PARABOLIC AND NAVIER-STOKES EQUATIONS BANACH CENTER PUBLICATIONS, VOLUME 81 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2008

CRITERIA OF LOCAL IN TIME REGULARITY OF THE NAVIER-STOKES EQUATIONS BEYOND SERRIN'S CONDITION

REINHARD FARWIG

Fachbereich Mathematik, Technische Universität Darmstadt 64289 Darmstadt, Germany E-mail: farwig@mathematik.tu-darmstadt.de

HIDEO KOZONO

Mathematical Institute, Tôhoku University Sendai, 980-8578 Japan E-mail: kozono@math.tohoku.ac.jp

HERMANN SOHR

Fakultät für Elektrotechnik, Informatik und Mathematik, Universität Paderborn 33098 Paderborn, Germany
E-mail: hsohr@math.uni-paderborn.de

Abstract. Let u be a weak solution of the Navier-Stokes equations in a smooth bounded domain $\Omega \subseteq \mathbb{R}^3$ and a time interval $[0,T),\ 0 < T \leq \infty$, with initial value u_0 , external force $f=\operatorname{div} F$, and viscosity $\nu>0$. As is well known, global regularity of u for general u_0 and f is an unsolved problem unless we pose additional assumptions on u_0 or on the solution u itself such as Serrin's condition $\|u\|_{L^s(0,T;L^q(\Omega))} < \infty$ where 2/s+3/q=1. In the present paper we prove several local and global regularity properties by using assumptions beyond Serrin's condition e.g. as follows: If the norm $\|u\|_{L^r(0,T;L^q(\Omega))}$ and a certain norm of F satisfy a ν -dependent smallness condition, where Serrin's number 2/r+3/q>1, or if u satisfies a local leftward L^s - L^q -condition for every $t\in (0,T)$, then u is regular in (0,T).

1. Introduction and main results. Let $\Omega \subseteq \mathbb{R}^3$ be a bounded domain with smooth boundary $\partial\Omega$ in the sense that $\partial\Omega$ is uniform of class $C^{2,1}$, and let [0,T) be a time interval

²⁰⁰⁰ Mathematics Subject Classification: Primary 35Q30; Secondary 76D05, 35B65.

Key words and phrases: nonstationary Navier-Stokes equations, local in time regularity, Serrin's condition.

The paper is in final form and no version of it will be published elsewhere.

with $0 < T \le \infty$. We consider the Navier-Stokes system

(1.1)
$$u_t - \nu \Delta u + u \cdot \nabla u + \nabla p = f, \quad \text{div } u = 0, \\ u|_{\partial \Omega} = 0, \quad u|_{t=0} = u_0,$$

with external force $f = \operatorname{div} F$, $F \in L^2(\Omega \times (0,T))$, initial value $u_0 \in L^2_{\sigma}(\Omega)$ and viscosity $\nu > 0$. Then we are interested in weak solutions u of this system defined as follows.

Definition 1.1. A vector field

(1.2)
$$u \in L^{\infty}(0,T; L^{2}_{\sigma}(\Omega)) \cap L^{2}_{loc}([0,T); W^{1,2}_{0}(\Omega))$$

is called a weak solution of the system (1.1) with initial value $u_0 \in L^2_{\sigma}(\Omega)$ and external force $f = \operatorname{div} F$, $F = (F_{i,j})^3_{i,j=1} \in L^2(\Omega \times (0,T))$, if the relation

$$(1.3) \qquad -\langle u, v_t \rangle_{\Omega, T} + \nu \langle \nabla u, \nabla v \rangle_{\Omega, T} - \langle uu, \nabla v \rangle_{\Omega, T} = \langle u_0, v(0) \rangle_{\Omega} - \langle F, \nabla v \rangle_{\Omega, T}$$

is satisfied for all test functions $v \in C_0^{\infty}([0,T); C_{0,\sigma}^{\infty}(\Omega))$.

Here we use the following notations: $\langle \cdot, \cdot \rangle_{\Omega}$ means the usual pairing of functions on Ω , $\langle \cdot, \cdot \rangle_{\Omega,T}$ means the corresponding pairing on $\Omega \times [0,T)$, $L^2_{\sigma}(\Omega) = \overline{C^{\infty}_{0,\sigma}(\Omega)}^{\|\cdot\|_2}$ with $C^{\infty}_{0,\sigma}(\Omega) = \{v \in C^{\infty}_{0}(\Omega); \operatorname{div} v = 0\}$ and $W^{1,2}_{0}(\Omega) = \overline{C^{\infty}_{0}(\Omega)}^{\|\cdot\|_{W^{1,2}}}$. Moreover, $uu = (u_i u_j)_{i,j=1}^3$ for $u = (u_1, u_2, u_3)$.

We know, see [13, V, (3.6.3)], that there exists a weak solution u as in Definition 1.1 which additionally satisfies the *strong energy inequality*

(1.4)
$$\frac{1}{2} \|u(t)\|_{2}^{2} + \nu \int_{\sigma}^{t} \|\nabla u\|_{2}^{2} d\tau \le \frac{1}{2} \|u(\sigma)\|_{2}^{2} - \int_{\sigma}^{t} \langle F, \nabla u \rangle_{\Omega} d\tau$$

for almost all $\sigma \in [0, T)$, including $\sigma = 0$, and all $t \in [\sigma, T)$. This energy inequality is needed for the local in time identification of u with strong solutions.

Each weak solution u satisfies the condition

(1.5)
$$u \in L^r(0,T;L^q(\Omega)), \quad 2 \le q, r < \infty, \quad \frac{2}{r} + \frac{3}{q} = \frac{3}{2}.$$

Without loss of generality we may assume in the following that

(1.6)
$$u:[0,T)\to L^2_\sigma(\Omega)$$
 is weakly continuous,

with $u(0) = u_0$. Further, there exists a distribution p, called an associated pressure, such that

$$(1.7) u_t - \nu \Delta u + u \cdot \nabla u + \nabla p = f$$

holds in the sense of distributions, see [13, Chapter V.1]. Conversely, if u satisfies (1.2), (1.6), $u(0) = u_0$, and if (1.7) holds with some p in the sense of distributions, then u is a weak solution in the sense of Definition 1.1.

We will use Definition 1.1 with obvious modifications if the interval [0, T) is replaced by any other interval $[t_0, T)$ with $0 < t_0 < T$, and with $u_{|_{t=t_0}} = u_0$.

A weak solution u in Definition 1.1 is uniquely determined by u_0 and f if Serrin's condition

(1.8)
$$u \in L^{s}(0,T;L^{q}(\Omega)), \quad 2 < s < \infty, \quad 3 < q < \infty, \quad \frac{2}{s} + \frac{3}{q} = 1,$$

is satisfied, see [12], [13], i.e., if

$$\|u\|_{L^{s}(0,T;L^{q}(\Omega))} = \|u\|_{q,s} = \left(\int_{0}^{T} \|u\|_{q}^{s} d\tau\right)^{\frac{1}{s}} < \infty,$$

where $||u||_q = ||u(t)||_{L^q(\Omega)} = (\int_{\Omega} |u(x,t)|^q dx)^{1/q}$. More precisely, u is unique within the class defined by (1.8). The same result holds in the limit case $s = \infty$, q = 3, see [10].

Moreover, if u satisfies (1.8), then u is regular in the sense that

$$(1.9) u \in C^{\infty}(\overline{\Omega} \times (0,T)), \ p \in C^{\infty}(\overline{\Omega} \times (0,T)),$$

provided $\partial\Omega$ and f are of class C^{∞} , see [13, Theorem V.1.8.2]. Hence a weak solution u satisfying (1.8) is called a *strong solution*. A similar result was proved for the limit case $s = \infty$, q = 3 in a series of papers, see e.g. [11].

A point $t \in (0,T)$ is called a regular point of a weak solution u if there exists a subinterval $(t - \delta, t + \delta) \subset (0,T)$, $\delta > 0$, such that $u \in L^s(t - \delta, t + \delta; L^q(\Omega))$ with s, q as in (1.8). Otherwise t is called a singular point of u.

Now our first main result reads as follows:

THEOREM 1.2. Let $\Omega \subseteq \mathbb{R}^3$ be a bounded domain with boundary $\partial\Omega$ of class $C^{2,1}$ and let $0 < T \le \infty$. Furthermore let $1 \le s < \infty$, 3 < q < 6, $1 < q^* < q$ and $1 \le s < s > s$ be given with $\frac{2}{s} + \frac{3}{q} = 1$ and $\frac{1}{3} + \frac{1}{q} = \frac{1}{q^*}$. For $u_0 \in L^2_{\sigma}(\Omega)$ and $f = \operatorname{div} F$, $F \in L^2(0,T;L^2(\Omega)) \cap L^s(0,T;L^{q^*}(\Omega))$, consider a weak solution u of the Navier-Stokes system (1.1) satisfying the strong energy inequality (1.4).

(i) Assume $0 \neq u_0 \in L^q_\sigma(\Omega)$. Then there exist constants $\varepsilon_* = \varepsilon_*(q,\Omega) > 0$ and $c_0 = c_0(q,\Omega,r) > 0$ with the following property: If

(1.10)
$$\int_0^T \|F\|_{q^*}^s d\tau \le \nu^{2s-1} \varepsilon_* \quad and \quad \int_0^T \|u\|_q^r d\tau \le c_0 \frac{\nu^{s+r-1} \varepsilon_*}{\|u_0\|_g^s},$$

then u is regular in the sense that $u \in L^s(0,T;L^q(\Omega))$.

(ii) Suppose for each $T_1 \in (0,T)$ there is some $0 < \delta = \delta(T_1) < T_1$ such that u satisfies the leftward L^s - L^q -condition

$$u \in L^s(T_1 - \delta, T_1; L^q(\Omega)).$$

Then u is regular in the sense that $u \in L^s_{loc}((0,T); L^q(\Omega))$.

We remark that the constant $c_0 = c_0(q,\Omega,r) > 0$ in (1.10) mainly depends on the boundedness of the Stokes semigroup $\{e^{-tA_q}: t>0\}$, see §2 below, but that $\varepsilon_* = \varepsilon_*(q,\Omega) > 0$ is related to the nonlinearity of the Navier-Stokes system. Note that if r < s and consequently $\frac{2}{r} + \frac{3}{q} > 1$, then Theorem 1.2 (i) yields the regularity of the weak solution u beyond Serrin's barrier $\frac{2}{s} + \frac{3}{q} = 1$. The proof is based on the following theorem yielding a local in time regularity result.

¹In the meantime the restriction $4 < s < \infty$, 3 < q < 6, see also Lemma 2.1 below, has been removed by the authors. For the more general result when $2 < s < \infty$, $3 < q < \infty$ see the forthcoming paper *Very weak, weak and strong solutions to the instationary Navier-Stokes system*, Nečas Center for Mathematical Modeling, Lecture Notes, Vol. 1, Prague, 2007, 15–68.

Theorem 1.3. Let $\Omega \subseteq \mathbb{R}^3$ be a bounded domain with boundary $\partial\Omega$ of class $C^{2,1}$ and let $0 < T \le \infty$. Consider a weak solution u of the Navier-Stokes system (1.1) with $u_0 \in L^2_{\sigma}(\Omega)$ and $f = \operatorname{div} F$, $F \in L^2(\Omega \times (0,T))$, satisfying the strong energy inequality (1.4). Moreover let $1 < s < \infty$, 3 < q < 6, $1 < q^* < q$, $1 \le r \le s$, and $0 \le \beta \le \frac{r}{s}$ with $\frac{2}{s} + \frac{3}{a} = 1$, $\frac{1}{3} + \frac{1}{a} = \frac{1}{a^*}$.

Then there is a constant $\varepsilon_* = \varepsilon_*(\Omega, q) > 0$ with the following property: If $0 < T_0 < T_1 < T' < T$, and if

$$(1.11) \qquad \int_{T_0}^{T'} \|F(\tau)\|_{q^*}^s d\tau \le \varepsilon_* \nu^{2s-1}, \quad \frac{1}{T_1 - T_0} \int_{T_0}^{T_1} (T' - \tau)^\beta \|u(\tau)\|_q^r d\tau \le \varepsilon_* \nu^{r-\beta},$$

then u is regular in some interval $(T_1 - \delta, T') \subset (0, T)$, $\delta > 0$, in the sense that Serrin's condition

$$u \in L^s(T_1 - \delta, T'; L^q(\Omega))$$

is satisfied. In particular, T_1 is a regular point of u. If $\beta = 0$, then $T' = T \leq \infty$ is allowed.

COROLLARY 1.4. Let u be a weak solution in $\Omega \times [0,T)$ and let r, s, q, q^* be exponents as in Theorem 1.3.

(i) Let $T = \infty$ and assume that

(1.12)
$$\int_0^\infty \|F\|_{q^*}^s d\tau \le \varepsilon_* \nu^{2s-1} \quad and \quad T_1 > \frac{1}{\varepsilon_* \nu^r} \|u\|_{L^r(0,\infty;L^q(\Omega))}^r$$

with ε_* as in (1.11). Then u is regular for $t \geq T_1$, i.e., $u \in L^s(T_1, \infty; L^q(\Omega))$.

(ii) Let $0 < T_1 < T \le \infty$ and assume that

(1.13)
$$\liminf_{\delta \to 0} \frac{1}{\delta^{1-\beta}} \int_{T_1 - \delta}^{T_1} ||u(\tau)||_q^r d\tau = 0, \quad 0 \le \beta \le \frac{r}{s}.$$

Then there exist T' and $\delta_0 > 0$, $0 < T_1 - \delta_0 < T_1 < T' \le T$, such that u is regular in $(T_1 - \delta_0, T')$ in the sense $u \in L^s(T_1 - \delta_0, T'; L^q(\Omega))$. In particular, T_1 is a regular point.

We note that the condition (1.13) may be replaced by the slightly weaker smallness condition

(1.14)
$$\liminf_{\delta \to 0} \frac{1}{\delta^{1-\beta}} \int_{T_1 - \delta}^{T_1} \|u(\tau)\|_q^r d\tau < \varepsilon_* \nu^{r-\beta} 2^{-\beta}$$

with ε_* as in Theorem 1.3.

If r=s, then the local leftward Serrin condition $\int_{T_1-\delta_0}^{T_1} \|u(\tau)\|_q^s d\tau < \infty$ with some fixed $\delta_0 > 0$ is sufficient for (1.13) when $\beta = \frac{r}{s} = 1$ and implies that T_1 is a regular point. Furthermore, (1.13) is satisfied with $0 < \beta \le \frac{r}{s} \le 1$ if $T_1 \in (0,T)$ is a Lebesgue point of $t \mapsto \|u(t)\|_q^r$, $t \in (0,T)$, in the sense that

(1.15)
$$\lim_{\delta \to 0} \frac{1}{\delta} \int_{T_1 - \delta}^{T_1} \|u(\tau)\|_q^r d\tau = \|u(T_1)\|_q^r.$$

Conversely, if $T_1 \in (0,T)$ is a singular point of u in the sense that there is no $T' > T_1$ such that u is contained in $L^s(T_1,T';L^q(\Omega))$, then for all $\beta \in [0,\frac{r}{s}]$

(1.16)
$$\liminf_{\delta \to 0} \frac{1}{\delta^{1-\beta}} \int_{T_* - \delta}^{T_1} \|u(\tau)\|_q^r d\tau \ge \varepsilon_* \nu^{r-\beta} 2^{-\beta}.$$

The set of such points T_1 (is empty or) has Lebesgue measure zero.

2. Preliminaries. Given a bounded smooth domain $\Omega \subseteq \mathbb{R}^3$ as in Section 1 we use the well-known spaces $L^q(\Omega)$, $1 < q < \infty$, with norm $\|\cdot\|_{L^q(\Omega)} = \|\cdot\|_q$ and pairing $\langle v,w \rangle = \langle v,w \rangle_{\Omega} = \int_{\Omega} v \cdot w \, dx$ for $v \in L^q(\Omega)$, $w \in L^{q'}(\Omega)$, $q' = \frac{q}{q-1}$. Moreover, given $0 < T \le \infty$, we need the Bochner spaces $L^s(0,T;L^q(\Omega))$, $1 \le s < \infty$, with norm $\|\cdot\|_{L^s(0,T;L^q(\Omega))} = \|\cdot\|_{q,s} = (\int_0^T \|\cdot\|_q^s \, dt)^{1/s}$ and the corresponding pairing $\langle\cdot,\cdot\rangle = \langle\cdot,\cdot\rangle_{\Omega,T}$ on $L^s(0,T;L^q(\Omega)) \times L^{s'}(0,T;L^{q'}(\Omega))$, $s' = \frac{s}{s-1}$. Furthermore, we will use the smooth function spaces $C_0^\infty(\Omega)$, $C_{0,\sigma}^\infty(\Omega) = \{v \in C_0^\infty(\Omega); \operatorname{div} v = 0\}$ and the space $L^q_\sigma(\Omega) = \overline{C_{0,\sigma}^\infty(\Omega)}^{\|\cdot\|_q}$.

Concerning the Stokes operator $A_q = -P_q \Delta : D(A_q) \to L^q_{\sigma}(\Omega), \ D(A_q) \subseteq L^q_{\sigma}(\Omega)$, and the Helmholtz projection $P_q : L^q(\Omega) \to L^q_{\sigma}(\Omega)$ in L^q -spaces we refer to [1], [3] – [7]. In particular we need the following estimates, see [4]:

(2.2)
$$||A_q^{\alpha} e^{-\nu t A_q} v||_q \le C \nu^{-\alpha} e^{-\nu \delta t} t^{-\alpha} ||v||_q \text{ for all } v \in L_{\sigma}^q(\Omega), \ t > 0,$$
 where $\delta = \delta(\Omega, q) > 0$ and $0 \le \alpha \le 1$,

(2.3)
$$||A_q^{-\frac{1}{2}} P_q \operatorname{div} v||_q \le C||v||_q \text{ for all } v = (v_{ij})_{i,j=1}^3 \in L^q(\Omega),$$

(2.4)
$$||v||_{L^{s}(0,T;L^{q}(\Omega))} \leq C \frac{1}{\nu} ||f||_{L^{s}(0,T;L^{q}(\Omega))} \text{ for all } f \in L^{s}(0,T;L^{q}_{\sigma}(\Omega)),$$
 where $v(t) = A_{q} \int_{0}^{t} e^{-\nu(t-\tau)A_{q}} f(\tau) d\tau.$

The constants C in (2.1)–(2.4) depend on Ω and q,s,α , but are independent of v and ν . Note that the norms $\|A_q^{1/2}v\|_q$ and $\|\nabla v\|_q$ are equivalent for $v\in D(A_q^{1/2})$.

To prove our main results we have to identify the given weak solution u locally in time with strong solutions, i.e. with weak solutions satisfying Serrin's regularity condition. There are many results on the existence of such solutions for some given interval [0,T), $0 < T \le \infty$, if the initial value u_0 satisfies a certain smallness condition, see, e.g., [8]-[10], [14]. However, we need some particular weak assumption on u_0 and will apply Theorem 1 in [4] for bounded domains.

LEMMA 2.1. Let $\Omega \subseteq \mathbb{R}^3$ be a bounded domain with boundary $\partial\Omega$ of class $C^{2,1}$ and let $4 < s < \infty$, 3 < q < 6, $1 < q^* < q$ satisfy $\frac{1}{3} + \frac{1}{q} = \frac{1}{q^*}$ and $\frac{2}{s} + \frac{3}{q} = 1$. Moreover, let $u_0 \in L^q_\sigma(\Omega)$ and $f = \operatorname{div} F$, $F \in L^s(0,T;L^{q^*}(\Omega))$, $0 < T \le \infty$. Then there is a constant $\varepsilon_* = \varepsilon_*(\Omega,q) > 0$ with the following property: If

(2.5)
$$\int_0^T \|F\|_{q^*}^s d\tau \le \varepsilon_* \nu^{2s-1} \quad and \quad \int_0^T \|e^{-\nu \tau A_q} u_0\|_q^s d\tau \le \varepsilon_* \nu^{s-1},$$

then there exists a unique weak solution u in $\Omega \times [0,T)$ of the Navier-Stokes system (1.1) satisfying Serrin's condition

$$(2.6) u \in L^s(0,T;L^q(\Omega))$$

and the energy inequality

$$(2.7) \frac{1}{2} \|u(t)\|_{2}^{2} + \nu \int_{0}^{t} \|\nabla u\|_{2}^{2} d\tau \le \frac{1}{2} \|u_{0}\|_{2}^{2} - \int_{0}^{t} \langle F, \nabla u \rangle_{\Omega} d\tau , \quad 0 \le t < T.$$

Proof. In the case $\nu = 1$ the existence result of [4, Theorem 1] yields – under the smallness condition (2.5), see [4, (4.23)] – a unique solution u in the following so-called *very weak sense*: It satisfies (2.6) and the relation

$$(2.8) \qquad -\langle u, v_t \rangle_{\Omega,T} - \nu \langle u, \Delta v \rangle_{\Omega,T} - \langle uu, \nabla v \rangle_{\Omega,T} = \langle u_0, v(0) \rangle_{\Omega} - \langle F, \nabla v \rangle_{\Omega,T}$$

for all $v \in C_0^{\infty}([0,T); C_{0,\sigma}^{\infty}(\Omega))$. It is straightforward to generalize this result to $\nu \neq 1$ and to check that (2.5) is the corresponding smallness condition with constant $\varepsilon_* = \varepsilon_*(q,\Omega) > 0$; for details on the dependence on ν see [5] concerning the theory of very weak solutions in three-dimensional exterior domains and in particular the condition [5, (5.12)].

In order to prove that u is a weak solution satisfying (2.6) we have to show several regularity properties. We start with the case that $4 < s \le 8$ and hence $4 \le q < 6$. Due to the proof in [4, (4.19)] we know that u satisfies the relation

(2.9)
$$\tilde{u}(t) \equiv u(t) - E(t) = -\int_0^t A_q^{\frac{1}{2}} e^{-\nu(t-\tau)A_q} A_q^{-\frac{1}{2}} P_q \operatorname{div}(uu) d\tau, \ 0 \le t < T,$$

with

$$E(t) = e^{-\nu t A_q} u_0 + \int_0^t e^{-\nu (t-\tau) A_q} f(\tau) d\tau.$$

Using (2.3) and Hölder's inequality we obtain that

where here and in the following C is a generic positive constant depending only on q and Ω . By (2.9)

(2.11)
$$A_q^{\frac{1}{2}}\tilde{u}(t) = -A_q \int_0^t e^{-\nu(t-\tau)A_q} A_q^{-\frac{1}{2}} P_q \operatorname{div}(uu) d\tau, \ 0 \le t < T,$$

and using (2.4) we get the estimate

This shows that

(2.13)
$$\nabla \tilde{u} \in L^{s/2}(0, T; L^{q/2}(\Omega))$$

and, since $4 \le q < 6$, $4 < s \le 8$, that

(2.14)
$$\nabla \tilde{u} \in L^2_{loc}([0,T);L^2(\Omega)), \ \tilde{u} \in L^2_{loc}([0,T);W_0^{1,2}(\Omega)).$$

By virtue of (2.2) and (2.3), Hölder's inequality and the properties of q and s we obtain

from (2.9) the estimate

Hence (2.14) and (2.15) imply that

(2.16)
$$\tilde{u} \in L^{\infty}([0,T); L^{2}_{\sigma}(\Omega)) \cap L^{2}_{loc}([0,T); W^{1,2}_{0}(\Omega)).$$

Concerning E(t) standard energy estimates, see e.g. [13, Theorem V.1.4.1], yield the inequalities

(2.17)
$$||E||_{2,\infty}^2 + \nu ||\nabla E||_{2,2}^2 \le ||u_0||_2^2 + \frac{1}{\nu} ||F||_{2,2}^2.$$

With the help of (2.16) and (2.17) we conclude that

(2.18)
$$u \in L^{\infty}([0,T); L^{2}_{\sigma}(\Omega)) \cap L^{2}_{loc}([0,T); W^{1,2}_{0}(\Omega)).$$

Since $u \in L^s(0,T';L^q(\Omega))$ for all 0 < T' < T, Hölder's inequality yields

(2.19)
$$uu \in L^2_{loc}([0,T); L^2(\Omega)).$$

Using (2.18) and (2.19), a calculation shows that (2.8) implies (1.3), and that the energy inequality (2.7) is satisfied; see also [13, Theorem V.1.4.1] concerning the last property. Consequently u is a weak solution of (1.1) satisfying (2.6) and (2.7). Hence it is also a strong solution. The uniqueness of u with these properties follows from Serrin's uniqueness argument, see [12], [13]. This completes the proof in the case that $4 < s \le 8$.

In the second case we assume that $8 < s < \infty$ and 3 < q < 4. Now we need several steps. First let $s_1 = s$, $q_1 = q$. Then we get as in (2.9)–(2.13) that $\nabla \tilde{u} \in L^{s_1/2}(0,T;L^{q_1/2}(\Omega))$. Defining $s_2 = \frac{s_1}{2}$ and $q_2 > q_1$ such that $\frac{1}{3} + \frac{1}{q_2} = \frac{1}{q_1/2}, \frac{2}{s_2} + \frac{3}{q_2} = 1$, we obtain by Sobolev's embedding theorem that $\tilde{u} \in L^{s_2}(0,T;L^{q_2}(\Omega))$. Moreover, using (2.1), (2.2) we see that $E \in L^{s_2}(0,T;L^{q_2}(\Omega))$ which leads to $u \in L^{s_2}(0,T;L^{q_2}(\Omega))$. Proceeding in the same way, let $s_k = \frac{s_{k-1}}{2}$ and $q_k > q_{k-1}$ such that $\frac{1}{3} + \frac{1}{q_k} = \frac{1}{q_{k-1}/2}$, $\frac{2}{s_k} + \frac{3}{q_k} = 1$, for $k \in \mathbb{N}$. Since $\frac{1}{3} - \frac{1}{q_k} = 2^{k-1}(\frac{1}{3} - \frac{1}{q_1})$, we choose $k \in \mathbb{N}$ such that $\frac{1}{3} - \frac{1}{q_{k-1}} < \frac{1}{12} \le \frac{1}{3} - \frac{1}{q_k}$, leading to $4 \le q_k < 6$, $4 < s_k \le 8$. Now $q_k/2 \ge 2$, and using (2.12), (2.15) with q,s replaced by q_k,s_k , we obtain the properties (2.14), (2.16). This yields the result in the same way as in the first case. Now the proof of the lemma is complete.

3. Proof of the theorems. First we have to prove Theorem 1.3.

Proof of Theorem 1.3. Given the bounded domain $\Omega \subseteq \mathbb{R}^3$, $0 < T_0 < T_1 < T' < T$ and u, q, r, s, β as in this theorem, we have to prove the existence of some constant $\varepsilon_* = \varepsilon_*(\Omega, q) > 0$ yielding regularity of u on $(T_1 - \delta, T')$ if (1.11) is satisfied. Note that if $\beta = 0$ then the subsequent proof will also work for T' = T.

Using the weak continuity of the weak solution $u:[0,T)\to L^2_\sigma(\Omega)$, see (1.6), we know that $u(t_0)\in L^2_\sigma(\Omega)$ is well defined for all $t_0\in[0,T)$. Furthermore, since $\nabla u\in L^2(0,T;L^2(\Omega))$, see (1.4) for $\sigma=0$, and since 3< q<6, the embedding inequality $\|u(t)\|_q\leq C_1\|u(t)\|_6\leq C_2\|\nabla u(t)\|_2$ with $C_j=C_j(\Omega,q)>0$, j=1,2, implies that $u\in L^2(0,T;L^q_\sigma(\Omega))$. Then the Lebesgue point argument shows that there is a null set $N\subseteq(0,T)$ such that $\|u(t_0)\|_q$ is well defined by the property

(3.1)
$$\lim_{\delta \to 0} \frac{1}{2\delta} \int_{t_0 - \delta}^{t_0 + \delta} \|u(\tau)\|_q^2 d\tau = \|u(t_0)\|_q^2$$

for all $t_0 \in (0,T) \setminus N$. Moreover, since the energy inequality (1.4) holds for a.a. $\sigma \in [0,T)$, we may assume in the following that the null set $N \subseteq (0,T)$ is chosen in such a way that both (3.1) and the energy inequality

$$(3.2) \qquad \frac{1}{2} \|u(t)\|_{2}^{2} + \nu \int_{t_{0}}^{t} \|\nabla u\|_{2}^{2} d\tau \le \frac{1}{2} \|u(t_{0})\|_{2}^{2} - \int_{t_{0}}^{t} \langle F, \nabla u \rangle_{\Omega} d\tau, \ t_{0} \le t < T,$$

hold for all $t_0 \in (0,T) \backslash N$.

Let $t_0 \in (T_0, T_1) \setminus N$. Then $u(t_0) \in L^q_\sigma(\Omega)$, and we are able to apply the local existence results of Lemma 2.1, replacing the existence interval [0, T) by the interval $[t_0, T')$, and using $u(t_0)$ as initial value. Hence, if the smallness condition

(3.3)
$$\int_{t_0}^{T'} \|F\|_{q^*}^s d\tau \le \varepsilon_* \nu^{2s-1}, \quad \int_0^{T'-t_0} \|e^{-\nu \tau A_q} u(t_0)\|_q^s d\tau \le \varepsilon_* \nu^{s-1}$$

is satisfied with ε_* as in Lemma 2.1, then we obtain a unique weak solution \tilde{u} on the interval $[t_0, T')$, corresponding to Definition 1.1, of the Navier-Stokes system

(3.4)
$$\begin{aligned}
\tilde{u}_t - \nu \Delta \tilde{u} + \tilde{u} \cdot \nabla \tilde{u} + \nabla \tilde{p} &= f, & \text{div } \tilde{u} &= 0, \\
\tilde{u}_{|_{\partial \Omega}} &= 0, & \tilde{u}_{|_{t=t_0}} &= u(t_0),
\end{aligned}$$

satisfying

$$(3.5) \tilde{u} \in L^{\infty}(t_0, T'; L^2_{\sigma}(\Omega)) \cap L^2_{\text{loc}}([t_0, T'); W_0^{1,2}(\Omega)), \quad \tilde{u} \in L^s(t_0, T'; L^q(\Omega)),$$

and the energy inequality

$$\frac{1}{2}\|\tilde{u}(t)\|_{2}^{2} + \nu \int_{t_{0}}^{t} \|\nabla \tilde{u}\|_{2}^{2} d\tau \leq \frac{1}{2}\|u(t_{0})\|_{2}^{2} - \int_{t_{0}}^{t} \langle F, \nabla \tilde{u} \rangle_{\Omega} d\tau, \ t_{0} \leq t < T'.$$

By Serrin's uniqueness argument, see [12], [13, V, Theorem 1.5.1], we conclude that $u = \tilde{u}$ on $[t_0, T')$. This yields the properties (3.5) with \tilde{u} replaced by u, and we get the desired result of Theorem 1.3.

Thus it remains to prove the existence of some $t_0 \in (T_0, T_1) \backslash N$ as above such that (3.3) is satisfied. First assume that the conditions

(3.6)
$$\int_{T_0}^{T'} \|F\|_{q^*}^s d\tau \le \varepsilon_*' \nu^{2s-1}, \quad \frac{1}{T_1 - T_0} \int_{T_0}^{T_1} (T' - \tau)^\beta \|u(\tau)\|_q^r d\tau \le \varepsilon_*' \nu^{r-\beta}$$

are satisfied with some constant $\varepsilon'_* > 0$ to be determined below. Then we find at least

one $t_0 \in (T_0, T_1) \backslash N$ such that

$$(3.7) (T'-t_0)^{\beta} \|u(t_0)\|_q^r \leq \frac{1}{T_1-T_0} \int_{T_0}^{T_1} (T'-\tau)^{\beta} \|u(\tau)\|_q^r d\tau \leq \varepsilon_*' \nu^{r-\beta}.$$

Hence, by virtue of (2.2) with $\alpha = 0$ and of the condition (3.7),

$$\int_{0}^{T'-t_{0}} \|e^{-\nu\tau A_{q}} u(t_{0})\|_{q}^{s} d\tau \leq c_{0} \int_{0}^{T'-t_{0}} e^{-\nu\delta s\tau} d\tau \|u(t_{0})\|_{q}^{s}
\leq c_{0} (T'-t_{0})^{\frac{\beta s}{r}} \left(\int_{0}^{T'-t_{0}} e^{-\nu\delta s\tau} d\tau \right)^{1-\frac{\beta s}{r}} \|u(t_{0})\|_{q}^{s}
\leq c_{0} (\varepsilon'_{*} \nu^{r-\beta})^{\frac{s}{r}} (\nu^{\frac{\beta s}{r}-1}) = c_{0} (\varepsilon'_{*})^{\frac{s}{r}} \nu^{s-1},$$

where $c_0 = c_0(q, \Omega, \beta, r) > 0$ is a generic constant. This estimate shows how to choose the smallness constant ε'_* in (3.6) depending on ε_* in (3.3), in order to prove Theorem 1.3. For simplicity we denote the constant ε'_* finally in Theorem 1.3 again by ε_* . The proof is complete. \blacksquare

Proof of Theorem 1.2. (i) By Lemma 2.1 there exists some $\delta = \delta(u_0, \nu, \Omega, q, \varepsilon_*) \in (0, T)$ such that $u \in L^s(0, \delta; L^q(\Omega))$. Actually, the second part of condition (2.5) shows that we may choose $\delta = c_0 \varepsilon_* \nu^{s-1} \|u_0\|_q^{-s}$ with ε_* as in (2.5) and $c_0 = c_0(\Omega, q) > 0$. Next let $T_0 = \frac{\delta}{2}$, $T_1 = \delta$, and denoting the constant ε_* from (1.11) here by ε'_* , we assume that

$$\int_{0}^{T} \|u\|_{q}^{r} d\tau \leq \frac{\delta}{2} \varepsilon_{*}' \nu^{r} = \frac{c_{0}}{2} \varepsilon_{*} \varepsilon_{*}' \nu^{s+r-1} \|u_{0}\|_{q}^{-s}$$

is satisfied. Using Theorem 1.3 with $\beta = 0$ and T' = T we conclude that $u \in L^s(T_1, T; L^q(\Omega))$ and even $u \in L^s(0, T; L^q(\Omega))$. This proves (i).

(ii) In this case we use Theorem 1.3 with r=s and $\beta=\frac{r}{s}=1$. Let $T_1\in(0,T)$ and choose $0<\delta< T_1$ such that $u\in L^s(T_1-\delta,T_1;L^q(\Omega))$ satisfies the estimate $2\|u\|_{L^s(T_1-\delta,T_1;L^q(\Omega))}^s\leq \varepsilon_*\nu^{r-1}$ with ε_* from (1.11). Moreover, we can reach with $T'=T_1+\delta$ and $T_0=T_1-\delta$, that

(3.8)
$$\int_{T_0}^{T'} \|F\|_{q_*}^s d\tau = \int_{T_1 - \delta}^{T + \delta} \|F\|_{q_*}^s d\tau \le \varepsilon_* \nu^{2s - 1}$$

and

$$\frac{1}{T_1-T_0}\int_{T_0}^{T_1}(T'-t)\|u(t)\|_q^s\,dt \leq 2\int_{T_0}^{T_1}\|u(t)\|_q^s\,dt \leq \varepsilon_*\nu^{r-1}.$$

Then Theorem 1.3 implies that $u \in L^s(T_1 - \delta, T_1 + \delta; L^q(\Omega))$. We can find such a $\delta > 0$ for each $T_1 \in (0,T)$ and get the result.

Proof of Corollary 1.4. (i) Condition (1.12) implies (1.11) with $\beta = 0$ for some sufficiently small $T_0 > 0$.

(ii) Assume that (1.13) (or only (1.14)) holds. Then we find a sufficiently small $\delta > 0$ such that with $T' = T_1 + \delta$ and $T_0 = T_1 - \delta$ the estimates

$$\frac{1}{T_1 - T_0} \int_{T_0}^{T_1} (T' - \tau)^{\beta} \|u(t)\|_q^r d\tau \le 2^{\beta} \delta^{\beta - 1} \int_{T_1 - \delta}^{T_1} \|u(t)\|_q^r d\tau \le \varepsilon_* \nu^{r - \beta}$$

and (1.11) are satisfied. \blacksquare

References

- [1] H. Amann, Linear and Quasilinear Parabolic Equations, Birkhäuser Verlag, Basel, 1995.
- [2] H. Amann, On the strong solvability of the Navier-Stokes equations, J. Math. Fluid Mech. 2 (2000), 16–98.
- [3] R. Farwig and H. Sohr, Generalized resolvent estimates for the Stokes system in bounded and unbounded domains, J. Math. Soc. Japan 46 (1994), 607–643.
- [4] R. Farwig, G. P. Galdi and H. Sohr, A new class of weak solutions of the Navier-Stokes equations with nonhomogeneous data, J. Math. Fluid Mech. 8 (2006), 423–444.
- [5] R. Farwig, H. Kozono and H. Sohr, Very weak solutions of the Navier-Stokes equations in exterior domains with nonhomogeneous data, J. Math. Soc. Japan 59 (2007), 127–150.
- [6] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations; Vol. I, Linearized Steady Problems, Springer Tracts in Natural Philosophy 38, Springer-Verlag, New York, 1994.
- Y. Giga, Analyticity of the semigroup generated by the Stokes operator in L_r-spaces, Math.
 Z. 178 (1981), 297–329.
- [8] J. G. Heywood, The Navier-Stokes equations: On the existence, regularity and decay of solutions, Indiana Univ. Math. J., 29 (1980), 639–681.
- [9] A. A. Kiselev and O. A. Ladyzhenskaya, On the existence and uniqueness of solutions of the non-stationary problems for flows of non-compressible fluids, Amer. Math. Soc. Transl. Ser. 2, Vol. 24 (1963), 79–106.
- [10] H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations, Analysis 16 (1996), 255–271.
- [11] G. A. Seregin, On smoothness of $L_{3,\infty}$ -solutions to the Navier-Stokes equations up to boundary. Math. Ann. 332 (2005), 219–238.
- [12] J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear problems, in: Proc. Sympos. Madison 1962, R.E. Langer (ed.), 1963, 69–98.
- [13] H. Sohr, The Navier-Stokes Equations. An Elementary Functional Analytic Approach, Birkhäuser Advanced Texts, Birkhäuser Verlag, Basel, 2001.
- [14] V. A. Solonnikov, Estimates for solutions of nonstationary Navier-Stokes equations, J. Soviet Math. 8 (1977), 467–529.