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Abstract. We formulate a boundary value problem for the Navier–Stokes equations with pre-
scribed u · n, curlu · n and alternatively (∂u/∂n) · n or curl

2 u · n on the boundary. We deal
with the question of existence of a steady weak solution.

1. Introduction and motivation. We deal with the steady Navier–Stokes system

−ν∆u+ (u · ∇)u+ ∇p = f ,(1)

divu = 0,(2)

in a bounded domain Ω ∈ R
3. The system describes the motion of a viscous incom-

pressible fluid with a constant density (we assume that it equals one). We denote by

u the velocity, by p the pressure, by f the specific body force and by ν the coefficient

of viscosity. The equation (1) expresses the balance of momentum and the equation (2)

represents the condition of incompressibility.

The system (1), (2) is usually considered with the homogeneous Dirichlet boundary

condition

(3) u |∂Ω = 0
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in the case when ∂Ω is a fixed wall. This condition was suggested by G. G. Stokes in 1845

and it expresses the requirement that

(4) (a) u · n|∂Ω = 0, (b) uτ |∂Ω = 0,

where uτ denotes the projection of u onto the plane tangential to ∂Ω. While the first

condition (4a) naturally follows from the impermeability of the wall, the second part (4b)

is often called the “no-slip-condition” because it is believed that the fluid cannot slip on

the boundary due to its viscosity. It is known that the condition (3) is, for divergence-free

vector fields u from W 1,2(Ω), equivalent to three scalar conditions

(5) (a) u · n |∂Ω = 0, (b) curlu · n |∂Ω = 0, (c)
∂u

∂n
· n |∂Ω = 0,

see e.g. [11]. Note that the third condition (5c) means that the normal component of

the viscous stress, acting on the boundary, is zero. It can be expressed by the equation

n · T(u) · n = 0, where T is the viscous stress tensor. For the incompressible isotropic

Newtonian fluid, T satisfies T(u) = 2ν (∇u)s where (∇u)s denotes the symmetrized

gradient of u. Although some fundamental questions still remain open, it can be said

that the theory of the system (1), (2) with the boundary condition (3) is relatively deeply

elaborated.

H. Navier, coming from the molecular-kinetic theory of fluids, had already in 1824

proposed the boundary condition saying that the velocity on the boundary is propor-

tional to the tangential component of the stress. This condition can be expressed by the

equations

(6) (a) u · n|∂Ω = 0, (b) (T(u) · n)τ + ku = 0,

where (T(u) ·n)τ denotes the tangential component of the stress acting on the boundary

and k is the coefficient of proportionality. The condition (6b) naturally follows from the

weak formulation of the problem (1), (2) which reads: Given f in the dual W−1,2
σ (Ω)

to the space W 1,2
σ (Ω) (= the space of all divergence-free vector functions from W 1,2(Ω)

whose normal component on ∂Ω equals zero). We search for u ∈W 1,2
σ (Ω) such that

(7)

∫

Ω

[T(u) · ∇φ+ (u · ∇)u · φ] dx+

∫

∂Ω

ku · φ dS = 〈f ,φ〉Ω

for all φ ∈ W 1,2
σ (Ω), where 〈 . , . 〉Ω is the duality between W−1,2

σ (Ω) and W 1,2
σ (Ω). In-

deed, if u is a “smooth” solution of this problem then, considering at first the test functions

φ with a compact support in Ω, we find out that there exists an appropriate pressure p

such that u, p satisfy the equation (1) at least a.e. in Ω. Then, considering all possible

test functions φ ∈W 1,2
σ (Ω), and integrating by parts in (7), we arrive at the identity

∫

∂Ω

[T(u) · n+ ku] · φ dS = 0

which implies (6b). The inequality k > 0 guarantees that the quadratic form

A(u,u) :=

∫

Ω

T(u) · ∇u dx+

∫

∂Ω

k |u|2 dS

is coercive, which plays an important role in the proof of existence of a weak solution

to the problem just formulated above. Navier’s boundary condition has been considered
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in many papers, let us e.g. mention W. Jäger and A. Mikelič [7] and W. Zajączkowski

[15]. These boundary conditions enable the fluid to slip on the boundary, which is realistic

especially if the boundary is smooth. Here we mean “smooth” not only in the mathematical

sense, but so that the scale of its eventual microscopic roughness is comparable with the

size of the fluid particles. Under the assumptions that the law of the conservation of

momentum holds “up to the boundary” and the friction between the fluid and the wall

is proportional to −u (with the coefficient of proportionality k), one can really arrive at

(6b), but the natural physical requirement is that k = κtn where κ is the coefficient of

friction between the fluid and the wall and tn is the normal component of the total stress

acting onto the boundary. Note that the important contribution to tn, which complicates

the analysis as well as numerical solution of the model, is made by the pressure: it is due

to the form −pI+2ν(∇u)s of the total stress tensor. Here p appears explicitly, but it can

also be contained implicitly in the viscosity coefficient ν – more details can be found in

a series of papers on incompressible viscous fluids with pressure dependent viscosity by

J. Málek, R. Rajagopal et al. (see e.g. [3]). The difficulties generally connected with the

influence of boundary conditions were admitted by C. Truesdell in 1952, see [14], who

acknowledged that the lack of proper boundary conditions represents a big problem in

future development of mathematical fluid mechanics.

The comparison of Dirichlet’s boundary condition (3) with Navier’s boundary con-

ditions (6) shows that while in the first case u = 0 on the boundary, which is a strong

requirement, in the second case the only actual geometrical condition we impose is (6a).

(Condition (6b) follows from physical considerations.) This situation motivated us to

study other boundary conditions which also admit the slippery of the fluid on the bound-

ary, which stand in some sense “between (3) and (6)” and which enable us to develop

the theory of the Navier–Stokes equation, similarly as e.g. the boundary condition (3).

We have explained in several papers (see [1], [10], [11]) that a relatively consistent the-

ory of the Navier–Stokes equation can be created with the “generalized impermeability

boundary conditions”

(8) (a) u · n |∂Ω = 0, (b) curlu · n |∂Ω = 0, (c) curl
2u · n |∂Ω = 0

on a fixed wall ∂Ω. These conditions also enable the fluid to slip on the boundary. The

second condition (8b) implies that the “2D flow” u
∣

∣

∂Ω
has no vortices on ∂Ω. The third

condition (8c) means that Div T·n = 0 on ∂Ω, which says that not the normal component

of viscous stress acting on the boundary is zero, like in the case of (5c), but the normal

component of the rate of production of the viscous stress on the boundary equals zero.

Only the first two boundary conditions (8a), (8b), which coincide with (5a), (5b), are used

in the definition of a weak solution to the problem (1), (2), (8), see [1] and [11]. However,

it is shown in [1] and [11] that if the weak solution is “smooth” then it also automatically

satisfies (8c) as a natural condition which results from the appropriate weak formulation

of the problem. (In the present paper, we explain in Sections 3 and 4 that there in fact

exists certain freedom in the weak formulation, consisting in the construction of functions

a ∈ W 1,2(Ω) and b ∈ W−1/2,2(∂Ω) and in the choice of admissible test functions, so

that the resulting natural condition need not necessarily be only (8c) – it can also be

inhomogeneous and it can be of the type (9c) or (10c).) We have further shown in [1]



324 J. NEUSTUPA AND P. PENEL

that the boundary conditions (8) induce the same series of boundary conditions for the

vorticity ω := curlu of the flow. It is a big advantage in comparison with (3) or (6)

because the latter conditions for u do not lead to a well posed boundary-value problem

for ω.

In this paper, we focus on the equations (1), (2) either with the inhomogeneous form

of the boundary conditions (5):

(9) (a) u · n
∣

∣

∂Ω
= α0, (b) curlu · n

∣

∣

∂Ω
= α1, (c)

∂u

∂n
· n

∣

∣

∣

∂Ω
= α2,

or with the inhomogeneous form of the boundary conditions (8):

(10) (a) u · n
∣

∣

∂Ω
= α0, (b) curlu · n

∣

∣

∂Ω
= α1, (c) curl

2u · n
∣

∣

∂Ω
= α2.

2. Auxiliary results. We assume that Ω is a bounded simply connected domain with

the boundary of the class C2,1. The case of a general non-smooth domain will be treated

in a forthcoming paper [12]. By the simple connectedness of Ω we mean that each closed

curve in Ω can be homotopically contracted to a point without ever leaving Ω. However,

the boundary of Ω can generally have more components Γ0, Γ1, . . . , ΓN so that

Ω = IntΓ0 ∩ ExtΓ1 ∩ . . . ∩ ExtΓN .(11)

We list some notation and auxiliary results from [1] and [11]:

• ‖ . ‖r, respectively ‖ . ‖m,r, is the norm of a scalar- or vector- or tensor-valued function

with components in Lr(Ω), respectively in Wm,r(Ω).

• ‖ . ‖r; ∂Ω or ‖ . ‖m,r; ∂Ω, is the norm of a scalar– or vector– or tensor–valued function

with components in Lr(∂Ω) or in Wm,r(∂Ω). Similarly, ‖ . ‖r; Ω′ or ‖ . ‖m,r; Ω′ denote

the norms of functions in Lr(Ω′) or in Wm,r(Ω′) in the case when Ω′ 6= Ω.

• Vector functions or spaces of vector functions and their duals are denoted by boldface

letters.

• L2
σ(Ω) is the closure of {u ∈ C∞

0 (Ω); divu = 0 in Ω} in L2(Ω). It coincides with the

space {u ∈ L2(Ω); divu = 0 in Ω in the sense of distributions and u ·n|∂Ω = 0 in the

sense of traces}. The orthogonal complement to L2
σ(Ω) in L2(Ω) consists of functions

of the type ∇q for q ∈W 1,2(Ω).

• V denotes the space of all divergence-free vector functions in W 1,2
0 (Ω). It is a subspace

of W 1,2
0 (Ω).

• D1 = {u ∈W 1,2(Ω) ∩L2
σ(Ω); curlu · n|∂Ω = 0 in the sense of traces} =

{u = u0 +∇ϕ; u0 ∈W 1,2
0 (Ω), ∆ϕ = −∇ ·u0 in Ω and ∂ϕ/∂n|∂Ω = 0} = PσW

1,2
0 (Ω)

(where Pσ is the orthogonal projection of L2(Ω) onto L2
σ(Ω)).

• R = curl |D1 ; R is a self-adjoint operator in L2
σ(Ω).

• The equation Ru = f (for f ∈ L2
σ(Ω)) has a unique solution u ∈D1 such that

‖u‖1,2 ≤ c1 ‖f‖2(12)

where constant c1 is independent of f . (See O. A. Ladyzhenskaya, V. A. Solonnikov

[9].)

• There exist constants c2, c3 > 0 such that

(13) c2 ‖Ru‖2 ≤ ‖u‖1,2 ≤ c3 ‖Ru‖2 for all u ∈D1.
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• 〈 . , . 〉∂Ω is the duality betweenW−1/2,2(∂Ω) andW 1/2,2(∂Ω) (or betweenW−1/2,2(∂Ω)

and W 1/2,2(∂Ω)). Similarly, 〈 . , . 〉Γi
is the duality between W−1/2,2(Γi) and

W 1/2,2(Γi).

• By a neighborhood of ∂Ω we always mean an “interior neighborhood”. More precisely,

the r-neighborhood of ∂Ω is the open set Ωr := Ur(∂Ω) ∩ Ω.

Lemma 2.1. Given functions α0 ∈W 1/2,2(∂Ω) and α1 ∈W−1/2,2(∂Ω) such that
∫

∂Ω

α0 dS = 0 and 〈α1, 1〉Γi
= 0 (i = 0, 1, . . . , N),

there exists a vector function a ∈W 1,2(Ω) such that diva = 0 a.e. in Ω, a is harmonic

(in the distributional sense) in some neighborhood of ∂Ω and

(14) (a) a · n|∂Ω = α0, (b) curla · n|∂Ω = α1.

Moreover, there exists a constant c4 > 0, independent of α0 and α1, such that

(15) ‖a‖1,2 ≤ c4 (‖α0‖1/2,2; ∂Ω + ‖α1‖−1/2,2; ∂Ω)

Proof. (i) First we solve the Neumann problem

(16) ∆ψ1 = 0 in Ω,
∂ψ1

∂n

∣

∣

∣

∣

∂Ω

= α1.

There exists a unique (up to an additive constant) weak solution ψ1 ∈ W 1,2(Ω) which

depends continuously on α1 in the sense that

‖∇ψ1‖2 ≤ c5 ‖α1‖−1/2,2; ∂Ω(17)

where c5 is independent of α1.

(ii) Next we consider the problem

(18) curlϕ0 = ∇ψ1 in Ω, ϕ0 |∂Ω = 0.

Since 〈α1, 1〉Γi
= 0 (i = 0, 1, . . . , N), the flux of ∇ψ1 through each component of ∂Ω

equals zero. Thus, due to [2], Theorem 2.1, the problem (18) is solvable in W 1,2
0 (Ω).

Moreover, there exists c6 > 0, independent of ∇ψ1, such that

(19) ‖ϕ0‖1,2 ≤ c6 ‖∇ψ1‖2 .

(iii) Now we solve the Neumann problem

(20) ∆ψ0 = −divϕ0 in Ω,
∂ψ0

∂n

∣

∣

∣

∣

∂Ω

= α0.

This problem has a unique (up to an additive constant) solution ψ0 ∈ W 2,2(Ω) which

satisfies the estimate

‖∇ψ0‖1,2 ≤ c7 (‖ϕ0‖1,2 + ‖α0‖1/2,2; ∂Ω)(21)

where c5 is independent of ϕ0 and α0, see e.g. [6], p. 15.

Finally we put a := ∇ψ0 + ϕ0. The inequalities (17), (19) and (21) imply (15). The

function a is divergence–free because ψ0 satisfies the equation (20). It is harmonic because

curl
2a = curl∇ψ1 = 0 in the sense of distributions in Ω. The normal component of a

on ∂Ω equals α0 because a · n = ∇ψ0 · n = α0 on ∂Ω. Since curla = curlϕ0 = ∇ψ1

and consequently, curla · n = ∇ψ1 · n = α1 on ∂Ω, the function a also satisfies (14b).
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Note that the function a with all the properties named in the lemma is not given

uniquely. The construction described above leads to the function a which is harmonic

not only in a neighborhood of ∂Ω, but in the whole domain Ω.

Lemma 2.2. Given β ∈W−1/2,2(∂Ω) such that

〈β, 1〉Γi
= 0 (i = 0, 1, . . . , N),

there exists a function v ∈D1 such that

(22)
∂v

∂n
· n

∣

∣

∣

∂Ω
= β.

Proof. (i) We solve the equation

(23) ∆τϕ = −β

on each component ∂Ω. Here ∆τ is the Laplace–Beltrami operator acting on functions

defined on ∂Ω. Using the representation of the surfaces Γi (i = 0, 1, . . . , N) by means

of a finite number of local mappings of the class C2,1 and the subordinate partition of

unity, we can transform equation (23) to a finite number of elliptic equations with 2D

generalized Laplace operators in R
2. Solving them and summing the results, one can

prove that the equation (23) has a solution ϕ ∈W 3/2,2(∂Ω). The solution is not unique,

but it can be chosen so that

‖ϕ‖3/2,2; ∂Ω ≤ c8 ‖β‖−1/2,2; ∂Ω(24)

where the constant c8 is independent of β.

(ii) We solve the biharmonic equation ∆2ζ = 0 in Ω with the boundary conditions

(25) (a) ζ |∂Ω = ϕ, (b)
∂ζ

∂n

∣

∣

∣

∣

∂Ω

= 0.

Due to [6], p. 16, this problem has a unique solution ζ ∈W 2,2(Ω) which depends contin-

uously on ϕ in the sense that

‖ζ‖2,2 ≤ c9 ‖ϕ‖3/2,2; ∂Ω(26)

where the constant c9 does not depend on ϕ.

(iii) Let us observe that −∆ζ ∈ L2
0(Ω) where L2

0(Ω) = {p ∈ L2(Ω);
∫

Ω
p dx = 0}.

Then we can find v0 ∈W 1,2
0 (Ω) such that

(27) div v0 = −∆ζ

in Ω. Indeed, by [6], Corollary 2.4, the operator div is an isomorphism of the space

V ⊥ onto L2
0(Ω), where V ⊥ is the orthogonal complement to V in W 1,2

0 (Ω). Thus, an

appropriate v0 exists and its norm can be estimated:

‖v0‖1,2 ≤ c10 ‖∆ζ‖2(28)

where c10 is independent of ζ.

(iv) Finally, we put v := v0 + ∇ζ. The function v is divergence-free, its normal

component on Ω is zero due to (25b), its curl equals curlv0 and the normal component

of this function equals zero because v0 = 0 on ∂Ω.

It remains to show that v satisfies (22). Due to the assumed smoothness of ∂Ω, the

function n can be extended from ∂Ω to a function of the class C2 in the whole closure
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Ω. It can easily be observed that ∇v ·n is in L2(Ω) and its divergence is in L2(Ω). Thus,

n·∇v ·n has a trace in W−1/2,2(∂Ω), which is exactly what we understand by (∂v/∂n)·n

on ∂Ω. Clearly, since div v = 0 in Ω, the function div v − (∂v/∂n) ·n also has a trace in

W−1/2,2(∂Ω).

We shall further denote by n not only the outer normal vector on ∂Ω, but also its C2

extension in Ω.

Suppose that {ϕk} is a sequence in W 5/2,2(∂Ω) which converges to ϕ in W 3/2,2(∂Ω)

as k → +∞. Then the series of problems, given by the equations ∆2ζk = 0 in Ω and the

boundary conditions

(29) (a) ζk |∂Ω = ϕk, (b)
∂ζk

∂n
· n

∣

∣

∣

∣

∂Ω

= 0.

has solutions ζk ∈W 3,2(Ω), such that ζk → ζ in W 2,2(Ω) as k → +∞, see [6], p. 17. The

series of problems div vk
0 = −∆ζk in Ω, vk

0 = 0 on ∂Ω has solutions vk
0 ∈W 2,2(Ω) such

that vk
0 → v0 in W 1,2

0 (Ω) as k → +∞, see [2], Theorem 2.1. Thus,

(30) div vk −
∂vk

∂n
· n→ div v −

∂v

∂n
· n in W−1/2,2(Ω) as k → +∞.

The functions on the left hand side can be written as

div vk −
∂vk

∂n
· n = div vk

0 −
∂vk

0

∂n
· n+ ∆ζk −

∂2ζk

∂n2
.

The first two terms on the right hand side have the trace on ∂Ω equal to zero because

after the subtraction of (∂vk
0/∂n)·n from div vk

0 on ∂Ω, we have the sum of two tangential

components of vk differentiated in the tangential directions, which equals zero because

vk
0 = 0 on ∂Ω. The trace of the second two terms on the right hand side can be simplified

to ∆τζ
k, which equals ∆τϕ

k because ϕk is the trace of ζk on ∂Ω. Thus, the right hand

side of (30) is equal to the limit of ∆τϕ
k as k → +∞ in the space W−1/2,2(∂Ω). However,

due to the assumptions on the functions ϕk, the limit equals β.

Lemma 2.3. Given α0 ∈ W 1/2,2(∂Ω), α1 ∈ W−1/2,2(∂Ω) and α2 ∈ W−1/2,2(∂Ω) such

that ∫

∂Ω

α0 dS = 0 and 〈α1, 1〉Γi
= 〈α2, 1〉Γi

= 0 (i = 0, 1, . . . , N),

there exists a vector function a ∈W 1,2(Ω) such that diva = 0 a.e. in Ω and

(31) (a) a · n|∂Ω = α0, (b) curla · n|∂Ω = α1, (c)
∂a

∂n
· n

∣

∣

∣

∣

∂Ω

= α2.

Moreover, there exists c11 > 0, independent of α0, α1 and α2, such that

(32) ‖a‖1,2 ≤ c11 (‖α0‖1/2,2; ∂Ω + ‖α1‖−1/2,2; ∂Ω + ‖α2‖−1/2,2; ∂Ω).

Proof. Denote by a′ the function given by Lemma 2.1. Using the same arguments as in

the final part of the proof of Lemma 2.2, we can give the right sense to (∂a′/∂n) · n

and we can show that it is an element of W−1/2,2(∂Ω). Since a′ belongs to the closure

of {φ ∈ C∞(Ω); divφ = 0} in W 1,2(Ω), it can be approximated by a sequence {ak} in

C∞(Ω) such that divak = 0, which converges to a′ in W 1,2(Ω). Since ak is divergence–

free and due to the higher smoothness of (∂ak/∂n) · n, the trace of the latter on ∂Ω
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equals −∇τ · ak
τ where ∇τ is the “tangential” operator nabla (i.e. the 2D nabla operator

acting in the tangent plane to ∂Ω) and ak
τ is the tangential component of ak. Integrating

on an arbitrary component Γi of ∂Ω, we can verify that the mean value of ∇τ · ak
τ on Γi

equals zero. Thus, we also have

〈(∂a′/∂n) · n, 1〉Γi
= lim

k→+∞

∫

Γi

(∂ak/∂n) · ndS = 0.

Put β := α2 − (∂a′/∂n) · n. Then β ∈ W−1/2,2(∂Ω) and 〈β, 1〉Γi
= 0 (i = 0, 1, . . . , N).

Due to Lemma 2.2, there exists a function v ∈ D1, satisfying (22). Then the function

a := a′ + v has all the properties named in the statement of the lemma. Note that, in

contrast with function a′, the function a need not be harmonic in a neighborhood of ∂Ω

because v is generally not harmonic in the neighborhood of ∂Ω.

3. The weak problem with the inhomogeneous boundary conditions (9). Sup-

pose that α0, α1 and α2 satisfy the assumptions of Lemma 2.1 and Lemma 2.3 and a

is a function whose existence is given by Lemma 2.3. Solution of the equations (1), (2),

satisfying the boundary conditions (9) can be sought for in the form u = a+ v where v

satisfies the equations

−ν∆v + (a · ∇)v + (v · ∇)a+ (v · ∇)v + ∇p = g,(33)

div v = 0,(34)

in Ω and the homogeneous boundary conditions (5) on ∂Ω. Here g = f +ν∆a− (a ·∇)a.

However, we have already mentioned that (5) (for divergence-free vector functions) is

equivalent to the homogeneous Dirichlet boundary condition

(35) v |∂Ω = 0.

Thus, the equations (33) and (34) can be solved with this usual boundary condition. If

we find a solution v then the sum u = v + a is a solution of the problem (1), (2), (9).

The weak formulation of the problem (33)–(35) is well known, see e.g. O. A. La-

dyzhenskaya [8], R. Temam [13], M. Feistauer [4] or G. P. Galdi [5].

Recall that the integral
∫

∂Ω
a ·ndS, i.e. the flux of a through ∂Ω, equals zero. While

the authors assume that the fluxes of a through each component of ∂Ω separately equal

zero in [8], [13] and [4], G. P. Galdi admits nonzero fluxes, which are however assumed

to be “sufficiently small”, in [5]. The reason is that the proof requires the quadratic form

(36) A(v,v) :=

∫

Ω

[ν∇v · ∇v + (v · ∇)a · v] dx

to be coercive in space V . It follows from [5], pp. 27–31, that if the flux of a through

each component of ∂Ω is “small” then the function a can be modified in a sub–domain

Ω′ ⊂ Ω′ ⊂ Ω so that the condition of coerciveness of the form A is satisfied. If we denote

the modified function again by a, we thus obtain the lemma:

Lemma 3.1. There exists an ǫ > 0 such that IF α0 ∈W 1/2,2(∂Ω) satisfies

(37)
N

∑

i=1

∣

∣

∣

∣

∫

Γi

α0 dS

∣

∣

∣

∣

< ǫ,
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α1 and α2 are elements of W−1/2,2(∂Ω) such that

〈α1, 1〉Γi
= 〈α2, 1〉Γi

= 0 (i = 0, 1, . . . , N)

Then there exists a vector function a ∈W 1,2(Ω) such that diva = 0 a.e. in Ω, a satisfies

the boundary conditions

(38) (a) a · n|∂Ω = α0, (b) curla · n|∂Ω = α1, (c)
∂a

∂n
· n

∣

∣

∣

∣

∂Ω

= α2

and the quadratic form (36) is coercive. Moreover, there exists c12 > 0, independent of

α0, α1 and α2, such that

(39) ‖a‖1,2 ≤ c11 (‖α0‖1/2,2; ∂Ω + ‖α1‖−1/2,2; ∂Ω + ‖α2‖−1/2,2; ∂Ω).

With this function a, following the procedure described in [5], pp. 16–18 and 33, we

can prove that the boundary-value problem (33)–(35) has a weak solution v. The solution

depends continuously on the data in the sense that

‖v‖1,2 ≤ c13 (‖α0‖1/2,2; ∂Ω + ‖α1‖−1/2,2; ∂Ω + ‖α2‖−1/2,2; ∂Ω + ‖g‖−1,2).(40)

where the constant c13 is independent of α0, α1, α2 and g. Here ‖ . ‖−1,2 denotes the

norm in the dual space to V .

4. The weak problem with the inhomogeneous boundary conditions (10). In

this section, it will be advantageous to write the equation (1) in the form

(41) ν curl
2u+ curlu× u+ ∇q = f

where q = p+ 1
2
|u|2.

Suppose that α0 and α1 satisfy the assumptions of Lemma 2.1 and a is a function

whose existence is given by this lemma. The weak solution u of the equations (41), (2),

satisfying the boundary conditions (10), can be constructed in the form u = a+v where

v satisfies in a weak sense the equations

ν curl
2v + curla× v + curlv × a+ curlv × v + ∇q = g,(42)

div v = 0,(43)

(where g = f − ν curl
2a− curla × a) in Ω and the homogeneous boundary conditions

(8a), (8b) on ∂Ω. This guarantees that u satisfies the conditions (10a) and (10b) on

∂Ω, but it does not solve the question of validity of (10c). The reason why the condi-

tion (10c) cannot be treated in the same way as (10a) and (10b) is that (10c) involves

the second derivatives of u and the construction of the weak solution u in W 1,2(Ω)

does not directly provide an opportunity to control curl
2u · n on ∂Ω. Thus, the bound-

ary condition (10c) enters the weak formulation through a certain linear functional b

which, in the case when the weak solution is “smooth”, causes that it satisfies (10c) as

a “natural boundary condition”. This will be explained in greater detail later in this

section.
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The weak formulation of the problem (42), (43), (8a), (8b) is: Suppose that g ∈D−1 (the

dual to D1) and b ∈W−1/2,2(∂Ω). We search for v ∈D1 such that
∫

Ω

[

ν curlv · curlφ+ curla× v · φ+ curlv × a · φ+ curlv × v · φ
]

dx(44)

= 〈g,φ〉Ω + 〈b,φ〉∂Ω

for all φ ∈D1.

We shall further deal with the two questions:

1) In which sense does the weak formulation involve the boundary condition (10c)?

2) Existence of a weak solution and continuous dependence on the data.

1) Given b ∈W−1/2,2(∂Ω), we define α2 ∈W−3/2,2(∂Ω) by the equation

(45) ν 〈α2, ϕ〉
∗
∂Ω = 〈b,∇ϕ〉∂Ω

for ϕ∈W 2,2(Ω). Here 〈 . , . 〉∗∂Ω denotes the duality betweenW−3/2,2(∂Ω) andW 3/2,2(∂Ω).

If g ∈ L2
σ(Ω) and v is a solution of (44) that belongs not only to D1, but also to

W 2,2(Ω), then we can first consider the test functions φ with a compact support in Ω

and show that there exists a scalar function q such that v, q satisfy the equations (42),

(43) a.e. in Ω. Then, following the standard procedure, we can consider all test functions

from D1 and show, by means of the integration by parts in (44), that v satisfies

(46)

∫

∂Ω

ν curlv · (n× φ) dS = 〈b,φ〉∂Ω

for all φ ∈D1. The function φ, as an element of D1, can be written in the form

(47) φ = φ0 + ∇ϕ

where φ0 ∈ W
1,2
0 (Ω) and ϕ ∈ W 2,2(Ω), see [1]. Recall that φ0 is a solution of the

boundary-value problem (18) with the right hand side curlφ, i.e.

(48) curlφ0 = curlφ in Ω, φ0

∣

∣

∂Ω
= 0.

The solution is not unique, however it can be chosen so that it satisfies

‖φ0‖1,2 ≤ c4 ‖curlφ‖2 ≤ c4 c1 ‖φ‖1,2(49)

where c4 is the constant from (19) and c1 is the constant from (12). The function ϕ is

also not given uniquely by the decomposition (47), however ∇ϕ is defined uniquely on

∂Ω. Substituting φ in the form (47) into the left hand side of (46), we obtain:
∫

∂Ω

curlv · (n× φ) dS = −

∫

∂Ω

n · (curlv ×∇ϕ) dS = −

∫

Ω

div (curlv ×∇ϕ) dx

= −

∫

Ω

curl
2v · ∇ϕ dx = −

〈

curl
2v · n, ϕ

〉∗

∂Ω
.

Thus, (45) and (46) yield

(50) ν
〈

α2 − curl
2v · n, ϕ

〉∗

∂Ω
= 0.

This equation shows that v satisfies the boundary condition curl
2v·n = α2 in the sense of

the equality in W−3/2,2(∂Ω). Since u = a+v and curl
2a = 0 in the sense of distributions
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in some neighborhood of ∂Ω, the function u also fulfills the boundary condition (10c) in

the sense of equality in W−3/2,2(∂Ω).

2) It can be deduced from (13) that the operator R, as an operator in L2
σ(Ω), has a

compact resolvent. Consequently, its spectrum consists of a countable set of real eigen-

values. In order to prove the existence of a weak solution to the problem (42), (43), (8a),

(8b), i.e. a solution v which satisfies (44), we can consider Galerkin approximations as

linear combinations of the eigenfunctions of R. Then we can again follow the well known

procedure, see e.g. in [5] pp. 16–18, and show that the sequence of approximations con-

tains a subsequence which converges to a weak solution of (42), (43), (8a), (8b). The only

condition which we need is that the quadratic form

(51) A(v,v) :=

∫

Ω

[ν curlv · curlv + curlv × a · v] dx

is coercive in D1. The next crucial lemma says that if the prescribed fluxes through all

components Γi of ∂Ω, which are given by the integrals of α0 on Γi, are sufficiently small

then the function a can be chosen so that in addition to all the properties named in

Lemma 2.1, the condition of coerciveness of the form A is fulfilled, too. The proof is

rather technical and it is partially analogous to the procedure used in [5], pp. 28–31,

however some steps require a different approach and a deeper analysis because we deal

with functions v from D1 which need not be equal to zero on ∂Ω, like in [5].

Lemma 4.1. There exists ǫ > 0 such that IF α0 and α1 satisfy the assumptions of Lemma

2.1 and

(52)
N

∑

i=1

1

meas
1/2

2 (Γi)

∣

∣

∣

∣

∫

Γi

α0 dS

∣

∣

∣

∣

≤ ǫ

Then there exists a function a with all the properties named in Lemma 2.1 and such that

the quadratic form A, defined by (51), is coercive in D1.

Proof. Recall that we consider n to be a C2-extension of the outer normal vector from

∂Ω onto the whole Ω, see the proof of Lemma 2.2. Due to the smoothness of ∂Ω, there

exists r > 0 such that the extension can be chosen so that it satisfies n(x) = n(Px)

for x ∈ Ωr = Ur(∂Ω) ∩ Ω, where Px denotes the nearest point in ∂Ω to x. (Px is

uniquely defined for r sufficiently small.) We further denote by vτ (x) the projection of

v(x) onto the plane perpendicular to n(x) for x ∈ Ωr and v ∈ D1. Thus, vτ (x) =

n(x)× v(x)×n(x). We shall use a cut-off function ηξ(x) := η(δ(x)/ξ) (for 0 < ξ < 1
2
r)

where δ(x) denotes the distance of x from ∂Ω (hence δ(x) = |x − Px| for x ∈ Ωr) and

η is an infinitely differentiable function with values in the interval [0, 1] such that

η(t) =

{

1 for 0 ≤ t ≤ 1,

0 for 2 ≤ t.

Let us denote hi :=
∫

Γi
α0 dS and define χi(x) := hi/meas2(Γi) for x ∈ Γi and

i = 0, 1, . . . , N . Then χi is a constant function of Γi and
∑N

i=0

∫

Γi
χi dS = 0. Due to

Lemma 2.1, there exists a function h ∈W 1,2(Ω) such that divh = 0 a.e. in Ω, ∆h = 0
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in the sense of distributions in some neighborhood of ∂Ω and

(a) h · n|Γi
= χi, (b) curlh · n|Γi

= 0 (i = 0, 1, . . . , N),(53)

‖h‖1,2 ≤ c4

N
∑

i=0

‖χi‖1/2,2; Γi
≤ c4

N
∑

i=0

‖χi‖2; Γi
≤ c4

N
∑

i=0

|hi|

meas
1/2
2 (Γi)

≤ c4 ǫ.(54)

Let us define a function χ on ∂Ω by the equation χ(x) := χi(x) for x ∈ Γi (i =

0, 1, . . . , N). Applying once again Lemma 2.1, we obtain a function a′ such that diva′ = 0

a.e. in Ω, ∆a′ = 0 in the sense of distributions in a neighborhood of ∂Ω and

(a) a′ · n|∂Ω = α0 − χ, (b) curla′ · n|∂Ω = α1,(55)

‖a′‖1,2 ≤ c4 (‖α0 − χ‖1/2,2; ∂Ω + ‖α1‖−1/2,2; ∂Ω)(56)

≤ c14 (‖α0‖1/2,2; ∂Ω + ‖α1‖−1/2,2; ∂Ω).

The function a′ is divergence-free and its flux through each component Γi of ∂Ω equals

zero. Hence there exists a vector potential ψ ∈ W 2,2(Ω) such that a′ = curlψ in Ω.

Moreover, there exists a constant c15 > 0 independent of a′ and ψ such that

(57) ‖ψ‖2,2 ≤ c15 ‖a
′‖1,2 .

Finally, we put a := h + a′′ where a′′ := curl (ηξψ). The exact value of ξ will be

specified later. Obviously, a coincides with h + a′ in the neighborhood of ∂Ω and so a

satisfies the boundary conditions (14) and it is harmonic (in the sense of distributions)

in some neighborhood of ∂Ω. From (54) and (56), one can deduce that a satisfies an

estimate of the type (15).

Let us now deal with the question of coerciveness of the quadratic form A. Due to

(13), we have

(58) A(v,v) = ν ‖Rv‖2
2 +

∫

Ω

a×v ·curlv dx ≥
ν

c23
‖v‖2

1,2−

∣

∣

∣

∣

∫

Ω

curlv×a ·v dx

∣

∣

∣

∣

.

By analogy with (47), the function v can be decomposed as the sum v0 + ∇ϕ, where

v0 ∈W 1,2
0 (Ω) and ϕ ∈W 2,2(Ω). Then
∫

Ω

curlv × a · v dx =

∫

Ω

curlv0 × a · v dx =

∫

Ω

curlv0 · a× v dx

=

∫

Ω

v0 · curl (a× v) dx =

∫

Ω

v0 · (v · ∇)a dx−

∫

Ω

v0 · (a · ∇)v dx

=

∫

Ω

v0 · (v · ∇)h dx+

∫

Ω

v0 · (v · ∇)a′′ dx−

∫

Ω

v0 · (h · ∇)v dx

−

∫

Ω

v0 · (a
′′ · ∇)v dx.

Denote by I1–I4 the integrals on the right hand side. In order to estimate I1 and I3, we

shall use (54):

|I1 + I3| ≤ C ‖v0‖1,2 ‖v‖1,2 ‖h‖1,2 ≤ C ǫ ‖v0‖1,2 ‖v‖1,2 ≤ c16 ǫ ‖v‖
2
1,2 .

The integral I4 can be treated in the same way as the analogous term in [5], p. 31, and
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it can be shown that

|I4| ≤ ‖v‖1,2

[
∫

Ω

|v0|
2 |a′′|2 dx

]
1

2

= ‖v‖1,2

[
∫

Ω

|v0|
2
∣

∣∇ηξ ×ψ + ηξ curlψ
∣

∣

2
dx

]
1

2

≤ ‖v‖1,2

[

2

∫

Ω2ξ

|v0|
2
∣

∣

∣
η′

(δ(x)

ξ

)∣

∣

∣

2 |∇δ(x)|2

ξ2
|ψ|2 dx+ 2

∫

Ω2ξ

|v0|
2 |curlψ|2 dx

]
1

2

≤ C ‖v‖1,2

[
∫

Ω2ξ

|v0|
2

δ(x)2
δ(x)2

ξ2
|ψ|2 dx+ ‖v0‖

2
1,2

(
∫

Ω2ξ

|a′|3 dx

)
2

3

]
1

2

≤ C ‖v‖1,2 ‖ψ‖s,2; Ω2ξ

[
∫

Ω

|v0|
2

δ(x)2
dx

]
1

2

+ C ‖v‖1,2 ‖v0‖1,2 ‖a
′‖3; Ω2ξ

≤ C ‖v‖1,2 ‖v0‖1,2 [meas
2−s
2s

3 (Ω2ξ) ‖ψ‖2,2 + meas
1/2
3 (Ω2ξ) ‖a

′‖6]

≤ c17(ξ) ‖v‖2
1,2 ‖a

′‖1,2

where 3
2
< s < 2 and c17(ξ) → 0 as ξ → 0. (We have used the notation Ω2ξ = U2ξ(∂Ω)∩Ω

and the estimates ‖v0/δ(x)‖2 ≤ C ‖v0‖1,2, see [5], p. 31, and ‖v0‖1,2 ≤ c4c1 ‖v‖1,2,

see (49).) Since a′′ = 0 in Ω2ξ, the integral I2 can be estimated as follows:

|I2| ≤

∣

∣

∣

∣

∫

Ω2ξ

(v − vτ ) · ∇a′′ · v0 dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω2ξ

vτ · ∇a′′ · v0 dx

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫

Ω2ξ

div (v − vτ )a′′ · v0 dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω2ξ

(v − vτ ) · ∇v0 · a
′′ dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

Ω2ξ

vτ · ∇(∇ηξ ×ψ + ηξ curlψ) · v0 dx

∣

∣

∣

∣

≤ I21 + I22 + I23

where

I21 = ‖div vτ‖2

(
∫

Ω2ξ

|a′′|2 |v0|
2 dx

)1/2

,

I22 = ‖v0‖1,2

(
∫

Ω2ξ

|v − vτ |2 |a′′|2 dx

)1/2

,

I23 =

∣

∣

∣

∣

∫

Ω2ξ

vτ
j ∂j(∇ηξ ×ψ + ηξ curlψ) · v0 dx

∣

∣

∣

∣

.

The integrals in I21 and I22 can be treated in the same way as I4. It is important that the

functions v0 and v−vτ have the trace on ∂Ω equal to zero and we can use the inequalities

‖v0/δ(x)‖2 ≤ C ‖v0‖1,2 and ‖(v − vτ )/δ(x)‖2 ≤ C ‖v − vτ‖1,2. Thus, we obtain

I21 ≤ c18(ξ) ‖vτ‖1,2 ‖v0‖1,2 ‖a
′‖1,2 ≤ c18(ξ) c19 ‖v‖

2
1,2 ‖a

′‖1,2 ,

I22 ≤ c18(ξ) ‖v0‖1,2 ‖v − vτ‖1,2 ‖a
′‖1,2 ≤ c18(ξ) c20 ‖v‖

2
1,2 ‖a

′‖1,2

where c16(ξ) → 0 for ξ → 0. Finally, in order to estimate I23, we use the identities

vτ
j ∂j∇ηξ = ∇(vτ

j ∂jηξ)−∇vτ
j ∂jηξ = −∇vτ

j ∂jηξ which hold because vτ
j ∂jηξ = vτ ·∇ηξ =

0 in Ω2ξ. Furthermore, we also use the estimate ‖ψ‖∞; Ω2ξ
≤ C ‖ψ‖s,2; Ω2ξ

for some fixed
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s such that 3
2
< s < 2. Hence we get

I23 =

∣

∣

∣

∣

∫

Ω2ξ

(−∂jηξ ∇v
τ
j ×ψ + vτ

j ∇ηξ × ∂jψ + vτ
j ∂jηξ curlψ

+ vτ
j ηξ curl (∂jψ)) · v0 dx

∣

∣

∣

∣

≤ C

∫

Ω2ξ

|∇ηξ| (|∇v
τ | |ψ| + |vτ | |∇ψ|) |v0| dx+

∫

Ω2ξ

|vτ | |∇2ψ| |v0| dx

≤ C

∫

Ω2ξ

|v0|

δ(x)
(|∇vτ | |ψ| + |vτ | |∇ψ|) dx+ C ‖vτ‖6 ‖ψ‖2,2 ‖v0‖6 meas

1/6

3 (Ω2ξ)

≤ C ‖v0/δ(x)‖2 (‖vτ‖1,2 ‖ψ‖s,2; Ω2ξ
+ ‖vτ‖6 ‖∇ψ‖6 meas

1/6

3 (Ω2ξ))

+C ‖vτ‖1,2 ‖ψ‖2,2 ‖v0‖1,2 meas
1/6
3 (Ω2ξ)

≤ C ‖v0‖1,2 ‖v
τ‖1,2 (‖ψ‖2,2; Ω2ξ

meas
2−s
2s

3 (Ω2ξ) + ‖ψ‖2,2 meas
1/6
3 (Ω2ξ))

≤ c21(ξ) ‖v‖
2
1,2 ‖a

′‖1,2

where c21(ξ) → 0 for ξ → 0. Substituting all these inequalities to (58), denoting c22(ξ) :=

c17(ξ) + c18(ξ) (c19 + c20) + c21(ξ) and estimating the norm ‖a′‖1,2 by means of (56), we

obtain

A(v,v) ≥ ‖v‖2
1,2

[

ν

c23
− c16 ǫ− (c17(ξ) + c18(ξ) (c19 + c20) + c21(ξ)) ‖a

′‖1,2

]

≥ ‖v‖2
1,2

[

ν

c23
− c16 ǫ− c22(ξ) c14 (‖α0‖1/2,2; ∂Ω + ‖α1‖−1/2,2; ∂Ω)

]

.

We observe that the form A is coercive, indeed, if ǫ and ξ are sufficiently small.

We have already mentioned that the coerciveness of the form a enables us to prove

the existence and appropriate estimates of the Galerkin approximations of a solution of

v of the problem (44). The standard procedure, see e.g. [4], [5] or [13], finally leads to

the theorem:

Theorem 4.1. Suppose that g ∈ D−1, b ∈ W−1/2,2(∂Ω), α0 ∈ W 1/2,2(∂Ω), α1 ∈

W−1/2,2(∂Ω) and α0 satisfies the condition (52) of sufficiently small prescribed fluxes

through the components of ∂Ω. Let a be the function given by Lemma 2.1, constructed in

accordance with Lemma 4.1 so that the quadratic form a, defined by (51), is coercive in

D1. Then the weak problem (44) has a solution v ∈D1. Moreover, there exists a constant

c23 = c23(ǫ, ν,Ω) > 0 such that

(59) ‖v‖1,2 ≤ c23 (‖g‖−1,2 + ‖b‖−1/2,2; ∂Ω + ‖α0‖1/2,2; ∂Ω + ‖α1‖−1/2,2; ∂Ω)

where ‖ . ‖−1,2 denotes the norm in D−1.
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