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Abstract. We consider the non-stationary Navier-Stokes equations completed by the equation
of conservation of internal energy. The viscosity of the fluid is assumed to depend on the tem-
perature, and the dissipation term is the only heat source in the conservation of internal energy.
For the system of PDE’s under consideration, we prove the existence of a weak solution such
that: 1) the weak form of the conservation of internal energy involves a defect measure, and
2) the equality for the total energy is satisfied.

1. Introduction. Let @ c R® be a bounded domain, and let 0 < T < co. In Q =
Q2 x )0, T[ we consider the following system of PDE’s:

(1.1) V-u=0,
(1.2) % +(u-V)u=V-(v(0)D(u)) — Vp+Tf,
(1.3) % +u-V0=v()D(u): D(u) — V- (k(0)V0),

where u = (uq,us,us) = velocity, p = pressure, f = external force § = temperature,
D(u) = 3(Vu+ (Vu) ") = rate of strain tensor, v(f) = viscosity, x(#) = heat conduc-
tivity.

Equations (1.1)—(1.3) represent the laws of conservation of mass, momentum and
internal enery, respectively, of an incompresible fluid in non-stationary motion, where
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the temperature 6 stands for the internal energy. The term v(#)D(u) : D(u)! on the
right hand side of (1.3) models the dissipation of internal energy due to viscosity (cf. [3],
[4], [5], [7], [14] for more details).

We complete (1.1)—(1.3) by the following boundary and initial conditions on u and 6:

06
(1.4) u =0, an—O on 0N x0,T],
(1.5) u=uy, 6=6, on Qx{0},

where n denotes the unit outward normal along 0.

The aim of the present paper is to continue the discussions of (1.1)—(1.5) we began
n [12], by a more detailed study of the weak solution and the associated defect measure
obtained there.

2. Notations. Existence of an approximate solution. Without any further refer-

ence, throughout the paper the boundary 0f2 is assumed to be Lipschitzian.
Let Wh4(Q)(1 < g < o0) denote the usual Sobolev space. Define

Vyi={ve Wl’q(Q;Rg) | v=0a.e. ondQ, divv =0 a.e. in 2},

H .= {h € LA (R | / h-Vodr =0V € CgO(Q)}.
Q

)1/q

Vg is a Banach space with respect to the norm

Ivllv, = / ou. |*
Va - ox;

H is a Hilbert space with respect to the scalar product

(g h) = / g hdz.
Q

The following imbeddings are readily established:

7,5=1

(2.1) Vg C H continuously, densely if ¢ > 6/5,
(2.2) Vo, C H compactly if ¢ >6/5
(cf. [12] for details).
Next, given a normed space X with norm || - ||, we denote by X* its dual space, by

I - |+« the dual norm on X* and by (z*, z) x the value of the continuous linear functional
e X" atz e X.

By L9(0,T; X) (1 < g < c0) we denote the vector space of all equivalence classes of
Bochner measurable functions z : [0, 7] — X such that

T
/ lz@)||9dt < 0o f1<g<oo, esssuplz(t)]<oo ifg=o00
0 te[0,T]

Finally, let M(Q) denote the space of all Radon measures in Q.

!Given two matrices A = {A;;}, B = {Bi;}, the trace of their product is defined by A : B =
A;; Bij. Throughout the paper, repeated Latin subscripts imply summation on 1,2, 3.
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For notational simplicity, in what follows we write L? and W in place of L?() and
W14(Q), respectively. Define

D(u, V) = Dij(ll)Dij (V)
The following result has been proved in [13].

THEOREM 1. Assume ug € Vg, 6 € WH2. Fiz r €16/5,5/4[, and define p := 8r/(5r —6).
Then for every € > 0 there exists {u., 0.} such that

u. € L*(0,T; Vo) N C([0,T); H),ul. € L*(0,T; Vy),
(2.3) 0. € L"(0, T; WLy L>(0,T; L) N C([0, T]; (Whr)*),
0. € L'(0,T; (Wh?)*),
and

T .
(2.4) / (., vy, dt+/ V(GE)D(uE,v)dxdt—/ pitie; . (fug[2) 20
0 Q Q

9z, dx dt

T
= / (£, v)v, dt ¥v € L*(0,T; Va),
0
T agp
(2.5) / (0L, 0)we dtf/ ueiﬂe—dxdt+/ k(0:)V0. - Vo dz dt
0 0 O0x; o
:/ v(0.)D(ue,u.)pdr dt Vo € L0, T; WH*),
Q

(2.6) u:(0) =ug, 6:-(0) = .
In addition,

(2.7) %/QuE(t)|2dx+/0t/91/(05)D(uE,ug)dxds

1 t
_ _/ |u0\2d:13+/ (£, )y, ds Vt € [0, ),
2 Q 0

28) latllparso,rivyy < e(U 4 [laolla + Il 22 0,mvy)) (Mol + 1€l 22 0,3v))s

c = const independent of ¢,

VO |?
2.9 esssup/ 0. (t dx+/ Vo dedt+/ ———dxdt < C
( ) +e[0.7] Q| E( )‘ Q| E‘ Q(1+|95D1+0 1
forall 0 <o < (5—4r)/3 and

(2.10) 102111 0,750 .0)) < Cos

where Cy and Cy are constants which depend on o, mes(Q), ||f||r20,7:v;), [[wollm and
16ollz1, but are independent of €. Moreover,

2 [ (0P +o) d

1 t
:/ <§|UO|2 +90> der/ (f,ue)v, ds for a.e. t € [0,T]. m
Q 0
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Here, the function ®. in (2.4) is defined as follows. Fix a non-increasing function
® € C([0,400[) such that

e 0 <®<1in [0,+00],
e ®=1in[0,1], ® =0in [2, 400l

Then, for ¢ > 0 define
D (§) = (e€), £ € [0, +oo.
Clearly,
£D (&) < § V¢ € [0, +oo[, Ve >0, 21_1% D () =1V €]0,+00].

3. Existence of a weak solution. We have the following
THEOREM 2. Let ug € H, 0y € L*. Then there exists a triple {u,0,u} such that
uc C,([0,T); H) N L*(0,T;Va), u’ € LY3(0,T; Vs,

(3.1) 0 L=0,T;L' Q)N N L0, T; W (Q)),

1§r<%

pe M(Q)

and

T
(3.2) /0 (W' (t), v(t)v, dt+/Qy(9)D(u,v) dxdt—/ ujg dz dt
= /T<f(t),v(t)>v2 dt v € L*0,T; V),
0
/98‘p dt — / Haa—;dxdt—i—/Qﬁ(Q)VG-dexdt
:/ 90(I)(p(l‘,0)d$+/ V(H)D(u,u)@dzdt+[¢du V@ECI(Q), o(-,T) =0,
Q Q Q

(3.4) u(0) = uy, }if(l)/ﬂ@(m,t) dm:/ﬂﬁo(ac) dx

In addition,

1 t
/|u |2d:17+// (u,u dxds<2/|u0|2dx+/ (f,u)y, dsVt€[0,T],
0

Vo[?
3.6 esssup/ O(z,t) dx—l—/ \YJ da:dt—l—/ ———————dzdt <c,
(26) e vor T+ o)

forall 1 <r <5/4 and 0 < o < (5—4r)/3, where c = const depends on ||f||L20,7;v;)s
luollrs 116ol|lLr and o, and

(3.7) /Q(%|u(x,t)|2+9(x,t)> do
—/Q(%|u0(:c)|2+90(:c)> der/()t(f,u)Vzds for a.e.t € [0,7).
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Here, u’ denotes the derivative of u in the sense of distributions on ]0, T[ with values
in V5.

REMARKS. 1. By C,([0,T]; H) we denote the vector space of all mappings v : [0,7] — H
such that, for every h € H, the function ¢t — (v(¢),h)y is continuous on [0,7]. We
note that u € L>®(0,T; H) (cf. (3.5)) and v’ € L*3(0,T; V") imply the existence of a
u € Cy([0,T]; H) such that a(t) = u(t) for a.e. t € [0,T]. Thus (3.5) has to be understood
with @ in place of u.

Clearly, for every v € C,,([0,T]; H),
v e < limin lv(s)||z YVt € 10,77

From (3.5) it follows that

liI?Sélp la()||z < |luollx-

Therefore lim;_,o ||[Q(t) — up||lg = 0, i. e. 4(0) = ug (cf. (3.4)).
2. Equation (3.7) implies that

tH/Q<%|u(x,t)2+0(x,t)> da

can be identified with an absolutely continuous function on [0, 7]. In this sense, possible
jump discontinuities of |[a(-)[|}; = [, [u(x,-)|* dz are compensated by 2 [, (x, -) dz.
3. In addition to 6y € L'(2), assume essinfq 6y > 0. Then

O(x,t) > essQinf 0y for ae. (z,t) € Q.

Proof of Theorem 2. Let (ug:) C Vg and (fp.) C W2 (¢ > 0) be sequences such that
ug. — U strongly in H and 6. — g strongly in L' as ¢ — 0.
Let {uc, 0.} denote a pair obtained in Theorem 1 above. From (2.7), (2.8) and (2.9),
(2.10) it follows that there exists a subsequence of {u., .} (not relabelled) such that
u. —u  weakly in L?(0,T;V3), strongly in [L?(Q)]?,
u. —>u a.e. in Q,

u. —u  weakly in L¥3(0,T; V)
and

0. — 6 weakly in L"(0,T; W'"), weakly in LA/3 (Q), strongly in L"(Q),
0. — 0 a.e.in Q

as e — 0 (1 < r < 5/4; cf. [11], [12]). These convergence properties of {u.,6.} make
it easy to pass to the limit € — 0 in (2.4) and (2.7). This gives (3.2) and (3.5) for a.e.
t € [0, T7], respectively. To see that (3.5) in fact holds for all ¢ € [0,T], let ¢ € [0,7]. Then
there exists a sequence (tx) C [0,T] such that ¢, — ¢ as k — oo, and (3.5) is true with ¢
in place of ¢. For the representative i € Cy, ([0, T]; H) of u we obtain

[a@®)llr < lim [[at.)] .
—00
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The first term on the left of (3.5) thus has to be understood with @ in place of u. In
particular,

(0) = o (cf. (3.4)), T [(t) s = [|uollu-

To let € — 0 in (2.11) we multiply each term of (2.11) by ¢ € C¢°(]0,T]) and integrate
over [0,T]. Observing that

lim / (o, )PC(t) da i = / (e, 2C(t) da dt.

lim 9 (z,t)((t) dx dt = / O(x, t)((t) dx dt,

e—

we find

/OT((t)/Q<%u(t)|2+0(t)> dxdt_/OTg(t){/Q<%uo|2+00> dx+/0t<f,u>v2 ds}.

This implies (3.7). Now, from (3.7) it follows that
hn% O(z,t)dx = / Oo(x

Next, to let ¢ — 0 in (2.5) we 1dent1fy each function v(6.)D(u.,u.) with a Radon
measure in M(Q) to obtain a bounded sequence of measures. By weak* compactness of
bounded sequences of measures, there exists a subsequence of {u.,0.} (not relabelled)
and a Radon measure po € M(Q) such that

(3.8) liHé v(0:)D(u.,u.)pdxdt = / o duo Ve € C(Q).
e Q

Integrating by parts the first term on the left of (2.5) and letting ¢ — 0 gives

(3.9) —/ e dmdt—/ i d:z:dt—i—/ K(0)VO - Vo dx dt

— [ o)t 0o+ [ pduo ¥ € CHQ), (. T) =0
Q Q
On the other hand, observing that

limiélf/ v(0:)D(ue,u.)pdrdt > / v(0)D(u,n)pdrdt Yo € C(Q), ¢ >0
e Q Q

it follows that

(3.10) /Q o dpo > /Q v(6)D(w, )i da dt Vo € C1(Q), (-, T) = 0, 0 > 0.

Now, for Borel sets E C @, define

(3.11) w(E) = po(E) — /EV(Q)D(u,u) dx dt.
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‘We obtain

(i) p(®) =0, )

(i) p(Useq Ei) = Yooy 1(E;), E; C Q Borel, disjoint,

(iii) w(E) >0 VE C Q Borel.
(

Here, (i) and (ii) are obvious, whereas (iii) follows from (3.11). Thus, u € M(Q) and
/ pdu = / ¢ dpo — / v(0)D(u, u)p dz dudt
E E E

for any Borel set £ C Q and any ¢ € C(Q). Now, (3.9) takes the form (3.3).
Finally, (3.6) is readily deduced from (2.9) and (2.10) by routine arguments. m

Interpretation of (3.3). We identify the measure y with a distribution in Q. Then (3.3)
implies
00

5 T u VO =v(O)D(u ) = V- (=(O)V8) +u in D'(Q).

This equation represents the difference (or defect) between the conservation of internal
energy in the classical context (cf. (1.3)) and its counterpart in the context of distribu-
tions. The measure p which may be called the defect measure, can be interpreted as an
additional dissipation term which arises from discontinuities of the weak solution {u, 6}
of (1.1)—(1.5) under consideration.

The appearance of defect measures is a well-known phenomenon of limits of approxi-
mate solutions for nonlinear PDE’s (cf. e.g., [1],[3], [6], [8], [9]). =

4. Some properties of the defect measure u. Let {u.,6.} be an approximate so-
lution to (1.1)—(1.5) obtained in Theorem 1 with initial data ug. € Vg, 6p. € W12 such
that ug. — ug strongly in H, 6. — 6 strongly in L' as ¢ — 0. Let {u, 0} denote
the limit of a convergent subsequence of {u., 6.} (cf. the proof of Theorem 2), and let

o € M(Q) be a Radon measure associated with {u., 6.} according to (3.8).

From the strong convergence u. — u in [L?(Q)]? it follows that there exists a null-set
N C]0,T[ such that

(1) tim [ (1) = [u(®)] ¥t € J0, T[\ .
We now prove the following

PROPOSITION. For all t € ]0,T[\ N,

(4.2) hm/o /QV(QE)D(uE,uE)gD dx ds :/ wdu Yo € C(Q).

Qx[0,t]

e—0

Proof. Let t € 10,T[\ N. Let (tx) C ]0,T[\ N be a sequence such that ¢, > ¢ for all
k € N, and klim tr = t. For every k € N, take (, € C([0,T]) satisfying

1 ifo<s<t,

0<¢ <1in[0,T], Ck(s):{o ifty <s<T
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Let ¢ € C(Q) and k € N. We have

(4.3) / / ug,ug)npda:ds—/ @ dug
Q Qx[0,t]

- / V(0.)D (e, ) pCr da ds — / o dpig
Q Q

tr
- / / v(0.)D(u., w) oGy da ds + / oG o,
t (9] QX]t,tk[

Observing that

1 b 1 b
gl + [ [ (o)D) dods = SOl + [ m)va ds
Q t

(cf. , we find
tr
gm@x\<p|/ /V(@E)D(ue,us)d:cds
Q t Q

‘ / / D(u., u.)pGy de ds

1 K
= ol{ 5 (IOl = el ) + [ (v o
Thus, by (3.8) and (4.1),

/ / umua)sodwds—/ pduo
Qx[0,t]

< max l{ 5 I — 101 + [ (6 v, ds b+ max oluo @2 x 1),

where @ € u denotes the representative belonging to C.,([0,T7]; H).
Clearly,

(4.4)  limsup

e—0

timsup(([(6)|% — 18(t) %) < 0, lim pio(Q % Jtsta ) = o (@ x ]t 1] )) = 0.
k=1

k—oo

Taking the lim sup,,_, ., on both sides of (4.4) gives the claim. m
To proceed, we note that (2.5) implies

9 da:—/ /um A 77 dxds—l—// )V, - Vndxds
Q Q
2/905($)U($)d$+/ /V(QE)D(Us,us)Wdde
Q 0 Ja

for a.e. t € [0,7] and alln € W1 (p = 8r/(5r — 6) with 6/5 < r < 5/4). Observing (4.2),
the passage to the limit € — 0 gives, for any n € W7,

(4.5) /e(x,t dsc—/ /uZ / / 0)VO - Vndxds
Q
/ dz+/ / (u undxds+/ ndu
Q Qx[0,T]

for a.e. t € [0,7] (u according to (3.11)). Here, by virtue of the separability of W1 the
null-set in [0, 7] where the equation in (4.5) fails does not depend on 7.




WEAK SOLUTIONS 295

Thus, there exists a null-set Ny C |0, 7 such that (4.1) and the equation in (4.5) hold
for all t € 10, T\ Ny, and

(4.6) /Q<%|u(:1:,t)|2+0(x,t)> do

1 t
= / <§|UO(55)|2 + 90($)> dx +/ <f, 11>V2 ds Vt € ]O,T[\NQ ]
Q 0
We now prove
THEOREM 3. Let Ny be as above. Then:

(i) For allt,t' €]0,T[\ No, t <,

/|u |2da:—|—/ / D(u,u) dzds + p(Q x ]t,t'])
_ %/ﬂ|u(t)\2d:c+/t (f, u)v, ds;
() (2 x {0}) =0

(iii) u(Q x {t}) > 0 for at most countably many t €10, T];
(iv) fir 6/5 < r < 5/4, define p := 8r/(5r — 6); then

10(t") = OBl wr.0)-
< c{/t (IVO() [ L + [[w(s) || Lsrs[|0(s) ]| Lass + [|Vu(s)]32) ds + p( x ]t’t,])}

for all t,t' €10, T[\ No, t <t'.

Proof. (i) Take n =1 in (4.5). Combining this with (4.6) implies

/|u \zdx—k// D(u,u)dzds+ p(2 x [0,])
:5/9u(t)|2d:c+/99(t)d:c—/geodx:%/Qu0|2dm+/0t<f,u>v2ds.

This equation also holds with ¢’ in place of ¢. Subtracting the two equations gives the
desired result.

(ii) Let (%) € ]0,T[\ Ny be a sequence such that limy_, 7z = 0. Again using (4.5)
with n = 1, and (4.6) gives

p(@ % {0}) = lim (9 [0, )

lim ( O(ti)dx — [ 69 dac—/ / D(u,u) dx ds) =0.
k—oo \ Ja Q Q

(iii) The claim follows immediately from p(Q) < po(Q) < .
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(iv) From (4.5) it follows that, for any n € Wh?,

’/Q z,t') — 0(z,t))n(z) dx

<

¢
/t

( - k(0)VEO-Vn+ uﬁ% +v(0)D(u, u)n) dx

ds + max [n| (@ x Jt, )
Q

< C{ /t (IV0(s) | + [a(s) [ s/a 10(3) [ pars + [[Vu(s)|Z2) ds + u(Q x ]t,t’})}”vnnm

(cf. [12] for details), whence the claim. m

REMARK. The term (€2 x ]¢,#]) in Theorem 3 (i) may be viewed as the “missing term”
for the energy equality for weak solutions to the Navier-Stokes equations. By an entirely
different argument, a dissipation term in a local form of the energy equality for the Navier-
Stokes equations has been obtained in [2]. A refinement of the usual energy inequality
for weak solutions to these equations has been established in [10], [11]. m

(1]
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