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Abstract. This paper deals with a strongly elliptic perturbation for the Stokes equation in

exterior three-dimensional domains Ω with smooth boundary. The continuity equation is substi-

tuted by the equation −ε2∆p + div u = 0, and a Neumann boundary condition for the pressure

is added. Using parameter dependent Sobolev norms, for bounded domains and for sufficiently

smooth data we prove H5/2−δ convergence for the velocity part and H3/2−δ convergence for

the pressure to the solution of the Stokes problem, with δ arbitrarily close to 0. For an exterior

domain the asymptotic behavior at infinity of the solutions to both problems has also to be

taken into account. Although the usual Kondratiev theory cannot be applied to the perturbed

problem, it is shown that the asymptotics of the solutions to the exterior Stokes problem and

the solution to the perturbed problem coincide completely. For sufficiently smooth data an ap-

propriate decay leads to the convergence of all main asymptotic terms as well as convergence

in H
5/2−δ
loc and H

3/2−δ
loc , respectively, of the remainder to the corresponding parts of the Stokes

solution.

1. Introduction. We consider the following elliptic boundary value problems which

appear in the context of viscous flow problems. In the first one we look for a solution

uε = (vε
1, v

ε
2, v

ε
3, p

ε) to
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Sεu =

(
−∆v + ∇p

−ε2∆p+ div v

)
=

(
f ′

f4

)
in Ω,

Bεu = (v, ∂np) = g on ∂Ω,

(Sε)

where f = (f1, . . . , f4) = (f ′, f4) is a given vector field on a three-dimensional domain

Ω with a compact complement, g = (g1, . . . , g4) = (g′, g4) is a prescribed field on the

boundary ∂Ω, and ε ∈ (0, 1] is a small parameter. The system (Sε) is strongly elliptic

and can be accounted as a singular perturbation of the Stokes system:

S0u =

(
−∆v + ∇p

div v

)
=

(
f ′

f4

)
in Ω,

B0u = v = g′ on ∂Ω.

(S0)

The Stokes problem—which is elliptic in the general sense of Agmon-Douglis-Nirenberg

only—appears if we formally set ε = 0 in (Sε) and cancel the last boundary condition.

We are interested what happens if ε ց 0, and, for g4 = 0, to compare uε and u0.

Perturbations of type (Sε), usually with f4 = 0 and homogeneous boundary conditions,

appeared in different contexts, in showing existence of weak solutions for fluid models

with shear dependent viscosities [4] as well as in numerical schemes for the Navier-Stokes

equations, namely in the so-called pressure-stabilization methods, which were introduced

by Brezzi and Pitkäranta in [2] (see also [11, 17], e.g.). In all these papers the problems

were considered on bounded domains, then energy methods lead to the following estimate

(see [17], e.g.), f4 = 0, g = 0 provided:

‖vε − v0;H1(Ω)‖ + ‖pε − p0;L2(Ω)‖ ≤ C ε‖f ′;L2(Ω)‖. (E)

In [10] asymptotically precise estimates with εց 0 were derived in the case of bounded

smoothly surrounded domains. If the data are smooth enough and g4 = 0 in (Sε), then

the velocity part vε converges to v0 in H5/2−δ while the pressure converges in H3/2−δ

and δ > 0 can be arbitrarily small. Moreover, the convergence rate is increased, in the

energy norms up to O(ε3/2). The results are sharp, which was proved by the construction

of boundary layers.

In this paper we deal with exterior domains. For solutions to (S0) and (Sε) in un-

bounded domains, not only regularity properties, but also the asymptotic behavior as

r → ∞ is of importance. For the Stokes problem (S0) there exists an exhaustive litera-

ture (see, e.g. [12] and the papers quoted there) while for the perturbed problem even

the construction of a weak solution is not obvious. The theory of elliptic problems in

Kondratiev spaces can be applied to the Stokes system and leads to explicit formulae for

the asymptotic behavior of the solution u0 in terms of the fundamental solution and their

derivatives provided the right hand side f decays quickly enough. However, this theory

can not be applied to uε since the problem (Sε) is not admissible at infinity. Even the

construction of weak solutions is not quite obvious. The appropriate function spaces for

the problem (Sε) are step weighted spaces, where the lowest derivatives can be multi-

plied with weights of Kondratiev type while the higher order derivatives are all supplied

with the same weights. Results on the Stokes problem in step weighted spaces can be

used to derive results on the asymptotics of the solutions of (Sε) as well. Surprisingly
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enough it turns out that the asymptotic expansions at infinity of uε and u0 coincide

completely. Based on these results it is possible to consider uε as well as u0 as elements

of the same function space with separated asymptotic terms and derive asymptotically

precise estimates for the differences of the asymptotic terms as well as for the remainders

as εց 0.

The plan of the paper is the following. In Section 2 we refer to general notations and

recall the results on bounded domains. In Section 3 we recall the notations for Kondratiev

spaces and the results for the exterior Stokes problem and adopt them to weighted Sobolev

spaces with noninteger differentiability index. In Section 4 we introduce step weighted

spaces and investigate the solutions to (S0) in these function spaces. In Section 5 we

derive a priori estimates in step weighted spaces, the first main result is the theorem on

the asymptotic behavior of the solutions uε (Theorem 5.2). The last two sections contain

the other main results of this paper: Under the condition that the weight indices fulfil the

same restrictions as in the corresponding result for the Stokes problem, the problem (Sε)

is uniquely solvable in step weighted spaces (Theorem 6.2). Together with the results on

the asymptotic expansions this implies: If the right hand side f decays quickly enough,

both problems possess a uniquely determined solution vanishing at infinity, uε and uε

can be decomposed into a finite sum in terms of derivatives of the fundamental solution

to the Stokes system and a quicker decaying remainder. The last result (Theorem 7.2)

gives optimal error estimates for the coefficients of the separated asymptotic terms, while

the remainder can be estimated in weighted Sobolev norms.

2. Some general notations, the results in bounded domains. For G ⊂ R
3, the

closure ofG is denoted byG, the boundary by ∂G, and for x ∈ ∂G the exterior unit normal

vector by n(x), if it exists. The modulus function in R
3 is named r, i.e. r(x) =

(∑
x2

i

)1/2
.

For any t ∈ R we call [t] the integer part of t, i.e. [t] = max{j ∈ Z : j ≤ t}, while the

number t+ = (t+ |t|)/2 means the positive part of t.

For partial derivatives we use the common multi-index terminology: ∂α = ∂α1

∂x1

∂α2

∂x2

∂α3

∂x3
,

with α ∈ N3
0. If k ∈ N, then ∇k indicates the collection of all partial derivatives of order k.

Depending on our problems, we need different kinds of function spaces, most of them

are introduced in the context. For any function space X, we indicate the norm in X

by ‖ · ;X‖. We recall the notations for some standard spaces. C∞
0 (G), C∞

0 (G) are the

spaces of all smooth functions with compact support in G and G, respectively. For l ∈ N,

the Sobolev space H l(G), (G ⊂ R3 open) consists of all ϕ ∈ L2(G) with distributional

derivatives ∂αϕ ∈ L2(G), |α| ≤ l, supplied with the usual norm. If s > 0, s /∈ N, then the

Sobolev-Slobodetskii space Hs(G) = {ϕ ∈ H [s](G) : ‖ϕ;Hs(G)‖ <∞}, where

‖ϕ;Hs(G)‖2 = ‖v;H [s](G)‖2 +
∑

|α|=[s]

∫

G

∫

G

|∂αϕ(x) − ∂αϕ(ξ)|2

|x− ξ|n+2(s−[s])
dξdx.

Furthermore, H−s(G) is the dual space of H
◦

s(G), the supscript ◦ indicates the closure

of C∞
0 (G) in Hs(G). For ϕ ∈ H−s(G) we have the non-unique representation

ϕ =
∑

|α|≤[s]+1

∂αϕα, ϕα ∈ H [s]+1−|α|(G),
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where with the infimum taken over all possible representations, the norm in H−s(G) is

equivalent to

‖ϕ;H−s(G)‖ = inf
{( ∑

|α|≤[s]+1

‖ϕα;H [s]+1−|α|(G)‖
)1/2}

.

If ∂G is compact and sufficiently smooth, i.e. of class C [s]+2, for example, then Hs(∂G)

is defined, by using local coordinates and a partition of unity on ∂G, via the definition

of Hs(R2), while H−s(∂G) is the dual space of Hs(∂G) (see [7] for details).

Now let G ⊂ R3 be a bounded domain with ∂G ∈ Cl+2, l ∈ N0. To obtain asymp-

totically precise estimates for solutions uε to problem (Sε), we supply the spaces H l(G)

with equivalent norms, where the small parameter ε ∈ (0, 1] is included (see [8, 10]). For

κ ≤ l and ϕ ∈ H l(G) we set

‖ϕ;H l
κ
(G; ε)‖2 = ‖ϕ;Hκ(G)‖2 +

l∑

k=0

ε2(k−κ)+‖∇ϕ;L2(G)‖2.(2.1)

Then for any differential operator ∂α with |α| ≤ l, and k with κ + k ≤ l, we have

‖∂αϕ;H
l−|α|
κ−|α|(G; ε)‖ ≤ C‖ϕ;H l

κ
(G; ε)‖,

‖εk∂αϕ;H
l−|α|
κ−|α|+k(G; ε)‖ ≤ C‖ϕ;H l

κ
(G; ε)‖.

We process the trace spaces H l−1/2(∂G) in the following way. We define

‖v;H
l−1/2
κ−1/2(∂G; ε)‖ =






(‖v;Hκ−1/2(∂G)‖2 + ε2(l−κ)‖v;H l−1/2(∂G)‖2)1/2

for κ > 1/2;

ε−κ+1/2(‖v;L2(∂G)‖2 + ε2l−1‖v;H l−1/2(∂G)‖2)1/2

for κ < 1/2.

Then the norms of the trace operators ∂h
n : H l

κ
(G; ε) → H

l−h−1/2
κ−h−1/2(∂G; ε), where h = 0

and h = 1, can be bounded independent of ε ∈ (0, 1], the converse result on prolongations

is also true.

Theorem 2.1 ([10]). Let G ⊂ R
3 be a bounded domain with ∂G of class Cl+2, l ∈ N and

let κ ∈ [0, 3/2), κ ≤ l − 1. Then for any f ∈ H l−1(G)4 and g = (g′, g4) ∈ H l+1/2(G)3 ×

H l(G) subject to the compatibility condition
∫

G

f4 −

∫

∂G

g′ · ndo+ ε2
∫

∂G

g4do = 0,

there exists a solution uε = (vε, pε) ∈ H l+1(G) to problem (Sε), which is unique under

the orthogonality condition
∫

G
pε = 0. This solution satisfies the estimate

‖vε;H l+1
κ+1(G; ε)‖ + ‖pε;H l+1

κ,⊥(G; ε)‖

≤ C(‖f ′;H l−1
κ−1(G; ε)‖ + ‖f4;H

l−1
κ

(G; ε)‖

+‖g′;H
l+1/2
κ+1/2(∂G; ε)‖ + ‖g4;H

l−3/2
κ−3/2(G; ε)‖),

where C is a constant depending on κ, ∂G and l, but neither on ε ∈ (0, 1] nor on the data

(f, g). The subscript ⊥ indicates the subspace of mean-value-free functions.
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Remark 2.2. In [10] even κ ≤ l was admissible, this usesHm
κ

(G; ε)-norms, where κ > m.

Theorem 2.1 is based on an interior estimate of the following type: Let G′ be a strictly

interior subdomain of G, i.e. G
′
⊂ G, then

‖vε;H l+1
κ+1(G

′; ε)‖ + ‖pε;H l+1
κ

(G′; ε)‖(2.2)

≤ C(‖f ′;H l−1
κ−1(G; ε)‖ + ‖f4;H

l−1
κ

(G; ε)‖ + ‖uε;L2(G)‖),

where C does not depend on ε.

3. The exterior Stokes problem in Kondratiev spaces

3.1. Kondratiev spaces and the scaling trick. For the exterior Stokes problem, the ap-

propriate function spaces are the Kondratiev spaces V s
β (Ω). We require that Ω ⊂ R3

is a domain with a compact complement R
3 \ Ω and with boundary ∂Ω at least of

class C2. For simplicity, we assume that R
3 \ Ω is non void and contains the point 0. If

s ∈ N0 = {0, 1, 2, . . .}, and β ∈ R, the Kondratiev space V s
β (Ω) is defined as the closure

of C∞
0 (Ω) with respect to the norm ‖ · ;V s

β (Ω)‖, where

‖ϕ;V s
β (Ω)‖2 =

∑

|α|≤s

‖rβ−s+|α|∂αϕ;L2(Ω)‖2.(3.1)

If s > 0 is non-integer, then (3.1) is changed for

‖ϕ;V s
β (Ω)‖2 = ‖ϕ;V

[s]
β−s+[s](Ω)‖2 +

∑

|α|=[s]

∫

Ω

|x|2β

∫

...

|∂αϕ(x) − ∂αϕ(y)|2

|x− y|3+2(s−[s])
dy dx,

where the dots . . . stand for {y ∈ Ω : |x − y| < 2−1|x|}. Finally, in the case s < 0, the

inclusion ϕ ∈ V s
β (Ω) means that ϕ is a distribution which can be represented in the form

ϕ =
∑

|α|≤−[s]

∂αϕα, with ϕα ∈ V
(s+|α|)+
β−s−|α|+(s+|α|)+

(Ω),(3.2)

‖ϕ;V s
β (Ω)‖ = inf

( ∑

|α|≤−[s]

‖ϕα;V
(s+|α|)+
β−s−|α|+(s+|α|)+

(Ω)‖2
)1/2

,

where the infimum is taken over all representations (3.2). Note that always V s
β (Ω) ⊂

Hs
loc(Ω) is valid1. Since ∂Ω is compact, for s > 1/2, the trace operator Γ : V s

β (Ω) →

Hs−1/2(∂Ω) with Γϕ = ϕ|∂Ω for smooth functions, is well defined and continuous, with a

norm bounded independent of β. It is clear, that any differential operator ∂α acts linearly

and continuously from V s
β (Ω) to V

s−|α|
β (Ω).

One of the main arguments in the following proofs is the scaling trick. It is used

to reduce estimates for the solutions uε, u0 in function spaces on Ω to estimates to

the corresponding problems in bounded domains. The idea is to write Ω =
⋃∞

k=k0
Gk,

where all Gk ⊂ Ω are bounded domains such that the modulus function r is equivalent

to a constant ck on Gk, and then use a suitable coordinate transformation in order to

transform Gk into a fixed domain Ξ for all k > k0. To realize this, we fix j ∈ {1, 2} and

1As a matter of fact, V s
β (Ω) = {ϕ ∈ Hs

loc(Ω) : ‖ϕ; V s
β (Ω)‖ < ∞}.
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k0 ∈ N large enough such that ∂Ω ⊂ {x : r < 2k0−j}. We put

Gk0
= Ω ∩ {x : r < 2k0+j} and Gk = {x : 2k−j < r < 2k+j} for k > k0.

Then Ω =
⋃

k≥k0
Gk and for k > k0, the transformation x 7→ ξ := 2−kx maps Gk onto

Ξ = {ξ : 2−j < |ξ| < 2j}. Let ϕ ∈ V 0
γ (Ω) for some γ ∈ R. Since r ∼ 2k in Gk, independent

of k, we have

‖rγϕ;L2(Ω)‖2 ∼
∑

k≥k0

22γ‖ϕ;L2(Gk)‖2,(3.3)

where the equivalence constants depend on γ and j only. For ξ ∈ Ξ, ϕ ∈ L2
loc(Ω), we put

ϕ̂k(ξ) = ϕ(2kξ).(3.4)

With these notations, we collect the estimates of the rescaling method in the following

lemma.

Lemma 3.1. Let s ∈ R, β ∈ R, h ∈ N0 and ϕ ∈ L2
loc(Ω), then the following equivalences

hold, whenever the left-hand side is finite,

‖rβ∇h
xϕ;L2(Ω)‖2 ∼ ‖∇h

xϕ;L2(Gk0
)‖2 +

∑

k>k0

(2k)2β−2h+3‖∇h
ξ ϕ̂k;L2(Ξ)‖2,(3.5)

‖ϕ;V s
β (Ω)‖2 ∼ ‖ϕ;Hs(Gk0

)‖2 +
∑

k>k0

(2k)2β−2s+3‖ϕ̂k;Hs(Ξ)‖2,(3.6)

here all equivalence constants depend on s, β, j and h.

Proof. Relation (3.5) follows from (3.3) by substituting in ‖∇hϕ;L2(Gk)‖ the expressions

∇h
xϕ = 2−kh∇h

ξ ϕ̂k, dx = 23kdξ.(3.7)

Then for s ∈ N, (3.6) is obtained from (3.5) by replacing the weight exponent β in (3.5)

by the exponents β − s+ |α|.

For non integer s > 0, we have to observe that due to j ≥ 1, the intersection Gk∩Gk+1

contains at least the annulus {x : 2k < |x| < 2k+1}. Thus,
∫

Ω

rβ

∫

|x−y|≤ 1
2
|x|

|∇[s]ϕ(x) −∇[s]ϕ(y)|2

|x− y|3+2(s−[s])
dydx

∼
∑

k≥k0

22kβ

∫

Gk

∫

{y∈Gk:|x−y|≤|x|/2}

|∇[s]ϕ(x) −∇[s]ϕ(y)|2

|x− y|3+2(s−[s])
dy dx.

Using x = 2kξ, y = 2kη, and the previous considerations, lead to (3.6) in this case, too.

It remains to consider the case s < 0. We have

‖ϕ;V s
β (Ω)‖2 = inf

{ ∑

|α|≤[−s]

‖ϕα;V 0
β−s−|α|(Ω)‖ +

∑

|α|=−[s]

‖ϕα;V
s−[s]
β (Ω)‖

}
,(3.8)

where the infimum is taken over all possible representations (3.2) (observe −[s] = [−s]+1,

if s /∈ Z). By (3.7), we obtain for ξ ∈ Ξ:

ϕ̂k(ξ) =
∑

|α≤−[s]

2−k|α|∂α
ξ ϕ̂

α
k (ξ).(3.9)
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Since we are free to vary the representations locally, the right-hand sides of (3.9) run

through all possible representations of ϕ̂k(ξ) on Ξ, and hence

‖ϕ̂k;Hs(Ξ)‖2 ∼ inf
{ ∑

|α|≤−[s]

‖2−k|α|ϕ̂α
k ;L2(Ξ)‖2 +

∑

|α|=−[s]

‖2k[s]ϕ̂α
k ;Hs−[s](Ξ)‖2

}
.

By (3.5) and (3.6) for s > 0, the right-hand side of (3.8) is equivalent to

inf
{ ∑

k≥k0

22k(β−s)
( ∑

|α|<−[s]

‖2−k|α|ϕα;L2(Gk)‖2 +
∑

|α|=−[s]

‖2k[s]ϕα;Hs−[s](Gk)‖2
)}

= inf
{

terms on Gk0
+

∑

k>k0

22k(β−s+3/2)
( ∑

|α|<−[s]

‖2−k|α|ϕ̂α
k ;L2(Ξ)‖2 +

∑

|α|=−[s]

‖2k[s]ϕ̂α
k ;Hs−[s](Ξ)‖2

)}
,

the infimum is always taken over all representations (3.2). Since
∑

k inf . . . ≤ inf
∑

k . . .,

this leads to

‖ϕ;Hs(Gk0
)‖2 +

∑

k>k0

22k(β−s+3/2)‖ϕ̂k;Hs(Ξ)‖2 ≤ C(s, β, j, ∂Ω)‖ϕ;V s
β (Ω)‖2.

To see the reverse inequality, we decompose ϕ =
∑

k≥k0
ζkϕ, where {ζk}k is a partition

of unity subordinated to the covering {Gk}, with ∂αζk uniformly bounded independent

of k and |α| ≤ −[s], and find

‖ϕ;V s
β (Ω)‖2 ≤ C

∑

k≥k0

‖ϕ;V s
β (Gk)‖2.

Here for k > k0,

‖ϕ;V s
β (Gk)‖ = 2k(β−s) inf

{ ∑

|α|<−[s]

2−k|α|‖ϕα
(k);L

2(Gk)‖(3.10)

+
∑

|α|=−[s]

‖2k[s]ϕα
(k);H

s−[s](Gk)‖
}
,

where now the infimum is taken over every representation

ϕ|Gk
=

∑

|α|≤−[s]

∂αϕα
(k)

separately on each Gk. Using (3.7) again, we calculate from (3.10) for k > k0:

‖ϕ;V s
β (Gk)‖ = 2k(β−s+3/2)‖ϕ̂kH

s(Ξ)‖,

which finishes the proof.

3.2. The Stokes problem in Kondratiev spaces. Let s ≥ 0, to the Stokes problem (S0) we

associate a natural domain for the solutions,

D
s
βV (Ω) = V s+1

β (Ω)3 × V s
β (Ω),(3.11)

a natural range for the set of data,

R
s
βV (Ω) = V s−1

β (Ω)3 × V s(Ω) ×Hs+1/2(∂Ω)3,(3.12)
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and the linear continuous operator

As
β : D

s
βV (Ω) ∋ u = (v, p) 7→ (S0u,B0u) ∈ R

s
βV (Ω).

To state the result on the Fredholm properties of As
β, we recall the notion of the power

solution. For λ ∈ C, a power solution of generalized degree λ is a solution

U(x) = (V (x), P (x)) = (rλV(φ), rλ−1P(φ)), with φ = r−1x ∈ S
2,(3.13)

to the homogeneous Stokes system in the punctured space:

−∆V + ∇P = 0, div V = 0 in R
3 \ {0}.(3.14)

It is known (see [9, Ch. 6], e.g.) that any such solution is either a polynomial or a

linear combination of derivatives ∂αEj , where Ej , j = 1, . . . , 4 are the columns of the

fundamental solution matrix in R3. Since

Ej
i (x) = (8π)−1(δij |x|

−1 + xixj |x|
−3), 1 ≤ i, j ≤ 3,

E4
j (x) = Ej

4(x) = (4π)−1xj |x|
−3, 1 ≤ j ≤ 3,

E44(x) = δ(x) (the Dirac measure),

we see that E1, E2, E3 are power solutions of generalized degree λ = −1, while E4 can be

regarded as a power solution of generalized degree λ = −2. Moreover, it is clear that in

R
3 \ {0}, power solutions of degree λ exist if and only if λ ∈ Z. We have the following

result on existence, uniqueness and asymptotics of solutions to the exterior Dirichlet

problem (S0).

Theorem 3.2. (i) Let s ≥ 1 and (f, g′) ∈ Rs
βV (Ω) and u ∈ Hs+1

loc (Ω)3 × Hs
loc(Ω) be a

solution to the Stokes problem (S0) with u ∈ V 0
β−s−1(Ω)2 × V 0

β−s(Ω), then u ∈ Ds
βV (Ω),

and

‖u; Ds
βV (Ω)‖ ≤ C(‖(f, g′); Rs

βV (Ω)‖ + ‖u;V 0
β−s−1(Ω)‖ + ‖p;V 0

β−s(Ω)‖).(3.15)

For s ∈ [0, 1], it is sufficient to require p ∈ Hs
loc∩V

−1
β−s−1(Ω) and replace the corresponding

norm in (3.15).

(ii) For any s ≥ 0, the operator As
β is Fredholm iff there exists no power solution of the

form (6) with λ = β − s− 1/2, i.e. iff

β − s− 1/2 /∈ Z.(3.16)

(iii) The operator As
β is injective, iff β − s ≥ −1/2, and surjective iff (3.16) and β − s <

1/2, thus As
β is an isomorphism iff |β − s| < 1/2.

(iv) Assume β as well as γ fulfil (3.16) and β < γ < β + 1. Let u = (v, p) ∈ Ds
βV (Ω) be

given with (f, g′) = As
βu ∈ Rs

γV (Ω). Then u has the following asymptotic representation

u = U + ũ, where U =
J∑

j=1

ajU
j , ũ ∈ D

s
γV (Ω),(3.17)

together with the estimate

‖ũ; Ds
γV (Ω)‖ +

j∑

j=1

|aj | ≤ C(‖(f, g′); Rs
γV (Ω)‖ + ‖u;V 0

β−s−1(Ω)3 × V 0
β−s(Ω)‖).(3.18)
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Here U is a power solution of generalized degree λ which is an integer in the interval

I = (s− γ − 1/2, s− β − 1/2), the set {U1, . . . , UJ} forms a basis for the corresponding

vector space of power solutions. If I ∩Z = ∅, then the
∑
. . . in (3.17) and (3.18) is void,

which implies u ∈ Ds
γV (Ω) then.

Proof. For an integer s ∈ N the assertions (i)-(iv) can be found e.g. in Chapter 6.4 of [9]

and also in [15]. Combining the results of [14] with those of [3] and [15] they extend to

s = 0. For s > 0, it is enough therefore to prove the a priori estimate

‖u; Ds
βV (Ω)‖ ≤ C(‖(S0u,B0u); R

s
βV (Ω)‖ + ‖u;V 0

β−s−1(Ω)3 × V −1
β−s−1(Ω)‖).(3.19)

Since ‖p;V −1
β−s−1(Ω)‖ ≤ ‖p;V 0

β−s(Ω)‖, we have (3.15) then, too. We employ the method

of increasing the local smoothness (see, e.g. [18]) together with Lemma 3.1.

Let G ⊂ R3 be a bounded domain with ∂G of class C [s]+2. Then the following a priori

estimates hold:

‖v;Hs+1(G)‖2 + ‖p;Hs(G)‖2 ≤ CG(‖S0u;H
s−1(G)3 ×Hs(G)‖2(3.20)

+ ‖v;Hs−1/2(∂G)‖ + ‖v;L2(G)‖2 + ‖p;H−1(G)‖2),

for any u = (v, p) ∈ Hs+1(G)3 ×H2(G), furthermore the interior estimate

‖v;Hs+1(G′)‖ + ‖p;Hs(G′)‖(3.21)

≤ C(‖S0u;H
s−1(G)3 ×Hs(G)‖ + ‖v;L2(G)‖ + ‖p;H−1(G)‖),

where G′ ⊂ G is a strictly interior subdomain, i.e. G
′
⊂ G (see Theorem 10.1.1 in [18],

Theorem 6.4.8 in [5] for s > 1/2, for s ∈ [0, 1/2) the inequalities (3.20) and (3.21) follow

from the results of [3] and interpolation arguments). We define the set of subdomains

{G′
k}k≥k0

as in Lemma 3.1, where we choose j = 1, and {Gk}k≥k0
with Gk ⊃ G′

k in the

same way, but with j = 2. Then for k > k0, the transformation x 7→ ξ = 2−kx transforms

G′
k, Gk into Ξ′ and Ξ, with Ξ

′
⊂ Ξ = {1/4 ≤ |ξ| ≤ 4}. With v̂k(ξ), p̂k(ξ) as in (3.4) we

calculate by means of (3.7) that for k > k0

−∆ξ v̂k + ∇x(2kp̂k) = 22kf̂ ′k, divξ v̂k = 2kf̂4,k

on Ξ, where (f ′, f4) = S0u. We apply (3.20) on G′
k0

and (3.21) on Ξ′ and Ξ, which leads to

‖v̂k;Hs+1(Ξ′)‖2 + 22k‖p̂;Hs(Ξ′)‖2

≤ C(24k‖f̂ ′k;Hs−1(Ξ)‖2 + 22k‖f̂4,k;Hs(Ξ)‖2 + ‖v̂k;L2(Ξ)‖ + 22k‖p̂k;H−1(Ξ)‖2),

where C is independent of k. Multiplying these series of inequalities by 22k(β−s−1+3/2)

and then using (3.6) leads to (3.19), if we observe the trace estimate

‖v||x|=22k0+1 ;Hs+1/2(. . .)‖ ≤ C‖v;Hs+1(Gk0+1)‖.

4. A priori estimates in step weighted spaces. To find optimal estimates for the

perturbed problem (Sε), the Kondratiev spaces as in Section 3.2 are not adequate. This

is due to the fact that the differential operator Sε is not admissible in any neighborhood

of infinity in the sense of this theory (see, e.g., [9, p. 99 and p. 241 ff]). We have to take

into account the structure of the differential operator as well as the dependence on the

small parameter ε. Following [8], we do this by introducing step weighted spaces. For
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l ∈ N0, κ ≤ l and ε ∈ (0, 1] we define V l
κ,β(Ω; ε) by completing C∞

0 (Ω) in the norm

‖ · ;V l
κ,β(Ω; ε)‖, where

‖ϕ;V l
κ,β(Ω; ε)‖2 = ‖ϕ;V κ

β (Ω)‖2 +

l∑

h=0

∫

Ω

r2(β−κ+h)
(ε
r

)2(h−κ)+
|∇hϕ| dx.(4.1)

Thus, for κ = l, we have V l
κ,β(Ω) = V l

β(Ω). For κ < l, we can rewrite (4.1) as

‖ϕ;V l
κ,β(Ω; ε)‖2 = ‖ϕ;V κ

β (Ω)‖2 +
∑

κ<h≤l

ε2(h−κ)‖rβ∇hϕ;L2(Ω)‖2.(4.2)

Here the weight exponent of r... is the same for all derivatives ∇hv with h ≥ κ, in contrast

to the Kondratiev norms ‖ · ;V l
β+l−κ

(Ω)‖, where the weight exponent increases by 1 with

every derivation. If κ = 0, all derivatives ∇hϕ ∈ V 0
β (Ω), but accompanied with the factor

εh. For κ < 0, we have

‖ϕ;V l
κ,β(Ω; ε)‖2 = ‖ϕ;V κ

β (Ω)‖2 + ε−2κ‖ϕ;V l
0,β(Ω; ε)‖2.

In any case V l
κ,β(Ω; ε) ⊂ H l

loc(Ω). Since ∂Ω is compact, there are the continuous trace

operators ϕ → ∂h
nϕ|∂Ω, where h = 0, 1 and l ≥ 1 + h as in Section 2 with ε-independent

bounds for their norms. This means, if we supply H l−h−1/2(∂Ω) with the norm of

H
l−h−1/2
κ−h−1/2(∂Ω; ε) as in Section 2, then

‖∂h
nϕ;H

l−h−1/2
κ−h−1/2(∂Ω; ε)‖ ≤ C‖ϕ;V l

κ,β(Ω; ε)‖(4.3)

with C independent on ε ∈ (0, 1] and β ∈ R. The following estimates on homogeneous

partial differential operators are validated by elementary calculations.

Proposition 4.1. Assume l ∈ N, κ ≤ l, β ∈ R, µ ∈ [0, 1] and α ∈ N3
0 with |α| ≤ l. Then

for any ϕ ∈ V l
κ,β(Ω; ε),

‖∂αϕ;V l−α
κ−|α|,β(Ω; ε)‖ ≤ C‖ϕ;V l

κ,β(Ω; ε)‖,(4.4)

and, if κ + µ ≤ l − |α|,

‖ε|α|+µ∂αϕ;V
l−|α|

κ+µ,β(Ω; ε)‖ ≤ C‖ϕ;V l
κ,β(Ω; ε)‖.(4.5)

To problem (Sε) we assign the following natural domain and range (compare (3.11)

and (3.12)) for l ≥ κ + 1:

D
l
κ,βV (Ω; ε) = V l+1

κ+1,β(Ω; ε)3 × V l+1
κ,β (Ω; ε),

R
l
κ,βV (Ω; ε) = V l−1

κ−1,β(Ω; ε)3 × V l−1
κ,β (Ω; ε) ×(4.6)

×H
l+1/2
κ+1/2(∂Ω; ε)3 ×H

l−1/2
κ−3/2(∂Ω; ε).

From (4.3)–(4.5), we obtain that the operator related to problem (Sε)

Al,ε
κ,β : D

l
κ,βV (Ω; ε) ∋ u→ (Sεu,Bεu) ∈ R

l
κ,β(Ω; ε)

has a norm bounded independent of ε ∈ (0, 1].

We proceed with an ε-independent a priori estimate for solutions to problem (Sε).

Lemma 4.2. Let κ ∈ [0, 3/2), h ∈ N, l ≥ κ + 1 and β ∈ R be given. Assume further

uε = (vε, pε) with vε ∈ H l+1
loc (Ω)3 ∩ V 0

β−κ−1(Ω)3, pε ∈ H l+1
loc (Ω) ∩ V 0

β−κ
(Ω) is a solution
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to (Sε) with (f, g) ∈ Rl
κ,βV (Ω; ε). Then uε ∈ D l

κ,βV (Ω; ε) and

‖uε; D l
κ,βV (Ω; ε)‖ ≤ C(‖(f, g); Rl

κ,βV (Ω; ε)‖ + ‖vε;V 0
β−κ−1(Ω)3‖ + ‖pε;V 0

β−κ
(Ω)‖).

The constant C is independent of uε, the data (f, g) and the parameter ε ∈ (0, 1].

Proof. Let k0 and Gk, G′
k, Ξ, Ξ′ be defined as in the proof of Theorem 3.2. On Gk0

we

apply (2.2) and obtain

‖uε; D l
κ
H(G′

k0
; ε)‖2 ≤ C(‖(f, g); D l

κ
H(Gk0

; ε)‖2 + ‖uε;L2(Gk0
)‖2).(4.7)

For k > k0, we obtain from (3.7)1:

−2−2k∆ξ v̂
ε
k + 2−k∇ξ p̂

ε
k = f̂ ′k,

−ε22−2k∆ξ p̂
ε
k + 2−kdiv ξ v̂

ε
k = f̂4,k

on Ξ. Thus, (v̂ε
k, 2

kp̂ε
k) solves the problem

Sε̃,ξ(v̂
ε
k, 2

kp̂ε
k) = (22kf̂ ′k, 2

kf̂4,k)

on Ξ with the new small parameter εk = 2−kε. The interior estimate (2.2) leads to

(4.8) ‖v̂ε
k;H l+1

κ+1(Ξ
′; εk)‖2 + ‖2kp̂ε

k;H l+1
κ

(Ξ′; εk)‖2

≤ C(‖22kf̂ ′k;H l−1
κ−1(Ξ; εk)‖2 + ‖22kf̂4,k;H l−1

κ
(Ξ; εk)‖2

+‖v̂ε
k;L2(Ξ)‖2 + ‖2kp̂ε

k;L2(Ξ)‖2),

where C is a constant independent of k and ε. Observe that due to the transformation

of the small parameter ε, for example

‖v̂ε
k;H l+1

κ+1(Ξ
′; εk)‖2 =

l+1∑

k=0

(ε2−k)2(h−κ−1)+‖∇h
ξ v̂

ε;L2(Ξ′)‖2,

the other expressions in (4.8) are calculated correspondingly. We multiply (4.8) by

22k(β−κ−1), sum over (4.7) and (4.8)k with k > k0, then Lemma 3.1 gives the desired a

priori estimate.

The next step is an investigation of solutions to the Stokes problem (S0) in V l
κ,β(Ω; ε)-

spaces. The difference from the results of Theorem 3.2 is the following, very roughly

speaking: for data in Kondratiev spaces the asymptotic decay with r → ∞ of the data as

well as for the solutions increases with each derivative. In V l
κ,β(Ω; ε)-spaces the asymptotic

behavior of the data’s derivatives remains the same for derivatives of sufficiently high

order, the same we can anticipate for the solutions. On the other hand, if e.g. f ′ ∈ H l(Ω),

and f4 = 0 in problem (S0), we cannot expect a solution with v ∈ H l+2(Ω), p ∈ H l+1(Ω),

but only ∇2v ∈ H l(Ω), ∇p ∈ H l(Ω), while v ∈ V 2
0 (Ω), and p ∈ V 1

0 (Ω) (see, e.g., [13]).

For l ∈ N and s ∈ [0, l] we put

Dl
κ,βV (Ω; ε) = V l+1

κ+1,β(Ω; ε)3 × V l
κ,β(Ω; ε)(4.9)

Rl
κ,βV (Ω; ε) = V l−1

κ−1,β(Ω; ε)3 × V l
κ,β(Ω; ε) ×H

l+1/2
κ+1/2(∂Ω; ε)3.(4.10)

Proposition 4.3. Let |β − κ| < 1/2. Then the mapping u → (S0u,B0u) defines the

isomorphism Al
κ,β : Dl

κ,βV (Ω; ε) → Rl
κ,βV (Ω; ε), where the norm of Al

κ,β as well as the

norm of (Al
κ,β)−1 are majorized by a constant independent of ε ∈ (0, 1].
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Proof. The continuity of Al
κ,β with ε-independent bounds for the norms follows directly

from the definition of the spaces. Since (compare (3.11), (3.12))

‖(f, g′); Rκ

β V (Ω)‖ ≤ ‖(f, g′);Rl
κ,βV (Ω; ε)‖,(4.11)

Theorem 3.2 ensures the existence of a unique solution u ∈ Dκ

β V (Ω) to problem (S0),

together with the estimate

‖u; Dκ

β V (Ω)‖ ≤ C ‖(f, g′); Rκ

β V (Ω)‖.(4.12)

Moreover, v ∈ H l+1
loc (Ω), p ∈ H l

loc(Ω). It remains to estimate the terms

εq−κ−1‖rβ∇qv;L2(Ω)‖, [κ + 1] < q ≤ l + 1,

εq−κ‖rβ∇qp;L2(Ω)‖, [κ] < q ≤ l.
(4.13)

Since 0 /∈ Ω, the space V 0
γ (Ω) is continuously embedded into V 0

γ−δ(Ω) for any γ ∈ R, and

δ ≥ 0, therefore, we have for q = [κ] + 1, . . . , l

‖u;V 0
β−q−1(Ω)3 × V 0

β−q(Ω)‖ ≤ C‖u;V 0
β−κ−1(Ω)3 × V 0

β−s(Ω)‖.(4.14)

From the definition (4.2) of the V l
κ,β-norms and the trace norms in Section 2, we also get

‖(f, g′); Rq
βV (Ω)‖ ≤ Cε−(q−κ)‖(f, g′);Rl

κ,βV (Ω; ε)‖,(4.15)

where C is independent of ε ∈ (0, 1]. Note that on the left-hand side we have just the

Kondratiev space, where the highest derivatives ∇q−1f ′ and ∇qf4 ∈ V 0
β (Ω).

We multiply the a priori estimate (3.15) for the Stokes system by εq−κ, then use ε ≤ 1

and q − κ > 0, (4.14), (4.12) and (4.15) and arrive at

εq−κ‖u;V q+1
β (Ω)3 × V q

β (Ω)‖

≤ C εq−κ(‖(f, g′); Rq
βV (Ω)‖ + ‖u;V 0

β−q−1(Ω)3 × V 0
β−q(Ω)‖)

≤ C(‖(f, g′);Rl
κ,βV (Ω; ε)‖ + εq−κ‖u;V 0

β−q−1(Ω)3 × V 0
β−q(Ω)‖)

≤ C(‖(f, g′);Rl
κ,βV (Ω; ε)‖ + εq−κ‖u;V 0

β−κ−1(Ω)3 × V 0
β−κ

(Ω)‖)

≤ C(‖(f, g′);Rl
κ,βV (Ω; ε)‖ + εq−κ‖(f, g′); Rκ

β V (Ω)‖)

≤ C ‖(f, g′);Rl
κ,β(Ω; ε)‖,

for the last inequality we used ε ≤ 1 again together with the inequality (4.11). In the

whole chain the constants C are independent of ε. The left-hand side majorizes the terms

in (4.13), thus we have ‖(Al
κ,β)−1‖ ≤ C independent of ε.

5. Asymptotics of the solutions to problem (Sε). Let uε ∈ D l
κ,βV (Ω; ε) be a

solution to (Sε) with (f, g) ∈ Rl
κ,γV (Ω; ε) where

l ∈ N, γ = β + δ, δ ≥ 0,κ 6= 1/2,κ ≤ l − 1, γ − β + 1/2 /∈ Z,κ − β + 1/2 /∈ Z.(5.1)

This means that the data of the problem have a stronger asymptotic decay as r → ∞

than the solution lets expect. The aim now is to prove a result analogous to part (iv)

of Theorem 3.2. Since for a solution to the homogeneous Stokes problem, the pressure

is a harmonic function, any power solution U of (3.14) solves the problem SεU = 0

in R3 \ {0}. Moreover, if U is of the form (3.13), then U |Ω ∈ D l
κ,βV (Ω; ε) as long as∫ ∞

1
r2λr2(β−κ−1)r2dr < ∞, i.e. β − κ < −λ − 1/2. It is not surprising that the power
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solutions of (S0) appear in the asymptotics of uε. The amazing point is that they describe

already the complete asymptotic expansion.

The proof of this result requires a subtle play with embedding inequalities between

Kondratiev and step weighted spaces, and the known results for the asymptotics of the

solutions to (S0). To this end, we observe that uε solves the Stokes problem

−∆vε + ∇pε = f ′, div vε = f4 + ε2∆pε, vε|∂Ω = g′.(5.2)

The main point here is to find the common Sobolev space for the right-hand side of the

divergence equation. At a first glance, we find f4 ∈ V κ
γ (Ω) ⊂ V 0

γ−κ
(Ω), while ε2∆vε ∈

V 0
β (Ω). Since 0 /∈ Ω, we have V 0

β (Ω) ⊂ V 0
β−(κ−δ)(Ω), if κ − δ ≥ 0. For the moment this

leads to a restriction for the gap between the weight exponents β and γ, which we have

to overcome. We also emphasize an elementary, but fundamental property of the V κ

β (Ω)-

spaces: the decay at infinity is determined by the difference β − κ. Thus ϕ ∈ V κ−δ
β (Ω)

means that ϕ has less smoothness than V κ

β (Ω)-functions, but a stronger decay at infinity.

On the other hand, the asymptotic expansion of a solution to (S0) depends only on the

decay at infinity of the data and the solution, but not on their smoothness properties.

We collect the precise conclusions about the right-hand sides to problem (5.2) in

the next lemma. Before this we recall some inequalities in Kondratiev spaces and step

weighted spaces, which can be easily derived from their definitions. Due to (4.2), we have

for κ ≤ l, l ∈ N0, β ∈ R and ϕ ∈ V l
κ,βV (Ω; ε):

‖ϕ;V κ

β (Ω)‖ ≤ ‖ϕ;V l
κ,βV (Ω; ε)‖.(5.3)

Furthermore, if δ ≥ 0 in addition, then

‖ϕ;V l
κ−δ,β(Ω; ε)‖ ≤ C ‖ϕ;V l

κ,β+δ(Ω; ε)‖.(5.4)

As for the last inequality, we can compare the stable parts of the norms and the ε-

dependent parts directly. From the definition of the Kondratiev norms we see

‖ϕ;V κ−δ
β (Ω)‖ ≤ C‖ϕ;V κ

β+δ(Ω)‖.(5.5)

If κ− δ ∈ N0, this is evident, otherwise we can use Lemma 3.1 and interpolation inequal-

ities. Since ε ∈ (0, 1], and r ≥ r0 = max{|x| : x ∈ ∂Ω} > 0, we obtain for h > κ − δ:

εh−(κ−δ)‖rβ∇hϕ;L2(Ω)‖ ≤ C εh−κ‖rβ+δ∇hϕ;L2(Ω)‖,

which finally shows (5.4).

If, in addition, κ 6= 1/2, κ − δ 6= 1/2, then from the definition of the trace norms in

Section 2, we also obtain

‖ϕ|∂Ω;H
l−1/2
κ−δ−1/2(∂Ω; ε)‖ ≤ C ‖ϕ;H

l−1/2
κ−1/2(∂Ω; ε)‖.(5.6)

Lemma 5.1. Let l, γ, β and δ fulfil (5.1) and assume in addition, that κ − δ ≥ 0, but

6= 1/2, then for (f, g) ∈ Rl
κ,γV (Ω; ε) it follows that

‖(f, g′); Rκ−δ
β V (Ω)‖ ≤ C‖(f, g′); Rl

κ−δ,βV (Ω; ε)‖ ≤ C‖(f, g); Rl
κ,γV (Ω; ε)‖.(5.7)

For p ∈ V l+1
κ,β (Ω),

‖ε2∆p;V l−1
0,β (Ω; ε)‖ ≤ C εκ‖p;V l+1

κ,β (Ω; ε)‖,(5.8)

‖ε2∆p;V κ−δ
β (Ω)‖ ≤ C ‖p;V l+1

κ,β (Ω; ε)‖.(5.9)
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Proof. Estimate (5.7) immediately follows from (5.4) and (5.6). As for the other two

inequalities, we observe that from definition (4.1) we have

P :=

l+1∑

q=0

∫

Ω

r2(β−κ+q)
(ε
r

)2(q−κ)+
|∇qp(x)|2dx ≤ ‖p;V l+1

κ,β (Ω; ε)‖2.

Since κ < 3/2, and, therefore, 2 + q − κ > 0 for q = 0, 1, . . . , l − 1 we obtain

ε−2κ‖ε2∆p;V l−1
0,β (Ω; ε)‖2

=

l−1∑

q=0

∫

Ω

r2(β−κ+2+q)
(ε
r

)2(2+q−κ)

‖∇q∆p(x)‖2dx ≤ CP.

(5.10)

This already proves (5.8).

Now let Gk, k ≥ k0 be defined as in Lemma 3.1. The square of the left-hand side of

(5.9) is equivalent to

‖ε2∆p;Hκ−δ(Gk0
)‖2 +

∑

k>k0

(2k)2(β−κ+δ)+3‖2−2kε2∆ξ p̂k;Hκ−δ(Ξ)‖2,(5.11)

while the left-hand side of (5.10) is equivalent to

ε−2κ‖ε2∆p;H l−1
0 (Gk0

)‖2 +(5.12)

∑

k>k0

l−1∑

q=0

ε2(q−κ)(2k)2(β−q)+3‖∇q
ξ(ε

22−2k∆ξ p̂k);L2(Ξ)‖2.

Clearly, we have

‖ε2∆p;Hκ−δ(Gk0
)‖ ≤ ε−κ‖ε2∆p;H l−1(Gk0

)‖,

since κ − δ ≤ l − 1 and κ ≥ 0. It remains to compare the summands with k > k0 in

(5.11) and (5.12). Let us first consider κ − δ = 0, 1. If κ − δ = 0, then the k-th summand

in (5.11) is majorized by the k-th summand of (5.12), since ε−κ ≥ 1, the same is true, if

κ − δ = 1, since then ε−κ+1 ≥ 1. If κ − δ is non-integer, then we use an interpolation

argument: We put ψ = (2k)β−2+3/2ε2∆ξ p̂k and recall the interpolation inequality

‖ψ;Hκ−δ(Ξ)‖2 ≤ C ‖ψ;Hm(Ξ)‖2(κ−δ)/m‖ψ;L2(Ξ)‖2−2(κ−δ)/m

with m = 1 for κ − δ < 1 and m = 2 for κ − δ ∈ [1, 3/2). Multiplying this inequality by

(22k)−(κ−δ) and applying Young’s inequality, we find that

(22k)−(κ−δ)‖ψ;Hκ−δ(Ξ)‖

≤ C((22k)−(κ−δ)‖ψ;Hm(Ξ)‖2(κ−δ)/mε2(κ−δ)(1−(κ−δ)/m)) ×

(‖ψ;L2(Ξ)‖2−2(κ−δ)/mε−2(κ−δ)(1−(κ−δ)/m))

≤ C((22k)−mε2(m−(κ−δ))‖ψ;Hm(Ξ)‖2 + ε−2(κ−δ)‖ψ;L2(Ξ)‖2),

where C depends on κ − δ, but not on ε ∈ (0, 1]. Thus, ε−(κ−δ) ≤ ε−κ we obtain that

the k-th summand of (5.11) can be estimated by the k-th summand of (5.12) multiplied

with a constant C. This yields (5.9).

With Lemma 5.1 at hand, we can prove the result on the asymptotics of the solu-

tions uε.
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Theorem 5.2. Let κ ∈ [0, 3/2), l, β, γ fulfill (5.1). Suppose uε ∈ D l
κ,βV (Ω; ε) is a solu-

tion to (Sεu
ε, Bεu

ε) = (f, g), where (f, g) ∈ Rl
κ,γV (Ω; ε). Then uε admits the asymptotic

representation

uε =

J∑

j=1

bjUj + ũε.(5.13)

Here Uj = (rλUj(φ), rλ−1Pj(φ)) is a power solution to the Stokes system as in (3.17),

and λ again is an integer in the interval I0 = (κ−γ−1/2,κ−β−1/2). The corresponding

estimate holds with a constant C independent of ε:

‖ũε; D l
κ,γV (Ω; ε)‖ +

J∑

j=1

|bj | ≤ C(‖(f, g); Rl
κ,γV (Ω; ε)‖ + ‖uε; D l

κ,βV (Ω; ε)‖).(5.14)

If I0 contains no integer, then the sums in (5.13) and (5.14) are void.

Proof. Step 1. Let us first assume that γ − β = δ ∈ (0,κ) \ {1/2}. From Lemma 5.1 we

obtain (f ′, f4 + ε2∆pε, g′) ∈ R
κ−δ
β V (Ω), while for the solution uε we use (5.3) to see

‖uε; Dκ−δ
β−δ V (Ω)‖ ≤ C‖uε; Dκ

β V (Ω)‖ ≤ C‖uε; D l
κ,βV (Ω; ε)‖.(5.15)

Observe that I0 = (κ − δ− β − 1/2,κ − δ− (β − δ)− 1/2). Theorem 3.2 (iv) provides us

with the representation (5.13) and the estimate

(5.16)
J∑

j=1

|bj | + ‖ũε; Dκ−δ
β V (Ω)‖ ≤ C(‖(f ′, f4 + ε2∆pε, g′); Rκ−δ

β V (Ω)‖

+‖uε;V 0
β−δ−(κ−δ)Ω)3 × V 0

β−δ−(κ−δ)(Ω)‖)

≤ C(‖(f, g); Rl
κ,γ(Ω; ε)‖ + ‖vε;V 0

β−κ−1(Ω)‖ + ‖pε;V 0
β−κ

(Ω)‖),

here we used (3.18), Lemma 5.1 and (5.15). Since SεUj = 0, we obtain

Sεũ
ε = f in Ω, Bεũ

ε = g̃ := g −Bε

J∑

j=1

bjUj on ∂Ω.

Moreover, Uj are fixed functions and the boundary ∂Ω is compact, thus

‖(f, g̃); Rl
κ,γV (Ω; ε)‖ ≤ C

(
‖(f, g); Rl

κ,γV (Ω; ε)‖ +

J∑

j=1

|bj |
)
≤ C‖(f, g); Rl

κ,γ(Ω; ε)‖.

From the definition of the norms it follows again that

‖ṽε;V 0
γ−κ−1(Ω)‖ + ‖p̃ε;V 0

γ−κ
(Ω)‖(5.17)

= ‖ṽε;V 0
β−(κ−δ)−1(Ω)‖ + ‖p̃ε;V 0

β−(κ−δ)(Ω)‖ ≤ ‖ũ; Dκ−δ
β V (Ω)‖.

We apply the a priori estimate of Lemma 4.2 and find that

‖ũε; D l
κ,γV (Ω; ε)‖ ≤ C(‖(f, g̃); Rl

κ,γV (Ω; ε)‖ + ‖ṽε;V 0
γ−κ−1(Ω)‖ + ‖p̃ε;V 0

γ−κ
(Ω)‖).

Combining (5.16) and (5.17) with the last inequality leads to (5.14).

Step 2. Now we permit δ = γ − β > κ for the gap. We choose N large enough, such that

δ̃ = δ/N ∈ (0,κ) \ {1/2}. Due to 0 /∈ Ω, it follows that

‖(f, g); Rl
κ,β+kδ̃

V (Ω; ε)‖ ≤ C ‖(f, g); Rl
κ,γV (Ω; ε)‖(5.18)
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for k = 1, . . . , N . We apply the first step with γ replaced by β + δ̃ and find the rep-

resentation (5.13) (recall that the sum may be void), where ‖ũε; Rl
κ,β+δ̃

V (Ω; ε)‖ may

be estimated by the right-hand side of (5.14) with the help of (5.18) for k = 1, . . . , N .

Iterated utilization of this argument, first time applied to ũε, β replaced by β + kδ̃, and

γ by β + (k + 1)δ̃, for k = 1, . . . , N − 1, leads to the final assertion. Watching carefully

all the pertinent constants C confirms their independence from ε ∈ (0, 1].

Remark 5.3. If we apply Theorem 3.2 and Theorem 5.2 several times, we get rid of

the condition that the intervals I and I0 contain at most one weight exponent which

is not admissible. In this case in the asymptotic representation of the solution uε there

appear all power solutions to the system (3.14) whose restrictions to Ω are contained in

D l
κ,βV (Ω; ε), but not in D l

κ,γV (Ω; ε). The sums in (5.13) (as well as in (3.17)) have to

be enlarged to

∑

λ∈I0∩Z

Jλ∑

j=1

bλ,jUλ,j

where Uλ,j = (rλVλ,j , r
λ−1Pλ,j) form a basis for the power solutions to (3.14).

6. Solvability of problem (Sε). Up to now we have no result on the Fredholm property

of the operator Al
κ,β related to problem (Sε). With some technical efforts, Theorem

3.2 can be transmitted to the perturbed problem, this means Al
κ,β possesses Fredholm

property as long as β−κ−1/2 /∈ Z, and corresponding results on the nullity and deficiency

also hold true.

However, for our purposes, it is enough to have the result analogous to Proposition

4.3, i.e. to prove the isomorphism property for |β−κ| < 1/2. After removing the inhomo-

geneity in the boundary conditions, we look for solutions with finite Dirichlet integral, i.e.

∇uε ∈ L2(Ω), then use the process of local improvement of smoothness properties and

our theorem on asymptotics. To this end we introduce the notion of a weak solution here

in the following way. Let f ∈ L2
loc(Ω) be given. We call uε ∈ L2

loc(Ω)4 with ∇uε ∈ L2(Ω)

a weak solution to the problem Sεu
ε = f , Bεu

ε = 0, if

bΩ(uε, ψ) :=

∫

Ω

∇vε : ∇ψ′ + ε2∇pε∇ψ4 dx(6.1)

+

∫

Ω

(∇ · vε)ψ4 − pε(∇ · ψ′) dx =

∫

Ω

f · ψ dx,

for all ψ = (ψ′, ψ4) ∈ C(Ω) := C∞
0 (Ω)3 ×C∞

0 (Ω), the colon : between two 3× 3 matrices

indicates the scalar-product in R
9, while the dot · stands for the usual matrix product.

If Ω were bounded, by the Lax Milgram lemma, a weak solution is easily obtained in the

Hilbert space H(Ω) = H
◦

1(Ω)3×H1(Ω)⊥ which is the closure of C∞
0 (Ω)3×C∞

0 (Ω)⊥ with

respect to the Dirichlet norm ‖∇ · ;L2(Ω)‖. As for the exterior domain Ω, the closure of

C(Ω) with respect to the Dirichlet norm coincides with H(Ω) := {u = (v, p) ∈ V 1
0 (Ω)3 ×

V 1
0 (Ω) : v|∂Ω = 0}. But here we come across the difficulties that only the first term in bΩ

is continuous with respect to this norm. Additionally, the functional ψ →
∫
Ω
f4 · ψ4dx is

not continuous in general. The reduction to the case f4 = 0 will serve both problems.
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Proposition 6.1. For any ϕ ∈ L2(Ω) = V 0
0 (Ω), there exists a vector field Φ ∈ V 1

0 (Ω)3

with div Φ = ϕ, Φ|∂Ω = 0 and

‖Φ;V 1
0 (Ω)‖ ≤ C‖ϕ;V 0

0 (Ω)‖,(6.2)

with C independent of ϕ.

Proof. We use a well known construction. We put Φ = ∇q + Φloc, where q ∈ V 2
0 (Ω) is

a solution to the Neumann problem ∆q = ϕ in Ω, ∂nq = 0 on ∂Ω, and Φloc is a local

correction. It is well known (see e.g., [6] and [16]) that q exists and is uniquely determined

up to a constant, hence

‖∇q;V 1
0 (Ω)‖ ≤ C‖ϕ;V 0

0 (Ω)‖.(6.3)

To remove the tangent boundary values of ∇q, we put Ωρ = Ω∩Bρ, where Bρ is an open

ball Bρ ⊃ ∂Ω. We choose Φ1 ∈ H1(Ω)3 with supp Φ1 ⊂ Ωρ such that Φ1|∂Ω = ∇q|∂Ω and

‖Φ1;V 1
0 (Ω)‖ ≤ C‖Φ1;H1

0 (Ωρ)‖ ≤ C‖∇q;H1/2(∂Ω)‖ ≤ C‖∇q;V 1
0 (Ω)‖.(6.4)

Of course, div Φ1 has a support in Ωρ, too, moreover, since Φ1 · n = 0 on ∂Ωρ, it holds∫
Ωρ

div Φ1 = 0. By the results of [1], e.g., there exists Φ2 ∈ H1(Ωρ)
3 with div Φ2 = div Φ1

in Ωρ and Φ2 = 0 on ∂Ωρ, together with the estimate

‖Φ2;H1(Ωρ)‖ ≤ ‖div Φ1;L2(Ωρ)‖ ≤ C‖Φ1;V 1
0 (Ω)‖.(6.5)

We extend Φ2 by 0 to the whole of Ω and put Φ = ∇q − Φ1 + Φ2, by construction

div Φ = ϕ, Φ|∂Ω = 0 and collecting (6.3) - (6.5) leads to (6.2).

Theorem 6.2. Let κ ∈ [0, 3/2)\{1/2}, l ∈ N with l−1 ≥ κ, and β ∈ R such that |β−κ| <

1/2. Then the operator Al
κ,β defines an isomorphism, i.e. for any set of data (f, g) ∈

Rl
κ,βV (Ω; ε) (see (4.6)) there exists a unique solution uε ∈ D l

κ,βV (Ω; ε) to problem (Sε),

and the following estimate holds true with a constant independent of ε ∈ (0, 1]):

‖uε; D l
κ,βV (Ω; ε)‖ ≤ C‖(f, g); Rl

κ,βV (Ω; ε)‖.(6.6)

Proof. Step 1. Reduction to homogeneous boundary values. By using the result on pro-

longations of boundary values as mentioned in Section 2 we find u♯ ∈ H l+1(Ω)4 with a

compact support in Ω such that

‖u♯; D l
κ,βV (Ω; ε)‖ ≤ C‖g;H

l+1/2
κ+1/2(∂Ω)3 ×H

l−1/2
κ−3/2(∂Ω)‖(6.7)

and Bεu
♯ = g on ∂Ω. We put f ♯ = Sεu

♯, it is enough now to find uε with Sεu
ε = f − f ♯

in Ω and Bεu
ε = 0 on ∂Ω, and we keep the inequality

‖f ♯;V l−1
κ−1,β(Ω)3 × V l−1

κ,β (Ω)‖ ≤ C‖u♯; D l
κ,βV (Ω; ε)‖ ≤ ‖(f, g); Rl

κ,βV (Ω; ε)‖.(6.8)

Step 2. The case β − κ > 0. If β − κ > 0, then uε ∈ D l
κ,βV (Ω; ε) (see (4.6)) implies

vε ∈ V 1(Ω), pε ∈ H1(Ω). Now if uε solves the homogeneous problem we can use (6.1)

with ψ = uε, since then all integrals converge. Thus 0 = bΩ(uε, uε) = ‖∇vε;L2(Ω)‖2 +

ε2‖∇pε;L2(Ω)‖2, together with uε ∈ V 1
0 (Ω) this implies uε = 0.

Our next aim is to prove the existence of a weak solution uε to the problem Sεu
ε = f

in Ω, Bεu
ε = 0 on ∂Ω with (f, 0) ∈ Rl

κ,βV (Ω; ε). Due to the difficulties mentioned

before we cannot directly argue in H(Ω). From the definition of Rl
κ,βV (Ω; ε) we know
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f4 ∈ V 0
β−κ

(Ω) ⊂ L2(Ω). Due to Proposition 6.1 there exists v1 ∈ V 1
0 (Ω)3 with vanishing

boundary values, div v1 = f4 and

‖v1;V 1
0 (Ω)‖ ≤ C‖f4;V

0
0 (Ω)‖ ≤ C‖f4;V

κ

β (Ω)‖.

We search for uε = (v1, 0) + uε, then it suffices to find uε with

bΩ(uε;ψ) =

∫

Ω

(f ′ · ψ′ −∇v1∇ψ′) dx(6.9)

for all ψ ∈ C(Ω). We fix ρ as in the proof of Proposition 6.1, for R > ρ, we put ΩR =

{x ∈ Ω : |x| < R}. To ΩR we assign the space

C(ΩR) = {ψ = (ψ′, ψ4) ∈ C∞(Ω)4 : suppψ′ ⊂ ΩR, ψ4 = 0 for |x| = R}

and the Hilbert space H(ΩR) as the closure of C(ΩR) with respect to the Dirichlet norm

on ΩR. Thanks to Hardy’s inequality, we have

‖r−1ψ;L2(ΩR)‖ ≤ C‖∇ψ;L2(ΩR)‖ for all ψ ∈ C(ΩR)(6.10)

with a constant independent of R and ψ. For f ′ ∈ V l−1
κ−1,β(Ω; ε)3, we have

‖f ′;V κ−1
β (Ω)‖ ≤ ‖f ′;V l−1

κ−1,β(Ω; ε)‖.

If κ ≥ 1, it follows V κ−1
β (Ω) ⊂ V 0

β−κ+1(Ω) ⊂ V 0
1 (Ω). If κ ∈ [0, 1), then according to

(3.2), fi = f0
i +

∑
j ∂jFij , i = 1, 2, 3 with

‖f ′;V κ−1
β (Ω)‖ ≤ ‖f0;V 0

β−κ+1(Ω)‖ +
∑

i,j

‖Fij ;V
κ

β (Ω)‖ ≤ 2‖f ′;V κ−1
β (Ω)‖.

Since β ≥ κ, we have V κ

β (Ω) ⊂ L2(Ω), in both cases we end with the following estimate

(with Fij = 0 for κ ≥ 1)
∣∣∣∣

∫

Ω

(f ′ · ψ′ −∇v1 : ∇ψ1) dx

∣∣∣∣ ≤ ‖rf0;L2(ΩR)‖ ‖r−1ψ′;L2(ΩR)‖(6.11)

+
( ∑

i,j

‖Fij ;L
2(ΩR)‖ + ‖∇v1;L2(ΩR)‖

)
‖∇ψ′;L2(ΩR)‖

≤ C
(
‖f0;V 0

1 (Ω)‖ +
∑

i,j

‖Fi,j ;V
0
0 (Ω)‖ + ‖f4;V

0
0 (Ω)‖

)
‖∇ψ′;L2(ΩR)‖

≤ 3C ‖(f, 0); Rl
κ,βV (Ω; ε)‖‖∇ψ′; ΩR‖

with a constant C independent of f,R and ε ∈ (0, 1]. The bilinear form bΩR
is continuous

and coercive on H(ΩR) for any R > ρ, thus, the Lax-Milgram lemma provides us with a

unique solution uε
R ∈ H(ΩR) fulfilling

bΩR
(uε

R;ψ) =

∫

ΩR

(f ′ · ψ′ −∇v1 : ∇ψ′)dx

for any ψ ∈ H(ΩR). Because

bΩR
(uε

R; uε
R) = ‖∇vε

R;L2(ΩR)‖2 + ε2‖∇pε
R‖

2,

the a priori inequality

‖r−1vε
R;L2(ΩR)‖ + ‖∇vε

R;L2(ΩR)‖

+ ε(‖r−1pε
R;L2(ΩR)‖ + ‖∇pε

R;L2(ΩR)‖) ≤ C‖(f, 0); Rl
κ,βV (Ω; ε)‖
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is valid independent of R > ρ and ε ∈ (0, 1], thanks to (6.10) and (6.11). Extending uε
R

by 0 to the whole domain Ω, this gives

‖vε
R;V 1

0 (Ω)‖ + ε‖pε
R;V 1

0 (Ω)‖ ≤ C‖(f, 0); Rl
κ,βV (Ω; ε)‖.(6.12)

Thus, there exists a sequence Rn with Rn → ∞ such that uε
Rn

converges weakly in V 1
0 (Ω)4

to a solution uε of (6.9), and (6.12) is preserved for uε. Clearly, uε = (v1, 0) + uε fulfils

(6.1) and the inequality

‖vε;V 1
0 (Ω)‖ + ε‖pε;V 1

0 (Ω)‖ ≤ C‖(f, 0); Rl
κ,βV (Ω; ε)‖.(6.13)

Since we finally want uε ∈ D l
κ,βV (Ω; ε), we need to improve the regularity and decay

properties. Since f ∈ H l−1
loc (Ω), we clearly obtain uε ∈ H l+1

loc (Ω). As for decay properties,

in particular of pε, the estimate (6.13) is too weak – with respect to ε and β. In order to

remove this, we employ Theorem 5.2. We have vε ∈ V 1(Ω) ⊂ V 0
−1(Ω) ⊂ V 0

−2(Ω), while

pε ∈ V 0
−1(Ω). Since Rl

κ,βV (Ω; ε) ⊂ Rl
κ,β̃

(Ω; ε) for β ≥ β̃, for β > κ we get

‖(f, 0); Rl
κ,βV (Ω; ε)‖ ≤ C ‖(f, 0); Rl

κ,κ−1(Ω; ε)‖(6.14)

with C independent of ε. Lemma 4.2 leads to

‖uε; D l
κ,κ−1(Ω; ε)‖ ≤ C(‖(f, 0); Rl

κ,κ−1(Ω; ε)‖ + ‖vε;V 0
−2(Ω)‖ + ‖pε;V 0

−1(Ω)‖).(6.15)

Theorem 5.2 on asymptotics, here used for the weight indices β, κ − 1, implies the

following asymptotic representation (observe the restriction κ + 1/2 > β > κ ≥ 0)

uε =
3∑

j=1

bjej + ũε,

where ej the j-th unit vector in R4, moreover,

3∑

j=1

|bj | + ‖ũε; Rl
κ,βV (Ω; ε)‖(6.16)

≤ C(‖(f, 0); Rl
κ,βV (Ω; ε)‖ + ‖uε; D l

κ,κ−1(Ω; ε)‖)

≤ C(‖(f, 0); Rl
κ,βV (Ω; ε)‖ + ‖vε;V 0

−2(Ω)‖ + ‖pε;V 0
−1(Ω; ε)‖),

where for the second inequality we used (6.14) and (6.15). Since we know already uε ∈

V 0
−1(Ω), which can only be true if all the three constants bj vanish, thus uε ∈ D l

κ,βV (Ω; ε).

From (6.13) we get

‖vε;V 0
−2(Ω)‖ ≤ C‖vε;V 0

−1(Ω)‖ ≤ C‖(f, 0); Rl
κ,βV (Ω; ε)‖,

and it remains to find a suitable estimate for pε in order to remove the second term

in (6.16). Since uε ∈ D l
κ,βV (Ω; ε) ⊂ Dκ

β V (Ω), we know already pε ∈ V κ

β (Ω) ⊂ V 0
0 (Ω)

and we need only to control the latter norm itself. Let ϕ ∈ V 0
0 (Ω) be arbitrary and

Φ ∈ V 1
0 (Ω) the solution to div Φ = ϕ according to Proposition 6.1. Furthermore, we

choose a sequence Φn ⊂ C∞
0 (Ω)3 converging to Φ in V 1

0 (Ω). We use (6.1) for ψ = (Φn, 0)

and find ∫

Ω

∇vε : ∇Φndx−

∫

Ω

f ′ · Φndx =

∫

Ω

pεdiv Φndx.



316 S. A. NAZAROV AND M. SPECOVIUS-NEUGEBAUER

Here it is possible to pass to the limit in all terms, and repeating the arguments for (6.11)

leads to
∣∣∣∣
∫

Ω

pεϕdx

∣∣∣∣ =

∣∣∣∣
∫

Ω

(∇vε : ∇Φ − f ′Φ)dx

∣∣∣∣

≤ C‖(f, 0); Rl
κ,βV (Ω; ε)‖ ‖Φ;V 1

0 (Ω)‖

≤ C‖(f, 0); Rl
κ,βV (Ω; ε)‖ ‖ϕ;V 0

0 (Ω)‖,

which leads to

‖pε, V 0
0 (Ω)‖ ≤ C‖(f, 0); Rl

κ,βV (Ω; ε)‖

independent of ε ∈ (0, 1]. Finally, we have proved that the right-hand side of (6.16) is

majorized by C‖(f, 0); Rl
κ,βV (Ω; ε)‖.

Step 3. The case β − κ ≤ 0. We now fix κ ∈ [0, 3/2) \ {1/2}, and β ∈ R with β − κ ∈

(−1/2, 0). It is enough to extend (6.6) to this case, too. Since, by Step 3, we already know

the existence of solutions in D l
κ,βV (Ω; ε) for data with compact support in Ω, the result

then follows from density arguments. Furthermore, by Step 1, we may restrict ourselves

to the case Bεu
ε = 0 and start with the uniqueness of solutions. If uε ∈ D l

κ,βV (Ω; ε) is a

solution to the homogeneous problem, then Theorem 5.2 gives uε ∈ D l
κ,β̃

V (Ω; ε) for any

β̃ ∈ [κ,κ + 1/2) (observe that the interval (−1/2, 1/2) is free of critical values for β−κ)

hence uε = 0 by Step 2. To see (6.6) we apply a modification of standard compactness

arguments: We choose δ > 0 small enough such that still β − δ − κ ∈ (−1/2, 0) is valid.

For u ∈ D l
κ,βV (Ω; ε) with Bεu = 0, Sεu = f , from Theorem 5.2 and Lemma 4.2 it follows

‖u; D l
κ,βV (Ω; ε)‖ ≤ C(‖(f, 0); Rl

κ,βV (Ω; ε)‖ + ‖u; D l
κ,β−δV (Ω; ε)‖)(6.17)

≤ C(‖(f, 0); Rl
κ,βV (Ω; ε)‖ + ‖(f, 0); Rl

κ,β−δV (Ω; ε)‖

+‖v;V 0
β−δ−κ−1(Ω)‖ + ‖p;V 0

β−δ−κ
(Ω)‖)

≤ C(‖(f, 0); Rl
κ,βV (Ω; ε)‖ + ‖v;V 0

β−δ−κ−1(Ω)‖ + ‖p;V 0
β−δ−κ

(Ω)‖).

The last two terms have to be removed. To this end, we recall the embeddings

D
l
κ,βV (Ω; ε) ⊂ V κ+1

β (Ω)3 × V κ

β (Ω) ⊂ V 0
κ−β−δ−1(Ω)3 × V 0

κ−β−δ(Ω) =: V0.(6.18)

The embedding constants are bounded independent of ε and the second embedding is

compact. Assume (6.6) is not true, then there exist sequences {εn}n∈N ⊂ (0, 1] and

{un} ⊂ D l
κ,βV (Ω; ε) with ‖un;V0‖ = 1 and ‖(Sεn

un, 0); Rl
κ,βV (Ω; εn)‖ → 0 as n → ∞.

Without loss of generality we require limn→∞ εn = ε0. Then (6.17) and (6.18) imply that

‖un,D
κ

β V (Ω)‖ remains bounded. After possibly extracting a subsequence, we obtain that

un weakly converges to u0 ∈ Dκ

β V (Ω). Since ‖ · ; Rκ

β V (Ω)‖ ≤ ‖ · ; Rl
κ,βV (Ω; ε)‖ for all

ε ∈ (0, 1], we know that

−∆vn + ∇pn → 0 in V κ−1
β (Ω),(6.19)

div vn − ε2n∆pn → 0 in V κ

β (Ω).(6.20)

(6.19) gives already −∆v0 +∇p0 = 0. As for the limits in (6.20) we convince us first that

ε0 > 0. On one hand, as V κ

β (Ω) ⊂ V κ−2
β−2 (Ω), it follows ‖div vn − ε2n∆pn;V κ−2

β−2 (Ω)‖ → 0.
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On the other hand,

‖∆pn;V κ−2
β−2 (Ω)‖ ≤ C‖∆pn;V κ−2

β (Ω)‖ ≤ C‖pn;V κ

β (Ω)‖ ≤ C̃

which implies div vn → 0 in V κ−2
β−2 (Ω) if ε0 = 0. Since div vn converges to div v0 weakly

in V κ

β (Ω), this leads to div v0 = 0. Thus u0 ∈ Dκ

β V (Ω) solves the homogeneous Stokes

problem, and Theorem 3.2 leads to u0 = 0, which contradicts ‖u0;V
0‖ = 1 (recall un

converges to u0 strongly in V0). Thus, ε0 > 0 must hold. But then, for ε0/2 ≤ ε ≤ 1, all

V l
κ,β(Ω; ε)-norms are equivalent to ‖ · ;V l

κ,β(Ω; 1)‖ independent of ε. Hence un converges

weakly in D l
κ,βV (Ω; 1) to a solution u0 of Sε0

u0 = 0, Bε0
u0 = 0, which leads to the same

contradiction, since we know already the uniqueness result.

7. Weighted spaces with detached asymptotics and error estimates. Propo-

sition 4.3 and Theorem 6.2 provide us with a common frame for the solutions to the

problems (S0) and (Sε). In order to take into account the behavior at infinity of the

solution while comparing u0 and uε, we introduce spaces with detached asymptotics. Let

κ ∈ [0, 3/2)\{1/2}, l ∈ N with l − 1 ≥ κ, γ ∈ R with

γ − κ ∈ (m− 1/2,m+ 1/2), m ∈ N0 fixed.(7.1)

For (f, g′) ∈ Rκ
γ V (Ω) ⊂ Rκ

γ−mV (Ω), by Theorem 3.2, there exists a unique solution

u0 ∈ Dκ
γ−mV (Ω) to problem (S0). Let U1, . . . , UN be a basis for the power solutions of

the form (3.13) with λ = 1, . . . ,m−1, whose restrictions to Ω are contained in Dκ
γ−mV (Ω),

but not in Dκ
γ V (Ω). Then, by (3.18), we obtain the representation

u0 =
N∑

j=1

b0qU
q + ũ0, ũ0 ∈ D

κ

γ V (Ω),(7.2)

with now uniquely determined coefficients b0q and a uniquely determined remainder ũ0,

together with the estimate

‖ũ0; Dκ

γ V (Ω)‖ +

N∑

j=1

|b0q | ≤ C‖(f, g′); Rκ

γ V (Ω)‖.(7.3)

We extend this result to the solutions of (S0) and (Sε) in step weighted spaces.

Proposition 7.1. Let κ, l,m and γ fulfil (7.1). For any (f, g′) ∈ Rl
κ,γV (Ω; ε) (compare

(4.9)) the solution u0 ∈ Dl
κ,γ−mV (Ω; ε) to problem (S0) possesses the uniquely determined

representation (7.2) with ũ0 ∈ Dκ
κ,γV (Ω; ε), and the following estimate is valid:

N∑

j=1

|b0q | + ‖ũ0;Dl
κ,γV (Ω; ε)‖ ≤ C‖(f, g′);Rl

κ,γV (Ω; ε)‖.(7.4)

For (f, g) ∈ Rl
κ,γV (Ω; ε) the solution uε ∈ D l

κ,γ−mV (Ω; ε) to problem (Sε) admits the

uniquely determined representation

uε =

N∑

q=0

bεqU
q + ũε(7.5)
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and
N∑

j=1

|bεq| + ‖ũε; D l
κ,γV (Ω; ε)‖ ≤ C ‖(f, g); Rl

κ,γV (Ω; ε)‖.(7.6)

In both inequalities the constants are independent of ε ∈ (0, 1].

Proof. Like in Kondratiev spaces we have Rl
κ,γV (Ω; ε) ⊂ Rl

κ,γ−mV (Ω; ε), thus by Propo-

sition 4.3 we obtain a unique solution u0 ∈ Dl
κ,γ−mV (Ω; ε), together with the ε-indepen-

dent estimate

‖u0 ∈ Dl
κ,γ−mV (Ω; ε)‖ ≤ C ‖(f, g);Rl

κ,γ−mV (Ω; ε)‖ ≤ C ‖(f, g);Rl
κ,γV (Ω; ε)‖.

Since Rl
κ,βV (Ω; ε) ⊂ Rκ

β (Ω), and Dl
κ,βV (Ω; ε) ⊂ Dκ

β V (Ω) for any β ∈ R, we have

already (7.2) together with (7.3). The estimates for the higher order derivatives follow

then by repeating the arguments of Proposition 4.3. The assertion for uε follows from

Theorem 6.2, Theorem 5.2, Remark 5.3 and (6.6) applied to β = γ −m.

We can reformulate these result in terms of spaces with detached asymptotics. We

put
Dl,0

κ,γV (Ω; ε) = {u : u fulfils (7.2)},

while the norm in Dl,0
κ,γV (Ω; ε) is defined by the left-hand side of (7.4). Then Dl,0

κ,γV (Ω; ε)

is isomorphic to RN×Dl
κ,γV (Ω; ε). In a similar way we introduce Dl,ε

κ,γV (Ω; ε), isomorphic

to R
N × D l

κ,γV (Ω; ε), as the space of functions fulfilling (7.5), provided with the norm

defined by the left-hand side of (7.6). Then

(S0, B0) : Dl,0
κ,γV (Ω; ε) → Rl

κ,γV (Ω; ε), (Sε, Bε) : Dl,ε
κ,γV (Ω; ε) → R

l
κ,γV (Ω; ε)

define isomorphisms. Now let (f, g′) ∈ Rl
κ,γV (Ω; ε) be fixed and u0 ∈ Dl,0

κ,γV (Ω; ε) be

the solution to (S0). We put g4 = 0, then (f, g) ∈ Rl
κ,γV (Ω; ε). Let uε ∈ Dl,ε

κ,γV (Ω; ε) be

the unique solution to (Sε). Clearly uε ∈ Dl,0
κ,γV (Ω; ε), too. Moreover, since U j

4 = P j is

harmonic for all j = 1, . . . , N , we have ∆pε = ∆p̃ε. Thus the difference u0−uε solves the

problem (S0) with right-hand side

f ′ = 0, f4 = ε2∆p̃ε, g′ = 0.(7.7)

We apply Lemma 5.1 to find the final error estimate.

Theorem 7.2. Let κ, l,m and γ fulfill (7.1). For (f, g′) ∈ Rl
κ,γV (Ω; ε) (see (4.10)) let

u0 ∈ Dl,0
κ,γV (Ω; ε) ⊂ Dl

κ,γ−mV (Ω; ε) (see (4.9)) be the unique solution to the exterior

Stokes problem and uε ∈ Dl,ε
κ,γV (Ω; ε) ⊂ D l

κ,γ−mV (Ω; ε) be the unique solution to the

perturbed problem (Sε) with (g = g′, 0). Then the difference u0 − uε fulfills the following

error estimate
N∑

j=1

|b0j − bεj | + ‖ũ0 − ũε; D l−1
0,β−κ

V (Ω; ε)‖(7.8)

=

N∑

j=1

|b0j − bεj | + ‖ṽ0 − ṽε;V l
1,β−κ

V (Ω; ε)‖ + ‖p̃0 − p̃ε;V l−1
0,β−κ

(Ω; ε)‖

≤ Cεκ‖(f, g′);Rl
κ,βV (Ω; ε)‖

with a constant C independent of ε ∈ (0, 1].
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Proof. We have u0, uε ∈ Dl,0
κ,γV (Ω; ε) and u0 − uε solves (S0) with data (7.7). Since

κ ≥ 0, the estimate (5.8) in Lemma 5.1, together with (7.6) implies

‖ε2∆p̃ε;V l−1
0,γ−κ

(Ω; ε)‖ ≤ C‖ε2∆p̃ε;V l−1
0,γ (Ω; ε)‖ ≤ Cεκ‖p̃ε;V l+1

κ,γ (Ω; ε)‖(7.9)

≤ Cεκ‖(f, (g′, 0)); Rl
κ,γV (Ω; ε)‖ ≤ Cεκ‖(f, g′);Rl

κ,γV (Ω; ε)‖.

We want to employ (7.4) on u0 − uε, but we have to reduce the order of the estimated

derivatives, since by the previous inequality we can only control ‖ũ0−ũε; Dl−1
0,γ−κ

V (Ω; ε)‖.

Finally we arrive at

N∑

j=1

|b0j − bεj | + ‖ũ0 − ũε;Dl−1
0,γ−κ

V (Ω; ε)‖ ≤ C‖ε2∆p̃ε;V l−1
0,γ−κ

(Ω; ε)‖,

which leads to (7.8) by (7.9).

Remark 7.3. Let us add some comments. Like in [10], it can be shown that these es-

timates are asymptotically precise with respect to ε. Of course, with ε ց 0, only the

stable part of the left-hand side is relevant for the order of convergence. This means for

l ≥ max{κ + 1, 2}

N∑

j=1

|b0j − bεj | + ‖ṽ0 − ṽε;V 1
γ−κ

(Ω)‖ + ‖p̃0 − p̃ε;V 0
γ−κ

(Ω)‖ = O(εκ)

as εց 0. The condition κ ≤ l−1 is only introduced in order to avoid more technicalities

while introducing the step weighed space V l−1
κ,β (Ω; ε) (compare [10]). Following the proofs

we find that in the case f4 = 0 this condition may be omitted, and we require l ≥ 1

instead.

Let us point out some special combinations of weight indices and derivatives. If γ = κ,

then ũε = uε, ũ0 = u0, (no asymptotic is separated), this is the case of finite Dirichlet

integral for the velocity parts. Suppose f4 = 0, then for l = γ = κ = 1 we obtain from

(7.8)

‖r−1(v0 − vε);L2(Ω)‖ + ‖∇(v0 − vε);L2(Ω)‖ + ‖p0 − pε;L2(Ω)‖

≤ C ε(‖rf ′;L2(Ω) + ‖g′;H3/2(∂Ω)‖).

For simplicity let also g′ = 0. Then the same estimate applied to l = 2, γ = κ, leads to

‖r−1(v0 − vε);L2(Ω)‖ + ‖∇(v0 − vε);L2(Ω)‖ + ε‖∇2(v0 − vε);L2(Ω)‖

+‖p0 − pε;L2(Ω)‖ + ε‖∇(p0 − pε);L2(Ω)‖

≤ C εκ(‖f ′;V κ−1
κ

(Ω)‖ + ε2−κ‖∇f ′;V 0
κ

(Ω)‖).

For κ ∈ (1, 3/2) it follows that

‖r−1(v0 − vε);L2(Ω)‖ + ‖∇(v0 − vε);H1(Ω)‖ + ‖p0 − pε;H1(Ω)‖

≤ C(εκ−1‖f ′;V κ−1
κ

(Ω)‖ + ε‖∇f ′;V 0
κ

(Ω)‖) = O(εκ−1)

as εց 0.
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