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Abstract. This is a survey of results on the long-time behavior of solutions to phase-field
models and related problems. The central idea is based on several non-standard applications of
the Łojasiewicz-Simon theory.

1. Introduction

1.1. Convergence to equilibria and the Łojasiewicz-Simon theory. We are interested in

the long time behavior of trajectories of dynamical systems associated to various models

of phase transitions. Such a complex problem can be viewed from several rather different

perspectives. Typically, the systems in question possess a Lyapunov function—the free

energy functional. In particular, the equilibrium states (stationary solutions) are the only

candidates to belong to the ω-limit set of each individual trajectory.

In this paper, we focus on a simple question: Does any solution converge as t → ∞ to

a single stationary state? The answer is affirmative as soon as we know that the set of

stationary solutions is discrete. In general, however, the structure of the set of equilibria

may exhibit a rather complicated structure, in particular, it may contain curves or even

more complicated objects having a positive Hausdorff dimension. If this is the case, the

problem of convergence to a single equilibrium state becomes highly non-trivial. There
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are several examples of finite or infinite-dimensional dynamical systems, where solutions

approach the set of equilibria but do not converge to one of them (see Aulbach [5], Poláčik

and Rybakowski [33], Poláčik and Simondon [34], among others).

On the other hand, Łojasiewicz in his celebrated work on semi-analytic and sub-

analytic sets indicated a way how to prove convergence to equilibria of bounded solutions

to general gradient-like systems (see [29]). In particular, he was able to show the following

inequality:

(1.1) |F (z) − F (a)|1−θ ≤ c‖∇xF (z)‖ provided |z − a| < ε, where θ ∈ (0, 1/2],

for any real analytic function F : RN → R. Very roughly indeed, an analytic function

behaves like a polynomial (of sufficiently high degree) in a neighborhood of any point at

which its gradient vanishes.

The idea that inequality (1.1) may force convergence in gradient systems was subse-

quently developed by Simon [37] who generalized Łojasiewicz’s original result to a certain

class of analytic functionals on a Banach space. In particular, his result yields conver-

gence to a single equilibrium of bounded solutions to a semilinear parabolic problem

ut − ∆u = f(x, u) provided f is analytic in u. His sophisticated and highly complicated

approach has been considerably simplified and subsequently adapted by Jendoubi [27] to

obtain plausible convergence results for a much larger class of equations including semi-

linear hyperbolic systems with weak damping. Simon’s technique, now better understood,

has been used quite recently to obtain affirmative convergence results for a broad variety

of equations of mathematical physics where the hypothesis of analyticity does not seem

to be very restrictive; in particular for the Cahn-Hilliard equation [26]. The same method

has been also successfully modified to deal with degenerate parabolic equations of porous

media type (see [17]). As pointed out by Chill [11], it is the inequality (1.1) rather than

analyticity of F that plays a decisive role in the analysis, however, analyticity of the

function F proved to be the only efficient tool to verify (1.1).

The goal of the present paper is to review some non-standard applications of the

Łojasiewicz-Simon method developed quite recently to deal with systems of evolutionary

equations arising in the mathematical theory of phase transitions.

1.2. On the phase-field models. To begin with, let us point out that modeling the phase

transition phenomena is a complex problem far from being fully understood. The phase-

field approach involves the use of an order parameter χ in addition to the temperature ϑ

as the basic state variables. This approach has been under extensive mathematical study

since 1986 (see Caginalp [8], [10], Penrose and Fife [31], [32], Bates and Chmaj [6], among

many others).

In general, given a functional E[χ, ϑ] characterizing the free energy, the time evolution

of χ is a gradient flow with respect to χ of E while the heat balance is governed by the

equation

(1.2) ∂t(ϑ + λ(χ)) + divxq = 0,

where q is the heat flux and λ′ represents the latent heat. Equation (1.2) is supplemented

with suitable boundary conditions depending on the constitutive equation relating ϑ
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to q. In particular, the resulting evolutionary system is never of purely gradient-type as

required in the classical Łojasiewicz-Simon framework.

The most studied examples are listed below:

1.2.1. A Penrose-Fife model (see [31], [32]). The order parameter χ = χ(t, x) satisfies

(1.3) ∂tχ − ∆χ + W ′(χ) = λ′(χ)

(

1

ϑc
−

1

ϑ

)

, t > 0, x ∈ Ω ⊂ R3,

where W is typically a double-well potential W (χ) = (χ2 − 1)2, and ϑc stands for the

critical phase change temperature.

The time evolution of the absolute temperature is governed by equation (1.2), with

(1.4) q = −
1

ϑ2
∇xϑ.

Note that (1.4) may be viewed a generalized Fourier law with a singular heat conductivity

coefficient proportional to ϑ−2.

1.2.2. Caginalp models (see [8], [10]). In the Caginalp model proposed in [8], the time

evolution of the order parameter is determined by equation

(1.5) ∂tχ − ∆χ + W ′(χ) = λ′(χ)ϑ, t > 0, x ∈ Ω ⊂ R3,

while ϑ satisfies (1.2), where

(1.6) q = −κ∇xϑ.

Here, in contrast with the Penrose-Fife model discussed above, the temperature is scaled

so that ϑ = 0 is the planar melting temperature.

The order parameter χ is typically a macroscopically observable property of the sys-

tem, which can be traced to a statistical mechanical average serving to distinguish the

two separate phases (see Stanley [38]). Moreover, it is known that order parameters for

some systems are conserved quantities, while in others are non-conserved (see [38]). Ac-

cordingly, Caginalp [9] proposed a conserved analogue of (1.5) based on Cahn-Hilliard

type ideas, specifically,

(1.7) ∂tχ + ∆(∆χ − W ′(χ) + λ′(χ)ϑ) = 0, t > 0, x ∈ Ω ⊂ R3.

In certain applications, it is more appropriate to replace the classical Fourier law (1.6)

by a general Coleman-Gurtin-type constitutive equation

(1.8) q = −κ∇xϑ −

∫ ∞

0

k(s)ϑ(t − s) ds,

where κ > 0 stands for the “instantaneous” heat conductivity coefficient and k is a suitable

dissipative kernel (cf. Coleman and Gurtin [12]).

1.2.3. Nonlocal phase-field models (see [6], [7]). One of the simplest models which takes

into account long-range interactions, for example an Ising system with the so-called Kac

potential is represented by the equation

(1.9) ∂tχ + χ − J ∗ χ + W ′(χ) = λ′(χ)ϑ, t > 0, x ∈ Ω ⊂ R3,

where

(1.10) J ∗ χ(x, t) =

∫

Ω

J(x − y)χ(y, t) dy,

for a suitable kernel J (see also Wang [39]).
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As usual, equation (1.9) is supplemented with (1.2) describing the evolution of the

temperature ϑ. The resulting system may be viewed as a simple model of phase transi-

tions, where the convolution kernel accounts for interactions between states in both short

and long scales (for related models see Gajewski and Zacharias [19], Krejčí et al. [28]).

Unlike the situation described in Sections 1.2.1, 1.2.2, equation (1.9) is of “neutral”

type with no smoothing effect on χ. On one hand, such a setting allows for discontinu-

ities—sharp phase transitions-propagating in time; on the other hand, the lack of regu-

larity makes the analysis of the model rather delicate.

1.2.4. Parabolic-hyperbolic phase-field models (see [20]). There are rapid phase transfor-

mation processes in non-equilibrium dynamics, for which it is appropriate to take the

inertial term proportional to ∂ttχ into account. Accordingly, the time derivative ∂tχ in

(1.5), (1.7), and (1.9) has to be replaced by (∂t + ε∂tt)χ, where ε > 0 denotes a (possi-

bly small) parameter. Consequently, the resulting system becomes hyperbolic-parabolic

changing considerably the mathematical features of the problem.

2. Free energy. The free energy functional E(χ, ϑ) plays the role of a Lyapunov func-

tion in the phase-field models. In order to see this, let us start with the Penrose-Fife

system (1.2–1.4).

We shall assume that Ω ⊂ R3 is a bounded sufficiently regular domain and prescribe

the homogeneous Neumann boundary conditions

(2.1) ∇xχ · n|∂Ω = 0, with n the outer normal vector,

for the order parameter χ, while the absolute temperature ϑ satisfies nonhomogeneous

Dirichlet boundary conditions:

(2.2) ϑ|∂Ω = ϑΓ.

Assume, for the sake of simplicity, that

ϑc = ϑΓ = 1.

Multiplying equation (1.3) on ∂tχ and using (1.2), (1.4), we obtain

(2.3)
d

dt
EPF (χ, ϑ) +

∫

Ω

∣

∣

∣

∣

∇x

(

1 −
1

ϑ

)∣

∣

∣

∣

2

dx +

∫

Ω

|∂tχ|
2 dx = 0,

where the free energy functional reads

(2.4) EPF (χ, ϑ) =

∫

Ω

[

ϑ − log(ϑ) +
1

2
|∇xχ|2 + W (χ)

]

dx

(see Section 4 in [16]).

Consequently, the integral
∫ ∞

0

∫

Ω

∣

∣

∣

∣

∇x

(

1 −
1

ϑ

)
∣

∣

∣

∣

2

+ |∂tχ|
2 dxdt

is finite for any trajectory for which E(χ, ϑ) remains bounded for t → ∞. Thus we

conjecture, at least intuitively, that

∂tχ∞ = 0, ϑ∞ = 1
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for any (χ∞, ϑ∞) belonging to the ω-limit set of the trajectory ∪t>0(χ(t), ϑ(t)), that

means, χ∞ = χ∞(x) is a solution of the elliptic problem

(2.5) −∆χ∞ + W ′(χ∞) = 0 in Ω, ∇xχ∞ · n|∂Ω = 0.

Similarly, for the Caginalp model (1.5), (1.6), supplemented with the boundary con-

dition 2.1, we recover the free energy balance

(2.6)
d

dt
EC(χ, ϑ) +

∫

Ω

divxqϑ dx +

∫

Ω

|∂tχ|
2 dx = 0,

with

(2.7) EC(χ, ϑ) =

∫

Ω

[

1

2
|ϑ|2 +

1

2
|∇xχ|2 + W (χ)

]

dx.

Assuming that q obeys the classical Fourier law (1.6), together with no-flux boundary

condition

(2.8) q · n|∂Ω = 0,

we get

(2.9)

∫

Ω

divxqϑ dx =

∫

Ω

κ|∇xϑ|2 dx;

whence the ω-limit set of any bounded trajectory consists of pairs of functions χ∞ =

χ∞(x), ϑ∞ = const, where

(2.10) −∆χ∞ + W ′(χ∞) = λ′(χ∞)ϑ∞ in Ω, ∇xχ∞ · n|∂Ω = 0.

If we replace (2.8) by the homogeneous Dirichlet boundary conditions

(2.11) ϑ|∂Ω = 0,

we get ϑ∞ = 0, and equation (2.10) reduces to (2.5).

In the case when the heat flux is given through the non-local (in time) constitutive

equation (1.8), the term
∫

Ω

q · ∇xϑ dx may not be negative (!), however, −

∫ τ

0

∫

Ω

q · ∇xϑ dx dt ≥ 0

in accordance with the second law of thermodynamics provided the convolution kernel

k is of positive type (see Chapter 2.6.6 in Pruess [35]). Accordingly, the ω-limit sets are

still characterized through (2.10) (cf. Proposition 2.4 in [2]).

The situation becomes more delicate for the conserved phase-field system, where the

order parameter χ satisfies the fourth order equation (1.7). Accordingly, the boundary

condition (2.1) has to be replaced by

(2.12) ∇xχ · n|∂Ω = ∇x(∆χ) · n|∂Ω = 0.

Applying the inverse operator [−∆N ]−1, where ∆N denotes the Laplace operator

supplemented with the homogeneous Neumann boundary conditions, we get

(2.13)
d

dt
EC(χ, ϑ) + +

∫

Ω

|[−∆N ]−1/2∂tχ|
2 dx −

∫

Ω

q · ∇xϑ dx = 0.
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Here, necessarily, we have to impose the no-flux boundary condition for the heat flux

in the form

(2.14) ∇xϑ · n|∂Ω = 0,

which, together with (2.12), implies that
∫

Ω

χ(t) dx is a constant of motion.

In particular, we can assume
∫

Ω
χ dx = 0.

Consequently, the ω-limit sets of bounded trajectories consist of pairs χ∞, ϑ∞ solving

(2.15) ∆(∆χ∞ − W ′(χ∞) + λ′(χ∞)ϑ∞) = 0, ϑ∞ = −
1

|Ω|

∫

Ω

λ(χ∞) dx,

where χ∞ satisfies the boundary conditions (2.12) (see Section 1 in [4]).

The free energy balance for the “non-local” phase-field model introduced in (1.9)

reads

(2.16)
d

dt
ENL(χ, ϑ) +

∫

Ω

|∂tχ|
2 dx −

∫

Ω

q · ∇xϑ dx = 0,

where

(2.17) ENL(χ, ϑ) =

∫

Ω

[

1

2
|ϑ|2 +

1

2
|χ|2 −

1

2
χ(J ∗ χ) + W (χ)

]

dx.

Thus the candidates χ∞, ϑ∞ for the ω-limit sets must satisfy

(2.18) χ∞ − J ∗ χ∞ + W ′(χ∞) = λ′(χ∞)ϑ∞, ϑ∞ = const in Ω.

In particular, taking ϑ∞ = 0 and J a Green kernel associated to some elliptic operator,

say,

−∆(J ∗ χ) = χ in Ω, J ∗ χ|∂Ω = 0,

equation (2.18) can be transformed to

(2.19) ∆w + Γ(w) = 0 in Ω, w|∂Ω = 0,

where

w = W ′(χ∞) + χ∞, Γ = (W ′ + Id)−1

(see Section 1 in [14]).

To conclude, we infer that structure of the ω-limit sets is intimately related to the

solution set of the semi-linear elliptic equation

(2.20) −∆w + F (w) = g(x) in Ω

supplemented with either Dirichlet or Neumann boundary conditions. It is known that

the topology of the set of solutions to problem (2.20) can be non-trivial, in particular,

there may be a continuum of solutions even if Ω is a ball (see Harada et al. [24], Malchiodi

et al. [30], Senba and Suzuki [36], for the Neumann case, and Aftalion and Pacella [1],

for the Dirichlet case, to name only a few). In the light of these results, the problem

of convergence to a single equilibrium becomes highly non-trivial even in very simple

geometries of the underlying spatial domain.
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3. The long-time behavior of bounded trajectories

3.1. Basic ideas. To begin with, let us show, on the intuitive level, how the Łojasiewicz-

Simon theory applies to the convergence problem. We consider the situation described in

(2.6–2.9), where, in addition, we suppose that the temperature ϑ satisfies the homoge-

neous Dirichlet boundary conditions (2.11).

Thus ϑ∞ = 0, and, integrating (2.6) we deduce

(3.1) I(χ∞) − I(χ(τ )) −
1

2

∫

Ω

ϑ2(τ ) dx +

∫ ∞

τ

[
∫

Ω

|∂tχ|
2 dx +

∫

Ω

κ|∇xϑ|2 dx

]

dt = 0,

where we have set

(3.2) I(χ) =

∫

Ω

1

2
|∇xχ|2 + W (χ) dx.

Note that the value of I(χ∞) is the same for all χ∞ belonging to a fixed ω-limit set.

Supposing that the functional I satisfies the Łojasiewicz-Simon inequality (1.1) we

get, by means of the Poincaré inequality,

(3.3)

∫ ∞

τ

∫

Ω

[|∂tχ|
2 + κϑ2] dx dt ≤ c

(

|∂I(χ(τ ))|
1

1−θ + κ

∫

Ω

ϑ2(τ ) dx

)

.

On the other hand, it follows from (1.5) that

∂I ≈ −∂tχ + λ′(χ)ϑ;

whence, taking into account that
∫

Ω
ϑ2(τ ) dx → 0 for τ → ∞, we conclude that

(3.4)

∫ ∞

τ

∫

Ω

[|∂tχ|
2 + κϑ2] dx dt ≤ c

(
∫

Ω

[|∂tχ(τ )|2 + κϑ2(τ )] dx

)β

, with 1 < β < 2.

It is an easy exercise to show that (3.4) implies
∫ ∞

0

[
∫

Ω

|∂tχ|
2 + κϑ2 dx

]
1

2

dt < ∞,

in particular,

χ(t) → χ∞ in L2(Ω) for t → ∞

(see Lemma 7.1 in [17]).

The reader will have noticed that many “details” have been omitted in the above

discussion, in particular, we did not specify the associated function spaces in which ∂I

should be understood. Another issue left open was compactness of trajectories in C(Ω),

which is in fact necessary for the ω-limit sets to be non-empty. We refer to [3, Theorem 2.1]

for a complete proof of the following result.

Theorem 3.1. Let Ω ⊂ R3 be a bounded domain of class C2+µ. Assume that W ∈ C2(R)

such that

(3.5) W ′(z)z > 0 for all |z| > 1, W |(−1,1) is real analytic.

Furthermore, we suppose that λ ∈ C2(R) is globally Lipschitz on R, and λ(0) = 0. Let χ,

ϑ be a classical solution of problem (1.2), (1.5), (1.6) for t > 0 satisfying the boundary

conditions (2.1), (2.11) and such that

(3.6) |χ(t, x)| + |ϑ(t, x)| ≤ M for all t > 0, x ∈ Ω.
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Then

(3.7) χ(t) → χ∞, ϑ(t) → 0 in C(Ω) for t → ∞,

where χ∞ solves (2.5).

The existence of global-in-time solutions for the phase-field model is not an issue in

the present paper. The relevant results for the model considered in Theorem 3.1 are

discussed in [3]. In particular, it can be shown that the problem in question possesses a

global-in-time solution for any initial data χ(0, ·), ϑ(0, ·) ∈ L2(Ω) that becomes smooth

for t > 0 because of the regularizing effect of the diffusion semigroup. As a matter of fact,

the convergence claimed in (3.7) takes place in a much stronger topology, say, C2(Ω)

depending on the regularity of ∂Ω.

A similar result can be proved for the Penrose-Fife system (1.2–1.4), supplemented

with the homogeneous Neumann boundary condition (2.1) for χ, and a general (non-

homogeneous) Dirichlet boundary condition (2.2) to be satisfied by ϑ. Here the main

stumbling block is to keep the (absolute) temperature ϑ bounded below away from zero

(see [16, Theorem 2.5]).

3.2. Conserved phase-field models of Caginalp’s type. We focus on the situation de-

scribed by system (1.2), (1.6), (1.7), supplemented with the boundary conditions (2.12),

(2.14). Similarly to the above, the analysis is based on the free energy balance (2.13).

However, new difficulties arise due to the fact that (i) the order parameter belongs to the

factor space of functions of zero mean, (ii) the presence of the “negative” norm in (2.13)

requires the Łojasiewcz-Simon inequality to be proved in the same space. Fortunately, the

trajectories are precompact in relatively strong topologies as equation (1.7) is of fourth

order. We report the following result (see Theorem 1.1 in [15]).

Theorem 3.2. Let Ω ⊂ RN , N = 1, 2, 3 be a bounded domain of class C2+µ. Let the

function W be real analytic on R, λ(χ) = λχ for a positive λ. Let χ, ϑ be a classical

solution of problem (1.2), (1.6), (1.7) on (0,∞) × Ω satisfying the boundary conditions

(2.12), (2.14), and such that

|χ(t, x)| + |ϑ(t, x)| ≤ M for all t > 0, x ∈ Ω.

Then

χ(t) → χ∞, ϑ(t) → ϑ∞ in C(Ω) for t → ∞,

where ϑ∞ = const and χ∞ solves (2.15), with the boundary condition (2.12).

3.3. Problems with terms of memory type. We will be concerned with the situation,

where the heat flux q in equation (1.2) is given through the constitutive equation (1.8).

As already pointed out, the main difficulty lies in the fact that the “instantaneous” energy

dissipation term

−

∫

Ω

q · ∇xϑ dx = κ

∫

Ω

|∇xϑ|2 dx +

∫

Ω

(
∫ ∞

0

k(s)∇xϑ(t − s) ds

)

∇xϑ dx

appearing in (2.6) is not necessarily positive.
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On the other hand, however, the second law of thermodynamics requires

(3.8)

∫ τ

0

∫

Ω

(
∫ ∞

0

k(s)∇xϑ(t − s) ds

)

∇xϑ dx dt ≥ 0 for τ ≥ 0,

that means, the kernel k must be of positive type in the sense of Pruess [35, Chapter

2.6.6]. A typical example of such a kernel reads

(3.9) k(s) = s−α exp(−βs), with 0 ≤ α < 1, β > 0.

Because of the afore-mentioned difficulties, the free energy balance (2.6) (or its ana-

logues) cannot be used in a direct fashion. A way to attack the problem is to consider

the so-called summed past history of ϑ

(3.10) η(t, s, x) =

∫ t

t−s

ϑ(z, x) dz, s ≥ 0

introduced by Dafermos [13]. Accordingly, the convolution term can be written as
∫

Ω

(
∫ ∞

0

k(s)∇xϑ(t − s) ds

)

· ∇xϑ(t) dx =
d

dt

∫ ∞

0

1

2
(−k′)(s)‖∇xη(t, s)‖2

L2(Ω;R3) ds+

1

2

∫ ∞

0

‖∇xη(t, s)‖2
L2(Ω;R3) dk′(s)

(see Section 2 in [2]).

Thus we can introduce a new “free energy” functional

ẼC(χ, ϑ) = EC(χ, ϑ) +

∫ ∞

0

1

2
(−k′)(s)‖∇xη(t, s)‖2

L2(Ω;R3) ds,

for which the corresponding balance equation can be handled in a similar way as in

Section 3.1 provided the kernel k meets certain decay properties specified in the following

theorem (see Theorem 1.2 in [2]).

Theorem 3.3. Let Ω ⊂ R3 be a domain of class C2+µ. Suppose, in addition, that λ, W

belong to C2(R) and satisfy:

λ(0) = 0, |λ′(z)| ≤ const for all z ∈ R,

W ′(z)z > 0 for |z| > 1, W ′(z)sgnz > a|z| − b, a > 0, b ≥ 0 for z ∈ R,

and W is real analytic on the interval (−1, 1). Furthermore, assume that κ > 0 and k

satisfies:

k ∈ L1(0,∞), k convex, dk′(s) + δk′(s) ds ≥ 0 for a certain δ > 0.

Then for any global-in-time classical solution χ, ϑ of problem (1.2), (1.5), (1.8), with

the boundary conditions (2.1), (2.11), there exists a solution χ∞ of problem (2.5) such

that
χ(t) → χ∞, ϑ(t) → 0 in C(Ω) for t → ∞.

Similar results for the conserved phase-field models were obtained in [4].

In [21], the authors consider the so-called Maxwell-Cattaneo heat conduction law:

σ∂qt + q = −∇xϑ

that can be interpreted as a time convolution of ∇xϑ with an exponential kernel and
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vanishing instantaneous heat conductivity. They obtain convergence results similar to

Theorem 3.3.

3.4. Non-local phase-field models. There is a substantial difficulty when dealing with the

non-local phase-field models and the associated free energy balance described through

(2.16), (2.17). In all the previously known applications of the Łojasiewicz-Simon theory,

the energy functional takes a form

E[v] ≈

∫

Ω

(

1

2
|∇xv|2 + F (v)

)

dx,

that means, a quadratic form perturbed by a non-linear compact functional. The underly-

ing function spaces are the Sobolev spaces W 1,p on which E is analytic provided p is large

enough and F is an analytic function. Similarly to Theorems 3.1–3.3, the convergence

takes place in an arbitrarily smooth norm (cf. Simon [37]).

On the other hand, the energy functional ENL related to our problem is given

by (2.17). As we do not expect, or at least it seems very hard to prove compactness

of the trajectories ∪t≥0χ(t) in L∞(Ω) (where ENL is analytic together with W ); the

natural domain of definition of ENL is the Hilbert space L2(Ω). It is easy to see that

ENL ∈ C1(L2(Ω); R), however, it is well-known that, in general, ENL /∈ C2(L2(Ω); R)

no matter how smooth W is. Consequently, Łojasiewicz-Simon’s approach based on ap-

proximate linearizations must be considerably modified.

In [14], a “non-smooth” version of the Łojasiewicz-Simon theorem is proved. It applies

basically to functionals of the form “maximal monotone operator + linear compact per-

turbation”. It is of independent interest and we believe more applications can be found.

Recently, the theory was further developed and used in a different context by Gajewski

and Griepentrog [18].

Based on the “non-smooth” variant of the Łojasiewicz-Simon theory, the following

convergence result was proved in [14, Theorem 1.2].

Theorem 3.4. Assume that Ω ⊂ RN is a bounded domain of class C2+µ. Let

χ 7→ J ∗ χ be a compact self-adjoint operator on L2(Ω)

taking bounded sets in L∞(Ω) in compact sets in C(Ω). In addition suppose that W is a

real analytic function on R such that

W (0) = W ′(0) = 0, W ′′(z) ≥ −β for all z ∈ R and a certain β < 1,

lim
|z|→∞

W ′′(z) = ∞.

Then any solution χ, ϑ of problem (1.2), (1.6), (1.9), supplemented with the homogeneous

Dirichlet boundary conditions (2.11), belonging to the class

χ ∈ L∞(0, T ; L∞(Ω)) ∩ W 1,2(0, T ; L2(Ω)),

ϑ ∈ L∞(0, T ; W 1,2
0 (Ω)) ∩ L2(0, T ; W 2,2(Ω)) ∩ W 1,2(0, T ; L2(Ω))

for all T > 0 satisfies

χ(t) → χ∞ in L2(Ω), ϑ(t) → 0 in W 1,2
0 (Ω) for t → ∞,

where χ∞ is a solution of the stationary problem (2.18).
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3.5. Parabolic-hyperbolic problems. All the convergence results in Theorems 3.2–3.4 can

be adapted to the case when the ∂tχ in the equations for the order parameter is replaced

by the “hyperbolic” operator ε∂ttχ + ∂tχ (see [21], [22], [23]). Here the basic tool is a

variant of the Łojasiewicz-Simon theory for hyperpolic problems with damping developed

by Haraux and Jendoubi [25].
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