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Abstract. Experimental evidence collected over the years shows that blood exhibits non-

Newtonian characteristics such as shear-thinning, viscoelasticity, yield stress and thixotropic

behaviour. Under certain conditions these characteristics become relevant and must be taken

into consideration when modelling blood flow. In this work we deal with incompressible general-

ized Newtonian fluids, that account for the non-constant viscosity of blood, and present a new

numerical method to handle fluid-rigid body interaction problems. The work is motivated by

the investigation of interaction problems occurring in the human cardiovascular system, where

the rigid bodies may be blood particles, clots, valves or any structure that we may assume to

move rigidly. This method is based on a variational formulation of the fully coupled problem in

the whole fluid/solid domain, in which constraints are introduced to enforce the rigid motion

of the body and the equilibria of forces and stresses at the interface. The main feature of the

method consists in introducing a penalty parameter that relaxes the constraints and allows for

the solution of an associated unconstrained problem. The convergence of the solution of the

relaxed problem is established and some numerical simulations are performed using common

benchmarks for this type of problems.

2000 Mathematics Subject Classification: Primary 65M60; Secondary 74F10, 76Z05.

Key words and phrases: constrained minimization, hyper-viscosity method, fluid-rigid body
interaction, shear-thinning fluid.

Research funded by the Center for Mathematics and its Applications - CEMAT through FCT
funding program. The project HPRN-CT-2002-00270 (Research Training Network ’Haemodel’
of the European Union) is also acknowledged.

The paper is in final form and no version of it will be published elsewhere.

[227] c© Instytut Matematyczny PAN, 2008



228 J. JANELA AND A. SEQUEIRA

1. Introduction. The theoretical and numerical study of fluid-structure or fluid-particle

interaction problems is of major importance when modelling several phenomena occuring

in the human cardiovascular system, like the rolling of white blood cells (see [1]), or the

motion and design of prostetic heart valves (see [9] ). There are also important industrial

applications involving the settling and lift-off of particles in channel flows in the petroleum

and coal industries (see [2, 7] and references therein).

The rheological characteristics of blood are determined by its complex morphology

that we will briefly describe (for details see Sequeira and Janela [16], Robertson, Se-

queira and Kameneva [15] and Robertson Sequeira and Owens [14]). Blood is a complex

mixture consisting of different particles (erythrocytes, leukocytes, platelets and other

matter) suspended in an aqueous polymer solution, the plasma (Newtonian fluid). These

suspended particles, consisting mostly of erythrocytes (red blood cells) form about 45%

of the volume of normal human blood and their effect should not be ignored. It is not

feasible to track the individual behaviour of each RBC but it is possible to build home-

genized models that reproduce the main non-Newtonian effects caused by their pres-

ence.

(a) (b) (c)

Fig. 1. Red blood cells at different shear rates (reprinted from Caro et al. [4])

The main non-Newtonian effects experimentally observed in blood are the shear-

thinning viscosity, the existence of a yield stress and viscoelasticity. At low shear rates

blood has a high apparent viscosity, due to erythrocyte aggregation into clusters called

rouleaux (see Figure 1 (a)), that can be long enough to prevent blood from flowing

below a certain yield stress. As the shear rate increases, the cells become disaggregated

(Figure 1 (b)) and deform into an infinite variety of shapes and align with the direction

of blood flow, resulting in a reduction of viscosity. Also, since blood cells are essentially

elastic membranes filled with a fluid, it seems reasonable to expect blood to behave

like a viscoelastic fluid, at least under certain conditions. The shear-thinning viscosity

reduces velocity and increases shear rate in regions of constant shear stress while the

viscoelasticity amplifies the effect of normal stresses in regions of constant shear-stress

(see e.g. [11]).

In vessels of medium and large size (0.4 − 2.5 cm diameter) the typical values of the

shear rate are high enough for the viscosity to be considered constant and therefore blood

can be modelled as a Newtonian fluid. In smaller vessels, or more generally in regions of

low shear rate, the effect of variable shear-thinning viscosity should not be neglected. In

this work we will disregard the yield stress and viscoelastic effects and model blood as a

shear-thinning generalized Newtonian fluid. In this idealized fluid, that we use as a model
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for blood, we will consider the motion of rigid particles that, as a first approximation,

can mimic the motion of leukocytes or other transported cells in blood.

Numerical simulations of fluid-rigid body interactions can be carried out in different

ways, roughly divided in two main classes. The first one involves a moving mesh following

the moving part of the domain. In the second approach the whole computational domain is

covered by a static mesh, leading to fictitious domain or embedded domain methods that

make use of Lagrange multipliers to enforce the velocity in the solid phase. We elaborate

on a method that falls into the second class, initially proposed by Janela, Maury and

Lefevre [9] in the Newtonian framework and later extended to non-Newtonian fluids by

Janela, Sequeira and Carapau [10]. The difference with respect to similar methods is the

use of a penalty operator instead of Lagrange multipliers.

2. Continuous model problem. For simplicity, in the definition of the underlying

mathematical and mechanical problem, we consider a connected, bounded and regular

domain O ⊂ IR2 and define B as a multiply connected regular set such that B ⊂ O. In

particular we consider B =
⋃N

i=1 Bi, where the sets Bi, i = 1, . . . , N , with boundary γi,

are open and simply connected.

Ω

B1

γ1 γ2

γ3
γ4

γN
• • •

Γ

x0•
B2

B3

BN

B4

Fig. 2. Model domain

We assume that, at time t ≥ 0, Ω = O−B is filled with a fluid and B is a rigid inclusion

(particle or particles) in O. We denote by Γ the boundary of O and by γ = ∪N
i=1γi the

boundary of B. Since the position of B is likely to vary over time, these sets will be

referred to as Bt and Ωt.

Rigid body motion. The motion of a body Bi, occupying the set Bi, is said to be rigid if

the velocity field over Bi can be written as

(1) u(x) = Ui + ωi × (x − Gi),

where ωi and Ui are respectively the angular and translational velocities and Gi is a point

in Bi, usually the center of mass. It can easily be shown that equation (1) is equivalent

to

(2) ∇u + (∇u)T = 0, on Bi.

Moreover, for the purpose of coupling the body and fluid equations, condition (2) only

needs to be enforced on the boundary of the body. We say that B = ∪Bi is a system of

rigid particles if condition 2 is satisfied for each connected component of B.
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Fluid motion. The conservation of linear momentum for the motion of a fluid with ve-

locity u in Ωt is given by

(3) ρf

(

∂u

∂t
+ u · ∇u

)

= ∇ · σ + ff , in Ωt,

where ρf is the constant density, ff the external body forces per unit volume (e.g.

gravity) and σ is the Cauchy stress tensor. We also assume the incompressibility of the

fluid and, as a consequence, the conservation of mass reduces to

(4) ∇ · u = 0, in Ωt.

The Cauchy stress tensor for incompressible fluids can be split in terms of the hydrostatic

pressure p and the extra stress tensor τ , i.e.

(5) σ = −pI + τ .

Finally, in order to close the system, we must specify a constitutive relation for the fluid.

We start from the assumption that the fluid is incompressible and the Cauchy stress

tensor only depends on the velocity gradient. This means that the current state of stress

depends only on the current rate of deformation, and not on the history of deformations

the fluid may have undergone in the past. Demanding invariance under a superposed

rigid motion, we see that the most general form σ can have is

(6) σ = αI + φ1D + φ2D
2

where D(u) := (∇u + (∇u)T )/2 is the symmetric part of the velocity gradient and

φ1, φ2 are only functions of the principal invariants of D (ID = tr(D), IID = (tr(D)2 −
tr(D2))/2, IIID = det(D)). Fluids described by the constitutive equation (6) are known

as incompressible Reiner-Rivlin fluids.

Further assuming that φ2 = 0 (this is supported by experimental measurements ob-

tained from a wide variety of fluids) and that the dependence of φ1 on IIID is negligible,

we finally obtain the generalized Newtonian fluids. For these fluids the constitutive equa-

tion (5) allows for the explicit calculation of σ since the extra stress tensor is written in

terms of D and of the shear rate γ̇, defined by

γ̇ =
√

2D : D =

√

∑

i,j

2DijDij =

√

√

√

√2
∑

i

(

∂ui

∂xi

)2

+
∑

i 6=j

(

∂ui

∂xj

+
∂uj

∂xi

)2

this leads to the following form of the constitutive equation

(7) τ = 2 η(γ̇) D(u) = η(γ̇)(∇u + (∇u)T ).

If in equation (7) η is taken as a constant, the classical Navier–Stokes equations are

recovered. The precise functional form of η is not derived from any theoretical principle,

but chosen to fit experimental data. Over the years many such models have been proposed

in order to fit experimental data from several types of fluids. In most of these models the

viscosity is considered to be a monotone, bounded function of shear rate, usually written

in the form

(8) η(γ̇) : [0, +∞] → [η0, η∞], γ̇ 7→ η∞ + (η0 − η∞)F (γ̇)
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where η0 and η∞ are the asymptotic viscosities at zero and infinite shear rates, respec-

tively and F (·) is a bounded monotone function such that

lim
γ̇→0

F (γ̇) = 1, lim
γ̇→+∞

F (γ̇) = 0.

There are many usual choices for this function F , expressing how the transition be-

tween the high and low shear rate viscosity approximations is made. In this work, since

we aim at applications to hemodynamics, we use the Carreau-Yasuda viscosity model

which fits well experimental measurements of blood (see [5] and references therein) and,

for shear-thinning fluids, is given by

(9) F (γ̇) = (1 + (λγ̇)a)
n−1

a .

This is a five constants model where, apart from η0 and η∞, we have a relaxation time λ,

and parameters a, n chosen to fit experiments (when a = 2 this is known as the Carreau

model). When n = 1 or a = 0 or λ = 0 the viscosity is constant and the fluid behaves as

Newtonian. For n > 1 the fluid is shear-thickening and for n < 1 it has shear-thinning

behaviour. Figure 3 illustrates the viscosity behaviour for several values of the power

index n.

0.01 0.1 1 10 100 1000
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n = 0.6

n = 0.22

n = −1

Fig. 3. Viscosity vs. shear rate for the Carreau-Yasuda model, at different values of the power
index (n = 0.22 corresponds to blood, see [5]).

The coupled problem. In order to couple the solid and fluid phases we must prescribe

compatibility conditions consisting in instantaneous equilibria of forces exerted in the

fluid/body interface. Denoting by ζi(t) the position of the geometrical center of Bi, we

must have

Miζ
′′
i (t) = −

∫

γi

σ · n +

∫

Bi

f b, i = 1, · · · , N(10)

Jiω
′
i(t) = −

∫

γi

(x − ζi(t))
⊥ · σn +

∫

Bi

(x − ζi(t))
⊥f b,(11)

where Mi and Ji are the (constant) mass and momentum of inertia of Bi, given by

Mi =
∫

Bi

ρb and Ji =
∫

Bi

= ρb|x − x0|2, ρb is the density of the body and f b are the

external body forces exerted on Bt.

The fully coupled fluid–rigid body interaction problem consists in finding u, p, ωi and

Ui such that
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ρf

Du

Dt
= ∇ · (−p I + η(γ̇)D(u)) + f

in Ωt,
∇ · u = 0

u = 0 on Γ,

∇u + (∇u)T = 0 on γ,

Miζ
′′
i (t) = −

∫

γi

σ · n +

∫

Bi

f b, i = 1, . . . , N,

Jiω
′
i(t) = −

∫

γi

(x − ζi(t))
⊥ · σn +

∫

Bi

(x − ζi(t))
⊥f b i = 1, . . . , N.

We remark that the constitutive equation for the stress tensor does not need to be of this

particular form and, as long as τ can be computed, more complex fluids (e.g. viscoelastic

fluids) can be considered without any changes in our method.

Having in mind the discretization by finite elements, we write the problem in a weak

form. Let us consider the function spaces V = [H1
0 (O)]2 and Q = {q ∈ L2(O) :

∫

Ω
q = 0}.

Multiplying the fluid equations by test functions v ∈ V and q ∈ Q and integrating by

parts over Ω we obtain
∫

Ω

ρf

Du

Dt
· v +

∫

Ω

τ : ∇v −
∫

Ω

p∇ · v =

∫

Ω

f · v +

∫

∂Ω

v · (σ · n), ∀v ∈ V,

∫

Ω

q∇ · u = 0, ∀q ∈ Q.

We now consider the space of rigid motions over B, KB = {v ∈ V : ∇v + (∇v)T = 0

in B}, take into account the compatibility and boundary conditions, and rewrite the

variational formulation introduced above as follows: for every t > 0, find u ∈ KB and

p ∈ Q,

(13)















∫

O

ρ
Du

Dt
· v +

∫

O

τ : ∇v =

∫

O

p∇ · v +

∫

O

v · f , ∀v ∈ KB ,

∫

O

q∇u = 0, ∀q ∈ Q,

where ρ = ρfχΩ + ρb(1 − χΩ) and f is extended by zero outside B. We observe that

formulation (13) does not contain any boundary terms.

3. Discretization in time. The method of characteristics is used to discretize the

material time derivative. If we denote by Xn(x) the characteristic associated with u

then, at time step n + 1, we have

∂un+1

∂t
+ un+1 · ∇un+1 ≈ 1

∆t

(

un+1 − un ◦ Xn
)

≈ 1

∆t

(

un+1 − un(x − un(x)∆t)
)

.

The resulting problem is still not linear since the calculation of γ̇, necessary to compute

the viscosity at each time step, involves the velocity in a nonlinear way. To avoid this

problem we consider a semi-implicit approximation of the extra stress tensor,

τn+1 = 2η(γ̇n+1)D(un+1) ≈ 2η(γ̇n)D(un+1).
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Considering the above approximations, the discretized problem reads: find un+1 ∈ KBn+1

and p ∈ L2
0(O) such that

1

∆t

∫

O

ρn+1un+1 · v +

∫

O

2η(γ̇n)D(un+1) : ∇v −
∫

O

pn+1∇ · v

=
1

∆t

∫

O

(ρnun) ◦ Xn · v +

∫

O

fn+1 · v, ∀v ∈ KBn+1

and
∫

O

q∇ · un+1 = 0, ∀q ∈ Q,

where, knowing un, Bn+1 is computed updating the position of Bn, i.e. Bn+1 is the rigid

body at time tn+1. In fact, it is easier to use Un and ωn, that can be computed from un.

When B is a circle of radius r, we have the following formulas for U and ω

Ui =
1

πr2

∫

B

ui, i = 1, 2,(14)

ω = − 2

πr4

∫

B

(u − U) × (x − G).(15)

If we make no assumptions on the shape of the body, ω and U can still be computed by

solving the linear system

(16)















|B|U1 + α2ω =
∫

B
u1,

|B|U2 − α1ω =
∫

B
u2,

−α2U1 + α1U2 − α3ω = β,

where α1 =
∫

B
(x1 − G1), α2 =

∫

B
(x2 − G2), α3 =

∫

b
‖x − G‖2 and β =

∫

B
((x1 − G1)u2

− (x2 − G2)u1). This problem is equivalent to the minimization over KBn+1 of the func-

tional

(17) Jn(v) =
1

2∆t

∫

O

(ρn+1v2 + 2(ρnun) ◦X·v) +

∫

O

(2η(γ̇n)D(v) : ∇v − fn+1·v)

and it will be solved within the theoretical framework presented in the next section.

This kind of time discretization corresponds to a non-centered finite-difference method

along characteristics and falls within the class of Lagrange-Galerkin methods used to treat

convection dominated diffusion equations. At least in the Newtonian case, this method

of characteristics has been proven to be of order 2 in time [3]. In our case, requiring

enough regularity on the viscosity law, the same result should hold, but this is the object

of current investigation.

At each time step the problem must be discretized in space. This will be done using a

Petrov-Galerkin method based on a suitable meshing of the computational domain (fluid

+ solid). The conformal finite element spaces chosen to approximate the unknowns are

P 2 for the velocity field and P 1 for the pressure. This combination of spaces satisfies the

discrete inf-sup or LBB stability condition.

4. Abstract penalty method. The weak formulation (13) is called constrained since

the enforcement of rigid motion over B is embedded in the functional spaces. The pe-
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nalization approach aims at relaxing this constraint which can be done in an abstract

setting. We next summarize the main results introduced in [12].

Let V be a Hilbert space with inner product (·, ·), a(·, ·) a symmetric, bilinear contin-

uous and coercive form and ϕ ∈ V ′. Let us also define the functional J(v) = 1
2a(v, v) −

〈ϕ, v〉. The proof of the following propositions is straightforward (see [13]).

Proposition 1. Let K be a subspace of V . The constrained minimization problem

(18) (P )

{

Find u ∈ K such that

J(u) = infv∈K J(v)

has a unique solution characterized by

(19) a(u, v) = 〈ϕ, v〉, ∀v ∈ K,

and the following estimate holds

|u| ≤ 1

α
‖ϕ‖.

Proposition 2. Let H be a Hilbert space and J : H → IR ∪ {∞} a convex functional,

not identically infinite. For every sequence (xn) weakly convergent to x ∈ H we have

J(x) ≤ lim inf J(xn).

Consider now a bilinear, symmetric and positive form b(·, ·) and its kernel K =

{v ∈ V : b(v, v) = 0}. For all ε > 0 we consider the unconstrained minimization prob-

lem (Pε) of the functional

Jε(v) = J(v) +
1

ε
b(v, v),

that has also a unique solution uε ∈ V . The following result holds

Theorem 3. The sequence (uε) of solutions of problem (Pε) converges to the solution u

of problem (P ), in V .

Proof. Writing the variational formulation of (Pε), using in particular v = uε and con-

sidering the properties of a(·, ·) and b(·, ·) we get

a(uε, uε) ≤ C0 + C1|uε| ⇒ α|uε|2 ≤ C0 + C1|uε|
which shows that the sequence (uε) is bounded and therefore there is a subsequence

converging weakly to z ∈ V . Using the positivity of b(·, ·) and the definition of uε we

can see that J(uε) ≤ Jε(u
ε) ≤ Jε(u) = J(u) and, using Proposition 2, we also have

J(z) ≤ lim infJ(uε) ≤ J(u).

It now suffices to show that z verifies the constraint and can be identified with the

solution of problem (P). We start by showing that b(uε, uε) → 0. Since Jε(u
ε) ≤ J(u),

we have

(20)
1

ε
b(uε, uε) ≤ J(u) + ‖ϕ‖V ′ |uε| ≤ C

and therefore b(uε, uε) → 0 which, together with 0 ≤ b(z, z) ≤ lim inf b(uε, uε) means

that z ∈ K (because b(z, z) = 0) and consequently z = u. The same argument can be

applied to any convergent subsequence and so we prove weak convergence of uε to u.

The proof of strong convergence is straightforward using the norm associated to the

scalar product (v, w)a = a(v, w) (equivalent to the initial norm).
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Proposition 4. Denoting by C and α the continuity and coercivity constants of a(·, ·),
the following estimate holds:

|uε − u| ≤
√

C

α
dist(uε, K).

Only making further assumptions on b(·, ·) we can obtain a more usable error estimate

for the penalized solution. The following proposition gives sufficient conditions for linear

convergence.

Proposition 5. If we further assume that b(·, ·) is of the form b(u, v) = (Ψu, Ψv), with

Ψ a linear, continuous functional with closed range over a Hilbert space Λ, there exists a

constant C > 0 such that

|uε − u| ≤ Cε.

Hyper-viscosity unconstrained formulation. The abstract penalty method already intro-

duced can be applied to problem (13), recognizing that the space KB is the kernel of the

operator

b(u, v) =

∫

B

(∇u + (∇u)T ) : (∇v + (∇v)T ).

Instead of solving (13) in the constrained space KB, we will solve the penalized uncon-

strained problem:

For every t > 0, find u ∈ KB , p ∈ Q :
∫

Ω

ρ
Du

Dt
· v =

∫

Ω

(τ : ∇v + p∇v + f · v) − 1

ε

∫

B

Du : Dv, ∀v ∈ V,

∫

Ω

q∇u = 0, ∀q ∈ Q,

that is equivalent to the unconstrained minimization of the functional

Jn
ε (v) = Jn(v) +

∫

B

Dv : Dv.

Convergence when ε → 0 is guaranteed by Proposition 5. The main advantage of relaxing

the rigid motion constraint is the possibility of using standard fluid solvers (with minor

changes), avoiding heavy programming tasks. The name hyper-viscosity arises from the

fact that, in the Newtonian case, the penalty term is the stiffness operator restricted to

B and multiplied by a factor of 1/ε. Since the leading coefficient of the global stiffness

operator is the viscosity, the application of this method results in an increase of the

viscosity over the B, by a factor of 1/ε.

5. Numerical results. The hyper-viscosity method was implemented using a general

finite element solver/programming language called Freefem++ (see [8]). The code accepts

arbitrary 2D geometries for the domain and the body. We will present simple numerical

simulations that test the angular and translational velocities reported by the method. The

parameters used in the simulation are those appropriate to model blood: η0 = 0.056Pa s,

η∞ = 0.00345 Pa s, λ = 1.1902 s, a = 1.25 and n = 0.22 (see e.g. [5]). With the purpose

of validating the method we test separately the rotation and translation of the rigid body.
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B

Ω ωwall

Fig. 4. Model problem for testing the pure rotation

Pure rotation motion. In this simulation the computational domain is a circle of radius

3cm and the particle is a circle of unit radius, initially placed at the center of the domain.

This is the 2D analog of flow between concentric cylinders. At time t = 0 the outer bound-

ary is set to move at constant angular velocity. Due to the no-slip boundary condition, the

fluid starts a rotating movement to follow the outer boundary, also inducing the motion

of the particle. The particle is initially at rest and starts an increasingly faster rotation

until it reaches a terminal angular speed ω < ωwall, without any translation. In figure 5

we show the time evolution of ω for different values of the power index n. The thicker

line corresponds to the Newtonian fluid (n = 1). Above this curve we find the curves

obtained for shear-thickening fluids (n > 1) and below those obtained for shear-thinning

fluids (n < 1).
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Fig. 5. Angular velocity for several values of the power index (n = 2.2, 1.8, 1.5, 1, 0.5, 0, −0.5,
from left to right)

We observe that for all values of the power index the same terminal angular velocity

is achieved for the particle. However, the higher is the power index, the faster is the

convergence. The curves in figure 5 can be used to design a simple Couette viscometer

to identify the power index of the fluid.

In figure 6 we observe that, apart from rotating, the body also undergoes a translation,

describing a small orbit around the center of the domain which is due to numerical

instabilities. This problem becomes relevant after a relatively large number of time steps,

but can be arbitrarily delayed using finer meshes and smaller time steps.

Finally, figures 7 and 8 show plots illustrating the evolution of the streamlines and

shear-dependent viscosity, from the transient to the steady-state period. We observe
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Fig. 6. Distance from the center of the particle to the center of the domain

that the streamlines, initially concentrated near the outer boundary, become equally dis-

tributed when the steady state is reached, which is due to the constant angular velocity at-

tained by the whole fluid. The same behaviour occurs with the shear-dependent viscosity.

t = 0.1s t = 1.5s t = 4s t = 20s

Fig. 7. Time evolution of the streamlines

t = 0.1s t = 1.5s t = 4s t = 20s

Fig. 8. Time evolution of the shear-dependent viscosity

t = 0.1s t = 1.5s t = 4s t = 20s

Fig. 9. Time evolution of the pressure
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Pure translation motion. Now the computational domain is a rectangular container 20cm

high and 10cm wide, filled with the same fluid as in the previous example, that is,

O =]0, 10[×]0, 20[. At time t = 0 a particle (circle of radius 1) is dropped from the initial

position (5, 15) and falls under the action of gravity. More precisely, the resultant of

applied volumic forces f combines gravity and buoyancy

f = |B|ρbχbg − |B|ρbχbg.

The behaviour of this system is well known and, for constant viscosity, is discussed in

any elementary physics book. There is a competition between gravity and the drag or

viscous forces, the latter increases with the velocity of the body until it balances gravity

and the body reaches a terminal velocity.
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Fig. 10. Time evolution of the vertical translational velocity of the particle for several values of
the power index (n = 0, 0.5, 1, 1.5, 2)

t = 0.5s t = 1.5s t = 3s t = 5s

Fig. 11. Time evolution of the shear-dependent viscosity

In figure 10 we plot the velocity of the particle versus time. Velocity is zero in the

beginning of the simulation (initially the body is at rest), then it decreases until a plateau



A CONSTRAINED MINIMIZATION PROBLEM IN HEMODYNAMICS 239

t = 0.5s t = 1.5s t = 3s t = 5s

Fig. 12. Time evolution of the velocity streamlines

t = 0.5s t = 1.5s t = 3s t = 5s

Fig. 13. Time evolution of the pressure isolines

is attained and would remain constant if the container would be infinite, finally going

abruptly to zero when the body touches the bottom. This is the general qualitative

behaviour. When varying the power index, different terminal velocities are obtained.

This is easily explained by the fact that the drag force is proportional to velocity.

In the shear-thinning case, as the velocity of the particle increases, the shear rate will

be higher around the particle, the viscosity decreases, and so does the drag force, allowing

for velocity to increase even further. The balance between gravity and drag will appear

only after viscosity reaches its lower bound, η∞.

In the shear-thickening case, exactly the opposite happens. As velocity increases, shear

rate will be higher around the particle and the viscosity increases, together with the drag
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force. In this way the balance between gravity and drag force arises sooner in time and

lower (in absolute value) terminal velocities are obtained.

In figures 11 and 12 we display the shear-dependent viscosity and the streamlines in

selected moments of the simulation. In the viscosity plot it is clearly seen the wake left

behind by the particle. In figure 13 we present the pressure isolines.

6. Conclusions. It has been shown that the proposed penalty or hyper-viscosity method

is well suited for the simulation of fluid - rigid body interaction problems, in the case of

a generalized Newtonian fluid. The convergence of the penalization procedure has been

proved and numerical tests were carried out, showing differences between the Newto-

nian and non-Newtonian fluid behaviour, visible in the computation of both angular and

translational velocities.

The main advantage of this method is the possibility of using, with minor modifica-

tions, widely available finite element packages and solvers for the Navier-Stokes equations.

The implementation of this new method only requires the introduction of shear-dependent

viscosity and very limited changes in the stiffness matrix.

The proof of convergence of the numerical method is the subject of current investi-

gation, since until now it was only proven the convergence of the exact solutions of the

penalized problems to the exact solution of the coupled problem. The main difficulty so far

is a competitive behaviour between the penalty parameter ε and the space discretization

parameter h. Compatible choices of these parameters are required to ensure convergence

of the numerical method and this seems to depend on the geometrical properties of the

domain.

Future work includes the derivation of sharp error estimates, explaining the observed

rates of convergence. The extension of this method to viscoelastic models like Oldroyd-B

or shear-dependent Oldroyd-B fluids is also foreseen and should not pose any additional

difficulties, apart from the ones usually experienced for higher Weissenberg numbers.
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