (AT .0 ) + O e ATy,
U = AAY (0" m) +1) + ¢V ine AV, re(—y-al®), v-a(@))
for i € {1,...,k(Q)}, v € (0,1], and the function H® : A x (—a(Q),a(Q)) + U}! by
HO (0, r) = A (0, a® () +7) + € for e AL, v € (~a(@), a(2),

we have
Ul NQ° = HO(A! x (=a(9),0)), U nQ=HD (A" x (0,a())),
E(Q)
ULnoQ:=A! for i€ {1,..k(Q)}, 0= ] A"
i=1

These relations imply that

a(f) )
[ o@as = [ [ e\ ms)dyds  tor ge LI, (6)
U}l —a(2) JA
and that there is a constant D > 0 with
| HD(p, &) — HO(n, )| = Di-(lp—nl+ s —#)) (7)

for p,n € A, K,k € (—a(Q),a(Q)), ic{l,..,k(Q)}.
We further introduce functions h() : Al — A}, J;: Al — R by setting

. ) 2 ) 1/2
BOm) = AP -0l m) + ¢V, TOm) = (143 100 m)P)
r=1

for n € A, i € {1,...,k(Q)}. Then we have for any integrable function g : 9Q — R and
forie {1, ..., k(Q)}:

/ gdS = / (g0 hD) () - JO () dny. (8)
Al N

Moreover, let m(® € C§°(R3)? be a non-tangential vector field to €. This means that
|m ¥ ()| = 1 for x from a neighbourhood of 99 in R?, and there are constants Dy, D3 €
(0, 00) such that

lz+6-mD(z) =2’ =& -mD ()| >Dy- (Jo— | +16 -] (9)
for x,2’ € 09, 6,0 € [-D3, D3], and
46 mV@) e, z—6-mP(x)eQ’ for xe€dQ, de(0,Ds) (10)
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Some indications on how to construct such a field are given in [9, p. 246]. Note that since
2 is only Lipschitz bounded, the relations in (9) and (10) do not hold in general when
m® is replaced by the outward unit normal to 2. We further observe that
dist(UM*, 00\AL?) > 0 for i € {1, .., k(Q)}, and dist(99, R*\ UFD Ul/*) > 0.
Thus there is a constant D4 > 0 such that
o —y| > Dy for y€0Q, xeQp\ULY (U N,
and for y € 8Q\A3/2, x € U1v1/47 ie{l, ..., k(Y}. (11)

We write C for constants which only depend on diam Q, a(Q2), k(2), D1, ..., D4, on an
upper bound D5 of |a§m(n)\, with n € Al and i € {1, ..., k(€2)}, and on the Reynolds
number 7 from (1). This latter number will be kept fixed throughout. If n € N and
if ¢1, ..., g € (0,00) are some other parameters, we write C(q1, ..., ¢,) for constants
depending on ¢, ..., ¢, and also on the quantities just mentioned.

Next we state two results which are frequently used in the context of the Oseen system.
The first one, for which we refer to [3, Lemma 4.8], reads as follows:

LEMMA 2.1. There is a constant C(7) > 0 such that
A+7(jo—yl—(@—y) " <C@) - A+ A+7-(Jz| —21)7
for x,y € R3.
The second one is a special case of [6, Lemma 4.3] and is stated here as

LEMMA 2.2. Let 5 € (1,00). Then there is C = C(t, ) > 0 such that
/ (1+7- (x| —21))Pdo, <C -7 for r € (0,00).
4B,

Our main tools in the following will be Minkowski’s inequality for integrals and
Young’s inequality for convolutions. For the convenience of the reader, we state these
inequalities in the ensuing two theorems, in a form as in [12, p. 271]. As concerns the
proof, we refer to [1, p. 26, Theorem 2.9; p. 34, Corollary 2.25].

THEOREM 2.1. (Minkowski’s inequality for integrals) Let p € [1,00), F: X xY — R a
measurable function on the o-finite product measure space X X Y. Then

([ ([ ramna) )™ < [ ([10wora) e

where dz and dy denote integration with respect to the measures of X andY , respectively.

THEOREM 2.2. (Young’s inequality for convolutions) Let n € N, p,q,r € [1,00] with
1/¢g=1/p+1/r—1, f € LP(R™), g € L"(R™). Then the convolution f x g is well defined
and belongs to LI(R™), with || f * gllq < || fllp - Il

Next we introduce some fundamental solutions. Let H denote the usual heat kernel
in R3, that is,

H(z,t):=(4-7-1)73/2. e @ gor 4 e R3, t € (0,00).
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We define a fundamental solution of the time-dependent Stokes system by setting
Ljr(z,t) == 6, - H(z,t) —|—/ 0.,0., H(z,8)ds, Ex(x):= (4 )"ty x| 3
t

for z € R3, t € (0,00), = € R3\{0}, j,k € {1, 2, 3}; compare [11]. The functions T'jj
constitute the velocity part, and the functions Ej the pressure part of this fundamental
solution. The following inequality is well known:

LEMMA 2.3. There is C > 0 such that for « € N§ with |a|; <1, 2 € R3, t € (0,00), the
estimate [02T i (z,t)| < C - (|2|? +t)73/27 1ol /2 polds.

Of course, if m € N, m > 1, the same estimate is valid for o € N3 with |a|; < m,
with a constant C' depending on m; derivatives with respect to ¢ may also be taken into
account. But for our purposes, it is sufficient to consider spatial derivatives of first order.
We further define the velocity part of a fundamental solution of the time-dependent Oseen
system by setting

Nj(2,t,7) :=T(z =7 -t-e,t) for j,ke{l1,2, 3}, 2R3 t € (0,00).

(The pressure part of this fundamental solution consists of the functions Fj introduced
above in the Stokes case.) According to [2, Lemma 3], the function A;; may be estimated
as follows:

LEMMA 2.4. For any K € (0,00), there is a constant C = C(7,K) > 0 such that
|63Ajk(zata T)‘ <C- ’y(z7t)_3/2—\0¢\1/2

for z € R3\{0}, t € (0,0), j,k € {1,2,3}, « € N3 with |a]s < 1, where y(z,t) :=
|22+t if |2| < K, and y(z,t) == |z| - (1 + 71 (|| — 21)) + t if || > K.

Next we introduce our single-layer potentials. For T € (0, 00], ® € L?(0,T, L*(0Q)3),
z€R3 2 e R3N\OQ, t € [0, T]NR, we put

V) (@) 2, (/ / S Ao it = o) Wil 0)aNs) )

Qi 1<j<3
Q@@= [ S B — 9) - By, 0)d2y).
k=1

The pair (V(TT)(q)), Qr(®)) is called the “single-layer potential associated to the time-
dependent Oseen system”, with layer function ®. According to the following lemma, this
pair solves equations (1) and (3) with f =0, a = 0.

LEMMA 2.5. Let T € (0,00], ® € L%(0,T, L*(9Q)?), and abbreviate
0= Vi (@) | (RN09) x (0. TINR),  q:=Qr(®).
v;( -

Then v € CO((R3\09Q) x ([0,T) NR))3, ), q( - ,t) € C®(R3\OQ) for 1 < j <3
and for a.e. t € (0,T), the derivative &gv(x,t) emsts and

Ov(z,t) — Agv(a,t) + 7 Oy, v(x,t) + Vyq(z, t) =0, divyv(z,t) =0, v(z,0)=0
for x € R3\9Q and a.e. t € (0,T), and v(z,t) — 0 (|z| — o0) fort € [0,T] NR.
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This lemma follows from Lebesgue’s theorem on dominated convergence and from the
equations

Nk (x,t) — ApAji(w,t) 4+ 7 - 8y Mg, 1) ZaﬁAzk (z,t)
for x € R?, t € (0,00), 1 < j,k < 3. Now we may state the main result of the present
article.
THEOREM 2.3. Let p € (4/3,2], T € (0,00]. Then the function 6t( (<I>) Zr) may

|
be considered as a mapping from (0,T) into V', for any ® € L?(0,T, Lp(69)3), if this
mapping is defined by

VT (@) | Zr)(t) (w) = ) VT (@) (x,t) - w(e) da,

for w € C§°(2)3 with divw = 0 and for a.e. t € (0,T). There is a constant C > 0,
depending on 7, diam Q, k(Q), a(Q), D1, ..., D5 and p, such that the inequality

IV (@) | Zrll s 0,1, 29y + IV O (®) ] Z0)ll
+10. VD (®) | Zr) |20, vy < C - 1@ 20,1, o00)5)
holds for T € (0,00], ® € L%(0,T, LP(99Q)3).
We will also show the following

THEOREM 2.4. Let p € (4/3,2], T € (0,00], ® € L?(0,T, LP(9N)3). Then, for a.e.
t € (0,T), the trace of V(TT)(QD)( 1) | Q on O coincides with V(TT)(‘E)( -, t)| 09, that is,

trace(V(TT)(@)(-,t)|Q)j(az):/0/8 ZAM —0,7) - Oi(y, ) dQ(y) do

Q=1
for j € {1, 2, 3} and for a.e. t € (0,T), x € ON.
Let us still state a consequence of Theorem 2.3.
COROLLARY 2.1. Let p, T, ® be given as in Theorem 2.4. Then the function Vg;)(d)) | Z1
may be considered as a mapping from (0,T) into V' in the sense that

(V(T)( Q) [ Zr)(t /V w(z)dx for weV, te(0,T).

Let 0, (V(T)( ®) | Z1) be understood as a mapping from (O T) into V' as in Theorem 2.3.
Then VS (®) | Zr € L2(0,T,V) N HY(0,T, V"), with V(@) | Zr)' = 0,V (@) | Zr).

3. Proof of Theorem 2.3 and 2.4. For T € (0,00), p € [1,2] and for any function
® € L2(0,T, LP(02)?) (whose domain is St), the zero extension of ® to S, belongs to
L?(0, 00, LP(982)3). Moreover, for p, T as before, and for ® € L?(0, 00, LP(99)3), we have

VO (®)(,t) = V(@] Sr)(2,t) for (z,t) € Zr.

Thus, without loss of generality, we may restrict ourselves to the case T' = co.
The key estimates leading to Theorem 2.3 and 2.4 are given by the two ensuing
lemmas.
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LEMMA 3.1. For ® € L?(0,00, L*(002)3), t € [0,00), * € Qgr,, v € {0,1}, we put

sty = [ [ (=t )2 00 a0 do
o0

Then, for p € (4/3,2], ® € L*(0,00, LP(0Q)3), t € [0,00), the following inequality is
valid:

1Ko(@)(- 5 B)ll2 + [[Ki(@)]2 < C(p) - 1@l £2(0,00, Lo (692))-

Proof. Since |[v]|; < C - |lv||2 for ¢ € [1,2), v € L*(99), we may assume without loss of
generality that p < 2. Thus let p € (4/3, 2). Take ® as in the lemma, and let v € {0, 1}.
Then, for ¢ € (0, c0),

k()

Ky(®)(z,t)*de < A(t)+2- > (Bi(t) + Ci(t)), (12)

Qrq i=1

! 2
— / (/ / (lz — yl2 +t— a)—s/z—u/z @ (y, 0)| dQ2(y) do’) dz,
M 0 JoQ
' 2
B;(t) := / (/ / (|l — y|2 +t— U)_3/2—u/2 |®(y, o) dQ(y) do‘) dr,
Uil/4ﬁQ 0 Joa\al/2

t 2
citty= [ ([ [ oP s+ =) o(y0) dy) do ) da
u/tne \Jo Ja!

fori e {1, ..., k(Q)}, where M := QRO\Ufi?) (Ui1/4ﬁQ). By (11) and Hélder’s inequality,
we get for ¢ € (0, 00),

with

k(Q) t 2
At)+ ) Bi(t) < C- (/ (D2 +t—0) 3272 |®(y,0)| dQ(y)do) dr (13)
i1 Qr, \J0 JoQ

t 2
<c. (/ (Di+t—o>3/“/2-|¢><-,a>||pda) |
0

Therefore, in the case v = 0, by Holder’s inequality,
k() t
AW+ 3B < ¢ [[D2 -0 P o) 10 my (10

i=1
<C: H‘I)||2L2(0,00,Lp(ag)3) (t € (0,00)).
In the case v = 1, we deduce from (13), using Young’s inequality (Theorem 2.2),

o k() o 2
/0 (A(t)+ZBi(t))dt§ c(/o (Di+s)2ds> N @72 (0,00, Lroysy  (15)
=1

< C-[19172(0,00, Lr (0022
Now take i € {1, ..., k&(2)} and consider C;(¢). Abbreviate
3D (n,0) := ®(hD(n), 0) for ne A2, o€ (0,00).



126 P. DEURING

Then we get by changes of variables as in (6) and (8), and by referring to (7):

a(Q)/4 t ) ‘ —-3/2—v/2
o= [ [ 1] (e - n0E o)
0 A1/4 0 A1/2

2
189 (5, 0)] - Ji(y) iy do} dodr

a(2)/4 t
<e [0 [// (o=l +r+ (t - o)/2) -5
0 A1/4 0 A1/2
2

~|&>(i)(n,0)\ dnda} dodr (t € (0,00)).

By first applying Minkowski’s and then Young’s inequality (Theorem 2.1 and 2.2, respec-
tively), we may conclude for ¢ € (0, 00):

o 2 1/2 2
-|<I>(z)(77,a)d17) dg) da} dr

a(@)/ar pt . 3/2—1/p
<c [T [ (e - opraysrsnam )
0 0 R2

139 ,a>|pda] dr. (16)

But (3+v)-(3/2—1/p)™1 >3-(3/2—1/p)~! > 2, so that

3/2—1/p
(/ (|§|+T+(t—0)1/2)(—3—u)~(3/2_1/p)—1 dC)
R2
<C)-(r+{t—o)/2)2P < C(p)- (rP +t —o)7V/2 P

for 7, t,0 € (0,00) with o < t. It follows from (16) that

2

a()/4 t .
Gi(t) < C(p)~/0 UO (7’2+t0)””””'II‘I’(’)(',U)llde] dr, — (17)

for t € (0,00). In the case v = 0, the right-hand side of (17) is dominated by
(/4 pt o
C(p) . / (/ (7‘2 +1t— U)_Q/p dO’) dr - H(b(l)||i2(0’oopr(Al/2)3)
0 0

a(Q)/4
< c(p)- / ()27 dp [ B]2 0.0 Locomys)  (t € (0,00)).

In the last inequality, we used that p < 2, hence —2/p < —1. But p > 4/3, hence
—4/p+ 2> —1, so we may conclude that

Ci(t) <C(p) - 1®]1Z2 0,00, Lo(osys) for t € (0,00) if v =0. (18)
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In the case v = 1, we find with (17) and Young’s inequality,

a(Q)/4 2
/ Ci(t) dt < Clp / / U (2 4t — o) M/2 1 GO (. )|pda} dr dt

a(Q)/4 2
<ew [T ([0 B s B i )

() /4
<C(p)- (/0 rl =2/ dr) N ®@1IZ 20,00, Lo (002)2)

<€) - 1l172(0,00, Lr(02)3)- (19)
Note that —1/2 — 1/p < —1 because of the assumption p < 2. In the case v = 0, we may
deduce from (12), (14) and (18) that

/ﬂ Ko(®)(w,t)*dz < C(p) - 1®]|72(0,00, Lo (a)s) for ¢ € (0,00). (20)
Ro
As concerns the case v = 1, we refer to (12), (15) and (19) to obtain
| m@enad < o) 1910 mon (21)
Ro

Inequality (20) and (21) yield the lemma. =
LEMMA 3.2. The inequality
VD@0 B lla + IVVD(@)] By, x (0,50)ll2 < C- 8]l 00,00, ooe)
holds for p € [1,2], ® € L?(0,00, LP(0)3), t € [0,00).
Proof. Take p and ® as in the lemma. Let j € {1, 2, 3}, o € N3 with |a|; < 1. Then, for
€ (0, 00),

fy EVR@@0F o < Ant)+ o) (22)

with A, (t) defined as an abbrev1at10n of the term

/Bc (// Xon(t—o)- Z|5?Ajk<x—y,t—m>l~I@(y,ondmy)dofdx,

and Wlth B (t) defined in the same way, except that the term x g 1)(t — o) is replaced by
X(1,00)(t — 7). Since Q¢ C Bp, 2, we have |v —y| > |2]/2 > Ry/2 for z € Bf, , y € 09,
so we may conclude from Lemma 2.4 with K = Ry/2, and from Lemma 2.1,

05 Ak (e =yt —o,7)[ <C-(lz—yl- (L4 7 (|2 —y| = (x—yh)) + 1 — o) 2/2 1/
<C-(|z|- (147 (x| —z1)) +t — 0)3/27eh/2

forz € By, ye o, 1 <jk<3, ac N with |a|; < 1, t,0 € (0,00) with o < ¢. Tt
follows with Lemma 2.2 that

Au(t) < C-/BC (| - (1 +7 - (|| — 21))) "3 lehdy

</0t /(9Q X(0,1)(t — o) - [®(y, o) dQ(y) d0>2
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<cC- (/OtX(o,l)(tU) @ a0)|pd‘7)2~

Now Holder’s inequality yields
Ao(t) < C-[|1®[I72(0,00, Lo(agys) for t € (0,00), (23)
and Young’s inequality (Theorem 2.2) implies for a € N3 with |a|; = 1,

/ A dt<C/ (/ o t—a)-|<1>(-,a)||pda) dt

= ¢ (/0 Xo.(s )ds) @l 220,00, Lroy?) < C 122000, ooy (24)

Concerning B(t), we obtain by Minkowski’s inequality (Theorem 2.1),

3 " 1/2
t><c§j(// xum)(t—a)-(/ |83Ajk<x—y,t—o,T>|2dx>
= \Jo Joa R3

2
1B (y,0)]dAy) da) (te(0,00), a €N, Jal <1). (25)
But
/ 109 Aji(a — gt —o,7)dy = / 09T (21t — o) 2 de
R3 R3

< C'/ (Jz| + (t —0)V/2) =67 2leh gz < ¢ (t — g)73/27 ]k
R3
(r € R3, t,0 € (0,00) with t > 0, 1 < j, k < 3); see Lemma 2.3. Thus we may deduce
from (25), by Holder’s inequality,
t 2
B < ([ [ Xmlt=0) - (t=0) ¥/ ool ) o
0

< C-[|P)172(0,00, Lr(aysy  (t € (0,00)), (26)
and by Hoélder’s and Young’s inequality (Theorem 2.2), if o € N§ with |a| = 1:

/Oo dt</ (/ /aQX(IOO) )-(t0)5/4~<I>(y,a)|d§2(y)do>2dt
<C/ (/ X(1,00)(t =) - (t—U)_5/4-||<I>('»U)Ipda)zdt

2
<C- (/}R X(1,00) (1) - 772/ d7”> N®@1Z2 (0,00, Lro)s) < CI®@l7200,00, r(oysy:  (27)
The lemma follows from (22) - (24), (26), (27). =

As a first consequence of Lemma 3.1 and 3.2, we obtain an estimate of V{7 (®) | Z4
and V, (V7 (®) | Zo) :

COROLLARY 3.1. Forp € (4/3, 2], ® € L?(0, 00, LP(0Q)?), t € [0,0), the inequality
V@), 1) 2l + VoD (@) Zoo)l2 < CD) - 101l 220,00, Lr(052)2)
holds.
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Proof. Since |z —y| < 2 Ry for x € Qp, and y € 09, Lemma 2.4 with K = 2 Ry
shows that |99A x(z — y,t — 0,7)| is dominated by C - (|z — y|? +t — o) 73/27121/2 for
x € Qp,, y € 00, t € (0,00), 0 € (0,t), @ € N} with |a|; < 1. Thus Corollary 3.1
follows from Lemma 3.1 and 3.2. =

We complete the proof of Theorem 2.3 by establishing the following
LEMMA 3.3. The inequality
10:(VD(®) | Zoo) 20,00,y < CD) - 19| 220,00, Lr(02)%)
holds for p € (4/3, 2], ® € L?(0,00, LP(952)3).

Proof. Take p, ® as in the lemma, and abbreviate V := V) (®) | Zoo. Let t € (0,00), ¢ €
C§°(9Q) with div ¢ = 0. Then we get, by Lemma 2.5,

/8t (z,t) )dm‘z

Q(AxV(J;, t) — 7 0p, V(x,t) — V. Q(P)(x,1)) - () dz

/Q(—VwV(:mt) -Vo(x) — 7 0p V(2,t) - () da

1/2
<c. ( / |vwv<x,t>|2dx) Tl
Q

It follows that [|0,V( -, )|}, < C- [, VoV (2, t)|2dx for ¢ € (0,00), so Lemma 3.3 follows
from Corollary 3.1. =

Let us now turn to the proof of Theorem 2.4. We introduce two additional notations.
For € (0, D3], we put

Q. :={2zeR® : dist (z,Q) <Dy -x/2}.

Note that Q C Q. For ® € L2(0,00, L'(8Q)3), k € (0,Ds), z € Q,, t € (0,00), j €
{1, 2, 3}, we define

VR (@) / / ZAﬂk t—y+r-mODy), t—o,7) Bp(y,0)dUy)do. (28)
o0t

LEMMA 3.4. For k, ® as in (28), we have

V(@) € CO(Q, x (0,00))%, VITI(®)(-,t) € C1(Q)* for t € (0,00),

eV (®), (a: t) (29)

/ / 28 Ajp(x —y+r-mD(y), t —o,7) Ok(y, o) dUy) do
00 =y

for k,x,t, 5 as in (28), a € N3 with ||y < 1. Moreover,

05 Az —y+ - mD(y), t —o,7)| < C-(Jo -y +t—0) /2712 (30)

for x € Qr,, y € 0, k € (0,D3), t,0 € (0,00) witht > o, a € N3 with |a|; < 1.
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Proof. Let k € (0,D3], y € 9Q, = € Q. If 2 ¢ Q, there is ' € 9Q with |z — /| =
dist (z, ), and we find with (9),
o —y+r-mP(y)| > [ —y+r-mPD(y)| - |z - 2|
> Dy -k —dist (z,Q) > Dy K/2,

where the last inequality follows from the assumption z € ﬁ,.i. If x € Q, we recall that
y—r-m(y) ¢ Q (see (10)), so there is 2’ € IQ with

o=y + k- mO ()| = |2" —y+r-m P ()],
hence again by (9): |z —y 4+ x - m(y)| > Dy - k. Thus we get in any case,
|z —y+r-mD ()| >Dy-k/2 for ke (0,Ds], yed, ze,. (31)

Take ® as in (28). Then it follows from (31) and Lemma 2.4 that V(T8 (@) belongs to
CO(€, % (0,00))3 with V(@) ( - ) € C(Q,.)? for t € (0,00), and equation (29) holds.
In particular,

VO (@) |, x (0,00) € CO(2r, x (0,00))°, VO(@)( -, t)|Qr, € C(Qm,)°

for t € (0,00). Now consider x € (0,D3], y € 09, x € Qg,. If |x —y| < Ds-£/2, it follows
with (31) that |z —y +r-m (y)| > |z —y|. Next suppose that 2-x > |z —y| > Dy - /2.
Then we find by using (31) again,

& —y+ k- mD(y)| > Dy -5/2 > (Da/4) - & — yl.

Finally, if |z —y| > 2- &, it is obvious that |z —y +#-m ¥ (y)| > |z —y|/2. Thus we have
in any case

@ —y +r-mP(y)| > min{1/2, Dp/4} - & —y. (32)

Since |z —y + k- mP(y)| < 2- Ry + D3, we see that inequality (30) follows from (32)
and Lemma 2.4 with K =2 - Ry +D3. m

Now we may carry out the

Proof of Theorem 2.4. Let ® € L*(0, 00, LP(99)?), for some p € (4/3, 2]. By (30), (29),
Lemma 3.1 and Lebesgue’s theorem on dominated convergence, we get that
Vc(;(;)(q))( : 7t) |QR0 € Hl(QRo)3a

/QRU

for a.e. t € (0,00), and

b

As a consequence of (34), we may choose a sequence (k) in (0, D3] such that x, | 0 and

/QR

2
VOO (@)(@,1) = V(@) (@) de =0 (x| 0) (33)

2
VoV (@) (1) - TV @), t)| dr -0 for w0, (30)

2
VYT (@) (2, 1) = VD (@) (1) d — 0 (n = 00) for ace.t € (0,00).  (35)

0
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Fix some function ¢ € C§°(R?) with (| Bg, /2 = 1, supp({) C Bg,, and put
W (1) == ¢(z) - VO (D) (,t) for x € Qg,, t € (0,00),
W(z,t) = ((z) - v<T>( )(x,t) for z € Qp,, t € (0,00).

Then W (- [ t) € C'(Qg,)? for & € (0,Ds], t € (0,00) (see Lemma 3.4), W( - ,t) €
Hl(QRo)a

[IWED () =W( - t)]12 — 0 (n—o0) forae. te (0,00)
(see (33), (35)). Therefore
WD (L 1) 9Q — trace(W( - 1)) |0y — 0 (n — o0) for ae. t € (0,00).
Since ¢ | 02 = 1, this means
Hv(w)(@)( 8109 — trace(W( - ,£)) |00, = 0 (n— o0) (36)
for a.e. t € (0,00). On the other hand, take T € (0, 00). Then

/0 /m/ /BQ (lz — y[2 +t — 0)3/2 - |®(y, 0)| dQ(y) do dQ(z) dt
B / /69/ /aQ (lo —y* +t —0) 2 dz) dt - |®(y,0)|dQ(y) do

< C-TY2 )2 |Srlli < C- T8l L2(0,00, Lr(002)2)-

It follows from (30) and Lebesgue’s theorem on dominated convergence that

/ / m5) (@) (2, ) — V(D) (x,8)| dUz) dt — 0 (k| 0).
o2
Thus we may conclude there is a subsequence (k) of (,) such that
VEED) (@) (z, ) — VO (®)(2,t) = 0 (n— o0) forae. te(0,T) and a.e. x € .

In view of (36), it follows that trace (W( - ,t)) |09 = V(®)( - ,t) | 0Q for a.e. t € (0,T).
Since T was chosen arbitrarily in (0, c0), the preceding equation even holds for a.e. t €
(0,00). But W( - ,t) = ¢V (®)( -, 1) | Qp, for t € (0,00), and | Br,/2 = 1, (| Brg =0,
so Theorem 2.4 is proved. m
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