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Abstract. In this note we present a proof of existence of global in time regular (unique)

solutions to the Navier-Stokes equations in an arbitrary three dimensional domain with a general

boundary condition. The only restriction is that the L2-norm of the initial datum is required to

be sufficiently small. The magnitude of the rest of the norm is not restricted. Our considerations

show the essential role played by the energy bound in proving global in time results for the

Navier-Stokes equations.

1. Introduction. The subject of this note is the existence of global in time regular

solutions to the evolutionary Navier-Stokes equations in a rigid three dimensional domain.

We concentrate our attention on the initial value problem

vt + v · ∇v − ν∆v + ∇p = 0 in Ω × (0, T ),

div v = 0 in Ω × (0, T ),

v|t=0 = v0 on Ω,

(1.1)

where v = (v1, v2, v3) represents the sought velocity field, p is the sought pressure, ν is

the constant positive viscous coefficient and v0 the initial velocity which is required to

satisfy the compatibility condition div v0 = 0. We do not restrict our attention only to

bounded domains. However to avoid difficulties we may consider only bounded, exterior

and pipe-like domains with smooth boundaries.

At the boundary we impose a general boundary condition

B(v, p) = 0 on ∂Ω × (0, T ). (1.2)

If the domain Ω is unbounded we add the condition at infinity

v → 0 as |x| → ∞. (1.3)
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To make our analysis concise we will restrict a class of general boundary conditions.

The first restriction follows from the fact that we want to study regularity aspects of

global in time weak solutions. Hence the basic energy estimate for solutions to system

(1.1) is needed. It implies that properties of B(·, ·) must allow testing momentum equation

(1.1)1 with v to get the energy inequality

1

2

d

dt

∫

Ω

v2 + ν

∫

Ω

|∇v|2dx ≤ 0. (1.4)

Assuming that there is no flow across the boundary we have

v · ~n = 0 on ∂Ω × (0, T ), (1.5)

where ~n is the normal vector to the boundary ∂Ω. Also for sufficiently smooth solutions

condition (1.2) has to imply that for a suitable class of divergence-free vectors,

−

∫

Ω

∆vvdx ≥ C

∫

Ω

|∇v|2dx (1.6)

for a positive constant C. Then (1.5) and (1.6) guarantee inequality (1.4), provided suf-

ficient regularity of solutions to (1.1) is assumed. Of course, in the general case these

conditions can be replaced by weaker ones.

Moreover B(v, p) = 0 have to satisfy the Lopatinskii-Shapiro condition [5] which imply

that the system

−ν∆v + ∇p = f in Ω,

div v = 0 in Ω,

B(v, p) = 0 on ∂Ω

(1.7)

should be elliptic well posed (in the case of unbounded domain we add (1.3)).

The standard example of relations B(·, ·) is the zero Dirichlet boundary conditions

v ≡ 0 on ∂Ω × (0, T ), (1.8)

also known as the no-slip conditions. A natural generalization of (1.8) are slip boundary

conditions [13], [14]

~n · T(v, p) · ~τk + fv · ~τk = 0 on ∂Ω × (0, T ) for k = 1, 2;
(1.9)

v · ~n = 0 on ∂Ω × (0, T ),

where ~τk are the tangent vectors to ∂Ω. Relations (1.9) model friction effects by an

introduction of the friction force described by the coefficient f which generally may

depend on the solution (v, p), but from the physical point of view it should be nonnegative.

Equation (1.7)1 is just the second Newton principle. Note that as f → +∞, then condition

(1.9) becomes (1.8), at least formally.

To simplify our consideration B(·, ·) in the proofs will be assumed to be a linear

function. For nonlinear boundary models we refer to [6], [7]. If these relations are given

by smooth functions and (1.4) and ellipticity of (1.7) are guaranteed, then the main result

of our note stays true. However in that case our proof would be more complex, by adding

unnecessarily difficult technical calculations.
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The basic information about solutions to the Navier-Stokes equations is given by the

energy bound which is a consequence of inequality (1.4). The straightforward integration

over time gives us the following result.

Lemma 1.1. Let v0 ∈ L2(Ω) and div v0 = 0, then sufficiently smooth solutions to problem

(1.1) defined on a time interval (0, T ) satisfy the energy estimate, i.e.

sup
0≤t≤T

‖v(·, t)‖L2(Ω) ≤ ‖v0‖L2(Ω). (1.10)

An immediate corollary from Lemma 1.1 is that the L2-norm of solutions will be

arbitrarily small, provided smallness of the L2-norm of the initial datum is assumed. As we

see it will be the only quantity whose magnitude will be restricted in our considerations.

Additionally by the Galerkin method this bound enables us to prove existence of weak

solutions to (1.1).

The goal of this note is to prove global in time existence of regular solutions to the

Navier-Stokes equations under a special assumptions of the structure of regularity of

initial data v0. Since the full solvability of this problem is still open we are able to prove

only partial results – see [1], [2], [10], [13], [17].

We prove the following theorem which is the main result of the present paper.

Theorem 1.2. Let 1 < p, q < ∞ and 3
p + 2

q < 3 and v0 ∈ B
2−2/q
p,q (Ω) ∩ L2(Ω). Suppose

that

‖v0‖L2(Ω) is sufficiently small compared to ‖v0‖B
2−2/q
p,q (Ω)

. (1.11)

Then there exists a unique global in time regular solution to the Navier-Stokes equations

(1.1) such that v ∈ W 2,1
p,q(loc)(Ω × (0,∞)) and the following estimate holds

sup
k∈N

‖v‖W 2,1
p,q (Ω×[k,k+1]) < ∞. (1.12)

The above result yields solutions to the Navier-Stokes equations (1.1) in anisotropic

Sobolev spaces W 2,1
p,q – see the next section for necessary definitions. The main achieve-

ment is that the only restriction concerns the L2-norm of initial datum v0, the rest of

the norm is not restricted. This extends the standard approach where the whole norm

has to be controlled [2], [17]. The idea of the proof is based on an application of the

energy estimate given by Lemma 1.1. We emphasize that this bound holds even for weak

solutions. The energy bound neglects the influence of nonlinear transport term v · ∇v,

thanks to that estimate (1.10) has a linear character and thanks to that information is

possibly strongest. It is the only such estimate known for the Navier-Stokes equations

for general cases – similar bounds can be found for restricted cases in two dimensions or

in a symmetric case [12], [15], [16], [19]. Having Lemma 1.1 and suitable Schauder esti-

mates for the Stokes system we relatively easily prove the main result using the theory of

Sobolev-type spaces [4]. This approach has been effectively applied in stability problems

– see [17], [20].

Comparing the presented approach to the technique based on application of the semi-

group theory our method admits larger class of initial data. To apply tools of the theory

of semigroups, first we have to project the system on the divergence free subspace. It

follows that the nonlinear term looses its good structure and there is no chance to get
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a bound as (1.10). In the most optimal case we have to require smallness of the L3-norm

to obtain the global in time result [9]. And the regime of the projection makes the analysis

more complex.

The obtained regularity of solutions enables, by classical results [18], to improve the

regularity to any Ck-smoothness, under suitable conditions of initial data. Theorem 1.2

omits information about the pressure, since this sought function is completely determined

by the velocity vector and estimates of p do not play any role in our analysis.

Similar considerations have been done in [13], [14], however only for W 2,1
p,p -spaces for

torus T
3 and R

3, domains without boundaries. Here we improve the method.

The paper is organized as follows. In section 2 we introduce basic notation and aux-

iliary results. Next, we show a sketch of the proof of the local in time existence result. In

section 4 we prove Theorem 1.2. Generic constants are denoted by C.

2. Preliminaries. Here we introduce our notation and recall basic tools.

We try to follow the standard notation [11], [18]. The standard Lebesgue space Lp(D)

is the class of functions integrable with the p-th power over a set D ⊂ R
d with the norm

‖u‖Lp(D) =

(
∫

D

|f(x)|p dx

)1/p

for 1 ≤ p < ∞ (2.1)

and

‖u‖L∞(D) = ess sup
x∈D

|f(x)| for p = ∞. (2.2)

Next, we define isotropic Besov spaces [4] Bs
p,q(D) with 1 ≤ p, q < ∞ and s ∈ R+ \N

by the following norm

‖u‖Bs
p,q(D) = ‖u‖Lp(D) + 〈u〉Bs

p,q(D), (2.3)

where 〈u〉Bs
p,q(D) is the main seminorm of the Bs

p,q-space which reads

〈u〉Bs
p,q(D)

=
∑

|α|=[s]

(
∫

B(0,1)

dh

|h|d+sq

(
∫

(D+h)∩D

|∂α
x u(x + h) − ∂α

x u(x)|p dx

)q/p)1/q

, (2.4)

where α = (α1, . . . , αd) is the multi-index, |α| = α1 + · · · + αd, [·] is the integral part of

number s, B(0, 1) is the unit ball in R
d with center at the origin. Set D + h = {z ∈ R

d :

z = x + h and x ∈ D}.

We restrict out attention to cases where parameter s is not a natural number, because

we will work with this case only. The defined Besov class describes the trace space for

the anisotropic Sobolev space, but first let us recall the standard Sobolev space Wm
p (D)

defined by the norm

‖u‖W m
p (D) = ‖u‖Lp(D) +

∑

|α|=m

‖∂α
x u‖Lp(D) (2.5)

for m ∈ N and 1 ≤ p < ∞.

Unfortunately, isotropic spaces are not sufficient in our method, because of the evo-

lutionary character of the system. There is a need for a class of spaces which distinguish
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the time direction. For functions defined on D×(0, T ) we introduce the Wm,n
p,q (D×(0, T ))

space for m, n ∈ N and 1 ≤ p, q < ∞ by the norm

‖u‖W m,n
p,q (D×(0,T )) = ‖u‖Lq(0,T ;Lp(D))

+
∑

|α|=m

(
∫ T

0

(
∫

D

|∂α
x u|p dx

)q/p

dt

)1/q

+

(
∫ T

0

(
∫

D

|∂n
t u|p dx

)q/p

dt

)1/q

. (2.6)

The above norms have a natural generalization for p = ∞ or q = ∞ – see (2.1) and (2.2).

The definition of the Besov spaces Bs
p,q can be stated by using interpolation theory

[3]. For s ∈ (0, 1) we have

Bs
p,q(Ω) = (Lp(Ω), W 1

p (Ω))s,q.

The theory of Besov spaces yields the following imbedding theorem:

Proposition 2.1. Let m, n > 0, 1 ≤ p ≤ k ≤ ∞ and 1 ≤ q ≤ l ≤ ∞. If

d

m

(

1

p
−

1

k

)

+
1

n

(

1

q
−

1

l

)

< 1,

then Wm,n
p,q (D× (0, T )) ⊂ Ll(0, T ; Lk(D)), moreover there exists a function I(·) such that

I(ǫ) → ∞ as ǫ → 0 and

‖u‖Ll(0,T ;Lk(D)) ≤ ǫ〈u〉W m,n
p,q (D×(0,T )) + I(ǫ)‖u‖L2(0,T ;L2(D)). (2.7)

Next, we recall the trace theorem for W 2,1
p,q -spaces.

Proposition 2.2. Let 1 ≤ p, q < ∞ then Tr|t=0W
2,1
p,q (D × (0, T )) ⊂ B

2−2/q
p,q (D), i.e. if

u ∈ W 2,1
p,q (D × (0, T )), then u|t=0 ∈ B

2−2/q
p,q (D) and

‖u|t=0‖B
2−2/q
p,q (D)

≤ C‖u‖W 2,1
p,q (D×(0,T )). (2.8)

A key element of our technique is the Schauder estimate of solutions to the Stokes

system which is a linearization of nonlinear equations (1.1)

ut − ν∆u + ∇q = f in Ω × (0, T ),

div u = 0 in Ω × (0, T ),

B(u, p) = 0 on ∂Ω × (0, T ),

u|t=0 = u0 on Ω,

(2.9)

where data satisfy suitable compatibility conditions. The classical theory – see [8] and [3]

– guarantees us the following existence result in optimal spaces obtained by the advanced

theory of semigroups.

Propositions 2.3. Let u0 ∈ B
2−2/q
p,q (Ω), f ∈ Lq(0, T ; Lp(Ω)) and div u0 = 0, then there

exists a unique solution to system (2.9) such that

u ∈ W 2,1
p,q (Ω × (0, T )) and ∇q ∈ Lq(0, T ; Lp(Ω)),

moreover the following estimate is valid

‖ut‖Lq(0,T ;Lp(Ω)) + ‖∇2u‖Lq(0,T ;Lp(Ω)) + ‖∇q‖Lq(0,T ;Lp(Ω))

≤ A(‖f‖Lq(0,T ;Lp(Ω)) + ‖u0‖B
2−2/q
p,q (Ω))

) (2.10)

and the constant A is independent of T , in particular we can consider T = ∞.
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3. Local existence. In this section we show the local in time existence of solutions to

system (1.1). Thanks to this result the proof of Theorem 1.2 will be reduced to a suitable

a priori estimate. Then by the trace theorem – Proposition 2.2 – we will be able to prolong

the solution to the time interval where the a priori estimate is valid.

Theorem 3.1. Let p, q satisfy 3
p + 2

q < 3, v0 ∈ B
2−2/q
p,q (Ω) and div v0 = 0, then there

exists a number T0 > 0 such that there exists a unique solution to system (1.1) on the

time interval [0, T ] for T ≤ T0 in the following class of regularity

v ∈ W 2,1
p,q (Ω × (0, T )), p ∈ W 1,0

p,q (Ω × (0, T ));

moreover the following estimate is valid

‖v‖W 2,1
p,q (Ω×(0,T )) + ‖∇p‖W 1,0

p,q (Ω×(0,T )) ≤ C(‖v0‖B
2−2/q
p,q (Ω)

). (3.1)

Thus T0 depends on the magnitude of the norm ‖v0‖B
2−2/q
p,q (Ω)

, only.

Proof. We present only a sketch of the proof. It is based on the standard application

of the Banach fixed point theorem to a suitable linearization. In our case it is just the

Stokes system. (For details we refer to [14] for consideration for Sobolev spaces with case

p = q).

The only difficulty in the proof of Theorem 3.1 is the nonlinear term v · ∇v which by

Proposition 2.1 has to be bounded in Lq(0, T ; Lp(Ω)).

By the imbedding theorem – Proposition 2.1 – we have

W 2,1
p,q (Ω × (0, T )) ⊂ Lb1(0, T ; La1

(Ω)), (3.2)

provided 3
2 ( 1

p − 1
a1

) + ( 1
q − 1

b1
) < 1 and

∇W 2,1
p,q (Ω × (0, T )) ⊂ Lb2(0, T ; La2

(Ω)), (3.3)

provided 3
2 ( 1

p − 1
a2

) + ( 1
q − 1

b2
) < 1

2 . Applying (3.2) and (3.3) we get

‖v · ∇v‖Lq(0,T ;Lp(Ω)) ≤ C‖v‖Lb1
(0,T ;La1

(Ω))‖∇v‖Lb2
(0,T ;La2

(Ω)), (3.4)

if we assume 1
p = 1

a1

+ 1
a2

and 1
q = 1

b1
+ 1

b2
. The last restriction can be fulfilled only if

3

p
+

2

q
< 3. (3.5)

The above bound on the powers p and q is connected with the Serrin condition [18]

guaranteeing regularity of weak solutions. By Proposition 2.1 and (3.5) we can find l and

m such that

W 2,1
p,q (Ω × (0, T )) ⊂ Lm(0, T ; Ll(Ω)) with

3

l
+

2

m
< 1, (3.6)

and the last inequality in (3.6) is the original restriction given by Serrin.

For simplicity we may put in (3.4) factors a1 = 3p, b1 = 3q, a2 = 3
2p and b2 = 3

2q.

An important question is dependence of constant C in (3.4) on the smallness of T .

Thanks to standard tricks – see [13] – and the fact that in (3.5) the inequality is strict,

we are able to get for 0 < T < 1 the following estimate

‖v · ∇v‖Lq(0,T ;Lp(Ω)) ≤ C0T
α‖v‖2

W 2,1
p,q (Ω×(0,T ))

(3.7)

for a number α > 0 and c0 independent of T .
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Inequality (3.7) allows us to find the solution to (1.1) as the fixed point to a map K

such that
K : W 2,1

p,q (Ω × (0, T )) → W 2,1
p,q (Ω × (0, T )) and K(ṽ) = v,

where v is defined as a solution to the following problem

vt − ν∆v + ∇p = −ṽ · ∇ṽ in Ω × (0, T ),

div v = 0 in Ω × (0, T ),

B(u, p) = 0 on ∂Ω × (0, T ),

v|t=0 = v0 on Ω.

(3.8)

By Proposition 2.3 we immediately get the existence of solutions to system (3.8) and the

following bound on v

‖v‖W 2,1
p,q (Ω×(0,T )) ≤ C(‖ṽ · ∇ṽ‖Lq(0,T ;Lp(Ω)) + ‖v0‖B

2−2/q
p,q (Ω)

). (3.9)

Employing inequality (3.7) we obtain

‖v‖W 2,1
p,q (Ω×(0,T )) ≤ ATα‖ṽ‖2

W 2,1
p,q (Ω×(0,T ))

+ B‖v0‖B
2−2/q
p,q (Ω)

(3.10)

for some fixed positive constants A and B.

The above inequality guarantees that

‖v‖W 2,1
p,q (Ω×(0,T )) ≤ 2B‖v0‖B

2−2/q
p,q (Ω)

, (3.11)

provided

‖ṽ‖W 2,1
p,q (Ω×(0,T )) ≤ 2B‖v0‖B

2−2/q
p,q (Ω)

, (3.12)

if T > 0 is so small that 4ABTα‖v0‖B
2−2/q
p,q (Ω)

≤ 1.

Thus K maps a bounded ball in W 2,1
p,q into itself. Next, we shall show that K truncated

to this set is a contraction. We skip this part of the proof, since it is almost the same

as considerations for (3.10) – possibly with smaller T . Thus there exists a fixed point of

K defining the sought solutions to system (1.1) in the desired class of regularity. Thus

Theorem 3.1 is proved.

4. Global existence. For given initial data in B
2−2/q
p,q (Ω) and Theorem 3.1 we are able

to find a number T0 > 0 such that the solution to system (1.1) exists in time interval

[0, T0] with a bound given by (3.1).

For a number L < T0 we construct a sequence of smooth functions ζk : R+ → [0, 1]

such that

ζk(t) =







1 for t ≥ kL,

∈ [0, 1] for (k − 1)L ≤ t ≤ kL,

0 for t ≤ (k − 1)L,

(4.1)

and k ∈ N with |ζ ′(t)| ≤ 2
L .

Functions ζk(·) are auxiliary tools to correct sought solution (v, p) of original system

(1.1). We define

Vk(x, t) = ζk(t)v(x, y) and Pk(x, t) = ζk(t)p(x, t), (4.2)

then we consider a system being modification of the original equations, but only for time

interval t ∈ [(k − 1)L, (k + 1)L]. By Theorem 3.1 we know that there exists a maximal

time Tmax for which solutions to system (1.1) exist. To avoid formal analysis we can
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assume that k in (4.2) is taken only for k ≤ [Tmax/L] and we ask if the solution can be

prolong on [0, Tmax + L].

From (1.1) and (4.2) we have

Vk,t − ν∆Vk + ∇Pk = v · ∇Vk + ζ ′kv in Ω × ((k − 1)L, (k + 1)L),

div Vk = 0 in Ω × ((k − 1)L, (k + 1)L),

B(Vk, Pk) = 0 on ∂Ω × ((k − 1)L, (k + 1)L),

Vk|t=(k−1)L = 0 on Ω.

(4.3)

Now, we are ready to apply Proposition 2.3 to system (4.3) getting the estimate on

Vk and Pk

‖Vk‖W 2,1
p,q (Ω×((k−1)L,(k+1)L)) + ‖∇Pk‖Lq((k−1)L,(k+1)L;Lp(Ω))

≤ C(‖v · ∇Vk‖Lq((k−1)L,(k+1)L;Lp(Ω)) + ‖ζ ′v‖Lq((k−1)L,(k+1)L;Lp(Ω))). (4.4)

We consider the r.h.s. of inequality (4.4).

For simplicity let us introduce the following quantity

Ξk = ‖Vk‖W 2,1
p,q (Ω×((k−1)L,(k+1)L)). (4.5)

Applying the imbedding theorem – Proposition 2.1 – we estimate terms of the r.h.s.

of (4.4). For small ǫ > 0 the last term if the r.h.s. of (4.4) is bounded as follows

‖ζ ′v‖Lq((k−1)L,(k+1)L;Lp(Ω)) ≤
2

L
(ǫΞk−1 + I(ǫ)‖v‖L∞((k−1)L,(k+1)L;L2(Ω))). (4.6)

Next, we examine the nonlinear term in two parts related to two time intervals:

((k − 1)L, kL) and (kL; (k + 1)L). We have

‖v · ∇Vk‖Lq((k−1)L,(k+1)L;Lp(Ω)) ≤

‖Vk−1 · ∇Vk‖Lq((k−1)L,kL;Lp(Ω)) + ‖Vk · ∇Vk‖Lq(kL,(k+1)L;Lp(Ω)). (4.7)

To estimate the first term of the r.h.s. of (4.7) we use the fact that in imbedding

conditions we have a strict inequality, thus there is room for interpolation. So

‖Vk−1 · ∇Vk‖Lq((k−1)L,kL;Lp(Ω))

≤ ‖Vk−1‖Lb1
((k−1)L,kL;La1

(Ω))‖∇Vk‖Lb2
(kL,(k+1)L;La2

(Ω)) (4.8)

and from (2.7) we get (L is fixed)

‖Vk−1‖Lb1
((k−1)L,kL;La1

(Ω)) ≤ ǫΞk−1 + I(ǫ)‖v‖L∞(0,Tmax;L2(Ω)), (4.9)

‖∇Vk‖Lb2
(kL,(k+1)L;La2

(Ω)) ≤ ǫΞk + I(ǫ)‖v‖L∞(0,Tmax;L2(Ω)). (4.10)

Thus by (4.8)-(4.10) the first term of the r.h.s. of (4.7) is bounded by

‖Vk−1 · ∇Vk‖Lq((k−1)L,kL;Lp(Ω)) ≤ ǫ2 Ξ2
k + ǫ2 Ξ2

k−1 + I(ǫ)2‖v‖2
L∞(0,Tmax;L2(Ω)). (4.11)

In the same way we get the bound for the second term of (4.7)

‖Vk · ∇Vk‖Lq((k−1)L,kL;Lp(Ω)) ≤ ǫ2 Ξ2
k + I(ǫ)2‖v‖L∞(0,Tmax;L2(Ω)). (4.12)

The r.h.s. of (4.12) is immediately bounded from Lemma 1.1 by the L2-norm of initial

datum v0. Thus from (4.4), (4.6) and (4.12) we conclude

Ξk ≤ ǫ2 Ξ2
k + ǫ2 Ξ2

k−1 + I(ǫ)2‖v0‖
2
L2(Ω) (4.13)
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for a chosen small ǫ > 0. We want to show by induction that for any k ∈ N

Ξk ≤ M, provided M ≤ 2B‖v0‖B
2−2/q
p,q (Ω)

. (4.14)

By Theorem 3.1 condition (4.14) for k = 0 holds. Assuming that bound (4.14) holds for

k − 1 we want to show it for k. From (4.13) we conclude

Ξk ≤ ǫ2 Ξ2
k + ǫ2 M2 + I(ǫ)2‖v0‖

2
L2(Ω). (4.15)

The above inequality implies estimate (4.14) if

1

2ǫ2
(1 −

√

1 − 4ǫ2(ǫ2 M2 + I(ǫ)2‖v0‖2
L2(Ω)) ≤ M. (4.16)

To fulfill condition (4.16) we choose so small ǫ > 0 that

ǫ4 M2 <
1

8
. (4.17)

For chosen ǫ we prescribe the restriction on the L2-norm of the initial datum: assume

that

ǫ2 I(ǫ)2‖v0‖
2
L2(Ω) <

1

8
. (4.18)

Then the l.h.s. of (4.16) is well defined as a real number and by (4.17) and (4.18) we have

1

2ǫ2
(1 −

√

1 − 4ǫ2(ǫ2 M2 + I(ǫ)2‖v0‖2
L2(Ω)) ≤

1

4
M + I(ǫ)2‖v0‖

2
L2(Ω). (4.19)

As ǫ is fixed thus I(ǫ), too, hence the suitable smallness of the L2-norm implies immedi-

ately that the r.h.s. of (4.19) is less than M . This shows statement (4.13). By definition

(4.5) and finiteness of L we conclude estimate (1.12) from Theorem 1.2. Then the trace

theorem and the local in time existence – Theorem 3.1 - guarantees global in time exis-

tence of solutions. Theorem 1.2 is proved.
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