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Abstract. Let u be a weak solution of the Navier-Stokes equations in a smooth bounded domain

Ω ⊆ R
3 and a time interval [0, T ), 0 < T ≤ ∞, with initial value u0, external force f = div F ,

and viscosity ν > 0. As is well known, global regularity of u for general u0 and f is an unsolved

problem unless we pose additional assumptions on u0 or on the solution u itself such as Serrin’s

condition ‖u‖Ls(0,T ;Lq(Ω)) < ∞ where 2/s +3/q = 1. In the present paper we prove several local

and global regularity properties by using assumptions beyond Serrin’s condition e.g. as follows:

If the norm ‖u‖Lr(0,T ;Lq(Ω)) and a certain norm of F satisfy a ν-dependent smallness condition,

where Serrin’s number 2/r + 3/q > 1, or if u satisfies a local leftward Ls-Lq-condition for every

t ∈ (0, T ), then u is regular in (0, T ).

1. Introduction and main results. Let Ω ⊆ R
3 be a bounded domain with smooth

boundary ∂Ω in the sense that ∂Ω is uniform of class C2,1, and let [0, T ) be a time interval
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with 0 < T ≤ ∞. We consider the Navier-Stokes system

(1.1)
ut − ν∆u + u · ∇u + ∇p = f, div u = 0,

u|∂Ω = 0, u|t=0 = u0,

with external force f = div F , F ∈ L2(Ω× (0, T )), initial value u0 ∈ L2
σ(Ω) and viscosity

ν > 0. Then we are interested in weak solutions u of this system defined as follows.

Definition 1.1. A vector field

(1.2) u ∈ L∞(0, T ; L2
σ(Ω)) ∩ L2

loc([0, T ); W 1,2
0 (Ω))

is called a weak solution of the system (1.1) with initial value u0 ∈ L2
σ(Ω) and external

force f = div F , F = (Fi,j)
3
i,j=1 ∈ L2(Ω × (0, T )), if the relation

(1.3) −〈u, vt〉Ω,T + ν〈∇u,∇v〉Ω,T − 〈uu,∇v〉Ω,T = 〈u0, v(0)〉Ω − 〈F,∇v〉Ω,T

is satisfied for all test functions v ∈ C∞
0 ([0, T ); C∞

0,σ(Ω)).

Here we use the following notations: 〈·, ·〉Ω means the usual pairing of functions

on Ω, 〈·, ·〉Ω,T means the corresponding pairing on Ω × [0, T ), L2
σ(Ω) = C∞

0,σ(Ω)
‖·‖2

with C∞
0,σ(Ω) = {v ∈ C∞

0 (Ω); div v = 0} and W 1,2
0 (Ω) = C∞

0 (Ω)
‖·‖

W1,2

. Moreover,

uu = (uiuj)
3
i,j=1 for u = (u1, u2, u3).

We know, see [13, V, (3.6.3)], that there exists a weak solution u as in Definition 1.1

which additionally satisfies the strong energy inequality

(1.4)
1

2
‖u(t)‖2

2 + ν

∫ t

σ

‖∇u‖2
2 dτ ≤

1

2
‖u(σ)‖2

2 −

∫ t

σ

〈F,∇u〉Ω dτ

for almost all σ ∈ [0, T ), including σ = 0, and all t ∈ [σ, T ). This energy inequality is

needed for the local in time identification of u with strong solutions.

Each weak solution u satisfies the condition

(1.5) u ∈ Lr(0, T ; Lq(Ω)), 2 ≤ q, r < ∞,
2

r
+

3

q
=

3

2
.

Without loss of generality we may assume in the following that

(1.6) u : [0, T ) → L2
σ(Ω) is weakly continuous,

with u(0) = u0. Further, there exists a distribution p, called an associated pressure, such

that

(1.7) ut − ν∆u + u · ∇u + ∇p = f

holds in the sense of distributions, see [13, Chapter V.1]. Conversely, if u satisfies (1.2),

(1.6), u(0) = u0, and if (1.7) holds with some p in the sense of distributions, then u is a

weak solution in the sense of Definition 1.1.

We will use Definition 1.1 with obvious modifications if the interval [0, T ) is replaced

by any other interval [t0, T ) with 0 < t0 < T , and with u|t=t0
= u0.

A weak solution u in Definition 1.1 is uniquely determined by u0 and f if Serrin’s

condition

(1.8) u ∈ Ls(0, T ; Lq(Ω)), 2 < s < ∞, 3 < q < ∞,
2

s
+

3

q
= 1,
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is satisfied, see [12], [13], i.e., if

‖u‖Ls(0,T ;Lq(Ω)) = ‖u‖q,s =

(
∫ T

0

‖u‖s
q dτ

)
1

s

< ∞,

where ‖u‖q = ‖u(t)‖Lq(Ω) = (
∫

Ω
|u(x, t)|q dx)1/q. More precisely, u is unique within the

class defined by (1.8). The same result holds in the limit case s = ∞, q = 3, see [10].

Moreover, if u satisfies (1.8), then u is regular in the sense that

(1.9) u ∈ C∞(Ω × (0, T )), p ∈ C∞(Ω × (0, T )),

provided ∂Ω and f are of class C∞, see [13, Theorem V.1.8.2]. Hence a weak solution u

satisfying (1.8) is called a strong solution. A similar result was proved for the limit case

s = ∞, q = 3 in a series of papers, see e.g. [11].

A point t ∈ (0, T ) is called a regular point of a weak solution u if there exists a

subinterval (t− δ, t + δ) ⊂ (0, T ), δ > 0, such that u ∈ Ls(t − δ, t + δ; Lq(Ω)) with s, q as

in (1.8). Otherwise t is called a singular point of u.

Now our first main result reads as follows:

Theorem 1.2. Let Ω ⊆ R
3 be a bounded domain with boundary ∂Ω of class C2,1 and

let 0 < T ≤ ∞. Furthermore let1 4 < s < ∞, 3 < q < 6, 1 < q∗ < q and 1 ≤

r ≤ s be given with 2
s + 3

q = 1 and 1
3 + 1

q = 1
q∗

. For u0 ∈ L2
σ(Ω) and f = div F ,

F ∈ L2(0, T ; L2(Ω)) ∩ Ls(0, T ; Lq∗

(Ω)), consider a weak solution u of the Navier-Stokes

system (1.1) satisfying the strong energy inequality (1.4).

(i) Assume 0 6= u0 ∈ Lq
σ(Ω). Then there exist constants ε∗ = ε∗(q, Ω) > 0 and

c0 = c0(q, Ω, r) > 0 with the following property: If

(1.10)

∫ T

0

‖F‖s
q∗ dτ ≤ ν2s−1ε∗ and

∫ T

0

‖u‖r
q dτ ≤ c0

νs+r−1ε∗
‖u0‖s

q

,

then u is regular in the sense that u ∈ Ls(0, T ; Lq(Ω)).

(ii) Suppose for each T1 ∈ (0, T ) there is some 0 < δ = δ(T1) < T1 such that u

satisfies the leftward Ls-Lq-condition

u ∈ Ls(T1 − δ, T1; L
q(Ω)).

Then u is regular in the sense that u ∈ Ls
loc((0, T ); Lq(Ω)).

We remark that the constant c0 = c0(q, Ω, r) > 0 in (1.10) mainly depends on the

boundedness of the Stokes semigroup {e−tAq : t > 0}, see §2 below, but that ε∗ =

ε∗(q, Ω) > 0 is related to the nonlinearity of the Navier-Stokes system. Note that if r < s

and consequently 2
r + 3

q > 1, then Theorem 1.2 (i) yields the regularity of the weak

solution u beyond Serrin’s barrier 2
s + 3

q = 1. The proof is based on the following theorem

yielding a local in time regularity result.

1In the meantime the restriction 4 < s < ∞, 3 < q < 6, see also Lemma 2.1 below, has
been removed by the authors. For the more general result when 2 < s < ∞, 3 < q < ∞ see
the forthcoming paper Very weak, weak and strong solutions to the instationary Navier-Stokes

system, Nečas Center for Mathematical Modeling, Lecture Notes, Vol. 1, Prague, 2007, 15–68.



178 R. FARWIG, H. KOZONO AND H. SOHR

Theorem 1.3. Let Ω ⊆ R
3 be a bounded domain with boundary ∂Ω of class C2,1 and

let 0 < T ≤ ∞. Consider a weak solution u of the Navier-Stokes system (1.1) with

u0 ∈ L2
σ(Ω) and f = div F , F ∈ L2(Ω × (0, T )), satisfying the strong energy inequality

(1.4). Moreover let1 4 < s < ∞, 3 < q < 6, 1 < q∗ < q, 1 ≤ r ≤ s, and 0 ≤ β ≤ r
s with

2
s + 3

q = 1, 1
3 + 1

q = 1
q∗

.

Then there is a constant ε∗ = ε∗(Ω, q) > 0 with the following property: If 0 < T0 <

T1 < T ′ < T , and if

(1.11)

∫ T ′

T0

‖F (τ )‖s
q∗ dτ ≤ ε∗ν

2s−1,
1

T1 − T0

∫ T1

T0

(T ′ − τ )β‖u(τ )‖r
q dτ ≤ ε∗ν

r−β,

then u is regular in some interval (T1 − δ, T ′) ⊂ (0, T ), δ > 0, in the sense that Serrin’s

condition
u ∈ Ls(T1 − δ, T ′; Lq(Ω))

is satisfied. In particular, T1 is a regular point of u. If β = 0, then T ′ = T ≤ ∞ is allowed.

Corollary 1.4. Let u be a weak solution in Ω× [0, T ) and let r, s, q, q∗ be exponents as

in Theorem 1.3.

(i) Let T = ∞ and assume that

(1.12)

∫ ∞

0

‖F‖s
q∗ dτ ≤ ε∗ν

2s−1 and T1 >
1

ε∗νr
‖u‖r

Lr(0,∞;Lq(Ω))

with ε∗ as in (1.11). Then u is regular for t ≥ T1, i.e., u ∈ Ls(T1,∞; Lq(Ω)).

(ii) Let 0 < T1 < T ≤ ∞ and assume that

(1.13) lim inf
δ→0

1

δ1−β

∫ T1

T1−δ

‖u(τ )‖r
q dτ = 0, 0 ≤ β ≤

r

s
.

Then there exist T ′ and δ0 > 0, 0 < T1 − δ0 < T1 < T ′ ≤ T , such that u is regular in

(T1 − δ0, T
′) in the sense u ∈ Ls(T1 − δ0, T

′; Lq(Ω)). In particular, T1 is a regular point.

We note that the condition (1.13) may be replaced by the slightly weaker smallness

condition

(1.14) lim inf
δ→0

1

δ1−β

∫ T1

T1−δ

‖u(τ )‖r
q dτ < ε∗ν

r−β2−β

with ε∗ as in Theorem 1.3.

If r = s, then the local leftward Serrin condition
∫ T1

T1−δ0

‖u(τ )‖s
q dτ < ∞ with some

fixed δ0 > 0 is sufficient for (1.13) when β = r
s = 1 and implies that T1 is a regular point.

Furthermore, (1.13) is satisfied with 0 < β ≤ r
s ≤ 1 if T1 ∈ (0, T ) is a Lebesgue point of

t 7→ ‖u(t)‖r
q, t ∈ (0, T ), in the sense that

(1.15) lim
δ→0

1

δ

∫ T1

T1−δ

‖u(τ )‖r
q dτ = ‖u(T1)‖

r
q .

Conversely, if T1 ∈ (0, T ) is a singular point of u in the sense that there is no T ′ > T1

such that u is contained in Ls(T1, T
′; Lq(Ω)), then for all β ∈

[

0, r
s

]

(1.16) lim inf
δ→0

1

δ1−β

∫ T1

T1−δ

‖u(τ )‖r
q dτ ≥ ε∗ν

r−β2−β.

The set of such points T1 (is empty or) has Lebesgue measure zero.
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2. Preliminaries. Given a bounded smooth domain Ω ⊆ R
3 as in Section 1 we use

the well-known spaces Lq(Ω), 1 < q < ∞, with norm ‖ · ‖Lq(Ω) = ‖ · ‖q and pairing

〈v, w〉 = 〈v, w〉Ω =
∫

Ω
v · w dx for v ∈ Lq(Ω), w ∈ Lq′

(Ω), q′ = q
q−1 . Moreover, given

0 < T ≤ ∞, we need the Bochner spaces Ls(0, T ; Lq(Ω)), 1 ≤ s < ∞, with norm

‖ · ‖Ls(0,T ;Lq(Ω)) = ‖ · ‖q,s = (
∫ T

0
‖ · ‖s

q dt)1/s and the corresponding pairing 〈·, ·〉 = 〈·, ·〉Ω,T

on Ls(0, T ; Lq(Ω)) × Ls′

(0, T ; Lq′

(Ω)), s′ = s
s−1 . Furthermore, we will use the smooth

function spaces C∞
0 (Ω), C∞

0,σ(Ω) = {v ∈ C∞
0 (Ω); div v = 0} and the space Lq

σ(Ω) =

C∞
0,σ(Ω)

‖·‖q

.

Concerning the Stokes operator Aq = −Pq∆ : D(Aq) → Lq
σ(Ω), D(Aq) ⊆ Lq

σ(Ω), and

the Helmholtz projection Pq : Lq(Ω) → Lq
σ(Ω) in Lq-spaces we refer to [1], [3] – [7]. In

particular we need the following estimates, see [4]:

‖v‖γ ≤ C‖Aα
q v‖q for all v ∈ D(Aα

q ), 1 < q ≤ γ, 0 ≤ α ≤ 1,(2.1)

where 2α +
3

γ
=

3

q
,

‖Aα
q e−νtAqv‖q ≤ Cν−αe−νδtt−α‖v‖q for all v ∈ Lq

σ(Ω), t > 0,(2.2)

where δ = δ(Ω, q) > 0 and 0 ≤ α ≤ 1,

‖A
− 1

2

q Pqdiv v‖q ≤ C‖v‖q for all v = (vij)
3
i,j=1 ∈ Lq(Ω),(2.3)

‖v‖Ls(0,T ;Lq(Ω)) ≤ C
1

ν
‖f‖Ls(0,T ;Lq(Ω)) for all f ∈ Ls(0, T ; Lq

σ(Ω)),(2.4)

where v(t) = Aq

∫ t

0

e−ν(t−τ)Aqf(τ ) dτ.

The constants C in (2.1)–(2.4) depend on Ω and q, s, α, but are independent of v and ν.

Note that the norms ‖A
1/2
q v‖q and ‖∇v‖q are equivalent for v ∈ D(A

1/2
q ).

To prove our main results we have to identify the given weak solution u locally in

time with strong solutions, i.e. with weak solutions satisfying Serrin’s regularity condition.

There are many results on the existence of such solutions for some given interval [0, T ),

0 < T ≤ ∞, if the initial value u0 satisfies a certain smallness condition, see, e.g.,

[8]–[10], [14]. However, we need some particular weak assumption on u0 and will apply

Theorem 1 in [4] for bounded domains.

Lemma 2.1. Let Ω ⊆ R
3 be a bounded domain with boundary ∂Ω of class C2,1 and let

4 < s < ∞, 3 < q < 6, 1 < q∗ < q satisfy 1
3 + 1

q = 1
q∗

and 2
s + 3

q = 1. Moreover, let

u0 ∈ Lq
σ(Ω) and f = div F , F ∈ Ls(0, T ; Lq∗

(Ω)), 0 < T ≤ ∞. Then there is a constant

ε∗ = ε∗(Ω, q) > 0 with the following property: If

(2.5)

∫ T

0

‖F‖s
q∗ dτ ≤ ε∗ν

2s−1 and

∫ T

0

‖e−ντAqu0‖
s
q dτ ≤ ε∗ν

s−1,

then there exists a unique weak solution u in Ω× [0, T ) of the Navier-Stokes system (1.1)

satisfying Serrin’s condition

(2.6) u ∈ Ls(0, T ; Lq(Ω))
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and the energy inequality

(2.7)
1

2
‖u(t)‖2

2 + ν

∫ t

0

‖∇u‖2
2 dτ ≤

1

2
‖u0‖

2
2 −

∫ t

0

〈F,∇u〉Ω dτ , 0 ≤ t < T.

Proof. In the case ν = 1 the existence result of [4, Theorem 1] yields – under the smallness

condition (2.5), see [4, (4.23)] – a unique solution u in the following so-called very weak

sense: It satisfies (2.6) and the relation

(2.8) −〈u, vt〉Ω,T − ν〈u, ∆v〉Ω,T − 〈uu,∇v〉Ω,T = 〈u0, v(0)〉Ω − 〈F,∇v〉Ω,T

for all v ∈ C∞
0 ([0, T ); C∞

0,σ(Ω)). It is straightforward to generalize this result to ν 6= 1

and to check that (2.5) is the corresponding smallness condition with constant ε∗ =

ε∗(q, Ω) > 0; for details on the dependence on ν see [5] concerning the theory of

very weak solutions in three-dimensional exterior domains and in particular the condi-

tion [5, (5.12)].

In order to prove that u is a weak solution satisfying (2.6) we have to show several

regularity properties. We start with the case that 4 < s ≤ 8 and hence 4 ≤ q < 6. Due to

the proof in [4, (4.19)] we know that u satisfies the relation

(2.9) ũ(t) ≡ u(t) − E(t) = −

∫ t

0

A
1

2

q e−ν(t−τ)AqA
− 1

2

q Pq div (uu) dτ, 0 ≤ t < T,

with

E(t) = e−νtAqu0 +

∫ t

0

e−ν(t−τ)Aqf(τ ) dτ.

Using (2.3) and Hölder’s inequality we obtain that

(2.10) ‖A
− 1

2

q/2Pq/2 div (uu)‖q/2 ≤ C‖uu‖q/2 ≤ C‖u‖2
q

where here and in the following C is a generic positive constant depending only on q

and Ω. By (2.9)

(2.11) A
1

2

q ũ(t) = −Aq

∫ t

0

e−ν(t−τ)AqA
− 1

2

q Pq div (uu) dτ, 0 ≤ t < T,

and using (2.4) we get the estimate

(2.12) ‖∇ũ‖ q
2
, s
2

≤ C‖A
1

2

q/2ũ‖ q
2
, s
2

≤ C
1

ν
‖uu‖ q

2
, s
2

≤ C
1

ν
‖u‖2

q,s < ∞.

This shows that

(2.13) ∇ũ ∈ Ls/2(0, T ; Lq/2(Ω))

and, since 4 ≤ q < 6, 4 < s ≤ 8, that

(2.14) ∇ũ ∈ L2
loc([0, T ); L2(Ω)), ũ ∈ L2

loc([0, T ); W 1,2
0 (Ω)).

By virtue of (2.2) and (2.3), Hölder’s inequality and the properties of q and s we obtain
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from (2.9) the estimate

‖ũ(t)‖2 ≤
C

ν
1

2

∫ t

0

1

(t − τ )
1

2

e−νδ(t−τ)‖uu‖2 dτ(2.15)

≤
C

ν
1

2

∫ t

0

1

(t − τ )
1

2

e−νδ(t−τ)‖uu‖ q
2

dτ

≤ Cν−1+ 2

s ‖uu‖ q
2
, s
2

≤ Cν−1+ 2

s ‖u‖2
q,s.

Hence (2.14) and (2.15) imply that

(2.16) ũ ∈ L∞([0, T ); L2
σ(Ω)) ∩ L2

loc([0, T ); W 1,2
0 (Ω)).

Concerning E(t) standard energy estimates, see e.g. [13, Theorem V.1.4.1], yield the

inequalities

(2.17) ‖E‖2
2,∞ + ν‖∇E‖2

2,2 ≤ ‖u0‖
2
2 +

1

ν
‖F‖2

2,2.

With the help of (2.16) and (2.17) we conclude that

(2.18) u ∈ L∞([0, T ); L2
σ(Ω)) ∩ L2

loc([0, T ); W 1,2
0 (Ω)).

Since u ∈ Ls(0, T ′; Lq(Ω)) for all 0 < T ′ < T , Hölder’s inequality yields

(2.19) uu ∈ L2
loc([0, T ); L2(Ω)).

Using (2.18) and (2.19), a calculation shows that (2.8) implies (1.3), and that the energy

inequality (2.7) is satisfied; see also [13, Theorem V.1.4.1] concerning the last property.

Consequently u is a weak solution of (1.1) satisfying (2.6) and (2.7). Hence it is also a

strong solution. The uniqueness of u with these properties follows from Serrin’s uniqueness

argument, see [12], [13]. This completes the proof in the case that 4 < s ≤ 8.

In the second case we assume that 8 < s < ∞ and 3 < q < 4. Now we need

several steps. First let s1 = s, q1 = q. Then we get as in (2.9)–(2.13) that ∇ũ ∈

Ls1/2(0, T ; Lq1/2(Ω)). Defining s2 = s1

2 and q2 > q1 such that 1
3 + 1

q2

= 1
q1/2 , 2

s2

+ 3
q2

= 1,

we obtain by Sobolev’s embedding theorem that ũ ∈ Ls2(0, T ; Lq2(Ω)). Moreover, us-

ing (2.1), (2.2) we see that E ∈ Ls2(0, T ; Lq2(Ω)) which leads to u ∈ Ls2(0, T ; Lq2(Ω)).

Proceeding in the same way, let sk = sk−1

2 and qk > qk−1 such that 1
3 + 1

qk
= 1

qk−1/2 ,
2
sk

+ 3
qk

= 1, for k ∈ N. Since 1
3 − 1

qk
= 2k−1( 1

3 − 1
q1

), we choose k ∈ N such that
1
3 − 1

qk−1

< 1
12 ≤ 1

3 − 1
qk

, leading to 4 ≤ qk < 6, 4 < sk ≤ 8. Now qk/2 ≥ 2, and using

(2.12), (2.15) with q, s replaced by qk, sk, we obtain the properties (2.14), (2.16). This

yields the result in the same way as in the first case. Now the proof of the lemma is

complete.

3. Proof of the theorems. First we have to prove Theorem 1.3.

Proof of Theorem 1.3. Given the bounded domain Ω ⊆ R
3, 0 < T0 < T1 < T ′ < T

and u, q, r, s, β as in this theorem, we have to prove the existence of some constant ε∗ =

ε∗(Ω, q) > 0 yielding regularity of u on (T1−δ, T ′) if (1.11) is satisfied. Note that if β = 0

then the subsequent proof will also work for T ′ = T.
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Using the weak continuity of the weak solution u : [0, T ) → L2
σ(Ω), see (1.6), we

know that u(t0) ∈ L2
σ(Ω) is well defined for all t0 ∈ [0, T ). Furthermore, since ∇u ∈

L2(0, T ; L2(Ω)), see (1.4) for σ = 0, and since 3 < q < 6, the embedding inequality

‖u(t)‖q ≤ C1‖u(t)‖6 ≤ C2‖∇u(t)‖2 with Cj = Cj(Ω, q) > 0, j = 1, 2, implies that

u ∈ L2(0, T ; Lq
σ(Ω)). Then the Lebesgue point argument shows that there is a null set

N ⊆ (0, T ) such that ‖u(t0)‖q is well defined by the property

(3.1) lim
δ→0

1

2δ

∫ t0+δ

t0−δ

‖u(τ )‖2
q dτ = ‖u(t0)‖

2
q

for all t0 ∈ (0, T )\N . Moreover, since the energy inequality (1.4) holds for a.a. σ ∈ [0, T ),

we may assume in the following that the null set N ⊆ (0, T ) is chosen in such a way that

both (3.1) and the energy inequality

(3.2)
1

2
‖u(t)‖2

2 + ν

∫ t

t0

‖∇u‖2
2 dτ ≤

1

2
‖u(t0)‖

2
2 −

∫ t

t0

〈F,∇u〉Ω dτ, t0 ≤ t < T,

hold for all t0 ∈ (0, T )\N .

Let t0 ∈ (T0, T1)\N . Then u(t0) ∈ Lq
σ(Ω), and we are able to apply the local existence

results of Lemma 2.1, replacing the existence interval [0, T ) by the interval [t0, T
′), and

using u(t0) as initial value. Hence, if the smallness condition

(3.3)

∫ T ′

t0

‖F‖s
q∗ dτ ≤ ε∗ν

2s−1,

∫ T ′−t0

0

‖e−ντAqu(t0)‖
s
q dτ ≤ ε∗ν

s−1

is satisfied with ε∗ as in Lemma 2.1, then we obtain a unique weak solution ũ on the

interval [t0, T
′), corresponding to Definition 1.1, of the Navier-Stokes system

(3.4)
ũt − ν∆ũ + ũ · ∇ũ + ∇p̃ = f, div ũ = 0,

ũ|∂Ω
= 0, ũ|t=t0

= u(t0),

satisfying

(3.5) ũ ∈ L∞(t0, T
′; L2

σ(Ω)) ∩ L2
loc([t0, T

′); W 1,2
0 (Ω)), ũ ∈ Ls(t0, T

′; Lq(Ω)),

and the energy inequality

1

2
‖ũ(t)‖2

2 + ν

∫ t

t0

‖∇ũ‖2
2 dτ ≤

1

2
‖u(t0)‖

2
2 −

∫ t

t0

〈F,∇ũ〉Ω dτ , t0 ≤ t < T ′.

By Serrin’s uniqueness argument, see [12], [13, V, Theorem 1.5.1], we conclude that u = ũ

on [t0, T
′). This yields the properties (3.5) with ũ replaced by u, and we get the desired

result of Theorem 1.3.

Thus it remains to prove the existence of some t0 ∈ (T0, T1)\N as above such that

(3.3) is satisfied. First assume that the conditions

(3.6)

∫ T ′

T0

‖F‖s
q∗ dτ ≤ ε′∗ν

2s−1,
1

T1 − T0

∫ T1

T0

(T ′ − τ )β ‖u(τ )‖r
q dτ ≤ ε′∗ν

r−β

are satisfied with some constant ε′∗ > 0 to be determined below. Then we find at least
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one t0 ∈ (T0, T1)\N such that

(3.7) (T ′ − t0)
β ‖u(t0)‖

r
q ≤

1

T1 − T0

∫ T1

T0

(T ′ − τ )β ‖u(τ )‖r
q dτ ≤ ε′∗ν

r−β.

Hence, by virtue of (2.2) with α = 0 and of the condition (3.7),
∫ T ′−t0

0

‖e−ντAqu(t0)‖
s
q dτ ≤ c0

∫ T ′−t0

0

e−νδsτ dτ ‖u(t0)‖
s
q

≤ c0(T
′ − t0)

βs

r

(
∫ T ′−t0

0

e−νδsτ dτ

)1− βs

r

‖u(t0)‖
s
q

≤ c0(ε
′
∗ν

r−β)
s
r (ν

βs

r
−1) = c0(ε

′
∗)

s
r νs−1,

where c0 = c0(q, Ω, β, r) > 0 is a generic constant. This estimate shows how to choose the

smallness constant ε′∗ in (3.6) depending on ε∗ in (3.3), in order to prove Theorem 1.3.

For simplicity we denote the constant ε′∗ finally in Theorem 1.3 again by ε∗. The proof

is complete.

Proof of Theorem 1.2. (i) By Lemma 2.1 there exists some δ = δ(u0, ν, Ω, q, ε∗) ∈ (0, T )

such that u ∈ Ls(0, δ; Lq(Ω)). Actually, the second part of condition (2.5) shows that

we may choose δ = c0ε∗ν
s−1‖u0‖

−s
q with ε∗ as in (2.5) and c0 = c0(Ω, q) > 0. Next let

T0 = δ
2 , T1 = δ, and denoting the constant ε∗ from (1.11) here by ε′∗, we assume that

∫ T

0

‖u‖r
q dτ ≤

δ

2
ε′∗ν

r =
c0

2
ε∗ε

′
∗ν

s+r−1‖u0‖
−s
q

is satisfied. Using Theorem 1.3 with β=0 and T ′=T we conclude that u∈Ls(T1, T ; Lq(Ω))

and even u ∈ Ls(0, T ; Lq(Ω)). This proves (i).

(ii) In this case we use Theorem 1.3 with r = s and β = r
s = 1. Let T1 ∈ (0, T )

and choose 0 < δ < T1 such that u ∈ Ls(T1 − δ, T1; L
q(Ω)) satisfies the estimate

2‖u‖s
Ls(T1−δ,T1;Lq(Ω)) ≤ ε∗ν

r−1 with ε∗ from (1.11). Moreover, we can reach with T ′ =

T1 + δ and T0 = T1 − δ, that

(3.8)

∫ T ′

T0

‖F‖s
q∗ dτ =

∫ T+δ

T1−δ

‖F‖s
q∗ dτ ≤ ε∗ν

2s−1

and
1

T1 − T0

∫ T1

T0

(T ′ − t)‖u(t)‖s
q dt ≤ 2

∫ T1

T0

‖u(t)‖s
q dt ≤ ε∗ν

r−1.

Then Theorem 1.3 implies that u ∈ Ls(T1 − δ, T1 + δ; Lq(Ω)). We can find such a δ > 0

for each T1 ∈ (0, T ) and get the result.

Proof of Corollary 1.4. (i) Condition (1.12) implies (1.11) with β = 0 for some sufficiently

small T0 > 0.

(ii) Assume that (1.13) (or only (1.14)) holds. Then we find a sufficiently small δ > 0

such that with T ′ = T1 + δ and T0 = T1 − δ the estimates

1

T1 − T0

∫ T1

T0

(T ′ − τ )β‖u(t)‖r
q dτ ≤ 2βδβ−1

∫ T1

T1−δ

‖u(t)‖r
q dτ ≤ ε∗ν

r−β

and (1.11) are satisfied.
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