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Abstract. We consider the non-stationary Navier-Stokes equations completed by the equation

of conservation of internal energy. The viscosity of the fluid is assumed to depend on the tem-

perature, and the dissipation term is the only heat source in the conservation of internal energy.

For the system of PDE’s under consideration, we prove the existence of a weak solution such

that: 1) the weak form of the conservation of internal energy involves a defect measure, and

2) the equality for the total energy is satisfied.

1. Introduction. Let Ω ⊂ R3 be a bounded domain, and let 0 < T < ∞. In Q =

Ω × ]0, T [ we consider the following system of PDE’s:

∇ · u = 0,(1.1)

∂u

∂t
+ (u · ∇)u = ∇ · (ν(θ)D(u))−∇p + f ,(1.2)

∂θ

∂t
+ u · ∇θ = ν(θ)D(u) : D(u) −∇ · (κ(θ)∇θ),(1.3)

where u = (u1, u2, u3) = velocity, p = pressure, f = external force θ = temperature,

D(u) = 1
2 (∇u + (∇u)⊤) = rate of strain tensor, ν(θ) = viscosity, κ(θ) = heat conduc-

tivity.

Equations (1.1)–(1.3) represent the laws of conservation of mass, momentum and

internal enery, respectively, of an incompresible fluid in non-stationary motion, where
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the temperature θ stands for the internal energy. The term ν(θ)D(u) : D(u)1 on the

right hand side of (1.3) models the dissipation of internal energy due to viscosity (cf. [3],

[4], [5], [7], [14] for more details).

We complete (1.1)–(1.3) by the following boundary and initial conditions on u and θ:

u = 0,
∂θ

∂n
= 0 on ∂Ω × ]0, T [,(1.4)

u = u0, θ = θ0 on Ω × {0},(1.5)

where n denotes the unit outward normal along ∂Ω.

The aim of the present paper is to continue the discussions of (1.1)–(1.5) we began

in [12], by a more detailed study of the weak solution and the associated defect measure

obtained there.

2. Notations. Existence of an approximate solution. Without any further refer-

ence, throughout the paper the boundary ∂Ω is assumed to be Lipschitzian.

Let W 1,q(Ω)(1 ≤ q < ∞) denote the usual Sobolev space. Define

Vq := {v ∈ W 1,q(Ω;R3) | v = 0 a.e. on ∂Ω, div v = 0 a.e. in Ω},

H :=

{

h ∈ L2(Ω;R3) |

∫

Ω

h · ∇ϕ dx = 0 ∀ϕ ∈ C∞
c (Ω)

}

.

Vq is a Banach space with respect to the norm

‖v‖Vq
:=

( 3
∑

i,j=1

∫

Ω

∣

∣

∣

∣

∂vi

∂xj

∣

∣

∣

∣

q

dx

)1/q

;

H is a Hilbert space with respect to the scalar product

(g,h)H :=

∫

Ω

g · h dx.

The following imbeddings are readily established:

(2.1) Vq ⊂ H continuously, densely if q ≥ 6/5,

(2.2) Vq ⊂ H compactly if q > 6/5

(cf. [12] for details).

Next, given a normed space X with norm ‖ · ‖, we denote by X∗ its dual space, by

‖ · ‖∗ the dual norm on X∗ and by 〈z∗, z〉X the value of the continuous linear functional

z∗ ∈ X∗ at z ∈ X.

By Lq(0, T ; X) (1 ≤ q ≤ ∞) we denote the vector space of all equivalence classes of

Bochner measurable functions z : [0, T ] → X such that
∫ T

0

‖z(t)‖q dt < ∞ if 1 ≤ q < ∞, ess sup
t∈[0,T ]

‖z(t)‖ < ∞ if q = ∞.

Finally, let M(Q̄) denote the space of all Radon measures in Q̄.

1Given two matrices A = {Aij}, B = {Bij}, the trace of their product is defined by A : B =
AijBij . Throughout the paper, repeated Latin subscripts imply summation on 1, 2, 3.
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For notational simplicity, in what follows we write Lq and W 1,q in place of Lq(Ω) and

W 1,q(Ω), respectively. Define

D(u,v) := Dij(u)Dij(v).

The following result has been proved in [13].

Theorem 1. Assume u0 ∈ V6, θ0 ∈ W 1,2. Fix r ∈ ]6/5, 5/4[, and define ρ := 8r/(5r−6).

Then for every ε > 0 there exists {uε, θε} such that


















uε ∈ L2(0, T ; V2) ∩ C([0, T ]; H),u′
ε ∈ L2(0, T ; V ∗

2 ),

θε ∈ Lr(0, T ; W 1,r) ∩ L∞(0, T ; L1) ∩ C([0, T ]; (W 1,ρ)∗),

θ′ε ∈ L1(0, T ; (W 1,ρ)∗),

(2.3)

and

(2.4)

∫ T

0

〈u′
ε,v〉V2

dt +

∫

Q

ν(θε)D(uε,v) dx dt −

∫

Q

uεiuεjΦε(|uε|
2)

∂vi

∂xj
dx dt

=

∫ T

0

〈f ,v〉V2
dt ∀v ∈ L2(0, T ; V2),

(2.5)

∫ T

0

〈θ′ε, ϕ〉W 1,ρ dt −

∫

Q

uεiθε
∂ϕ

∂xi
dx dt +

∫

Q

κ(θε)∇θε · ∇ϕ dx dt

=

∫

Q

ν(θε)D(uε,uε)ϕ dx dt ∀ϕ ∈ L∞(0, T ; W 1,ρ),

(2.6) uε(0) = u0, θε(0) = θ0.

In addition,

(2.7)
1

2

∫

Ω

|uε(t)|
2 dx +

∫ t

0

∫

Ω

ν(θε)D(uε,uε) dx ds

=
1

2

∫

Ω

|u0|
2 dx +

∫ t

0

〈f ,uε〉V2
ds ∀t ∈ [0, T ],

(2.8)







‖u′
ε‖L4/3(0,T ;V ∗

2
) ≤ c(1 + ‖u0‖H + ‖f‖L2(0,T ;V ∗

2
))(‖u0‖H + ‖f‖L2(0,T ;V ∗

2
)),

c = const independent of ε,

(2.9) ess sup
t∈[0,T ]

∫

Ω

|θε(t)| dx +

∫

Q

|∇θε|
r dx dt +

∫

Q

|∇θε|2

(1 + |θε|)1+σ
dx dt ≤ C1

for all 0 < σ < (5 − 4r)/3 and

(2.10) ‖θ′ε‖L1(0,T ;(W 1,ρ)∗) ≤ C2,

where C1 and C2 are constants which depend on σ, mes(Ω), ‖f‖L2(0,T ;V ∗

2
), ‖u0‖H and

‖θ0‖L1 , but are independent of ε. Moreover,

(2.11)

∫

Ω

(

1

2
|uε(t)|

2 + θε(t)

)

dx

=

∫

Ω

(

1

2
|u0|

2 + θ0

)

dx +

∫ t

0

〈f ,uε〉V2
ds for a.e. t ∈ [0, T ].
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Here, the function Φε in (2.4) is defined as follows. Fix a non-increasing function

Φ ∈ C([0, +∞[) such that

• 0 ≤ Φ ≤ 1 in [0, +∞[,

• Φ = 1 in [0, 1], Φ = 0 in [2, +∞[.

Then, for ε > 0 define

Φε(ξ) = Φ(εξ), ξ ∈ [0, +∞[.

Clearly,

ξΦε(ξ) ≤
2

ε
∀ξ ∈ [0, +∞[, ∀ε > 0, lim

ε→0
Φε(ξ) = 1 ∀ξ ∈ [0, +∞[.

3. Existence of a weak solution. We have the following

Theorem 2. Let u0 ∈ H, θ0 ∈ L1. Then there exists a triple {u, θ, µ} such that

(3.1)



























u ∈ Cw([0, T ]; H) ∩ L2(0, T ; V2), u′ ∈ L4/3(0, T ; V ∗
2 ),

θ ∈ L∞(0, T ; L1(Ω)) ∩
⋂

1≤r< 5

4

Lr(0, T ; W 1,r(Ω)),

µ ∈ M(Q̄)

and

(3.2)

∫ T

0

〈u′(t),v(t)〉V2
dt +

∫

Q

ν(θ)D(u,v) dx dt−

∫

Q

uiuj
∂vi

∂xj
dx dt

=

∫ T

0

〈f(t),v(t)〉V2
dt ∀v ∈ L4(0, T ; V2),

(3.3) −

∫

Q

θ
∂ϕ

∂t
dt −

∫

Q

uiθ
∂ϕ

∂xi
dx dt +

∫

Q

κ(θ)∇θ · ∇ϕ dx dt

=

∫

Q

θ0(x)ϕ(x, 0) dx +

∫

Q

ν(θ)D(u,u)ϕ dx dt +

∫

Q̄

ϕ dµ ∀ϕ ∈ C1(Q̄), ϕ(·, T ) = 0,

(3.4) u(0) = u0, lim
t→0

∫

Ω

θ(x, t) dx =

∫

Ω

θ0(x) dx.

In addition,

(3.5)
1

2

∫

Ω

|u(t)|2 dx+

∫ t

0

∫

Ω

ν(θ)D(u,u) dx ds≤
1

2

∫

Ω

|u0|
2 dx+

∫ t

0

〈f ,u〉V2
ds ∀t∈ [0, T ],

(3.6) ess sup
t∈[0,T ]

∫

Ω

|θ(x, t)| dx +

∫

Q

|∇θ|r dx dt +

∫

Q

|∇θ|2

(1 + |θ|)1+σ
dx dt ≤ c,

for all 1 ≤ r < 5/4 and 0 < σ < (5 − 4r)/3, where c = const depends on ‖f‖L2(0,T ;V ∗

2
),

‖u0‖H , ‖θ0‖L1 and σ, and

(3.7)

∫

Ω

(

1

2
|u(x, t)|2 + θ(x, t)

)

dx

=

∫

Ω

(

1

2
|u0(x)|2 + θ0(x)

)

dx +

∫ t

0

〈f ,u〉V2
ds for a.e. t ∈ [0, T ].
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Here, u′ denotes the derivative of u in the sense of distributions on ]0, T [ with values

in V ∗
2 .

Remarks. 1. By Cw([0, T ]; H) we denote the vector space of all mappings v : [0, T ] → H

such that, for every h ∈ H, the function t 7→ (v(t),h)H is continuous on [0, T ]. We

note that u ∈ L∞(0, T ; H) (cf. (3.5)) and u′ ∈ L4/3(0, T ; V ∗
2 ) imply the existence of a

ũ ∈ Cw([0, T ]; H) such that ũ(t) = u(t) for a.e. t ∈ [0, T ]. Thus (3.5) has to be understood

with ũ in place of u.

Clearly, for every v ∈ Cw([0, T ]; H),

‖v(t)‖H ≤ lim inf
s→t

‖v(s)‖H ∀t ∈ [0, T ].

From (3.5) it follows that

lim sup
t→0

‖ũ(t)‖H ≤ ‖u0‖H .

Therefore limt→0 ‖ũ(t) − u0‖H = 0, i. e. ũ(0) = u0 (cf. (3.4)).

2. Equation (3.7) implies that

t 7→

∫

Ω

(

1

2
|u(x, t)|2 + θ(x, t)

)

dx

can be identified with an absolutely continuous function on [0, T ]. In this sense, possible

jump discontinuities of ‖ũ(·)‖2
H =

∫

Ω
|u(x, ·)|2 dx are compensated by 2

∫

Ω
θ(x, ·) dx.

3. In addition to θ0 ∈ L1(Ω), assume ess infΩ θ0 ≥ 0. Then

θ(x, t) ≥ ess inf
Ω

θ0 for a.e. (x, t) ∈ Q.

Proof of Theorem 2. Let (u0ε) ⊂ V6 and (θ0ε) ⊂ W 1,2 (ε > 0) be sequences such that

u0ε → u0 strongly in H and θ0ε → θ0 strongly in L1 as ε → 0.

Let {uε, θε} denote a pair obtained in Theorem 1 above. From (2.7), (2.8) and (2.9),

(2.10) it follows that there exists a subsequence of {uε, θε} (not relabelled) such that

uε → u weakly in L2(0, T ; V2), strongly in [L2(Q)]3,

uε → u a.e. in Q,

uε → u weakly in L4/3(0, T ; V ∗
2 )

and

θε → θ weakly in Lr(0, T ; W 1,r), weakly in L4r/3(Q), strongly in Lr(Q),

θε → θ a.e. in Q

as ε → 0 (1 ≤ r < 5/4; cf. [11], [12]). These convergence properties of {uε, θε} make

it easy to pass to the limit ε → 0 in (2.4) and (2.7). This gives (3.2) and (3.5) for a.e.

t ∈ [0, T ], respectively. To see that (3.5) in fact holds for all t ∈ [0, T ], let t ∈ [0, T ]. Then

there exists a sequence (tk) ⊂ [0, T ] such that tk → t as k → ∞, and (3.5) is true with tk
in place of t. For the representative ũ ∈ Cw([0, T ]; H) of u we obtain

‖ũ(t)‖H ≤ lim
k→∞

‖ũ(tk)‖H .
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The first term on the left of (3.5) thus has to be understood with ũ in place of u. In

particular,

ũ(0) = u0 (cf. (3.4)), lim
t→0

‖ũ(t)‖H = ‖u0‖H .

To let ε → 0 in (2.11) we multiply each term of (2.11) by ζ ∈ C∞
c (]0, T [) and integrate

over [0, T ]. Observing that

lim
ε→0

∫

Q

|uε(x, t)|2ζ(t) dx dt =

∫

Q

|u(x, t)|2ζ(t) dx dt,

lim
ε→0

∫

Q

θε(x, t)ζ(t) dx dt =

∫

Q

θ(x, t)ζ(t) dx dt,

we find

∫ T

0

ζ(t)

∫

Ω

(

1

2
|u(t)|2 + θ(t)

)

dx dt =

∫ T

0

ζ(t)

{
∫

Ω

(

1

2
|u0|

2 + θ0

)

dx +

∫ t

0

〈f ,u〉V2
ds

}

.

This implies (3.7). Now, from (3.7) it follows that

lim
t→0

∫

Ω

θ(x, t) dx =

∫

Ω

θ0(x) dx.

Next, to let ε → 0 in (2.5) we identify each function ν(θε)D(uε,uε) with a Radon

measure in M(Q̄) to obtain a bounded sequence of measures. By weak∗ compactness of

bounded sequences of measures, there exists a subsequence of {uε, θε} (not relabelled)

and a Radon measure µ0 ∈ M(Q̄) such that

(3.8) lim
ε→0

∫

Q

ν(θε)D(uε,uε)ϕ dx dt =

∫

Q̄

ϕ dµ0 ∀ϕ ∈ C(Q̄).

Integrating by parts the first term on the left of (2.5) and letting ε → 0 gives

(3.9) −

∫

Q

θ
∂ϕ

∂t
dx dt −

∫

Q

uiθ
∂ϕ

∂xi
dx dt +

∫

Q

κ(θ)∇θ · ∇ϕ dx dt

=

∫

Ω

θ0(x)ϕ(x, 0) dx +

∫

Q̄

ϕ dµ0 ∀ϕ ∈ C1(Q̄), ϕ(·, T ) = 0.

On the other hand, observing that

lim inf
ε→0

∫

Q

ν(θε)D(uε,uε)ϕ dx dt ≥

∫

Q

ν(θ)D(u,u)ϕ dx dt ∀ϕ ∈ C(Q̄), ϕ ≥ 0

it follows that

(3.10)

∫

Q̄

ϕ dµ0 ≥

∫

Q

ν(θ)D(u,u)ϕ dx dt ∀ϕ ∈ C1(Q̄), ϕ(·, T ) = 0, ϕ ≥ 0.

Now, for Borel sets E ⊆ Q̄, define

(3.11) µ(E) := µ0(E) −

∫

E

ν(θ)D(u,u) dx dt.
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We obtain

(i) µ(∅) = 0,

(ii) µ(
⋃∞

i=1 Ei) =
∑∞

i=1 µ(Ei), Ei ⊂ Q̄ Borel, disjoint,

(iii) µ(E) ≥ 0 ∀E ⊆ Q̄ Borel.

Here, (i) and (ii) are obvious, whereas (iii) follows from (3.11). Thus, µ ∈ M(Q̄) and
∫

E

ϕ dµ =

∫

E

ϕ dµ0 −

∫

E

ν(θ)D(u,u)ϕ dx dµdt

for any Borel set E ⊆ Q̄ and any ϕ ∈ C(Q̄). Now, (3.9) takes the form (3.3).

Finally, (3.6) is readily deduced from (2.9) and (2.10) by routine arguments.

Interpretation of (3.3). We identify the measure µ with a distribution in Q. Then (3.3)

implies
∂θ

∂t
+ u · ∇θ = ν(θ)D(u,u) −∇ · (κ(θ)∇θ) + µ in D′(Q).

This equation represents the difference (or defect) between the conservation of internal

energy in the classical context (cf. (1.3)) and its counterpart in the context of distribu-

tions. The measure µ which may be called the defect measure, can be interpreted as an

additional dissipation term which arises from discontinuities of the weak solution {u, θ}

of (1.1)–(1.5) under consideration.

The appearance of defect measures is a well-known phenomenon of limits of approxi-

mate solutions for nonlinear PDE’s (cf. e.g., [1],[3], [6], [8], [9]).

4. Some properties of the defect measure µ. Let {uε, θε} be an approximate so-

lution to (1.1)–(1.5) obtained in Theorem 1 with initial data u0ε ∈ V6, θ0ε ∈ W 1,2 such

that u0ε → u0 strongly in H, θ0ε → θ0 strongly in L1 as ε → 0. Let {u, θ} denote

the limit of a convergent subsequence of {uε, θε} (cf. the proof of Theorem 2), and let

µ0 ∈ M(Q̄) be a Radon measure associated with {uε, θε} according to (3.8).

From the strong convergence uε → u in [L2(Q)]3 it follows that there exists a null-set

N ⊂ ]0, T [ such that

(4.1) lim
ε→0

‖uε(t)‖ = ‖u(t)‖ ∀t ∈ ]0, T [ \ N .

We now prove the following

Proposition. For all t ∈ ]0, T [ \ N ,

(4.2) lim
ε→0

∫ t

0

∫

Ω

ν(θε)D(uε,uε)ϕ dx ds =

∫

Ω̄×[0,t]

ϕ dµ0 ∀ϕ ∈ C(Q̄).

Proof. Let t ∈ ]0, T [ \ N . Let (tk) ⊂ ]0, T [ \ N be a sequence such that tk > t for all

k ∈ N, and lim
k→∞

tk = t. For every k ∈ N, take ζk ∈ C([0, T ]) satisfying

0 ≤ ζk ≤ 1 in [0, T ], ζk(s) =

{

1 if 0 ≤ s ≤ t,

0 if tk ≤ s ≤ T.
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Let ϕ ∈ C(Q̄) and k ∈ N. We have

(4.3)

∫ t

0

∫

Ω

ν(θε)D(uε,uε)ϕ dx ds −

∫

Ω̄×[0,t]

ϕ dµ0

=

∫

Q

ν(θε)D(uε,uε)ϕζk dx ds −

∫

Q̄

ϕζk dµ0

−

∫ tk

t

∫

Ω

ν(θε)D(uε,uε)ϕζk dx ds +

∫

Ω̄×]t,tk[

ϕζk dµ0.

Observing that

1

2
‖uε(tk)‖2

H +

∫ tk

t

∫

Ω

ν(θε)D(uε,uε) dx ds =
1

2
‖uε(t)‖

2
H +

∫ tk

t

〈f ,uε〉V2
ds

(cf. (2.7)), we find
∣

∣

∣

∣

−

∫ tk

t

∫

Ω

ν(θε)D(uε,uε)ϕζk dx ds

∣

∣

∣

∣

≤ max
Q̄

|ϕ|

∫ tk

t

∫

Ω

ν(θε)D(uε,uε) dx ds

= max
Q̄

|ϕ|

{

1

2

(

‖uε(t)‖
2
H − ‖uε(tk)‖2

H

)

+

∫ tk

t

〈f ,uε〉V2
dx

}

.

Thus, by (3.8) and (4.1),

(4.4) lim sup
ε→0

∣

∣

∣

∣

∫ t

0

∫

Ω

ν(θε)D(uε,uε)ϕ dx ds −

∫

Ω̄×[0,t]

ϕ dµ0

∣

∣

∣

∣

≤ max
Q̄

|ϕ|

{

1

2
(‖ũ(t)‖2

H − ‖ũ(tk)‖2
H) +

∫ tk

t

〈f ,u〉V2
ds

}

+ max
Q̄

|ϕ|µ0(Ω̄ × ]t, tk[),

where ũ ∈ u denotes the representative belonging to Cw([0, T ]; H).

Clearly,

lim sup
k→∞

(‖ũ(t)‖2
H − ‖ũ(tk)‖2

H) ≤ 0, lim
k→∞

µ0(Ω̄ × ]t, tk[ ) = µ0

(

∞
⋂

k=1

(Ω̄ × ]t, tk[ )
)

= 0.

Taking the lim supk→∞ on both sides of (4.4) gives the claim.

To proceed, we note that (2.5) implies
∫

Ω

θε(x, t)η(x) dx −

∫ t

0

∫

Ω

uεiθε
∂η

∂xi
dx ds +

∫ t

0

∫

Ω

κ(θε)∇θε · ∇η dx ds

=

∫

Ω

θ0ε(x)η(x) dx +

∫ t

0

∫

Ω

ν(θε)D(uε,uε)η dx ds

for a.e. t ∈ [0, T ] and all η ∈ W 1,ρ (ρ = 8r/(5r − 6) with 6/5 < r < 5/4). Observing (4.2),

the passage to the limit ε → 0 gives, for any η ∈ W 1,ρ,

(4.5)

∫

Ω

θ(x, t)η(x) dx −

∫ t

0

∫

Ω

uiθ
∂η

∂xi
dx ds +

∫ t

0

∫

Ω

κ(θ)∇θ · ∇η dx ds

=

∫

Ω

θ0(x)η(x) dx +

∫ t

0

∫

Ω

ν(θ)D(u,u)η dx ds +

∫

Ω̄×[0,T ]

η dµ

for a.e. t ∈ [0, T ] (µ according to (3.11)). Here, by virtue of the separability of W 1,ρ, the

null-set in [0, T ] where the equation in (4.5) fails does not depend on η.
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Thus, there exists a null-set N0 ⊂ ]0, T [ such that (4.1) and the equation in (4.5) hold

for all t ∈ ]0, T [ \ N0, and

(4.6)

∫

Ω

(

1

2
|u(x, t)|2 + θ(x, t)

)

dx

=

∫

Ω

(

1

2
|u0(x)|2 + θ0(x)

)

dx +

∫ t

0

〈f ,u〉V2
ds ∀t ∈ ]0, T [ \ N0.

We now prove

Theorem 3. Let N0 be as above. Then:

(i) For all t, t′ ∈ ]0, T [ \ N0, t < t′,

1

2

∫

Ω

|u(t′)|2 dx +

∫ t′

t

∫

Ω

ν(θ)D(u,u) dx ds + µ(Ω̄ × ]t, t′])

=
1

2

∫

Ω

|u(t)|2 dx +

∫ t′

t

〈f ,u〉V2
ds;

(ii) µ(Ω̄ × {0}) = 0;

(iii) µ(Ω̄ × {t}) > 0 for at most countably many t ∈ ]0, T [;

(iv) fix 6/5 < r < 5/4, define ρ := 8r/(5r − 6); then

‖θ(t′) − θ(t)‖(W 1,ρ)∗

≤ c

{
∫ t′

t

(‖∇θ(s)‖Lr + ‖u(s)‖L8/3‖θ(s)‖L4/3 + ‖∇u(s)‖2
L2) ds + µ(Ω̄ × ]t, t′])

}

for all t, t′ ∈ ]0, T [ \ N0, t < t′.

Proof. (i) Take η = 1 in (4.5). Combining this with (4.6) implies

1

2

∫

Ω

|u(t)|2 dx +

∫ t

0

∫

Ω

ν(θ)D(u,u) dx ds + µ(Ω̄ × [0, t])

=
1

2

∫

Ω

|u(t)|2 dx +

∫

Ω

θ(t) dx −

∫

Ω

θ0 dx =
1

2

∫

Ω

|u0|
2 dx +

∫ t

0

〈f ,u〉V2
ds.

This equation also holds with t′ in place of t. Subtracting the two equations gives the

desired result.

(ii) Let (τk) ⊂ ]0, T [ \ N0 be a sequence such that limk→∞ τk = 0. Again using (4.5)

with η = 1, and (4.6) gives

µ(Ω̄ × {0}) = lim
k→∞

µ(Ω̄ × [0, τk])

= lim
k→∞

(
∫

Ω

θ(τk) dx −

∫

Ω

θ0 dx −

∫ τk

0

∫

Ω

ν(θ)D(u,u) dx ds

)

= 0.

(iii) The claim follows immediately from µ(Q̄) ≤ µ0(Q̄) < ∞.
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(iv) From (4.5) it follows that, for any η ∈ W 1,ρ,
∣

∣

∣

∣

∫

Ω

(θ(x, t′) − θ(x, t))η(x) dx

∣

∣

∣

∣

≤

∫ t′

t

∣

∣

∣

∣

(

− κ(θ)∇θ · ∇η + uiθ
∂η

∂xi
+ ν(θ)D(u,u)η

)

dx

∣

∣

∣

∣

ds + max
Ω̄

|η|µ(Ω̄ × ]t, t′])

≤ c

{
∫ t′

t

(‖∇θ(s)‖Lr + ‖u(s)‖L8/3‖θ(s)‖L4/3 + ‖∇u(s)‖2
L2) ds + µ(Ω̄ × ]t, t′])

}

‖∇η‖Lρ

(cf. [12] for details), whence the claim.

Remark. The term µ(Ω̄× ]t, t′]) in Theorem 3 (i) may be viewed as the ”missing term”

for the energy equality for weak solutions to the Navier-Stokes equations. By an entirely

different argument, a dissipation term in a local form of the energy equality for the Navier-

Stokes equations has been obtained in [2]. A refinement of the usual energy inequality

for weak solutions to these equations has been established in [10], [11].
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