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Abstract. Let u be a weak solution of the Navier-Stokes equations in a smooth bounded domain
Q C R? and a time interval [0,T), 0 < T < oo, with initial value uo, external force f = div F,
and viscosity v > 0. As is well known, global regularity of u for general up and f is an unsolved
problem unless we pose additional assumptions on uo or on the solution u itself such as Serrin’s
condition ||u||Ls(0,1;La(0)) < 0o where 2/s+3/q = 1. In the present paper we prove several local
and global regularity properties by using assumptions beyond Serrin’s condition e.g. as follows:
If the norm ||u|| .~ 0,7;L9()) and a certain norm of F' satisfy a v-dependent smallness condition,
where Serrin’s number 2/r + 3/q > 1, or if u satisfies a local leftward L°-L-condition for every
t € (0,T), then w is regular in (0,7T).

1. Introduction and main results. Let Q C R3 be a bounded domain with smooth
boundary O in the sense that 9 is uniform of class C?1, and let [0, T') be a time interval
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with 0 < T < co. We consider the Navier-Stokes system
u —vAu+u-Vu+Vp=f, divu=0,
uloo =0,  ult=o0 = uo,
with external force f = div F, F € L*(Q x (0,T)), initial value ug € L2() and viscosity
v > 0. Then we are interested in weak solutions u of this system defined as follows.

(1.1)

DEFINITION 1.1. A vector field
(1.2) u e L¥(0,T; L2(Q)) N L, ([0, T); Wy * ()

is called a weak solution of the system (1.1) with initial value uy € L%(Q) and external
force f =divF, F = (F; ;)3 -, € L*(Q x (0,T)), if the relation

(1.3) —(u, ve)o,r +v{(Vu, Vo)o r — (uu, Vu)or = (uo,v(0))q — (F, Vv)o 1
is satisfied for all test functions v € C§°([0,T); CF%,(52)).

Here we use the following notations: (-,-}q means the usual pairing of functions

on Q, (-,-)or means the corresponding pairing on Q x [0,7), L2(Q) = g5, (2 )” I2

with C5%,(Q) = {v € C§°(Q);dive = 0} and Wy?(Q) = CSO(Q)H w2 Moreover,
uu = (“i“j)?,j=1 for u = (u1,uz,u3).
We know, see [13, V, (3.6.3)], that there exists a weak solution u as in Definition 1.1

which additionally satisfies the strong energy inequality

1 ¢ 1 ¢
(L4) S 13 + v / IVull3 dr < Fllu@)Il3 ~ / (F,Vu)q dr

for almost all o € [0,T), including ¢ = 0, and all ¢t € [0,T). This energy inequality is
needed for the local in time identification of w with strong solutions.

Each weak solution u satisfies the condition

2 3 3
(1.5) we L0, T:L7(Q), 25 r <00, T4 l=3

Without loss of generality we may assume in the following that

(1.6) u:[0,T) — L2(Q) is weakly continuous,

with u(0) = ug. Further, there exists a distribution p, called an associated pressure, such
that

(1.7) u —vAu+u-Vu+Vp=f

holds in the sense of distributions, see [13, Chapter V.1]. Conversely, if u satisfies (1.2),
(1.6), u(0) = wup, and if (1.7) holds with some p in the sense of distributions, then u is a
weak solution in the sense of Definition 1.1.

We will use Definition 1.1 with obvious modifications if the interval [0, T) is replaced

by any other interval [tp,T) with 0 < tg < T, and with u|,_, = o
A weak solution u in Definition 1.1 is uniquely determlned by ug and f if Serrin’s
condition
2 3
(1.8) we L*(0,T; L), 2<s<o0, 3<g<oo, -—+-=1,
s q
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is satisfied, see [12], [13], i.e., if

1

T S
Ls(o,T;Lqm))=|u||q,s=( / ||u|;d7) < 0,

where ||ullq = [u(t)|lra) = ([, [u(z,t)|? dz)!/9. More precisely, u is unique within the
class defined by (1.8). The same result holds in the limit case s = 0o, ¢ = 3, see [10].

[[ul

Moreover, if u satisfies (1.8), then u is regular in the sense that
(1.9) u € C®(Qx(0,T)), pe C®(Qx (0,T)),

provided 99 and f are of class C*, see [13, Theorem V.1.8.2]. Hence a weak solution u
satisfying (1.8) is called a strong solution. A similar result was proved for the limit case
s =00, ¢ = 3 in a series of papers, see e.g. [11].

A point t € (0,7T) is called a regular point of a weak solution u if there exists a
subinterval (t — 6, + ) C (0,T), 6 > 0, such that uw € L*(t — 6,t + §; LL(Q)) with s, q as
n (1.8). Otherwise ¢ is called a singular point of .

Now our first main result reads as follows:

THEOREM 1.2. Let Q C R? be a bounded domain with boundary 02 of class C*' and
let 0 < T < oo. Furthermore let! 4 < s < 00,3 < ¢ < 6,1 < g* < qgandl <
r < s be given with%—l—% =1 and%ﬁ—% = qi*. For ug € L2(Q) and f = divF,
F e L*(0,T; L*(Q)) N L*(0,T; L9 (Q)), consider a weak solution u of the Navier-Stokes
system (1.1) satisfying the strong energy inequality (1.4).

(i) Assume 0 # wug € L1(QY). Then there exist constants e, = €.(q,2) > 0 and
co = ¢o(q, Q,7) > 0 with the following property: If

S+7‘—15*

[[uoll;

)

T T
(1.10) / |F|l5- dr < % Ye, and / lull dr < co”
0 0

then w is regular in the sense that uw € L*(0,T; LI(Q)).
(i) Suppose for each Ty € (0,T) there is some 0 < § = §(Th) < Ty such that u
satisfies the leftward L*®-L4-condition

u e Ls(Tl — 5, Tl,Lq(Q))
Then u is regular in the sense that w € L}, ((0,T); LI(Q)).

loc

We remark that the constant ¢y = ¢g(g,€2,7) > 0 in (1.10) mainly depends on the
boundedness of the Stokes semigroup {e~*4« : ¢ > 0}, see §2 below, but that e, =
£x(q, ) > 0 is related to the nonlinearity of the Navier-Stokes system. Note that if r < s
and consequently % + g > 1, then Theorem 1.2 (i) yields the regularity of the weak
solution u beyond Serrin’s barrier % + % = 1. The proof is based on the following theorem

yielding a local in time regularity result.

In the meantime the restriction 4 < s < oo, 3 < g < 6, see also Lemma 2.1 below, has
been removed by the authors. For the more general result when 2 < s < 00,3 < ¢ < o0 see
the forthcoming paper Very weak, weak and strong solutions to the instationary Navier-Stokes
system, Necas Center for Mathematical Modeling, Lecture Notes, Vol. 1, Prague, 2007, 15-68.
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THEOREM 1.3. Let Q C R3 be a bounded domain with boundary 02 of class C*' and
let 0 < T < 0. Consider a weak solution u of the Navier-Stokes system (1.1) with
ug € L2(Q) and f = divF, F € L*(Q x (0,7)), satisfying the strong energy inequality
(1.4). Moreover let' 4 < s <00,3<q<6,1<¢*<q 1<r<s, and0<p<ZI with
2.3 _1 1,.1_1 ‘
;+a—1, §+5_q_*'

Then there is a constant e, = £,(2,q) > 0 with the following property: If 0 < Ty <

T <T' <T, and if

T’ T
1 1
1.11 F(D)|2. dr < ev?7 1, / T — )3 u(r)|| dr < e 7,

then u is reqular in some interval (Ty — 0,T") C (0,T), 6 > 0, in the sense that Serrin’s

condition

we L3(Ty — 68, T; LY(Q))
1s satisfied. In particular, Ty is a reqular point of u. If 3 =0, then T =T < oo is allowed.

COROLLARY 1.4. Let u be a weak solution in Q x [0,T) and let r,s,q,q* be exponents as
in Theorem 1.5.
(i) Let T = oo and assume that

(1.12) /0 |F|. dr < ev®™t and Ty > &%Ilul\zr(om;m(g))
with €, as in (1.11). Then u is regular for t > Ty, i.e., u € L*(Ty, 00; L1(2)).
(i1) Let 0 < Ty < T < 0o and assume that
1 I r
(1.13) lim nf / lur)llydr =0, 0<p<”.
T -6
Then there exist T' and 69 > 0,0 < Ty — 6y < T1 < T’ < T, such that u is regular in
(Ty — 60, T") in the sense u € L*(Ty — 8o, T"; L1(Y)). In particular, Ty is a regular point.

We note that the condition (1.13) may be replaced by the slightly weaker smallness
condition

I
(1.14) hm mf 515 / lu(r)|lg dr < e, BB
T, —6

with e, as in Theorem 1.3.

If r = s, then the local leftward Serrin condition f;}%o lu(7)|[; dm < oo with some
fixed &g > 0 is sufficient for (1.13) when $ = = = 1 and implies that T} is a regular point.
Furthermore, (1.13) is satisfied with 0 < 8 < * < 1if Ty € (0,7 is a Lebesgue point of
t = |lu(t)|ly, t € (0,7), in the sense that

Ty
(1.15) i s [ Il dr = ;.

Conversely, if T} € (0,T) is a singular point of u in the sense that there is no 77 > T}
such that w is contained in L*(Ty,T"; L4(R2)), then for all § € [0, %]

I
(1.16) hmlnf 5= B/ lu(r)y dr > e BB

The set of such points T3 (is empty or) has Lebesgue measure zero.
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2. Preliminaries. Given a bounded smooth domain © C R3 as in Section 1 we use
the well-known spaces L(f2), 1 < ¢ < oo, with norm || - [[za(q) = || - [|4 and pairing
(v,w) = (v,w)q = [yv-wdz for v e LIQ), w € LY(Q), ¢ = —L-. Moreover, given
0 < T < oo, we need the Bochner spaces L°(0,7;L(Q2)), 1 < s < oo, with norm

_

|- llso,rna )y = || - llgs = (fOT Il ||f] dt)l/s and the corresponding pairing (-,-) = (-, )a,r
on L*(0,T;L%(Q)) x L (O,T;Lq,(Q)), s’ = 27 Furthermore, we will use the smooth
function spaces C§°(2), C5%,(©2) = {v € C§°(Q);dive = 0} and the space LL((2) =
7ol e
CO,J(Q) .

Concerning the Stokes operator A, = —FP,A : D(A4,) — L1(), D(A4,) C LL(), and
the Helmholtz projection P, : L9(2) — LZ(f2) in L?-spaces we refer to [1], [3] — [7]. In
particular we need the following estimates, see [4]:

(2.1) [v]l, < CllAGv]lq for allv € D(A7), 1<qg<7v, 0<a<1,
3 3
where 2o + — = —,
)
(2.2) HAg‘eﬂ’tAquq < Cv= % % |||, forall v € LL(Q), t >0,

where 6 =6(2,¢) >0 and 0 <a <1,
(2.3) 145 % Pydivoll, < Cllvlly for all v = (v;)2,_, € L(Q),
1
(2.4) [vllzs 0,50(0)) < C;HfHLs(o,T;Lq(Q)) for all f € L*(0,T; LL(92)),
t
where v(t) = Aq/ e V= £ (1) dr.
0

The constants C' in (2.1)—(2.4) depend on  and g, s, &, but are independent of v and v.
Note that the norms \|Aé/2v||q and ||Vv||, are equivalent for v € D(Aé/z).

To prove our main results we have to identify the given weak solution u locally in
time with strong solutions, i.e. with weak solutions satisfying Serrin’s regularity condition.
There are many results on the existence of such solutions for some given interval [0,7),
0 < T < oo, if the initial value wug satisfies a certain smallness condition, see, e.g.,
[8]-[10], [14]. However, we need some particular weak assumption on wuy and will apply
Theorem 1 in [4] for bounded domains.

LEMMA 2.1. Let Q C R3 be a bounded domain with boundary 0Q of class C*' and let
4<s<o0,3<qg<6,1<qg" <q5atisfy%+%:q% and%Jr%:l. Moreover, let
up € LL(Q) and f = divF, F € L*(0,T; LY (), 0 < T < oo. Then there is a constant
e« = £+(Q,q) > 0 with the following property: If

T
(2.5) /0 |F

then there exists a unique weak solution u in Q x [0,T) of the Navier-Stokes system (1.1)
satisfying Serrin’s condition

(2.6) we L*(0,T; L))

T
sedr <e 7t and / ||ef”TAqu0H2 dr < e,
0
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and the energy inequality
1 K 1 K
(2.7) §|\U(t)|\§+1// [Vul3 dr < §HU0H§—/ (F,Vu)odr , 0 <t <T.
0 0

Proof. In the case v = 1 the existence result of [4, Theorem 1] yields — under the smallness
condition (2.5), see [4, (4.23)] — a unique solution w in the following so-called very weak
sense: It satisfies (2.6) and the relation

(2.8) —(u, vy — v{u, Av)gr — (uu, Vo)o r = (uo,v(0))o — (F, Vo)o,r

for all v € C§°([0,T); CF5,(£2)). It is straightforward to generalize this result to v # 1
and to check that (2.5) is the corresponding smallness condition with constant e, =
£«(q,Q) > 0; for details on the dependence on v see [5] concerning the theory of
very weak solutions in three-dimensional exterior domains and in particular the condi-
tion [5, (5.12)].

In order to prove that u is a weak solution satisfying (2.6) we have to show several
regularity properties. We start with the case that 4 < s < 8 and hence 4 < ¢ < 6. Due to
the proof in [4, (4.19)] we know that u satisfies the relation

¢
(2.9) a(t) = u(t) — E(t) = — / AZe VDA AT P div (wu)dr, 0 <t < T,
0
with
¢
E(t) = e "y + / efy(th)A‘lf(T) dr

0

Using (2.3) and Holder’s inequality we obtain that

_1 .
(2.10) 14, 5Py div ()2 < Clluullyy < Clull?

where here and in the following C' is a generic positive constant depending only on ¢
and Q. By (2.9)

(2.11) § =-A / v(t=m A p ) 2P div (vu)dr, 0 <t < T,

and using (2.4) we get the estimate

_ 1 1
(2.12) [Vallg, s < C”Aq/2 3,5 < C;HUUII%,% < C;IIUH?,S < o0
This shows that
(2.13) Vi e L*/?(0,T; LY?(Q))

and, since 4 < ¢ < 6,4 < s < 8§, that
(2.14) Vi € L, ([0,T); L*(Q), @ € Liy ([0, T); Wy *(9))-

By virtue of (2.2) and (2.3), Holder’s inequality and the properties of ¢ and s we obtain
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from (2.9) the estimate

~ ¢ ! 1 —vé(t—7)
(2.15) la(®)lz < = | ——1e€ l[uvll2 d7
V2 (t—7)2
< = | ——— e lwul| g dr
vz Jo (t—r)i ?
< Oyt s < Cvt
272
Hence (2.14) and (2.15) imply that
(2.16) @ € L(0,T); L(€2)) N Lo (0, T); Wo ().
Concerning E(t) standard energy estimates, see e.g. [13, Theorem V.1.4.1], yield the
inequalities
1
(2.17) 1E113,00 + VIVEIZs < lluol3 + ~ I FI3.s-
With the help of (2.16) and (2.17) we conclude that
(2.18) u € L(0,T); L(€2)) N Lo (0, T); Wy ().
Since w € L5(0,T"; L1(Q)) for all 0 < T" < T', Holder’s inequality yields
(2.19) wn € L2,.([0,T); I3(9).

Using (2.18) and (2.19), a calculation shows that (2.8) implies (1.3), and that the energy
inequality (2.7) is satisfied; see also [13, Theorem V.1.4.1] concerning the last property.
Consequently u is a weak solution of (1.1) satisfying (2.6) and (2.7). Hence it is also a
strong solution. The uniqueness of v with these properties follows from Serrin’s uniqueness
argument, see [12], [13]. This completes the proof in the case that 4 < s < 8.

In the second case we assume that 8 < s < oo and 3 < ¢ < 4. Now we need
several steps. First let sy = s, ¢q1 = ¢. Then we get as in (2. 9) (2 13) that Vu €
L51/2(0,T; L9/%(Q)). Defining sy = % and g2 > ¢ such that ; + - 2, = —|— 3 =1,
we obtain by Sobolev’s embedding theorem that @ € L*2(0,T; qu (Q)) Moreover us-
ing (2.1), (2.2) we see that E € L*2(0,T; L%(2)) which leads to u € L2(0,T; L9%2(1)).

Proceeding in the same way, let s, = -1 and g, > qx—1 such that % + qik = m7
243 =1 fork € N Since § — L+ = 2871(4 — L) we choose k € N such that
Sk (Ik qk 3 q1

%—L < 112 S% q 1ead1ngto4<qk<6 4 < s < 8. Now ¢;/2 > 2, and using

(2.12) (2.15) with ¢, s replaced by ¢k, Sk, we obtain the properties (2.14), (2.16). This
yields the result in the same way as in the first case. Now the proof of the lemma is
complete. m

3. Proof of the theorems. First we have to prove Theorem 1.3.

Proof of Theorem 1.3. Given the bounded domain Q@ C R?, 0 < Ty < Ty < T' < T
and u, q,r, s, 3 as in this theorem, we have to prove the existence of some constant €, =
£«(€, q) > 0 yielding regularity of u on (T} —§,T") if (1.11) is satisfied. Note that if 3 =0
then the subsequent proof will also work for 77 = T.
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Using the weak continuity of the weak solution u : [0,T) — L2(Q), see (1.6), we
know that u(tg) € L2(Q) is well defined for all ¢, € [0,T). Furthermore, since Vu €
L2(0,T; L?(Q)), see (1.4) for 0 = 0, and since 3 < ¢ < 6, the embedding inequality
lu®)llg < Cillu@)lle < Cof|Vu(t)|]2 with C; = C;(Q,q) > 0, j = 1,2, implies that

u € L%(0,T;L4(€2)). Then the Lebesgue point argument shows that there is a null set
N C (0,T) such that ||u(to)||q is well defined by the property

1 to+6 ) )
(31) fim s [ ) dr = uteo))

for all tg € (0, T)\N. Moreover, since the energy inequality (1.4) holds for a.a. o € [0,T),
we may assume in the following that the null set N C (0,7) is chosen in such a way that
both (3.1) and the energy inequality

1 ¢ 1 ¢
62 Gl@B+y [ [Vulidr < Slu)l3 - [ (F.Vaadn t<t<,
to

to
hold for all ty € (0,T)\N.
Let tg € (T, T1)\NV. Then u(tg) € LL(2), and we are able to apply the local existence

results of Lemma 2.1, replacing the existence interval [0, T) by the interval [to,T"), and
using u(tg) as initial value. Hence, if the smallness condition

(3.3) Aan

is satisfied with e, as in Lemma 2.1, then we obtain a unique weak solution @ on the
interval [tg,T"), corresponding to Definition 1.1, of the Navier-Stokes system

T —to
s.odr <e T / ||e_”TA‘1u(t0)H; dr < e it
0

G — vAG+a-Vai+Vp=f, diva=0,

(3.4) Bo—0 @ =
Upg =0 |,_, =ulto),
satisfying
(3.5) i € L®(to, T'; L2(Q)) N Lo ([to, T); W 2(Q), @ € L¥(to, T'; LUS)),

and the energy inequality

t t
Sl +v [ I1¥alar < Sl - [ (B VDadr, <<
0 0

By Serrin’s uniqueness argument, see [12], [13, V, Theorem 1.5.1], we conclude that u = @
on [tg,T"). This yields the properties (3.5) with @ replaced by u, and we get the desired
result of Theorem 1.3.

Thus it remains to prove the existence of some ty € (Tp,T1)\N as above such that
(3.3) is satisfied. First assume that the conditions

T T
1 1
3.6 / F|s. dr < elv?1, / T — )8 ||u(r)||"dr < elv™P
ao) [ ur; o G H LT

are satisfied with some constant ¢, > 0 to be determined below. Then we find at least
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one tg € (T, T1)\N such that

T
(3.7) (T = to)” [|u(to) |y < / (T = 7)° u(r) ||y dr < "7,
Ty —To Jr,

Hence, by virtue of (2.2) with @ = 0 and of the condition (3.7),

T —tg T —to
[ e utlyir < oo [ e ar futeo)
0 0

1-8s

<ec T/_t Bs ot —uésrd " t s
< o 0) " L T [[u(to)ll;

< o) (T ) = colel) P,
where ¢g = ¢o(q, 2, 3,7) > 0 is a generic constant. This estimate shows how to choose the
smallness constant €, in (3.6) depending on e, in (3.3), in order to prove Theorem 1.3.
For simplicity we denote the constant &), finally in Theorem 1.3 again by e,. The proof
is complete. m

Proof of Theorem 1.2. (i) By Lemma 2.1 there exists some 0 = &(ug, v, Q,¢q,e4) € (0,T)
such that v € L*(0,6; L9(£2)). Actually, the second part of condition (2.5) shows that
we may choose § = coe,* " ug|;* with e, as in (2.5) and ¢y = co(§2,¢) > 0. Next let
Ty = g, T = 6, and denoting the constant €, from (1.11) here by &/, we assume that

T
1)
A\WMWSgdf:%ﬂdf””Wﬂf

is satisfied. Using Theorem 1.3 with 8=0 and T" =T we conclude that we L*(T1,T; L1(2))
and even u € L*(0,T; L1(2)). This proves (i).

(ii) In this case we use Theorem 1.3 with r = s and 3 = £ = 1. Let Ty € (0,7)
and choose 0 < ¢ < Ty such that u € L°(Ty — 0,T1; L9(R2)) satisfies the estimate
2||ul Lo (Ti—6TyLa(Q) < e.v" "1 with e, from (1.11). Moreover, we can reach with 7" =
Tl +($ and TO = T1 — (5, that

T’ T+6
(38) [l = [Pl ar < et
To T1—6
and
1 n / n 1
T —t |2 dt <2 |2 dt < e
o (T Olde<2 [l < e

Then Theorem 1.3 implies that v € L%(Ty — 6,71 + 6; L1(2)). We can find such a § > 0
for each T1 € (0,T) and get the result. m

Proof of Corollary 1.4. (i) Condition (1.12) implies (1.11) with 5 = 0 for some sufficiently
small T > 0.

(ii) Assume that (1.13) (or only (1.14)) holds. Then we find a sufficiently small 6 > 0
such that with 77 =T} + § and Ty = T} — 6 the estimates

1 /T1 ' \B sip-1 [ )
(T — 7)°||u(t)||7 dT < 2767~ / lu()||l dr < e ™™
T —To Jr, a T -5 1

and (1.11) are satisfied. m
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