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Abstract. We study the Gevrey regularity down to t = 0 of solutions to the initial value problem
for a semilinear heat equation ∂tu−∆u = u

M . The approach is based on suitable iterative fixed
point methods in L

p based Banach spaces with anisotropic Gevrey norms with respect to the
time and the space variables. We also construct explicit solutions uniformly analytic in t ≥ 0

and x ∈ R
n for some conservative nonlinear terms with symmetries.

1. Introduction. We consider the initial value problem for a semilinear heat equation

∂tu − ∆u = uM , u|t=0 = u0,(1)

where ∆ is the Laplace operator on R
n and M is a positive integer. The initial data will

be supposed analytic or more generally, belonging to some Gevrey space Gσ. Broadly

speaking, the main aim of the present paper is to study in detail simultaneously the

analytic-Gevrey regularity with respect to t ≥ 0 and x ∈ Rn.

We construct a new, as far as we know, functional framework consisting of scales of

Banach spaces of functions, having anisotropic Gevrey regularity Gτ,σ with respect to

t ≥ 0, x ∈ R
n and derive precise estimates in such scales for the solutions of the IVP
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down to t = 0. It is well known that for the heat equation one has in general τ ≥ 2σ

(in fact, if σ = 1 it was M. Gevrey who derived in 1918 what we will call nowadays

G1,2([0, +∞[×Rn
x) estimates for the heat kernel, cf. [9]).

In the linear case we derive sharp estimates on the uniform anisotropic regularity in

t ≥ 0, x ∈ Rn down to t = 0 and we allow initial data in subspaces of entire functions of

exponential type 1/(1−σ), σ ∈]0, 1[. Next, we dwell upon the Banach algebra properties of

such scales when the Gevrey index σ ≥ 1. The Banach algebra properties allow us to show

local existence and uniqueness by means of standard Picard iteration scheme combined

with the contraction principle. Finally, inspired by the celebrated Oseen solution for the

2-D Navier–Stokes equation, we exhibit classes of semilinear equations with conservative

nonlinear terms with symmetries admitting uniformly analytic solutions with respect to

t ≥ 0 and x ∈ Rn, provided the initial conditions admit suitable symmetries.

Our motivation is based on functional–analytic methods and it deals primarily with

the analytic regularization of the heat operator with respect to the space variables for

positive times for various classes of semilinear parabolic equations, the Burgers’ equation,

the Navier–Stokes equation etc. We refer to the pioneering paper of Foiaş and Temam [7]

for the Navier–Stokes equation with periodic data, while concerning semilinear parabolic

equations, H. Aikawa and N. Hayashi proved in [1] that if u0 ∈ Lp(Rn) and f is a

polynomial of degree ≤ 1 + 2p/n then for t > 0 the solution u(t, ·) of ∂tu = ∆u +

f(u), u(0, ·) = u0 extends analytically to a strip in Cn with width proportional to
√

t.

Later on, results for more general semilinear parabolic equations have been proved (cf.

[24], [6], [3], [4], [13] and the references therein). We stress that the aforementioned

papers do not deal with the Gevrey type regularity in t down to t = 0. One of the main

technical difficulties is more pertinent to the nonlinear analysis, namely suitable nonlinear

superposition estimates for Gevrey anisotropic spaces.

There are also results for analyticity with respect to the time variable, but only in a

conic neighborhood of t = 0. The first result in this direction was obtained by S. Ōuchi

[21] who proved analyticity in time in a sector {t = reiθ, 0 < r < ∞, |θ| < α} under the

assumption that f(u) is a monotone non-increasing polynomial and the initial function

is bounded and continuous. We mention also the paper of Z. Grujić and I. Kukavica [14]

for similar results for the Kuramoto–Sivashinsky equation. It appears however that the

solution to (1) need not be analytic in time at zero even if the initial data is globally

analytic (see [18]).

We can summarize our approach as follows: in order to address the issues of the

uniform regularity in t ≥ 0 and x ∈ R
n we develop a new functional analytic framework

which enables us to deal simultaneously with the regularity with respect to t ≥ 0 and

x ∈ Rn.

2. Banach spaces of uniformly Gevrey functions. Let Ω ⊂ Rn be an open domain

and let σ > 0. We define Gσ
un(Ω), the space of uniformly Gevrey functions of index σ, as

the set of all f ∈ C∞(Ω) such that there exists C < ∞ satisfying

sup
x∈Ω

|∂α
x f(x)| ≤ C |α|+1α!σ, α ∈ N

n
0 .(2)
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where α! = α1! . . . αn!, α = (α1, . . . , αn) ∈ N
n
0 . Given f ∈ Gσ

un(Rn), in view of (2), we

can define

ρσ[f ] = sup{C−1 > 0 : (2) holds}.(3)

Clearly, if σ = 1 then every f ∈ G1
un(Rn) extends to a holomorphic function in {z =

(z1, . . . , zn) ∈ Cn; maxj=1,...,n |Imzj | < ρ1[f ]}.
Local Gevrey spaces Gσ(Ω) are defined in a natural way as the projective limit of

Gσ
un(Ω̃) over an exhausting sequence of open sets Ω̃ relatively compact in Ω. Thus f ∈

Gσ(Ω) iff for every Ω̃ ⋐ Ω one can find C > 0 such that (2) holds with Ω replaced by

Ω̃. In particular, if σ = 1 we recover the well known set G1(Ω) = A(Ω) of real analytic

functions on Ω while for σ > 1 the Gσ(Ω) admits nonzero compactly supported functions.

We refer to cf. [23], [19] for more details on Gevrey spaces with index σ ≥ 1. We point

out that the Gevrey spaces Gσ, σ ≥ 1, are a natural framework for the study of PDEs

with multiple characteristics and questions of regularity of solutions to evolution PDEs

of Mathematical Physics, see [19] and the references therein.

The case of 0 < σ < 1 has not been dealt with in the literature on PDEs. In that case

the space Gσ
un(Ω) consists of restrictions to Ω of functions from the space Oexp(Cn; ρ) of

entire functions of exponential order ρ = 1/(1 − σ), i.e. satisfying the estimate

|F (z)| ≤ C exp{L|z|ρ} for z ∈ C
n(4)

with some C < ∞ and L < ∞ (cf. [17] for the one dimensional case). Typically, in

applications, one introduces scales of Banach spaces depending on a parameter ρ > 0,

Gσ(ρ, X) = {u ∈ X : ∂αu ∈ X for any α ∈ N
n
0 and ‖u‖σ,ρ;X < ∞},

where

‖u‖σ,ρ;X :=
∑

α∈Nn
0

ρ|α|

(α!)σ
‖∂αu‖X ,(5)

and X is some Banach space of function on Ω (e.g., X might be Ck(Ω) or a Sobolev

space Hk
p (Ω), 1 ≤ p ≤ ∞, k ≥ 0). We set ρσ(u) = sup{ρ > 0 : u ∈ Gσ(ρ, X)}, cf. [2] and

the references therein.

In order to deal with functions which have different behavior in time and space direc-

tions we introduce scales of anisotropic Gevrey spaces.

Let T, σ, τ, ρ, θ be positive numbers and let X be a Banach space of functions on Ω

and Y = L∞([0, T ]; X) equipped with the norm ‖u‖Y = supt∈]0,T [ ‖u(t, ·)‖X . Set

Gτ,σ(θ, ρ, Y ) = {u ∈ Y : ∂l
t∂

α
x u ∈ Y for any l ∈ N0, α ∈ N

n
0 and u τ,σ,θρ;Y < ∞},

where

u τ,σ,θ,ρ;Y :=
∞∑

l=0

∑

α∈Nn
0

θlρ|α|

(l!)τ (α!)σ
sup

t∈]0,T [

‖∂l
t∂

α
x u(t, ·)‖X .(6)

Usually in order to prove regularity results for nonlinear equations one first proves

good estimates for solutions to non-homogeneous linear equations. In the case of the

spaces Gτ and Gτ,σ we could only prove the estimates with a loss of regularity. Namely

we have
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Proposition 2.1 (cf. [10], Prop. 3.1 and 3.2). Let X = Hk
p (Rn), 1 ≤ p ≤ ∞, k ∈ N0,

Y = L∞([0, T ]; X), 0 < T ≤ ∞. Assume that u0 ∈ Gσ(ρ0, X), g ∈ Gτ,σ(θ, ρ0; Y ). Then

the solution u of

∂tu = ∆u + g, u|t=0 = 0, t > 0, x ∈ R
n,(7)

belongs to Gτ,σ(θ, ρ; Y ) for any ρ < ρ0, θ > 0 if τ > 2σ and for ρ < ρ0, 0 < θ < θmax :=

(4σnC2)−1 if τ = 2σ, where C = (2/ǫ)σ · 1/ρ0 if ρ = (1 − ǫ)σρ0. Moreover

‖u‖τ,σ,θ,ρ;Y ≤ K‖u0‖σ,ρ0;X + K(T + θ)‖g‖τ,σ,θ0,ρ0;Y(8)

where with τ = 2σ + δ,

K = 2n exp{nδ(2 · 4σnθC2)1/δ} if δ > 0,(9)

K = (1 − 4σnθC2)−n if δ = 0, 0 < θ < θmax.

Note that the above Proposition does not hold for ρ0 = ρ. It resembles the so-called

tamed estimates in Nash–Moser or KAM type methods for spaces of analytic functions.

For that reason we cannot apply it in the method of successive approximations in solving

a semilinear heat equation.

3. Global uniform Gevrey spaces G̃. The purpose of this section is to introduce a

new type of norms suitable for the simultaneous study of the uniform anisotropic critical

G2σ,σ Gevrey regularity in x ∈ R
n and near t = 0. The main advantage of the use of the

new norms is that, in contrast to Proposition 2.1, no loss “à la Nash-Moser” type tamed

estimates occurs.

Let X be a Banach space of functions on Rn. We define

G̃σ(ρ; X) = {u ∈ X : ∂α
x u ∈ X for any α ∈ N

n
0 and Eσ,ρ;X [u] < ∞},

where

Eσ,ρ;X [u] :=
∑

α∈Nn
0

ρ|α|

Γ(σ|α| + 1)
‖∂α

x u‖X .(10)

Analogously for 0 < T < ∞ we define G̃τ,σ(θ, ρ; Y ) = {u ∈ Y = L∞([0, T ]; X) : ∂l
t∂

α
x u ∈

Y for any l ∈ N0, α ∈ Nn
0 and Eτ,σ,θρ;Y [u] < ∞}, where

Eτ,σ,θ,ρ;Y [u] :=
∞∑

l=0

∑

α∈N
n
0

θlρ|α|

Γ(τ l + σ|α| + 1)
‖∂l

t∂
α
x u‖Y .(11)

The relation between the spaces G and G̃ is given by the following

Proposition 3.1 (cf. [10], Prop. 4.1). Let σ, ρ > 0 and u ∈ Gσ(ρ; X). Then u ∈ G̃σ(ρ̃; X)

for any ρ̃ < σσρ and

Eσ, ρ̃; X [u] ≤ Cσ, ρ̃/ρ‖u‖σ, ρ; X(12)

with some Cσ, ρ̃/ρ < ∞.

Proposition 3.2 (cf. [10], Prop. 4.4). Let σ ≥ 1, ρ > 0 and β ∈ N
n
0 . If u ∈ G̃σ(ρ, X) then

∂βu ∈ G̃σ(ρ̃, X) for any ρ̃ < ρ and

Eσ,ρ̃;X [∂βu] ≤ C |β|Γ(σ|β| + 1) · Eσ,ρ;X [u](13)

where C = Cσ
1 /ρ with C1 = 1 + ((ρ/ρ̃)1/σ − 1)−1.
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4. Gevrey estimates for a linear heat equation in G̃ spaces. Now we shall prove

two propositions about the solutions of a linear heat equation in the spaces G̃. Although

the IVP for the heat equation is well known it seems that the estimates proposed in

Propositions 4.1 and 4.2 below are a novelty.

Proposition 4.1. Let X = Hk
p (Rn), 1 ≤ p ≤ ∞, k ∈ N0, Y = L∞([0, T ]; X), 0 < T ≤ ∞

and let u0 ∈ G̃σ(ρ; X), σ, ρ > 0. Then the solution u = et∆u0 of

∂tu = ∆u, u|t=0 = u0, t > 0, x ∈ R
n,(14)

belongs to G̃τ,σ(θ, ρ; Y ) for any θ > 0 if τ > 2σ and for 0 < θ < θmax = ρ2/n if τ = 2σ.

Moreover

Eτ,σ,θ,ρ;Y [u] ≤ KEσ,ρ;X [u0],(15)

if τ > 2σ, with some K = K(τ, σ, θ/ρ2, n) and for the critical case τ = 2σ

E2σ,σ,θ,ρ;Y [u] ≤ KEσ,ρ;X [u0] if θ < ρ2/n(16)

with K = (1 − nθ/ρ2)−n.

Proof. Let En(t, x) be the heat kernel

En(t, x) = (4πt)−n/2 exp{−x2/4t}.(17)

Then u(t, x) = En(t, ·) ∗ u0(x) and ‖En(t, ·)‖L1 = 1. Hence the Young inequality gives

‖∂αu(t, ·)‖Lp ≤ ‖∂αu0‖Lp . So we can reduce the proof to the case X = Lp(Rn). Then

clearly u ∈ Y = L∞([0, T ]; X) with ‖u‖Y ≤ ‖u0‖X . Next for any l ∈ N0 and α ∈ Nn
0

∂l
t∂

α
x u(t, x) = ∆l

x∂α
x u(t, x) =

∑

ℓ∈Nn
0

,|ℓ|=l

(
l

ℓ

)
∂α+2ℓ

x u(t, x).

Hence

‖∂l
t∂

α
x u(t, ·)‖X ≤

∑

ℓ∈Nn
0

,|ℓ|=l

(
l

ℓ

)
‖∂α+2ℓ

x u0‖X

and

‖∂l
t∂

α
x u‖Y ≤

∑

ℓ∈Nn
0

,|ℓ|=l

(
l

ℓ

)
‖∂α+2ℓ

x u0‖X .

Therefore, after the change of the summation index β = α + 2ℓ we get

Eτ,σ,θ,ρ;Y [u] ≤
∞∑

l=0

∑

α∈Nn
0

∑

ℓ∈Nn
0

,|ℓ|=l

θlρ|α|

Γ(τ l + σ|α| + 1)

(
l

ℓ

)
‖∂α+2ℓ

x u0‖X(18)

≤
∑

β∈Nn
0

( ∑

ℓ≤β/2

1

Γ(σ|β| + (τ − 2σ)l + 1)

(
l

ℓ

)
θl

ρ2l

)
ρ|β|‖∂β

x u0‖X

≤
∑

β∈Nn
0

Qτ,σ(β)
ρ|β|

Γ(σ|β| + 1)
‖∂βu0‖X ,

where

Qτ,σ(β) =
∑

2ℓ≤β

Γ(σ|β| + 1)

Γ(σ|β| + (τ − 2σ)l + 1)

(
l

ℓ

)
θl

ρ2l
, β ∈ N

n
0 .(19)
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We shall prove that one can find a constant K = K(τ, σ, θ/ρ2, n) < ∞ such that for any

β ∈ N
n
0

Qτ,σ(β) ≤ K.(20)

In order to prove (20) assume first that τ = 2σ. Then

Q2σ,σ(β) =
∑

2ℓ≤β

(
l

ℓ

)(
θ

ρ2

)l

≤
∑

ℓ∈Nn
0

(
nθ

ρ2

)l

=

(
1

1 − nθ/ρ2

)n

.

So in that case

K(2σ, σ, θ/ρ2, n) =

(
1

1 − nθ/ρ2

)n

< ∞ for 0 < θ < ρ2/n.(21)

Now let σ > 2τ . By the Stirling formula there exists a constant C(σ) < ∞ such that

Γ(z + 1)

Γ(z + ζ + 1)
≤ C(σ)

eζ

(z + ζ)ζ
for z ≥ σ, ζ ≥ 0.

Hence

Γ(σ|β| + 1)

Γ(σ|β| + (τ − 2σ)l + 1)
≤ C(σ)

e(τ−2σ)l

(σ|β| + (τ − 2σ)l)(τ−2σ)l
, |β| ≥ 1.

Therefore we get

Qτ,σ(β) ≤ C(σ)
∑

2ℓ≤β

e(τ−2σ)l

(σ|β| + (τ − 2σ)l)(τ−2σ)l

(
l

ℓ

)(
θ

ρ2

)l

(22)

≤ C(σ)
∑

2ℓ≤β

(
nθe(τ−2σ)

ρ2(σ|β| + (τ − 2σ)l)(τ−2σ)

)l

≤ C(σ)

{ |β|/2∑

l=0

(
nθe(τ−2σ)

ρ2(σ|β| + (τ − 2σ)l)(τ−2σ)

)l}n

.

For δ = τ − 2σ > 0, A = neδθ/ρ2, put

R(s) =

s/2∑

l=0

(
A

(σs + δl)δ

)l

, s ∈ N0.(23)

Then R(0) = R(1) = 1. Next if 2 ≤ s < 1
σ (2A)1/δ then

R(s) ≤ 1 +
A

(sσ)δ
+ . . . +

(
A

(sσ)δ

)⌊s/2⌋

≤
(

s

2
+ 1

)
· max

{
1,

(
A

(2σ)δ

)⌊s/2⌋}
.

Finally if s ≥ 1
σ (2A)1/δ then A/(sσ)δ ≤ 1/2 and R(s) ≤ 2. Hence one can find a constant

C(A, σ, δ) such that R(s) ≤ C(A, σ, δ) for any s ∈ N0. Combining this with (19) and (22)

we get (20) with K(τ, σ, θ/ρ2, n) = C(σ) · Cn(A, σ, δ) where δ = τ − 2σ, A = neδθ/ρ2.

Finally (18) and (20) gives (15) and (16) which completes the proof.
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Proposition 4.2. Let X = Hk
p (Rn), 1 ≤ p ≤ ∞, k ∈ N0, Y = L∞([0, T ]; X), 0 < T < ∞.

Let g ∈ G̃τ,σ(θ, ρ; Y ) and let u satisfy

∂tu = ∆u + g, u|t=0 = 0, t > 0, x ∈ R
n,(24)

Then u ∈ G̃τ,σ(θ, ρ; Y ) for any θ > 0 if τ > 2σ and for 0 < θ < θmax = ρ2/n if τ = 2σ.

Moreover

Eτ,σ,θ,ρ;Y [u] ≤ K(T + θ)Eτ,σ,θ,ρ;Y [g](25)

where K = K(τ, σ, θ/ρ2, n) < ∞ for any θ > 0 if τ > 2σ and K(2σ, σ, θ/ρ2, n) =

(1 − nθ/ρ2)−n < ∞ for 0 < θ < θmax if τ = 2σ.

Proof. As in the proof of Proposition 4.1 we can assume that X = Lp(Rn). We have

u(t, x) =

∫ t

0

En(t − s, ·) ∗ g(s, ·)(x)ds.

Since ‖En(t− s, ·)‖L1 = 1 the Young inequality gives ‖u(t, ·)‖X ≤
∫ t

0
‖g(s, ·)‖Xds. Hence

‖u‖Y ≤ ‖g‖L1([0,T ];X) ≤ T‖g‖Y .

Next note that for any l ∈ N0

∂l
tu = ∆l

xu +
l−1∑

j=0

∆j
x∂l−1−j

t g and ∆l
xu =

∑

ℓ∈Nn
0

,|ℓ|=l

(
l

ℓ

)
∂2ℓ

x u.

So by the Young inequality for any l ∈ N0, α ∈ Nn
0

‖∂l
t∂

α
x u(t, ·)‖X ≤

∑

ℓ∈Nn
0

,|ℓ|=l

(
l

ℓ

) ∫ t

0

‖∂α+2ℓ
x g(s, ·)‖Xds

+
l−1∑

j=0

‖∆j
x∂α

x ∂l−1−j
t g(t, ·)‖X .

Hence for any l ∈ N0, α ∈ Nn
0 , ∂l

t∂
α
x u ∈ Y and

‖∂l
t∂

α
x u‖Y ≤ T

∑

ℓ∈Nn
0

,|ℓ|=l

(
l

ℓ

)
‖∂α+2ℓ

x g‖Y +

l−1∑

j=0

‖∆j
x∂α

x ∂l−1−j
t g‖Y .

Now we decompose Eτ,σ,θ,ρ;Y [u] according to the above inequality,

Eτ,σ,θ,ρ;Y [u] ≤ T

∞∑

l=0

∑

α∈Nn
0

θlρ|α|

Γ(τ l + σ|α| + 1)

∑

ℓ∈Nn
0

,|ℓ|=l

(
l

ℓ

)
‖∂α+2ℓ

x g‖Y

+
∞∑

l=0

∑

α∈Nn
0

θlρ|α|

Γ(τ l + σ|α| + 1)

l−1∑

j=0

‖∆j
x∂α

x ∂l−1−j
t g‖Y

=: TI1 + I2.

Following the proof of Proposition 4.1 we get

I1 ≤ KEτ,σ,θ,ρ;Y [g].
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Next we estimate I2:

I2 =
∞∑

j=0

∑

α∈Nn
0

∞∑

l=j+1

θlρ|α|

Γ(τ l + σ|α| + 1)
‖∂l−1−j

t ∆j
x∂α

x g‖Y(26)

=

∞∑

l=0

∑

α∈Nn
0

∞∑

m=0

θl+1+mρ|α|

Γ(τ (l + 1 + m) + σ|α| + 1)
‖∂m

t ∆l
x∂α

x g‖Y

≤
∑

ℓ∈Nn
0

∑

α∈Nn
0

∞∑

m=0

θl+1+mρ|α|

Γ(τ (l + 1 + m) + σ|α| + 1)

(
l

ℓ

)
‖∂m

t ∂α+2ℓ
x g‖Y

≤
∞∑

m=0

∑

β∈Nn
0

{ ∑

ℓ≤β/2

θl+1/ρ2l · Γ(τm + σ|β| + 1)

Γ(τ (l + 1 + m) + σ(|β| − 2l) + 1)

(
l

ℓ

)}

× θmρ|β|

Γ(τm + σ|β| + 1)
‖∂m

t ∂β
x g‖Y

≤ θ ·
∞∑

m=0

∑

β∈Nn
0

Q(m, β)
θmρ|β|

Γ(τm + σ|β| + 1)
‖∂m

t ∂β
x g‖Y

≤ KθEτ,σ,θ,ρ;Y [g]

since Γ(x + a)Γ(b + a) ≤ Γ(x + b + a)Γ(a) for a > 0, b > 0, x ≥ 0 and so

Q(m, β) :=
∑

ℓ≤β/2

Γ(τm + σ|β| + 1)

Γ(τm + σ|β| + (τ − 2σ)l + 1)

(
l

ℓ

)
θl

ρ2l
≤ Q(β) ≤ K.

Finally Eτ,σ,θ,ρ;Y [u] ≤ TI1 + I2 ≤ K(T + θ)Eτ,σ,θ,ρ;Y [g].

5. Nonlinear estimates in Gevrey spaces. In order to deal with semilinear equations

in G̃ spaces we need precise estimations of nonlinear superpositions.

Proposition 5.1. Let σ, ρ be positive numbers. If X is Ck(Ω), k ∈ N0 or the Sobolev

space Hs
p(Ω) for 1 ≤ p ≤ ∞, s > n/p then G̃σ(ρ, X) is a Banach algebra for σ ≥ 1.

Moreover,

Eσ,ρ;X [uv] ≤ ωEσ,ρ;X [u]Eσ,ρ;X [v](27)

where ω = ω(X) is the Schauder constant for X.

Proof. By the Schauder lemma ‖uv‖X ≤ ω‖u‖X‖v‖X for u, v ∈ X. Next for u, v ∈
G̃σ(ρ, X) we estimate

Eσ,ρ;X [uv] =
∑

α∈N
n
0

ρ|α|

Γ(σ|α| + 1)

∥∥∥
∑

β≤α

(
α

β

)
∂βu · ∂α−βv

∥∥∥
X

≤ ω
∑

α∈Nn
0

ρ|α|

Γ(σ|α| + 1)
·
∑

β≤α

(
α

β

)
‖∂βu‖X · ‖∂α−βv‖X

= ω
∑

β∈Nn
0

ρ|β|‖∂βu‖X

Γ(σ|β| + 1)
·
∑

α≥β

ρ|α−β|

(
α

β

)
Γ(σ|β| + 1)

Γ(σ|α| + 1)
‖∂α−βv‖X
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= ω
∑

β∈Nn
0

ρ|β|‖∂βu‖X

Γ(σ|β| + 1)
·

∑

γ∈Nn
0

ρ|γ|‖∂γv‖X

Γ(σ|γ| + 1)
· Cσ(β, γ)

where

Cσ(β, γ) =
(β + γ)!

β!γ!
· Γ(σ|β| + 1)Γ(σ|γ| + 1)

Γ(σ|β + γ| + 1)
, β, γ ∈ N

n
0 .

We shall prove that Cσ(β, γ) ≤ 1 for any β, γ ∈ Nn
0 if σ ≥ 1 which implies (27). Clearly

for σ = 1 we have

C1(β, γ) =

(
β + γ

β

)/(|β + γ|
|β|

)
≤ 1.

So it is sufficient to show that for any k, l ∈ N0 the function

Fk,l(σ) =
Γ(σk + 1)Γ(σl + 1)

Γ(σ(k + l) + 1)

is non-increasing for σ ≥ 1. Since Fk,l(σ) = 1 if k = 0 or l = 0 we can assume that k ≥ 1

and l ≥ 1. By the properties of the Euler Γ and B functions we have

Fk,l(σ) = (σ(k + l) + 1) · B(σk + 1, σl + 1) = (σ(k + l) + 1) ·
∫ 1

0

tσk(1 − t)σldt.

Hence

dFk,l(σ)

dσ
=

∫ 1

0

{k + l + (σ(k + l) + 1)(k ln t + l ln(1 − t))}tσk(1 − t)σldt.

We shall show that the expression in parentheses is non-positive for any 0 < t < 1 which

implies
dFk,l(σ)

dσ ≤ 0 proving our claim. To this end note that since k ln t + l ln(1 − t) < 0

we can assume σ = 1 and so we need to show that

k + l

k + l + 1
≤ −k ln t + l ln(1 − t) for any 0 < t < 1.(28)

Next note that the function f(t) = −k ln t − l ln(1 − t), 0 < t < 1, assumes a minimum

at the point t = k/(k + l) equal to (k + l) ln(k + l) − k ln k − l ln l. So (28) reduces to

k + l

k + l + 1
≤ (k + l) ln(k + l) − k ln k − l ln l for k, l ∈ N.(29)

Finally the left hand side of (29) is < 1 while the right one is > 1.

Remark 5.2. If 0 < σ < 1 the E norm of uv cannot be estimated by that of u and v

without the loss of ρ.

The next proposition generalizes Proposition 5.1 to the case of the power function.

Proposition 5.3. Let X be Ck(Ω), k ∈ N0 or the Sobolev space Hs
p(Ω) for 1 ≤ p ≤ ∞,

s > n/p with ω ≥ 1 being its Schauder constant. Let M ∈ N, M ≥ 2. Then we have

Eσ,ρ;X [uM ] ≤ ωM−1(Eσ,ρ;X [u])M ,(30)

Eσ,ρ;X [uM − vM ] ≤ ωM−1(max{Eσ,ρ;X [u], Eσ,ρ;X [v]})M−1 · Eσ,ρ;X [u − v](31)

for all u, v ∈ G̃σ(ρ; X) with σ ≥ 1, ρ > 0. Analogously

Eτ,σ,θ,ρ;Y [f(u)] ≤ ωM−1(Eτ,σ,θ,ρ;Y [u])M ,(32)



222 T. GRAMCHEV AND G. ŁYSIK

Eτ,σ,θ,ρ;Y [uM − vM ] ≤ ωM−1(max{Eτ,σ,θ,ρ;Y [u], Eτ,σ,θ,ρ;Y [v]})M−1(33)

× Eτ,σ,θ,ρ;Y [u − v]

for all u, v ∈ G̃τ,σ(θ, ρ; Y ) with τ, σ ≥ 1 and θ, ρ > 0.

Proof. Clearly (30) follows immediately from Proposition 5.1, while (31) is a consequence

of that proposition and the equality

uM − vM = (u − v)
∑

i+j=M−1

uivj .

Next (32) and (33) hold by an analogue of Proposition 5.1 for the spaces G̃τ,σ(θ, ρ; Y ).

6. The main result. We have

Theorem 6.1. Let M ∈ N, M ≥ 2 and σ ≥ 1, τ ≥ 2σ, ρ, θ > 0. Let X be the Sobolev

space Hk
p (Rn) for 1 ≤ p ≤ ∞, k ∈ N, k > n/p. Assume that u0 ∈ G̃σ(ρ; X). Then the

solution to the initial value problem

∂tu = ∆u + uM , u|t=0 = u0,(34)

belongs to G̃τ,σ(θ, ρ; Y ) provided that (T + θ)(Eσ,ρ;X [u0])
M−1 is small enough and 0 <

θ < ρ2/n if τ = 2σ.

Proof. Define the approximation scheme by

∂tUN+1 = ∆UN+1 + UM
N ,

UN+1(0, x) = u0(x), N ∈ N0,

with U0 = et∆u0. Then by Propositions 4.1 and 4.2 we get

Eτ,σ,θ,ρ;Y [U0] ≤ KEσ,ρ;X [u0],

Eτ,σ,θ,ρ;Y [UN+1] ≤ KEσ,ρ;X [u0] + K(T + θ)Eτ,σ,θ,ρ;Y [UM
N ], N ∈ N0,

(35)

for any θ > 0 if τ > 2σ and for 0 < θ < ρ2/n if τ = 2σ. Next if τ, σ ≥ 1 by Proposition

5.3 we can find a constant C < ∞ depending on ω and M such that

Eτ,σ,θ,ρ;Y [UM
N ] ≤ C(Eτ,σ,θ,ρ;Y [UN ])M .(36)

Hence combining (35) with (36) we get

Eτ,σ,θ,ρ;Y [UN+1] ≤ KEσ,ρ;X [u0] + CK(T + θ)(Eτ,σ,θ,ρ;Y [UN ])M .(37)

Now we apply the following

Claim. If

2KL(2KC0)
M−1 ≤ 1(38)

and

CN+1 ≤ KC0 + KLCM
N for N ∈ N0(39)

then

CN ≤ (2 − 2−N )KC0 < 2KC0 for N ∈ N0.(40)
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Proof. Clearly (40) holds for N = 0. Next assuming (40) we get by (39) and (38)

CN+1 ≤ KC0 + CN · KLCM−1
N

≤ KC0 + CN/2 ≤ (2 − 2−N−1)KC0 < 2KC0.

Applying the Claim with L = C(T + θ), C0 = Eσ,ρ;X [u0] and CN = Eτ,σ,θ,ρ;Y [UN ]

we conclude that UN belongs to a ball in G̃τ,σ(θ, ρ; Y ) of radius 2KC0 provided that

(T +θ)(2KC0)
M−1 ≤ 1/(2CK). Now for N ∈ N put VN = UN −UN−1. Then VN satisfies

(with U−1 ≡ 0)

∂tVN = ∆VN + UM
N−1 − UM

N−2, VN (0, x) = 0, N ∈ N.(41)

By Propositions 4.2 and 5.3 we get with D = ωM−1 < ∞
Eτ,σ,θ,ρ;Y [VN ] ≤ K(T + θ)Eτ,σ,θ,ρ;Y [UM

N−1 − UM
N−2]

≤ K(T + θ)Eτ,σ,θ,ρ;Y [VN−1]

× ωM−1(max{Eτ,σ,θ,ρ;Y [UN−1], E
τ,σ,θ,ρ;Y [UN−2]})M−1

≤ K(T + θ)D(2KC0)
M−1 · Eτ,σ,θ,ρ;Y [VN−1].

Hence if K(T + θ)D(2KC0)
M−1 < 1 the sequence UN = U0 +

∑N
j=1 Vj converges to a

function u ∈ G̃τ,σ(θ, ρ; Y ). Clearly u satisfies (34).

7. Examples of analyticity down to t = 0 and stability properties. The aim of

this section is to exhibit solutions for semilinear parabolic equations with conservative

terms defined by rotation type vector fields which is an analogue to the celebrated Oseen

solution to the 2-D Navier–Stokes equation (see [20]) in 1911.

We consider semilinear parabolic equations of the following type

∂tu − ∆u = X(uM ), t > 0, x ∈ R
n,(42)

where

X is a polynomial vector field tangential to Sr = {x ∈ R
n : |x| = r}, r > 0.(43)

Example 7.1. Vector fields of the type Q(x)(xj∂k − xk∂j), 1 ≤ j < k ≤ n, Q(x) being a

polynomial, are tangent to Sr, r > 0.

Before the formulation of the next theorem recall that a function ϕ belongs to the

Gelfand-Shilov space Sµ
ν (Rn) iff one can find C < ∞, D < ∞ and a > 0 such that for

any α ∈ Nn
0

|∂αϕ(x)| ≤ CD|α|α!µ exp{−a|x|1/ν} for x ∈ R
n(44)

(cf. Gelfand–Shilov [8], Ch. IV). We consider the initial data

u(0, x) = u0(x) = θ(|x|2),(45)

where θ is a real valued continuous function on [0,∞). Then we have

Theorem 7.2. Let θ be a real valued continuous function on [0,∞). Suppose that θ(y)

grows infraexponentially for y → +∞, i.e., for every ε > 0 one can find Cε > 0 such that

|θ(y)| ≤ Cεe
εy, y ≥ 0.(46)
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Then the IVP (42), (45) has a unique solution u(t, x)

u(t, x) = et∆u0(x), t ≥ 0, x ∈ R
n(47)

satisfying for every ε > 0

|u(t, x)| = O(eε|x|2), |x| → ∞.(48)

Next, assume that θ ∈ Gσ([0,∞) : R), σ > 0, and for some ν ∈ (0, 1], θ ∈ Sσ
ν (R+)

i.e. there exist two positive constants A and B such that

|θ(j)(y)| ≤ Aj+1j!σ exp{−By1/ν}(49)

for all y ≥ 0, j ∈ N0. Then

u0(x) = θ(x2) ∈ S
σ+1−ν/2
ν/2 (Rn)(50)

and

u(t, x) ∈ G2σ+2−ν([0,∞); S
σ+1−ν/2
ν/2 (Rn)).(51)

In particular, if

θ(y) = θε(y) =
1

(4πε)n/2
e−y/(4ε), ε > 0.(52)

then

uε(t, x) =
1

(4π(t + ε)n/2
e−x2/(4(t+ε)), t ≥ 0, x ∈ R

n.(53)

solves (42) with initial data

uε(0, x) =
1

(4πε)n/2
e−x2/(4ε), x ∈ R

n.(54)

Proof. The arguments are simple (as for the 2-D NS). By (45) and (46)

|u0(x)| = O(eε|x|2), as |x| → ∞,(55)

for all ε > 0, therefore u(t, x) = et∆u0 is well defined and is a solution to the heat equation

∂tu − ∆u = 0 with initial data u0, unique in the class of functions satisfying (48). Next,

we note that if u0(x) is radially symmetric, then et∆u0 remains radially symmetric with

respect to x for all t > 0 and by the hypothesis (43) we observe that Xj(Fj(e
t∆u0)) ≡ 0.

We show the Gelfand–Shilov property for space dimension n = 1, since the general

case brings only notational complications. We have the following identity

∂α
x (θ(x2)) =

α∑

j=1

θ(j)(x2)

j!
∂α

z

(
(z2 − x2)j

)
|z=x(56)

=

α∑

j=1

θ(j)(x2)
α!

(α − j)!j!
∂α−j

z

(
(z + x)j

)
|z=x

=
∑

α/2≤j≤α

θ(j)(x2)
α!

(α − j)!j!

j!

(2j − α)!
(2x)2j−α.
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Next, combining (56) with (49), we derive (see [4] for similar arguments for σ = 1/2),

by using the Stirling type formulas, the following estimates:

|∂α
x (θ(x2))| ≤

∑

α/2≤j≤α

|θ(j)(x2)| α!

(α − j)!j!
22j−α j!

(2j − α)!
|x|2j−α

≤
∑

α/2≤j≤α

Aj+1j!σe−B|x|2/ν α!

(α − j)!j!
22j−α j!

(2j − α)!
|x|2j−α

≤ A
∑

α/2≤j≤α

(4A)jj!σe−B|x|2/ν j!

(2j − α)!
(|x|2/ν)νj−να/2.

Now we use e−azzγ ≤ a−γΓ(γ + 1) with a = B/2, z = |x|2/ν , γ = νj − να/2 to get

(57) |∂α
x (θ(x2))|

≤ A
∑

α/2≤j≤α

(2/B)νj−να/2(4A)jj!σe−B/2|x|2/ν j!

(2j − α)!
Γ(νj − να/2 + 1)

≤ Ae−B/2|x|2/ν ∑

α/2≤j≤α

(2/B)νj−να/2(8A)jj!σ(α − j)!Γ(νj − να/2 + 1)

≤ ACαe−B/2|x|2/ν ∑

α/2≤j≤α

j!σ(α − j)!Γ(νj − να/2 + 1)

≤ ACαe−B/2|x|2/ν ∑

α/2≤j≤α

j!σΓ((1 − ν/2)α − (1 − ν)j + 1)!

≤ ACα(1 + α/2)e−B/2|x|2/ν

α!σΓ((1 − ν/2)α + 1)

for all α ∈ N0, where C = 8A(2/B)ν/2. By the Stirling formula we get that (57) yields

(50). As for (51), it follows from our linear estimates.
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