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1. Introduction. Recently, Degasperis and Procesi [17] studied the following family of

third order dispersive conservation laws,

ut + c0ux + γuxxx − α2utxx = (c1u
2 + c2u

2
x + c3uuxx)x,(1.1)

where α, c0, c1, c2, and c3 are real constants and indices denote partial derivatives. In

[17] the authors found that there are only three equations that satisfy the asymptotic

integrability condition within this family: the KdV equation, the Camassa-Holm equation

and the Degasperis-Procesi equation.

If α = c2 = c3 = 0, then Eq.(1.1) becomes the well-known KdV equation which

describes the unidirectional propagation of waves at the free surface of shallow water

under the influence of gravity. In this model u(t, x) represents the wave’s height above

a flat bottom, x is proportional to distance in the direction of propagation and t is

proportional to the elapsed time. The KdV equation is completely integrable and its

solitary waves are solitons [37]. The Cauchy problem of the KdV equation has been

studied extensively, see [29, 40] and the citations therein. It is shown that the KdV

equation is globally well-posed for u0 ∈ L2(R), cf. [40]. It is observed that the KdV

equation does not accomodate wave breaking (by wave breaking we understand that the

wave remains bounded but its slope becomes unbounded in finite time [42]).

For c1 = −3
2c3/α

2 and c2 = c3/2, Eq.(1.1) becomes the Camassa-Holm equation,

modeling the unidirectional propagation of shallow water waves over a flat bottom, u(t, x)

stands for the fluid velocity at time t ≥ 0 in the spatial x ∈ R direction (see [3, 18,

27]). The Camassa-Holm equation has a bi-Hamiltonian structure [23] and is completely

integrable (see [1]). Its solitary waves are peaked, cf. [3, 4]. They are orbitally stable (see

[15]).

Initial value problems of the Camassa-Holm equation on the line and on the circle

have been studied extensively. It has been shown that this equation is locally well-posed

[9, 10, 39] for initial data u0 ∈ Hs(I) with s > 3
2 , where I = R or I = S = R/Z. More

interestingly, it has global strong solutions [7, 9, 10, 34] and also finite time blow-up

solutions [7, 9, 10, 11, 13, 34]. On the other hand, it has global weak solutions in H1(I),

cf. [2, 14, 34, 43]. The advantage of the Camassa-Holm equation in comparison with the

KdV equation lies in the fact that the Camassa-Holm equation has peaked solitons and

models wave breaking [4].

If c1 = −2c3/α
2 and c2 = c3 in Eq.(1.1), then, after rescaling, shifting the dependent

variable, and applying a Galilean boost [16], we find the Degasperis-Procesi equation of

the form

ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R.(1.2)

Degasperis, Holm and Hone [16] proved the formal integrability of Eq.(1.2) by construct-

ing a Lax pair. They also showed that Eq.(1.2) has a bi-Hamiltonian structure with an

infinite sequence of conserved quantities and that it admits exact peakon solutions which

are analogous to the Camassa-Holm peakons.

The Degasperis-Procesi equation can be regarded as a model for nonlinear shallow

water dynamics and its asymptotic accuracy is the same as for the Camassa-Holm shallow

water equation [19]. In this model, u(t, x) stands for the fluid velocity at time t in the
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spatial x direction. Dullin, Gottwald and Holm [19] showed that the Degasperis-Procesi

equation can be obtained from the shallow water elevation equation by an appropriate

Kodama transformation. Lundmark and Szmigielski [33] presented an inverse scattering

approach for computing n-peakon solutions to Eq.(1.2). Holm and Staley [26] studied

stability of solitons and peakons numerically.

After the Degasperis-Procesi equation (1.2) was derived, many papers were devoted

to its study, cf. [5, 25, 30, 31, 32, 36, 44, 45, 46, 47] and the citations therein. For example,

Yin proved local well-posedness of Eq.(1.2) with initial data u0 ∈ Hs(R), s > 3
2 on the line

[44] and on the circle [45]. In these two papers the precise blow-up scenario and a blow-up

result were derived. The global existence of strong solutions and global weak solutions

to Eq.(1.2) are also investigated in [46, 47]. Recently, Lenells [30] classified all weak

traveling wave solutions. Matsuno [36] studied multisoliton solutions and their peakon

limits. Analogous to the case of Camassa-Holm equation [8], Henry [25] showed that

smooth solutions to Eq.(1.2) have infinite speed of propagation. Coclite and Karlsen [5]

also obtained global existence results for entropy solutions in L1(R) ∩ BV (R) and in

L2(R) ∩ L4(R).

Despite the similarities to the Camassa-Holm equation, it should be emphasized that

these two equations are truly different. One of the important features of Eq.(1.2) is that

it has not only peakon solitons [16, 46], but also shock waves [6, 32, 21].

On the other hand, the isospectral problem for Eq.(1.2) has the third-order equation

in the Lax pair

ψx − ψxxx − λyψ = 0,

cf. [16], while the isospectral problem for the Camassa-Holm equation is the second order

equation

ψxx − 1

4
ψ − λyψ = 0,

cf. [3] (in both cases y = u− uxx).

Another indication of the fact that there is no simple transformation of Eq.(1.2) into

the Camassa-Holm equation is the entirely different form of conservation laws for those

two equations [3, 16]. Furthermore, the Camassa-Holm equation is a re-expression of

geodesic flow on the diffeomorphism group [12] or on the Bott-Virasoro group [38]. Up

to now, no geometric derivation of the Degasperis-Procesi equation is available.

It turns out in [31] that the conservation laws of the Degasperis-Procesi equation are

much weaker than those of the Camassa-Holm equation. Although the bi-Hamiltonian

structure of Eq.(1.2) provides an infinite number of conservation laws [16], the conser-

vation laws of the Degasperis-Procesi equation cannot guarantee the boundedness of the

slope of wave, and there is no way to find conservation laws controlling the H1−norm,

which plays important role in studying the Camassa-Holm equation.

Recently, several new global existence and blow-up results for strong solutions to the

Degasperis-Procesi equation on the line were presented in [31]. Global weak solutions and

the blow-up structure for this equation on the line were also investigated in [20]. It [31]

is shown that the first blow-up must occur as wave breaking and shock waves possibly

appear afterwards.
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Initial boundary value problems for the Camassa-Holm on the half line and the com-

pact interval [0, 1] have been recently studied in [28, 35, 22]. However, initial boundary

value problems for the Degasperis-Procesi equation on the half line and on the compact

interval [0, 1] seem not yet to have been investigated. In this paper, we mainly inves-

tigate initial value problems for the Degasperis-Procesi equation on the half line and

on the compact interval [0, 1] with Dirichlet boundary condition, which corresponds to

nonslip boundary condition, this means that the boundary of I is solid and at rest. The

aim of this paper is to develop a new approach to study two kinds of initial bound-

ary value problems for the Degasperis-Procesi equation on the half line with the initial

data u0 ∈ Hs(R+) ∩ H1
0 (R+), s > 3

2 and on the compact interval with the initial data

u0 ∈ Hs([0, 1])∩H1
0 ([0, 1]), s > 3

2 . By this new approach, we can convert initial boundary

value problems of the Degasperis-Procesi equation on the half line and on the compact

interval into Cauchy problems of the Degasperis-Procesi equation on the whole line and of

the periodic Degasperis-Procesi equation. Applying the known results for the Degasperis-

Procesi equation on the whole line and the periodic Degasperis-Procesi equation, we first

obtain local well-posedness results, then present blow-up and global existence results for

strong solutions, finally obtain global weak solutions for the equation on the half line and

local weak solutions on the compact interval.

Our paper is organized as follows. In Section 2, we first present a new approach.

In Section 3, by this new approach, we can investigate initial boundary value problems

of the Degasperis-Procesi equation on the half line. One interesting result is that the

corresponding strong solutions to the Degasperis-Procesi equation on the half line blows

up in finite time provided the initial potential y0(x) = u0−u0,xx 6≡ 0 and y0(x) ≤ 0 for all

x ∈ R+. In Section 4, we study initial boundary value problems of the Degasperis-Procesi

equation on the compact interval. An interesting result of our analysis shows that the

Degasperis-Procesi equation on a compact interval possesses no nontrivial global strong

solutions.

Notation. In the following, we denote by ∗ the spatial convolution. Given a Banach space

X, we denote its norm by ‖ · ‖X . The Banach space of all bounded linear operators

mapping X into another Y is denoted by L(X,Y ). If I is any interval of R we write

M(I) for all Radon measures on I and M+(I) for all positive Radon measures on I.

2. Preliminaries. In this section, we will present several useful lemmas which are used

in the sequel.

Let I ∈ R be an interval and let [·, ·]θ, θ ∈ (0, 1), denote the complex interpolation

method. Then it follows from Theorem 2.10.1 and formula 2.4.2/11 in [41]

Hθ(I) = [L2(I), H1(I)]θ.(2.1)

Definition 2.1. Let E, F be Banach spaces. An operator r ∈ L(E,F ) is called a re-

traction from E onto F if there exists a rc ∈ L(F,E) such that r ◦ rc = idF . In this case

rc is called a co-retraction for r.

Then we have the following lemmas.
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Lemma 2.1. Assume that E1 ⊂ E0 and F1 ⊂ F0 and that r is a retraction from Ej onto

Fj , j = 0, 1. Moreover, assume that the restriction of the co-retraction rc ∈ L(F0, E0) to

F1 is bounded in E1. Let further

Eθ := [E0, E1]θ, Fθ := [F0, F1]θ

for some θ ∈ (0, 1). Then r is a retraction from Eθ onto Fθ.

Proof. By assumption r ∈ L(Ej, Fj) and rc ∈ L(Fj, Ej) with r ◦ rc = idFj
. Thus,

interpolation yields r ∈ L(Eθ, Fθ) and rc ∈ L(Fθ, Eθ) with r ◦ rc = idFθ
.

Lemma 2.2. Given v ∈ L2(R+) and w ∈ L2(R). Let

(εv)(x) =

{

v(x), if x ≥ 0,

v(−x), if x < 0,

and (rw)(x) := w(x), x ≥ 0. Then

r ∈ L(L2(R), L2(R+)) ∩ L(H1(R), H1(R+))

is a retraction and ε is a co-retraction for r. Moreover, given s ∈ [0, 1], we have

ε ∈ L(Hs(R+), Hs(R)).

Proof. The assertion r ∈ L(L2(R), L2(R+)) ∩ L(H1(R), H1(R+)) is obvious. It is also

clear that ε ∈ L(L2(R+), L2(R)) and that r ◦ ε = idL2(R+). Next we show that ε ∈
L(H1(R), H1(R+)).

Given u ∈ C1(R+) ∩ H1(R+). Then it follows that u ∈ C0,1
loc (R+). In view of the

definition of ε in Lemma 2.2, we have that εu ∈ C0,1
loc (R). Note that locally uniformly

Lipschitz continuous functions are weakly differentiable, cf. [24], that is εu ∈ W 1,1
loc (R)

and

(εu)′(x) =







u′(x), if x > 0,

0, if x = 0,

−u′(−x), if x < 0.

A direct calculation shows that

‖(εu)(x)‖2
H1(R) = ‖(εu)(x)‖2

L2(R) + ‖(εu)′(x)‖2
L2(R)

= 2‖u(x)‖2
L2(R+) + 2‖u′(x)‖2

L2(R+) = 2‖u(x)‖2
H1(R+).

Since C1(R+) ∩H1(R+) is dense in H1(R+), the above relation shows

ε ∈ L(H1(R), H1(R+)).

This implies that ε is a co-retraction for r. By Lemma 2.1, we obtain that for fixed

s ∈ [0, 1], ε ∈ L(Hs(R+), Hs(R)).

Lemma 2.3. Given s ∈ ( 3
2 , 2] and v ∈ Hs(R+) ∩H1

0 (R+). Let furthermore

ṽ(x) =

{

v(x), if x ≥ 0,

−v(−x), if x < 0.

Then ṽ(x) ∈ Hs(R).
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Proof. From assumption v ∈ Hs(R+) ∩H1
0 (R+), one can easily obtain

lim
x→0−

ṽ′(x) = lim
x→0−

ṽ(x) − ṽ(0)

x− 0
= lim

x→0−

−v(−x)
x

= lim
x→0−

v′(−x) = v′(0)

= lim
x→0+

v′(x) = lim
x→0+

v(x)

x
= lim

x→0+

ṽ(x) − ṽ(0)

x− 0
= lim

x→0+
ṽ′(x).

This implies that ṽ ∈ H1(R) and (ṽ)′ = ε(v′). Note that if u ∈ H1(I) and σ ∈ ( 1
2 , 1],

then u ∈ H1+σ(I) iff u′ ∈ Hσ(I). Let σ := s− 1 ∈ ( 1
2 , 1], then we have v′ ∈ Hσ(R+). By

Lemma 2.2, we obtain (ṽ)′ = ε(v′) ∈ Hσ(R). This shows that ṽ ∈ H1+σ(R) = Hs(R).

Remark 2.1. For s > 2, under the same assumption of Lemma 2.3, one cannot deduce

ṽ ∈ Hs(R) generally.

In order to obtain ṽ ∈ Hs(R), one has to add additional conditions. For this we let

k ∈ N \ {0} and for 2k + 1
2 < s ≤ 2k + 2 we set

Ds(R+) = {v ∈ Hs(R+)| v(2k)(0) = v(2k−2)(0) = · · · = v(0) = 0}.

Applying an induction argument and following the proof of Lemma 2.3, we can obtain

the following lemma.

Lemma 2.4. Given s ∈ ( 5
2 ,+∞) and v ∈ Ds(R+). Let furthermore

ṽ(x) =

{

v(x), if x ≥ 0,

−v(−x), if x < 0.

Then ṽ(x) ∈ Hs(R).

Next, one can obtain the following two lemmas for the case of I = [0, 1] by following

the proofs of Lemmas 2.2-2.3.

Lemma 2.5. Given v ∈ L2([0, 1]) and w ∈ L2([−1, 1]). Let

(ε1v)(x) =

{

v(x), if x ∈ [0, 1],

v(−x), if x ∈ [−1, 0),

and (r1w)(x) := w(x), x ∈ [0, 1]. Then

r1 ∈ L(L2([−1, 1]), L2([0, 1])) ∩ L(H1([−1, 1]), H1([0, 1]))

is a retraction and ε1 is a co-retraction for r1. Moreover, given s ∈ [0, 1], we have

ε1 ∈ L(Hs([0, 1]), Hs([−1, 1])).

Lemma 2.6. Given s ∈ ( 3
2 , 2] and v ∈ Hs([0, 1]) ∩H1

0 ([0, 1]). Let furthermore

ṽ(x) =

{

v(x), if x ∈ [0, 1],

−v(−x), if x ∈ [−1, 0].

Then ṽ(x) ∈ Hs([−1, 1]) ∩H1
0 ([−1, 1]).

Remark 2.2. For s > 2, under the same assumptions of Lemma 2.6, one cannot deduce

ṽ(x) ∈ Hs([−1, 1]) ∩H1
0 ([−1, 1]) generally.
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In order to obtain ṽ(x) ∈ Hs([−1, 1]) ∩H1
0 ([−1, 1]), one has to add additional condi-

tions. For this we let k ∈ N \ {0} and for 2k + 1
2 < s ≤ 2k + 2 we set

Ds([0, 1]) = {v ∈ Hs([0, 1])| v(2k)(0) = v(2k)(1) = v(2k−2)(0)

= v(2k−2)(1) = · · · = v(0) = v(1) = 0}.
Applying an induction argument and following the proof of Lemma 2.3, we can obtain

the following lemma.

Lemma 2.7. Given s ∈ ( 5
2 ,+∞) and v ∈ Ds([0, 1]). Let furthermore

ṽ(x) =

{

v(x), if x ∈ [0, 1],

−v(−x), if x ∈ [−1, 0].

Then ṽ(x) belongs to

Ds([−1, 1]) = {v ∈ Hs([−1, 1])| v(2k)(−1) = v(2k)(1) = v(2k−2)(−1)

= v(2k−2)(1) = · · · = v(−1) = v(1) = 0}.

3. The case of the half line. In the section, we will investigate initial boundary value

problems of the Degasperis-Procesi equation with initial data u0 ∈ Hs(R+) ∩H1
0 (R+),

s > 3
2 . Here R+ = [0,∞).

Let us now consider the following initial boundary value problem the Degasperis-

Procesi equation on the half line:






ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R+,

u(0, x) = u0(x), x ∈ R+,

u(t, 0) = 0, t ≥ 0.

(3.1)

We first present the local well-posedness result for Eq.(3.1).

Theorem 3.1. Assume that u0 ∈ Hs(R+)∩H1
0 (R+) with 3

2 < s ≤ 2. Then there exists a

maximal T = T (u0) > 0, and a unique solution u(t, x) to Eq.(3.1) such that u = u(·, u0)

belongs to

C([0, T );Hs(R+) ∩H1
0 (R+)) ∩ C1([0, T );Hs−1(R+) ∩H1

0 (R+)).(3.2)

Moreover, the solution depends continuously on the initial data, i.e. the mapping u0 7→
u(·, u0) : Hs(R+) ∩ H1

0 (R+) → C([0, T );Hs(R+) ∩ H1
0 (R+)) ∩ C1([0, T );Hs−1(R+) ∩

H1
0 (R+)) is continuous. Furthermore, the maximal T is independent of s in the following

sense: If the solution u = u(·, u0) to Eq.(3.1) satisfies (3.2) and if u0 ∈ Hs′

(R+)∩H1
0 (R+)

with 3
2 < s ≤ s′ ≤ 2, then

u ∈ C([0, T );Hs′

(R+) ∩H1
0 (R+)) ∩ C1([0, T );Hs′−1(R+) ∩H1

0 (R+))

with the same T .

Proof. We first convert the initial boundary value problem of Eq.(3.1) into the Cauchy

problem of the Degasperis-Procesi equation on the line. In order to do so, we extend the

initial data u0(x) defined on the half line into an odd function defined on the line:

ũ0(x) =

{

u0(x), x ≥ 0,

−u0(−x), x < 0.
(3.3)



164 J. ESCHER AND Z. Y. YIN

Note that u0(x) ∈ Hs(R+)∩H1
0 (R+) with 3

2 < s ≤ 2. The relation (3.3) and Lemma 2.3

shows that ũ0(x) ∈ Hs(R) with 3
2 < s ≤ 2 is an odd function.

We now can convert Eq.(3.1) into the Degasperis-Procesi equation on the whole line.
{

ũt − ũtxx + 4ũũx = 3ũxũxx + ũũxxx, t > 0, x ∈ R,

ũ(0, x) = ũ0(x) (odd), x ∈ R.
(3.4)

Note that if p(x) := 1
2e

−|x|, x ∈ R, then (1 − ∂2
x)−1f = p ∗ f for all f ∈ L2(R) and

p ∗ (ũ− ũxx) = ũ. Using this identity, we can rewrite Eq.(3.4) as a quasi-linear evolution

equation of hyperbolic type:
{

ũt + ũũx + ∂xp ∗
(

3
2 ũ

2
)

= 0, t > 0, x ∈ R,

ũ(0, x) = ũ0(x) (odd), x ∈ R.
(3.5)

Applying the previous local well-posedness result of the Cauchy problem for the Degas-

peris-Procesi equation on the line [44], we have that there exists a maximal T = T (ũ0) >

0, and a unique solution ũ(t, x) to Eq.(3.5) such that

ũ = ũ(·, ũ0) ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)).

Moreover, the solution depends continuously on the initial data, i.e. the mapping ũ0 7→
ũ(·, ũ0) : Hs(R)) → C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) is continuous. Furthermore,

the maximal T is independent of s in the following sense: If the solution ũ = ũ(·, ũ0) to

Eq.(3.5) is in C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R)) and if ũ0 ∈ Hs′

(R) with 3
2 < s ≤

s′ ≤ 2, then ũ ∈ C([0, T );Hs′

(R)) ∩ C1([0, T );Hs′−1(R)) with the same T .

Moreover, if ũ(t, x) is a solution to Eq.(3.5), then one can check that the function

ũ1(t, x) := −ũ(t,−x), (t, x) ∈ [0, T )×R is also a solution of Eq.(3.5) in C([0, T );Hs(R))∩
C1([0, T );Hs−1(R)) with the initial data ũ0. By uniqueness we conclude that ũ1 ≡ ũ.

Since ũ0(x) is odd, it follows that ũ(t, x) is odd for any t ∈ [0, T ). Therefore, we have

ũ(t, 0) ≡ 0 for all t ∈ [0, T ).

Set u(t, x) = rũ(t, x) for all (t, x) ∈ [0, T )×R+. Then we know from Lemma 2.2 that

u(t, x) ∈ C([0, T );Hs(R+) ∩H1
0 (R+)) ∩ C1([0, T );Hs−1(R+) ∩H1

0 (R+)) is a solution to

Eq.(3.1). On the other hand, if v(t, x) is also a solution to Eq.(3.1) with the same initial

data u0(x), then

ṽ(t, x) =

{

v(t, x), x ≥ 0,

−v(t,−x), x < 0,
(3.6)

is the unique solution satisfying (3.2) to Eq.(3.5) with the initial data ũ0(x). By the

uniqueness, we know that u(t, x) = v(t, x) is the unique solution to Eq.(3.1) with the

initial data u0(x). Moreover, we can obtain that the solution u(t, x) depends continuously

on the initial data u0(x) and the maximal T is independent of s. This completes the proof

of the theorem.

Remark 3.1. Assume that u0 ∈ Hs(R+) ∩ H1
0 (R+) with s > 2. Following the similar

argument in Theorem 3.1, one cannot prove generally the corresponding solution u ∈
C([0, T );Hs(R+)∩H1

0 (R+))∩C1([0, T );H1
0 (R+)), and can only obtain that there exists

a maximal T = T (u0) > 0, and a unique solution u(t, x) to Eq.(3.1) such that u = u(·, u0)

belongs to

C([0, T );H2(R+) ∩H1
0 (R+)) ∩ C1([0, T );H1

0 (R+)).
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In order to obtain more regular solution, we may consider the following initial bound-

ary value problem:






ut − utxx + 4uux = 3uxuxx + uuxxx, t > 0, x ∈ R+,

u(0, x) = u0(x), x ∈ R+,

u(2k)(t, 0) = u(2k−2)(t, 0) = · · · = u(t, 0) = 0, t ≥ 0.

(3.7)

We now present the following more regular local well-posedness result.

Theorem 3.2. Assume that u0 ∈ Ds(R+) with 2k + 1
2 < s ≤ 2k + 2. Then there ex-

ists a maximal T = T (u0) > 0, and a unique solution u(t, x) to Eq.(3.7) such that

u = u(·, u0) ∈ C([0, T );Ds(R+)) ∩ C1([0, T );Ds−1(R+)). Moreover, the solution de-

pends continuously on the initial data, i.e. the mapping u0 7→ u(·, u0) : Ds(R) →
C([0, T );Ds(R+)) ∩ C1([0, T );Ds−1(R+)) is continuous. Furthermore, the maximal T

is independent of s in the following sense: If the solution

u = u(·, u0) ∈ C([0, T );Ds(R+)) ∩ C1([0, T );Ds−1(R+))

is the solution to (3.7) and if u0 ∈ Ds′

(R+) with 2k + 1
2 < s ≤ s′ ≤ 2k + 2, then

u ∈ C([0, T );Ds′

(R+)) ∩ C1([0, T );Ds′−1(R+)) with the same T .

Proof. Following the argument in Theorem 3.1, we first extend the initial data u0(x)

defined on the half line to an odd function ũ0(x) defined in (3.3) on the line. Since

u0 ∈ Ds(R+), Lemma 2.4 implies that ũ0(x) ∈ Hs(R) is an odd function. Then, following

the proof in Theorem 3.1, we can obtain the desired result of the theorem.

We then present a precise blow-up scenario of strong solutions to Eq.(3.1).

Theorem 3.3. Given u0 ∈ Hs(R+) ∩H1
0 (R+) with 3

2 < s ≤ 2, blow up of the solution

u = u(·, u0) to Eq.(3.1) in finite time T < +∞ occurs if and only if

lim inf
t↑T

{ inf
x∈R+

[ux(t, x)]} = −∞.

Proof. As we did before, we first extend the initial data u0(x) defined on the half line

into an odd function ũ0(x) defined in (3.3) on the line. By Theorem 3.1, we can obtain

the odd solution ũ(t, x) which is the corresponding strong solution to Eq.(3.5) with the

initial data ũ0(x). Moreover, u(t, x) = rũ(t, x) is the unique strong solution to Eq.(3.5)

with the initial data u0(x).

For the Degasperis-Procesi equation on the line [44], blow up of the solution ũ =

ũ(·, ũ0) to Eq.(3.5) in finite time T < +∞ occurs if and only if

lim inf
t↑T

{ inf
x∈R

[ũx(t, x)]} = −∞.

Since ũ(t, ·) is odd, it follows that ũx(t, ·) is even. Thus, we have that

lim inf
t↑T

{ inf
x∈R

[ũx(t, x)]} = lim inf
t↑T

{ inf
x∈R+

[ux(t, x)]}.(3.8)

The above two relations imply the desired result of the theorem.

We now present two blow-up results and one global existence result for Eq.(3.5).
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Theorem 3.4. Let ε > 0 and u0 ∈ Hs(R+)∩H1
0 (R+) with 3

2 < s ≤ 2. Assume that there

exists x0 ∈ R+ such that

u′0(x0) < − (1 + ε)
√

6

4

(

‖u0‖L∞ +

(

4
√

6‖u0‖2
L2 ln

(

1 +
2

ε

)

+ ‖u0‖L2
∞

)
1
2
)

.

Then the corresponding solution to Eq.(3.1) blows up in finite time.

Proof. As we mentioned before, we may extend the initial data u0(x) defined on the half

line to an odd function ũ0(x) defined in (3.3) on the line. By Theorem 3.1, we can obtain

the odd solution ũ(t, x) which is the corresponding strong solution to Eq.(3.5) with the

initial data ũ0(x). Moreover, u(t, x) = rũ(t, x) is the unique strong solution to Eq.(3.1)

with the initial data u0(x).

For the Degasperis-Procesi equation on the line, if there exists x1 ∈ R such that

ũ′0(x0) < − (1 + ε)
√

6

4

(

‖ũ0‖L∞ +

(

2
√

6‖ũ0‖2
L2 ln(1 +

2

ε
) + ‖ũ0‖L2

∞

)
1
2
)

,

then the corresponding solution to Eq.(3.5) blows up in finite time, see [31]. Since ũ(t, ·)
is odd, in view of Theorem 3.3 and (3.8), it follows that there exists x0 ∈ R+ such that

ũ′0(x0) = u′0(x0) < − (1 + ε)
√

6

4

(

‖u0‖L∞ +

(

4
√

6‖u0‖2
L2 ln

(

(1 +
2

ε

)

+ ‖u0‖L2
∞

)
1
2
)

= − (1 + ε)
√

6

4

(

‖ũ0‖L∞ +

(

2
√

6‖ũ0‖2
L2 ln

(

(1 +
2

ε

)

+ ‖ũ0‖L2
∞

)
1
2
)

.

Thus, the corresponding solution u(t, x) to Eq.(3.1) blows up in finite time.

Theorem 3.5. Let u0 ∈ Hs(R+)∩H1
0 (R+) with 3

2 < s ≤ 2 and y0(x) := u0(x)−u0,xx(x).

Assume that y0(x) 6≡ 0 and y0(x) ≤ 0 for all x ∈ R+. Then the corresponding solution to

Eq.(3.1) blows up in finite time.

Proof. Let ũ0(x) is defined in (3.3) and set ỹ0(x) := ũ0(x)− ũ0,xx(x). For the Degasperis-

Procesi equation on the line, if we assume that ỹ0(x) ≥ 0 for all x ∈ R−, ỹ0(x) ≤ 0 for

all x ∈ R+, and ỹ0(x) changes sign, then the corresponding solution ũ(t, x) to Eq.(3.5)

blows up in finite time, see [31].

Since ũ(t, ·) is odd, the assumptions of the theorem ensure that ỹ0(x) ≥ 0 for all

x ∈ R−, ỹ0(x) ≤ 0 for all x ∈ R+, and ỹ0(x) changes sign. Thus, by Theorem 2.3 and

(3.8), the corresponding solution u(t, x) to Eq.(3.1) blows up in finite time.

Remark 3.2. Note that if y0(x) 6≡ 0 and y0(x) ≤ 0 for all x ∈ R, then the corresponding

solution to the Degasperis-Procesi equation on the whole line exists globally in time, see

[31]. Theorem 3.5 shows that there is a considerable difference between the Degasperis-

Procesi equation on the whole line and the case of the half line.

Theorem 3.6. Let u0 ∈ Hs(R+)∩H1
0 (R+) with 3

2 < s ≤ 2 and y0(x) := u0(x)−u0,xx(x).

Assume that y0(x) ≥ 0 for all x ∈ R+. Then the corresponding solution to Eq.(3.1) exists

globally in time.

Proof. Let ũ0(x) is defined in (3.3) and set ỹ0(x) := ũ0(x)− ũ0,xx(x). For the Degasperis-

Procesi equation on the line, if we assume that ỹ0(x) ≤ 0 for all x ∈ R− and ỹ0(x) ≥ 0
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for all x ∈ R+, then the corresponding solution ũ(t, x) to Eq.(3.5) exists globally in time,

see [31].

Since ũ(t, ·) is odd, the assumptions of the theorem ensure that ỹ0(x) ≤ 0 for all

x ∈ R− and ỹ0(x) ≥ 0 for all x ∈ R+. Thus, by Theorem 3.3 and (3.8), we see that the

corresponding solution u(t, x) to Eq.(3.1) exists globally in time.

Remark 3.3. Given u0 ∈ Ds(R+) with 2k+ 1
2 < s ≤ 2k+ 2 and k ∈ N \ {0}. Theorems

3.3-3.6 hold true for the corresponding solution u(t, x) to Eq.(3.7).

Let us now turn to weak solutions to Eq.(3.1). Set

h(x, ξ) :=
1

2
(e−|x−ξ| − e−|x+ξ|), ∀x, ξ ∈ R+.

Then, the boundary value problem to the elliptic equation
{

v(x) − vxx(x) = f(x), x ∈ R+,

v(0) = v(+∞) = 0,

has a unique solution v(x) =
∫ ∞

0
h(x, ξ)f(ξ)dξ in H2(R+) ∩H1

0 (R+) provided f belongs

to L2(R+). Thus, Eq.(3.1) is formally equivalent to the following initial value problem

for the Degasperis-Procesi equation on the half line:
{

ut + uux + 3
2∂x

∫ ∞

0
h(x, ξ)u2(t, ξ)dξ = 0, t > 0, x > 0,

u(0, x) = u0(x), x ∈ R+.
(3.9)

Take

F (u) =
u2

2
+

3

2

∫ ∞

0

h(x, ξ)u2(t, ξ)dξ.

Then, Eq.(3.9) can be rewritten as the conservation law

ut + F (u)x = 0, u(0, x) = u0, t > 0, x ∈ R+.(3.10)

We now introduce the notion of weak solutions to Eq.(3.10). For this let C∞
c ([0, T )×R+)

denote the space of all functions on [0, T )×R+, which may be obtained as the restriction to

[0, T )×R+ of a smooth function on R2 with compact support contained in (−T, T )×R+.

Definition 3.1. Let u0 ∈ H1
0 (R+). If u ∈ L∞

loc([0, T );H1
0 (R+)) satisfies the following

identity
∫ T

0

∫

R+

(uψt + F (u)ψx)dxdt+

∫

R+

u0(x)ψ(0, x)dx = 0

for all ψ ∈ C∞
c ([0, T )×R+), then u is called a weak solution to Eq.(3.10). If u is a weak

solution on [0, T ) for every T > 0, then it is called global weak solution to Eq.(3.10) (or

to Eq.(3.1)).

Theorem 3.7. Assume that u0 ∈ H1
0 (R+) with y0 := u0 − u0,xx ∈ M+(R+). Then

Eq.(3.1) has a unique global weak solution

u ∈W 1, ∞
loc (R+ ×R+) ∩ L∞

loc(R+;H1(R+))

with the initial data u0. Moreover, E(u) =
∫

R+
y(4 − ∂2

x)−1u dx is a conservation law.
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Proof. As we mentioned before, we can extend the initial data u0(x) defined on the half

line to an odd function ũ0(x) defined in (3.3) on the line. Since u0 ∈ H1
0 (R+), it follows

that ũ0 ∈ H1(R).

By assumption of the theorem and the odd property of ũ(t, x), we have that

supp{ỹ+
0 } ⊂ [0,∞) and supp{ỹ−0 } ⊂ (−∞, 0].

For the Degasperis-Procesi equation on the line, if supp{ỹ+
0 } ⊂ [0,∞) and supp{ỹ−0 } ⊂

(−∞, 0], then Eq.(3.5) has a unique global weak solution

ũ ∈W 1,∞
loc (R+ ×R) ∩ L∞

loc(R+;H1(R))

with initial data ũ0, cf. [20]. Moreover, E(ũ) =
∫

R
ỹ(4− ∂2

x)−1ũ dx is a conservation law.

Again, since ũ(t, x) is odd for any t ∈ R+, we obtain the desired result for u(t, x).

4. The case of the interval [0, 1]. In the section, we mainly study initial boundary

value problems of the Degasperis-Procesi equation on the interval [0, 1] with initial data

u0 ∈ Hs([0, 1]) ∩H1
0 ([0, 1]), s > 3

2 .

Let us now consider the following initial boundary value problem for the Degasperis-

Procesi equation on the interval [0, 1]:






ut − utxx + 3uux = 2uxuxx + uuxxx, t > 0, x ∈ [0, 1],

u(0, x) = u0(x), x ∈ [0, 1],

u(t, 0) = u(t, 1) = 0, t ≥ 0.

(4.1)

We first present the local well-posedness result for Eq.(4.1).

Theorem 4.1. Assume that u0 ∈ Hs([0, 1]) ∩ H1
0 ([0, 1]) with 3

2 < s ≤ 2. Then there

exists a maximal T = T (u0) > 0, and a unique solution u(t, x) to Eq.(4.1) such that

u = u(·, u0) belongs to

C([0, T );Hs([0, 1]) ∩H1
0 ([0, 1])) ∩ C1([0, T );Hs−1([0, 1]) ∩H1

0 ([0, 1])).(4.2)

Moreover, the solution depends continuously on the initial data, i.e. the mapping

u0 7→ u(·, u0) : Hs([0, 1]) ∩H1
0 ([0, 1]) →

C([0, T );Hs([0, 1]) ∩H1
0 ([0, 1])) ∩ C1([0, T );Hs−1([0, 1]) ∩H1

0 ([0, 1]))

is continuous. Furthermore, the maximal T is independent of s in the following sense: If

the solution u = u(·, u0) to Eq.(4.1) satisfies (4.2) and if u0 ∈ Hs′

([0, 1])∩H1
0 ([0, 1]) with

3
2 < s ≤ s′ ≤ 2, then

u ∈ C([0, T );Hs′

([0, 1]) ∩H1
0 ([0, 1])) ∩ C1([0, T );Hs′−1([0, 1]) ∩H1

0 ([0, 1]))

with the same T .

Proof. We first convert the initial boundary value problem of the Degasperis-Procesi

equation on the interval [0, 1] into the Cauchy problem for the periodic Camassa-Holm

equation with period 2. In order to do so, we extend the initial data u0(x) defined on the

interval [0, 1] to a periodic odd function defined on the line:

ũ0(x) =

{

u0(x), x ∈ [2n, 1 + 2n], n ∈ Z,

−u0(−x), x ∈ [2n− 1, 2n], n ∈ Z.
(4.3)
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Note that u0(x) ∈ Hs([0, 1]) ∩H1
0 ([0, 1]) with 3

2 < s ≤ 2. Then we have

lim
x→1−

dũ0(x)

dx
= lim

x→1−

ũ0(x) − ũ0(1)

x− 1
= lim

x→1−

u0(x)

x− 1
= lim

x→(−1)+

−u0(−x)
x+ 1

= lim
x→(−1)+

ũ0(x) − ũ0(−1)

x− (−1)
= lim

x→(−1)+

dũ0(x)

dx
= lim

x→1+

dũ0(x)

dx
.

Combining the above relation with (4.3) and Lemma 2.6, we have that

ũ0(x) ∈ Hs([−1, 1]) ∩H1
0 ([−1, 1])

with 3
2 < s ≤ 2 is a periodic odd function.

Thus, we may convert the Degasperis-Procesi equation on the interval [0, 1] into the

following periodic case.














ũt − ũtxx + 4ũũx = 3ũxũxx + ũũxxx, t > 0, x ∈ R,

ũ(0, x) = ũ0(x) (odd), x ∈ R,

ũ0(0) = ũ0(1) = 0,

ũ(t, x) = ũ0(t, x+ 2) t ≥ 0, x ∈ R.

(4.4)

Applying the local well-posedness result for the periodic Degasperis-Procesi equation

[45], we have that there exists a maximal T = T (ũ0) > 0, and a unique solution ũ(t, x)

to Eq.(4.4) such that ũ = ũ(·, ũ0) belongs to

C([0, T );Hs([−1, 1]) ∩H1
0 ([−1, 1])) ∩ C1([0, T );Hs−1([−1, 1]) ∩H1

0 ([−1, 1])).(4.5)

Moreover, the solution depends continuously on the initial data, i.e. the mapping

ũ0 7→ ũ(·, ũ0) : Hs([−1, 1])) ∩H1
0 ([−1, 1])) →

C([0, T );Hs([−1, 1]) ∩H1
0 ([−1, 1])) ∩ C1([0, T );Hs−1([−1, 1]) ∩H1

0 ([−1, 1]))

is continuous. Furthermore, the maximal T is independent of s in the following sense: If

the solution ũ = ũ(·, ũ0) to Eq.(4.4) satisfies (4.5) and if ũ0 ∈ Hs′

([−1, 1])∩H1
0 ([−1, 1]))

with 3
2 < s ≤ s′ ≤ 2, then ũ belongs to

C([0, T );Hs′

([−1, 1]) ∩H1
0 ([−1, 1])) ∩ C1([0, T );Hs′−1([−1, 1]) ∩H1

0 ([−1, 1]))

with the same T .

Note that if ũ(t, x) is a solution to Eq.(4.4), then one can check that the function

v(t, x) := −ũ(t,−x), (t, x) ∈ [0, T )×R is also a solution of Eq.(4.4) satisfying (4.5) with

the initial data ũ0. By uniqueness we conclude that v ≡ ũ and ũ(t, ·) is odd for any

t ∈ [0, T ). Therefore, we have ũ(t, 0) ≡ 0 for all t ∈ [0, T ).

Set u(t, x) = r1ũ(t, x) for all (t, x) ∈ [0, T ) × [0, 1]. Then we know that

u(t, x) ∈ C([0, T );Hs([0, 1]) ∩H1
0 ([0, 1])) ∩ C1([0, T );Hs−1([0, 1]) ∩H1

0 ([0, 1]))

is a solution to Eq.(4.1). On the other hand, if v(t, x) is a solution to Eq.(4.1) with the

initial data u0(x), then

ṽ(t, x) =

{

v(t, x), x ∈ [2n, 1 + 2n], n ∈ Z,

−v(t,−x), x ∈ [2n− 1, 2n], n ∈ Z,
(4.6)

is the solution to Eq.(4.4) with the initial data ũ0(x) satisfying (4.5). By the uniqueness

of ũ(t, x), we know that u(t, x) = v(t, x) is the unique solution to Eq.(4.1) with the initial
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data u0(x). Moreover, the solution u(t, x) depends continuously on the initial data u0(x)

and the maximal T is independent of s. This completes the proof of the theorem.

Remark 4.1. Assume that u0 ∈ Hs([0, 1])∩H1
0 ([0, 1]) with s > 2. Following the similar

argument in Theorem 4.1, one cannot prove generally the corresponding solution u ∈
C([0, T );Hs([0, 1]) ∩ H1

0 ([0, 1])) ∩ C1([0, T );H1
0 ([0, 1])), and can only obtain that there

exists a maximal T = T (u0) > 0, and a unique solution u(t, x) to Eq.(4.1) such that

u = u(·, u0) belongs to

C([0, T );H2([0, 1]) ∩H1
0 ([0, 1])) ∩ C1([0, T );H1

0 ([0, 1])).

In order to obtain the more regular solution, we may consider the following initial

boundary value problem:














ut − utxx + 3uux = 2uxuxx + uuxxx, t > 0, x ∈ [0, 1],

u(0, x) = u0(x), x ∈ [0, 1],

u(2k)(t, 0) = u(2k−2)(t, 0) = · · · = u(t, 0) = 0, t ≥ 0,

u(2k)(t, 1) = u(2k−2)(t, 1) = · · · = u(t, 1) = 0, t ≥ 0.

(4.7)

We now present the following more regular local well-posedness result.

Theorem 4.2. Assume that u0 ∈ Ds([0, 1]) with 2k + 1
2 < s ≤ 2k + 2. Then there exists

a maximal T = T (u0) > 0, and a unique solution u(t, x) to Eq.(4.7) such that u =

u(·, u0) ∈ C([0, T );Ds([0, 1])) ∩ C1([0, T );Ds−1([0, 1])). Moreover, the solution depends

continuously on the initial data, i.e. the mapping

u0 7→ u(·, u0) : Ds([0, 1]) → C([0, T );Ds([0, 1])) ∩ C1([0, T );Ds−1([0, 1]))

is continuous. Furthermore, the maximal T is independent of s in the following sense: If

u = u(·, u0) ∈ C([0, T );Ds([0, 1])) ∩ C1([0, T );Ds−1([0, 1]))

is the solution to Eq.(4.7) and if u0 ∈ Ds′

([0, 1]) with 2k + 1
2 < s ≤ s′ ≤ 2k + 2, then

u ∈ C([0, T );Ds′

([0, 1])) ∩ C1([0, T );Ds′−1([0, 1])) with the same T .

Proof. Following the argument of Theorem 4.1, we first extend the initial data u0(x)

defined on the interval [0, 1] into an periodic odd function ũ0(x) defined in (4.3) on

the line. Since u0 ∈ Ds([0, 1]), Lemma 2.7 and (4.3) show that ũ0(x) ∈ Ds([−1, 1]) is

a periodic odd function. Then following the proof in Theorem 4.1, we can obtain the

desired result of the theorem.

We then present a precise blow-up scenario of strong solutions to Eq.(4.1).

Theorem 4.3. Given u0 ∈ Hs([0, 1])∩H1
0 ([0, 1]) with 3

2 < s ≤ 2, blow up of the solution

u = u(·, u0) to Eq.(4.1) in finite time T < +∞ occurs if and only if

lim inf
t↑T

{ inf
x∈[0,1]

[ux(t, x)]} = −∞.

Proof. As we did before, we first extend the initial data u0(x) defined on the interval

[0, 1] into an periodic odd function ũ0(x) defined in (4.3) on the line. By Theorem 4.1, we

can obtain the odd equation ũ(t, x) which is the corresponding strong solution to Eq.(4.4)

with the initial data ũ0(x). Moreover, u(t, x) = r1ũ(t, x) is the unique strong solution to

Eq.(4.1) with the initial data u0(x).
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For the periodic Degasperis-Procesi equation [45], blow up of the solution ũ = ũ(·, ũ0)

to Eq.(4.4) in finite time T < +∞ occurs if and only if

lim inf
t↑T

{ inf
x∈[−1,1]

[ũx(t, x)]} = −∞.

Since ũ(t, ·) is odd, it follows that ũx(t, ·) is even. Thus, we have that

lim inf
t↑T

{ inf
x∈[−1,1]

[ũx(t, x)]} = lim inf
t↑T

{ inf
x∈[0,1]

[ux(t, x)]}.(4.8)

The above two relations imply the desired result.

We now present a blow-up result for Eq.(4.1).

Theorem 4.4. Assume that u0 ∈ Hs([0, 1]) ∩ H1
0 ([0, 1]) with 3

2 < s ≤ 2 and u0 6≡ 0.

Then the corresponding solution to Eq.(4.1) blows up in finite time.

Proof. As we mentioned before, we may extend the initial data u0(x) defined on the

interval [0, 1] to a periodic odd function ũ0(x) defined in (4.3) on the line. By Theorem

4.1, we can obtain the periodic odd function ũ(t, x) which is the corresponding strong

solution to Eq.(4.4) with the initial data ũ0(x). Moreover, u(t, x) = r1ũ(t, x) is the unique

strong solution to Eq.(4.1) with the initial data u0(x).

For the periodic Degasperis-Procesi equation, if u0 6≡ 0 and for any t ∈ [0, T ) there

exists xt such that ũ(t, xt) = 0, then the corresponding solution to Eq.(4.1) blows up in

finite time, see [20]. Since ũ(t, ·) is odd, it follows that ũ(t, 0) = 0. Thus, we deduce that

the corresponding solution ũ(t, x) blows up in finite time. By Theorem 4.3, we have that

the corresponding solution u(t, x) also blows up in finite time.

As a generalization of Theorem 4.4, we have the following result.

Theorem 4.5. Assume that u0 ∈ Ds([0, 1]) with 2k + 1
2 < s ≤ 2k + 2 and k ∈ N \ {0},

and u0 6≡ 0. Then the corresponding solution to Eq.(4.7) blows up in finite time.

Next, we study weak solutions to Eq.(4.1). For all x, ξ ∈ R+ we set

G(x, ξ) :=

{

sinh(x) sinh(1−ξ)
sinh(1) , 0 ≤ x ≤ ξ,

sinh(ξ) sinh(1−x)
sinh(1) , ξ < x ≤ 1.

Then, the boundary value problem to the elliptic equation
{

v(x) − vxx(x) = f(x), x ∈ [0, 1],

v(0) = v(1) = 0,

has a unique solution v(x) =
∫ 1

0
G(x, ξ)f(ξ)dξ in H2([0, 1])∩H1

0 ([0, 1]) provided f belongs

to L2([0, 1]). Thus, Eq.(4.1) is formally equivalent to the following initial value problem

for the Degasperis-Procesi equation:
{

ut + uux + 3
2∂x

∫ 1

0
G(x, ξ)u2(t, ξ)dξ = 0, t > 0, x ∈ [0, 1],

u(0, x) = u0(x), x ∈ [0, 1].
(4.9)

Take F (u) = u2

2 + 3
2

∫ 1

0
G(x, ξ)u2(t, ξ)dξ. Then, Eq.(4.9) can be rewritten as the

conservation law

ut + F (u)x = 0, u(0, x) = u0, t > 0, x ∈ [0, 1].(4.10)
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We now introduce the notion of weak solutions to Eq.(4.10). For this let C∞
c ([0, T ) ×

[0, 1]) denote the space of all functions on [0, T ) × [0, 1], which may be obtained as the

restriction to [0, T ) × [0, 1] of a smooth function on R2 with compact support contained

in (−T, T ) × [0, 1].

Definition 4.1. Let u0 ∈ H1
0 ([0, 1]). If u ∈ L∞

loc([0, T );H1
0 ([0, 1])) satisfies the following

identity
∫ T

0

∫ 1

0

(uψt + F (u)ψx)dxdt+

∫ 1

0

u0(x)ψ(0, x)dx = 0

for all ψ ∈ C∞
c ([0, T )× [0, 1]), then u is called a weak solution to Eq.(4.10). If u is a weak

solution on [0, T ) for every T > 0, then it is called a global weak solution to Eq.(4.10) (or

to Eq.(4.1)).

Theorem 4.6. Assume that u0 ∈ H1
0 ([0, 1]) with y0 := u0−u0,xx ∈M([0, 1]). Then there

exists T = T (‖y0‖M([0,1])) > 0 and a unique solution to Eq.(4.1),

u ∈W 1, ∞
loc (R+ × [0, 1]) ∩ L∞

loc(R+;H1([0, 1]))

with u0 as initial data.

Proof. As we mentioned before, we can extend the initial data u0(x) defined on the

interval [0, 1] to a periodic odd function ũ0(x) defined in (3.3) on the line with period 2.

Since u0 ∈ H1
0 ([0, 1]), it follows that ũ0 ∈ H1

0 ([−1, 1]).

Following the proof of Theorem 4 in [34], we can also prove that if that ũ0 ∈
H1([−1, 1]) with ỹ0 := ũ0−ũ0,xx ∈M([−1, 1]), then there exists T = T (‖ỹ0‖M([−1,1])) > 0

and a unique solution to Eq.(4.1),

u ∈W 1, ∞
loc (R+ × [0, 1]) ∩ L∞

loc(R+;H1([0, 1]))

with ũ0 as initial data. Note that ũ0(x) is odd. By the uniqueness of ũ(t, x), we can

deduce that ũ(t, ·) is odd for any t ∈ [0, T ). Thus, we can obtain the desired result for

u(t, x).

Acknowledgments. The authors thank the referee for valuable comments and sugges-

tions.
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