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Abstract. In this paper we study the Cahn-Hilliard-Gurtin system describing the phase-separa-
tion process in elastic solids. The system has been derived by Gurtin (1996) as an extension of
the classical Cahn-Hilliard equation. For a version with viscosity we prove the existence and
uniqueness of a weak solution on an infinite time interval and derive an absorbing set estimate.

1. Introduction. In this paper we study an initial-boundary-value problem for the
Cahn-Hilliard system coupled with nonstationary elasticity. The system models phase
separation process in deformable continuum. It was derived by Gurtin [Gur96] within the
framework of his thermodynamical theory based on a microforce balance and extends the
classical Cahn-Hilliard equation by elastic, anisotropic and kinetic effects.
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Recently, various variants of this system have been often studied in the literature. In
most of the studies a quasi-stationary approximation of the elasticity system, leading to
a problem of elliptic-parabolic type, was used, see e.g. Garcke [Gar00], [Gar03], Gar05],
Bonetti et al. [BCDGSS02], Miranville and associates, see [CarMirPR99|, [CarMirP00],
[Mir00], [MirOlal, [Mir0O1b]. The Cahn-Hilliard-Gurtin system with nonstationary elas-
ticity leads to a problem of hyperbolic-parabolic type. It was studied in [CarMirP00|,
[Mir0la], [BarPaw05], [PawZajO6b| where the existence and properties of weak solutions
were examined, and in [PawZaj06a|, [PawZaj07] where the existence of strong solutions
was proved on a finite time interval in 1-D and 3-D cases. The results of [PawZajO6a/,
[PawZajO6b], [PawZaj07| refer to a simplified Gurtin’s model with neglected anisotropic
cross-coupling terms.

In the present paper we consider the full Gurtin’s model augmented in addition by
mechanical and diffusive viscosity. For such problem we prove the existence and unique-
ness of weak solutions on infinite time interval as well as absorbing set estimates. The
obtained results allow for the long-time analysis of the problem to be presented in a
separate paper.

The system under consideration consists of the following three problems for the fields
of the displacement u : Q7 — R?, the order parameter (phase ratio) y : 27 — R, and
the chemical potential i : Q7 — R:

uy — V- [We(e(u),x) + vAe(u)] =b in Q7 = Q x (0,7),
(1.1) u|t:0 = uyp, ut|t:0 =u in Q,

u=0 on ST =8 x (0,T),

xt = V- (MVu+hy)=0 inQ7,
(12) X’t:o = Xo in Q,
n-(MVp+hy)=0 on ST,

p—g-Vu=-V-IVx+¢'(x)+Wy(e(u),x) +6x: inQ",

1.3
(1.3) n-I'Vy=20 on ST,

Here ) C R? is a bounded domain with a smooth boundary S, occupied by a solid
body in a reference configuration with constant mass density ¢ = 1; n is the outward
unit normal to S and T' > 0 is an arbitrary fixed time. The body is a binary a — b alloy,
which driven by thermomechanical effects, undergoes a phase separation process. Here
we assume that temperature is constant below a critical value. The order parameter x
is related to the volumetric fraction of one of the two phases, characterized by different
crystalline structures of the components. We assume that y = —1 is identified with the
phase a and y = 1 with the phase b.

The second order tensor

e=¢u) = %(Vu + (Vu)T)

denotes the linearized strain tensor. The function W (e(u), x) stands for the elastic energy,
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defined by
(1.4) W(e(u), x) = %(6(10 —&(x)) - Ale(u) — &(x))-

The corresponding derivatives

W,E(E(U),X) = A(E(u) - é(X))v

W (e(u),x) = —€'(x) - Ae(u) — &(x))
represent respectively the stress tensor and the elastic part of the chemical potential.
The fourth order tensor A = (A;;5;) denotes a constant elasticity tensor:

(1.5) e(u) — Ae(u) = Mre(u)I + 2jie(u)

and

where I = (8;;) is the identity tensor, and A, ji are the Lamé constants with values within
the elasticity range (see (2.1)).

The second order tensor &(x) = (&;;(x)) denotes the eigenstrain, i.e. the stress free
strain corresponding to the phase ratio y, defined by

(1.6) e(x) = (1 = 2(x))&a + 2(x)&b,
with &,, &, denoting constant eigenstrains of phases a,b, and z : R — [0,1] being a
sufficiently smooth interpolation function satisfying

(1.7) z(x)=0 for x<-1 and =z(x)=1 for x>1.

The term uAe(ut), v = const > 0, represents a viscous stress tensor; v being a
viscosity coefficient.

The function 9 (x) denotes the chemical energy of the material at zero stress, assumed
to be a double-well potential

(1.8) (x) = ~(1—x%)?

with two minima at y = —1 and x = 1 which characterize the phases of the material.
Further, ' = (T';;) is an interfacial energy tensor, and M = (M;;) is a mobility tensor,
both symmetric, positive definite with constant coefficients.
A constant 3 > 0 refers to a diffusional viscosity, and g = (g;), h = (h;) are constant
vectors accounting for anisotropic effects. In accordance with thermodynamical consis-
tency the quantities M, 3, g, h are subject to the condition

e Al ‘”’

1.9 . >0 forall (Vpu, e R’ xR.

(19) MEESHINE (V10

More generally, the quantities M, 3,g, h may also depend on x, Vy, xi, p, Vi (see
[Gur96]).

The remaining quantities in (1.1)—(1.3) have the following meaning: b : Q7 — R3
is an external body force, and ug,u1 : @ — R3, xo : @ — R are the initial conditions
respectively for the displacement, the velocity and the order parameter.

The homogeneous boundary conditions in (1.1)—(1.3) are chosen for the sake of sim-
plicity. The condition (1.1)3 means that the body is fixed at the boundary S, (1.2)3
reflects the mass isolation at S, and (1.3)s is the natural boundary condition for the free
energy (1.10) below.
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For further use we recall a thermodynamical basis of system (1.1)—(1.3) (see e.g.
[Paw06]). The underlying free energy density has the Landau-Ginzburg-Cahn-Hilliard
form

(1.10) F(e(w), % V) = W(e(aw), ) + $(x) + 5 Vx - TVx

with the three terms on the right-hand side representing respectively the elastic, chemical
and interfacial energy. Equation (1.1); corresponds to the linear momentum balance

uy —V-S=>b
with the stress tensor S given by
S = A(e(u) —e(x)) + vAe(uy).
Equation (1.2); is the mass balance
xt+V-j=0
with the constitutive equation for the mass flux j
J=—(MVu+hx).

Finally, equation (1.3); defines a generalized chemical potential

of
B = a + a,
where 5t
&(6, X: VX) = fx(e,x, Vx) = V- foy(e, x; VX)

denotes the first variation of f with respect to x, and a is a scalar field given by

a=—(g-Vu+Bxi)
Equivalently, in the theory of Gurtin [Gur96] equation (1.3); represents a microforce
balance. In accordance with the entropy principle the quantities 5 and a are subject to
the dissipation inequality

—(Vp-j+xia) >0 forall (Vu,x:) € R® xR,

which yields condition (1.9).

We point out that system (1.1)—(1.3) augments the original Gurtin model [Gur96] by
nonstationary inertial effects (us; # 0) and a mechanical viscosity (v > 0).

Let us introduce now a simplified formulation of (1.1)—(1.3) obtained after taking into
account the constitutive equations (1.4)—(1.6).

Let @ stand for the linear elasticity operator defined by

(1.11) Qu=V-Ae(u) = iAu+ N+ @)V(V-u)
with domain D(Q) = H?Q) N H (). Moreover, let
(1.12) Apypu=V-MVu, Arx=V -T'Vy

denote the elliptic operators associated with tensors M and T'. Let us define also the
quantities

(1.13) B=-A@E,~8,), D=-B-(8,—%,), E=-B-z&,
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which are respectively a symmetric second order tensor with constant coefficients and
two scalars. Then

Wele(w), ) = Ae(u) — A2, + 2(x)B,
W (e(u), x) = 2/ (X)(B - e(u) + Dz(x) + E),
and consequently (1.1)—(1.3) takes the form

wy — Qu — vQu; = 2/ (x\)BVx +b in QF,
(1.15) Ult=o = U, Ut|t—0 = U1 in €,

u=0 on ST,

(1.14)

xt — V(MVpu+hy) =0 in QT
(1.16) X|t=0 = X0 in Q,
n-(MVu+hyx:) =0 on ST,

p—9g-Vu=-V-TVx+4'(x)+ 2 (x)(B-e(u) + Dz(x) + E) + fx; in Q7
n-I'Vy =20 on ST.

The paper is organized as follows: In Section 2 we present our main assumptions and
results, stated in Theorems 2.1, 2.2, 2.3 and 2.4. Theorem 2.1 asserts the existence of a
weak solution to problem (1.1)—(1.3) on a fixed time interval [0, 7], T > 0. Theorems 2.2
and 2.3 provide two existence results for problem (1.1)—(1.3) on the infinite time interval.

(1.17)

Theorem 2.2, deduced directly from a priori estimates in Theorem 2.1, requires a decay
of the body force b as t — oo and consequently implies that the dissipative quantities wu;,
x+ and V vanish in appropriate norms as ¢ — oo. Theorem 2.3 relaxes the restrictions of
Theorem 2.2 with the help of an absorbing set estimate and prolonging the solution step
by step in time. Finally, Theorem 2.4 states the uniqueness of the solution to problem
(1.1)—(1.3).

In Section 3 we derive basic energy estimates for (1.1)—(1.3). The procedure follows
that used previously in [BarPaw05], [PawZajo6b].

In Section 4 we prove an absorbing set estimate which constitutes the main new
part of the paper. This estimate allows firstly, to prolong the solution step by step on
the infinite time interval and secondly, to conclude the existence of an absorbing set for
system (1.1)—(1.3) which is of interest in the long-time analysis of the problem.

The subsequent sections 5 and 6 provide the proofs respectively of Theorems 2.1 and
2.2, 2.3. Finally, Section 7 gives the proof of Theorem 2.4.

We use the following notations:

« = (x;);=1,2,3 the material point,

of of

fa= » fe= the material space and time derivatives,
oW (e,
€= (5ij)i,j=17273, W@(E,X) - <%> )
€ij /=123
CoWlen) L, db()
Wale) = =525 000 = =5
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For simplicity, whenever there is no danger of confusion, we omit the arguments (g, x).
The specification of tensor indices in omitted as well. Vector- and tensor-valued mappings
are denoted by bold letters. The summation convention over repeated indices is used, as

well as the notation: for vectors @ = (a;), @ = (a;) and tensors B = (By;), B = (Bi;),
A = (Aijr1), we write

a-d:ai&i, B-B:Bijéij,
AB = (AijiiBri), BA = (BjjAijn),
la| = (a;a;)"?, |B| = (Bi;Bi;)'/.

The symbols V and V- denote the gradient and the divergence operators with respect to
the material point @. For the divergence of a tensor field we use the convention of the
contraction over the last index, e.g. V - e(x) = (g45,;())-

We use the standard Sobolev spaces notation H™ () = Wi (§2) for m € N. Moreover,

H}(Q)={ve H(Q):v=0o0n S},
H3(Q)={ve H*(Q):n-T'Vv=0on S},
where n is the outward unit normal to S = 0f), denote the subspaces respectively of

HY(Q) and H?(Q), with the standard norms of H'(Q) and H?(Q).
By bold letters we denote the spaces of vector- or tensor-valued functions, e.g.

Ly(Q) = (L(Q)", H'(Q) = (H'(Q)", neN;
if there is no confusion we do not specify dimension n. Moreover, we write

el = Il el @) llelaie) = I al L@ + I Vel llL.@

for the corresponding norms of a vector-valued function a(x) = (a;(x)); similarly for
tensor-valued functions.

As usual, the symbol (-, ) denotes the scalar product in Ls(Q2). For simplicity, we use
the same symbol to denote scalar products in Lo(2) = (L2(2))™, e.g. we write

(a,d):/ﬂa(a:)d(m)dx, (a,&,):/ﬂai(m)di(a:)d:c, (B,B)z/QBij(:c)Bij(:c)dx.

The dual of the space V is denoted by V', and (-, )y v stands for the duality pairing
between V' and V.

By ¢ and ¢(T) we denote generic positive constants different in various instances,
depending on the data of the problem and domain €2; whenever it is of interest their
dependence on parameters is specified. The argument 7" indicates the time horizon de-
pendence. Moreover, ¢ denotes a generic, sufficiently small positive constant.

For further use we collect also some frequently used inequalities. The first one is the
Korn inequality

—-1/2
(1.18) lullz @) < di 2 lle(@)ny0) for uwe Hy(Q)
with a positive constant d;. The second one is the Poincaré inequality

(1.19) /Q‘X_ i)xdm’

2
dx < dgHV)gHQL?(Q) for x € H*(Q)
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where ds is a positive constant, and JCQ xdx denotes the mean value of x:

1
][ xdx = —/ xdz, || = meas Q.
Q 9] Jo

The third one is the Poincaré-Friedrichs inequality

(1.20) llzae) < d5*IVulzu@ for uwe Hi(Q)

with a positive constant ds. For completeness we recall also the Sobolev imbedding
1/2

(1.21) Xl 2ot < i1l e

with a positive constant dy.

2. Assumptions and main results. System (1.1)—(1.3) (in simplified form (1.15)-
(1.17)) is studied under the following assumptions:

(A1) Q C R3 is a bounded domain with the boundary S of class at least C%; T' > 0 is an
arbitrary fixed time.
(A2) The coefficients of the elasticity operator @ (see (1.11)) satisfy

(2.1) >0, 3X\+ 20> 0 (elasticity range).
These two conditions assure the following:
(i) the elasticity tensor A is coercive and bounded
(2.2) cile)? <e-Ae < c*le|? forall e 82,
where S? denotes the set of symmetric second order tensors in R?, and
ce = min{3\ + 2f1, 201}, ¢ = max{3\ + 2, 2ji};
(ii) The operator @Q is strongly elliptic and satisfies the estimate
(23) clullz) < |Qullzyey Tor e D(Q) = HA(Q) N H()
with constant ¢ depending on €;
(A3) The mechanical viscosity coefficient is positive v = const > 0.

The next three assumptions concern the ingredients of the free energy f(e(u), x, Vx)
in (1.10).

(A4) The elastic energy W(e(u), x) is fiven by (1.4)—(1.6) with the interpolation function
z: R — [0, 1] being at least of class O, satisfying (1.7) and such that

(2.4) |2/(x)] <c¢ forall x €R.

The auxiliary constant quantities B, D and E are defined in (1.13).
(A5) The chemical energy is a double-well potential (1.8), so that

(25 Y0 =x"—x 0 =3x"-1 ¢"(x)=6x
(A6) The interfacial energy tensor I' = (I';;) is symmetric, with constant coefficients,
positive definite and bounded:

(2.6) crlél’ <& -T€ <erl¢’ V€ eR?

~
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with constants 0 < ¢p < ¢r. This implies that the operator Ar defined in (1.12) is
strongly elliptic.

We note that, in view of (1.14), it follows from (A4) that there exist positive constants
a1, as such that

(2.7) (Wx(e ) <a(lel+1),  [Wele,x)| < aale] +1)

for all € € 8% and y € R. Moreover, on account of (2.2) and (1.8), the Young inequality
implies that

25 Wie(w) ) > Gletw) ~ (0P > § (letl - 00 ).
and
(29) 900 2 3¢t - 5

We note also that thanks to assumption (A4) there exist positive constants ag, a4 such
that

(2.10) 00 <as, €00+ 1E" (x| < aa.
The remaining assumptions refer to the quantities M, 3,g and h.

(A7) The mobility tensor M = (M;;) is symmetric, with constant coeflicients, positive
definite and bounded:

(2.11) el <€ Mg <eylé? VEERS

with constants 0 < ¢j; < €as. This implies that the operator Aps is strongly elliptic.
(A8) The diffusional viscosity coefficient is positive 8 = const > 0.
(A9) The vectors g and h are constant and such that the matrix

M h
P .=
[QT G }
is strictly positive definite in the sense that there exists a constant cp > 0 such that
(212) X -PX =Vu-MVu+xi(g+h) Vu+8x?
> cep(|Vul? + [xel?) VX = (Vi x:) € R3 x R.
We state now the results of the paper. The first theorem asserts the existence of a

weak solution to problem (1.1)—(1.3) on the interval [0,T], T > 0. It modifies the result
obtained in [BarPaw05], Thm 3.2.

THEOREM 2.1 (Existence on [0,T], T > 0). Let the assumptions (A1)—(A9) hold. More-
over, let the data satisfy

(213) be LQ(O,T; LQ(Q)), Ug € H(l)(Q), u € LQ(Q), Xo € Hl(Q)
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Then there exist functions (u,x, p) such that:

w € Loo(0,T; HY(R)), s € Loo(0,T; Ly(Q) N Lo (0, T; HY()),
Uy € L2(07T§ (Htl)(Q))/)a
(2.14) X € Loo(0,T; H () N Ly(0,T; H3 (), xt € La(Q7),

f x(t)dz = ][ Xodr = Xm for t€[0,T], u€ Ly(0,T;HY(Q)),
Q Q

where H%(Q) = {x € H*(Q) :n-TVx =0 on S},

(2.15) u(0) =wuo, u(0) =w1, x(0)=Xxo,

which satisfy problem (1.15)—(1.17) in the following weak sense

T T
| )yt + [ (As(u). et

T T
v [ (Aetu). et = [ 00BIx+ b
Vn € Ly(0,T; Hy(Q)),
T T
(2.16) /O(Xt’OdH/o (MY + hye, VE)dt = 0
ve € CH(0,T) HYQ) &(T) =0,

T T
/ (—g- Vi, C)dt = — / (Arx, O)dt
0 0

T
+ [ 000+ (0B ew)+ Da() + B). Qe VC € La(0.T: La(s).
Moreover, (u, x, p) satisfy a priori estimates:

— estimates uniform in T':

1
(2.17) §||ut||%m(0,T;L2(Q)) + ClHUH%x(O,T;H})(Q))
1 1
+ §QFHVX||%DO(O,T;L2(Q)) + §||X||‘im(o,T;L4(Q))
+ CPHVMH%Q(QT) + CPHXtH%Q(QT) + VC*”E(Ut)H%Q(QT) <o

where

3
o =2F(0) + §Hb||%1(o,T;L2(Q)) + ez,

1
FO) = [ |50l + V0 T9x0) + blna) + W) )| do
Q
1 =cdi /4, o= (20*(1:23 +1)|92|/4,

with constants dy,as defined in (1.18), (2.10), c. in (2.2);
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— estimates depending on T
11217 0,755 ) < ca(1+T),
(2.18) X7, 0,752 () < es(1+T),
2
ez, o, crrg0yyy < oL+ T,
where constant cy depends on oy, constant cs on oy and Xm, and constant cg on a1 and
10 2 0,7:25(2))-
The next two theorems provide global existence results for problem (1.1)—(1.3). The
first one follows directly from the estimates for weak solutions in Theorem 2.1. Such
approach implies that b, us, x; and Vu vanish in appropriate norms as ¢ — oco. The

second theorem relaxes these restrictions. This is possible by additional absorbing set
estimate and prolonging the solution step by step in time.

THEOREM 2.2 (The first global existence). Assume the hypotheses of Theorem 2.1 hold
and

bec Ll(R+; LQ(Q)),

(2.19) ke?\luulzo} 101l Ly (kT (k4 1) T Lo (02)) < 00,

Uy € Hl(Q), u; € L2(Q), Xo € Hl(Q)
Then there exists a global solution to (1.1)—(1.3) such that
w € Loo(Ry; HY(N)), ur € Loo(Ry; Lo(Q)) N La(Ry; HY(Q)),
X € Loo(Ry; HY(Q)), xt € La(Ry; La(92)), j[ x(t)dz = /Z Xodz,
Q Q
Vi € Ly(Ry; La(92)),
satisfying the following estimates:

— estimates uniform in time:
1 2 2 1 2
i‘lut||Lm(R+;L2(Q)) + Cl||u||Loo(]R+;H(1)(Q)) + §QFHVXHLOC(R+;L2(Q))

1
+ §||XHZLL,OC(R+;L4(Q)) + CP||VMH2L2(R+;L2(Q))
+eplxellT, &, Lo + verlle(@o) |l Loy iLa@)) < da,
where 5
an =2F(0) + §||b||%1(m+;1:2(9)) +c2;
— for any t € Ry and any fixred T > 0
11217 e ) < ca(l+T),
XU 14 mr2(0y) < €es(1+T),
2 ~
||Utt||L2(t,t+T;(H5(Q))/) <G(1+T)
with constants cy,cs as in Theorem 2.1, and constant ¢g depending on oy and

sup |16l Lok, (k+ 1) T:L2 () -
keNU{0}
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THEOREM 2.3 (The second global existence). Assume the hypotheses of Theorem 2.1 and

sup ||bl| Ly (ks (k 1) TiLa (@) < 00, uo € HY(Q), u1 € Ly(R), xo0 € H'(Q).
keNu{0}

Then there exists a global solution to problem (1.1)—(1.3) such that
Ar = vl @ym3 ) T 1l o @y za00) + XN Lo Ry (0) < 00,

Ay = sup (HutHLg(kT7(k+1)T;Hé(Q)) + Ixtl Lo (kT3 (k 1) T3 Lo ()
keNu{0}

IVl Lok, (k1) T3 L2 (2))) < 00,
fx(t)dz = ][ xodz,
Q Q

3
Ar+ Ay <2F(0) + 51 sup 10117, (e e+ 1) 752 02)) + Co-
keNu{0}

where

Moreover,

sup | gl Lo (e, (e 0y HY () < ca(1+T),
keNu{0}

sup  ||X|l Lok, (k4 1) T3 H2(Q)) < es(1+T),
kENU{0}

sup |u monn < Es(1+T
kENU{0} [ewtel] Lo ey 7 ()y) < o )

with constants cy, c5, Cg as in Theorem 2.2.

THEOREM 2.4 (The uniqueness). Assume the hypotheses of Theorem 2.1 and z € C?*(R).
Then the solution to problem (1.1)—(1.3) is unique.

3. Energy estimates. In this section we derive basic energy estimates for problem
(1.1)—(1.3). These estimates imply the existence of solutions on a fixed time interval
[0, 77, asserted in Theorem 2.1. For the clarity of presentation we shall derive only formal
estimates. The presented estimates can be made rigorous by considering a Faedo—Galerkin
approximation and by passing to the limit with approximation by standard compactness
arguments in a similar fashion as e.g. in [PawZaj06b], [PawZaj07].

To see the influence of the data on energy estimates and later in Section 4 on absorbing
set estimates we record explicitly the data-dependences of all appearing constants.

Firstly we shall show the energy identity for system (1.1)—(1.3). Let

(31) P = [ [ghf + et w0

1
= [ |50 + 9x- TV + w0 + Wletw), )| ds
denote the total energy of (1.1)—(1.3). We have

LEMMA 3.1. Let (u, x, 1) be a sufficiently reqular solution to problem (1.1)—(1.3), and F
be given by (3.1). Then the following equality is valid
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(3.2) CZ—}; + V/Qe(ut) - Ae(uy)dz

—l—/[Vu-MVu—&—Xt(g—l—h)-Vu—l—ﬁxf]das:/b-utdas for te€0,T).
Q )

Proof. Multiplying (1.1); by u;, integrating over 2 and by parts, using boundary condi-
tion (1.1)3, it follows that

(3.3) %%A|ut|2dx+AW,e(s(u)7x).s(ut)dx

+1// s(ut)-As(ut)dx:/hutdas.
Q Q
Further, testing (1.2); with p, integrating over  and by parts, using (1.2)3, yields
(3.4) / Xepdr + / (MVp+ hyx:) - Vpdr = 0.
Q Q

Finally, testing (1.3); with — x¢, integrating by parts and using (1.3)2, leads to

(3.5) —/uxtdx+/xtg Vudx+2dt/VX I‘dex—i—/w )xtdx

/W Xtdm—i—ﬁ/ 2dx = 0.

Summing up (3.3)—(3.5) gives (3.2) and thereby completes the proof. m
From Lemma 3.1 we deduce the following basic energy estimate.

LEMMA 3.2. Assume (A1)—(A9) hold, F is given by (3.1), and b € L1(0,T; L2(Q2)). Then

1 1
(3.6) §(||ut\|%2(9) +erl|VXIZ,0) + erllwlFn g + §||X||%4(Q)
t t
tep / VA, o + e 12, )t + ves / e Caaer) 2,y "

t t
<F(t) +cp / VA, o + eI, )t + ve / et 12, e
3
<2F(0) + §Hb||2L1(o,T;L2(Q)) tep=o for t€[0,T],

with positive constants cy,co independent of T, given by

Cx 1 1
(37) Cc1 = Zdl, Cy = 5 <C*a§ + 2) |Q|

Proof. We apply the Holder inequality to the right-hand side of (3.2), use the definition
of F, and conditions (2.2), (2.12) to conclude

(3.8) jtF + z/c*|\€(ut)|\L2(Q + CP(HV/VLHL2 @ T ||XtHL2(Q )
< \@HbHLQ(Q)\/ﬁ te[0,T].

Hence,

(3.9) \/—

< \/—Hb”Lz(Q)
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Integrating (3.9) with respect to time from 0 to ¢ € [0, T] gives

(3.10) VE@ < \/%||b||L1<o,t;L2<m) + VF().

Further, using (3.10) in (3.8) and integrating the result with respect to time from 0 to
t € [0,T] leads to

t t
(3.11) F(t)JrVC*/O ||€(ut/)||%2(9)dt/+CP/O UIVallZa @) + Ixell, @)

3
< 1Bll Ly (0,6:25(92)) (1Bl £y (0,452 (2)) + V/2F(0)) + F(0) < 2F(0) + §||b||2L1(o,t;L2(Q))~

Now, we note that, on account of (2.6), (2.8)—(2.10) and (1.18), the following bounds hold
true

1 1 Cy 1 ¢
312 FO) 2 [ |3l Vi) + g+ Sletwl - § - Gaiao
1 1
2 5(”“15”%2(9) +QF||VX||%2(Q)) + ClH“H%{l(sz) + §HX||%4(Q) —C2

for t € [0,T], with constants c1, ¢ defined in (3.7). From (3.11) and (3.12) we conclude
(3.6). This completes the proof. m

With the help of Lemma 3.2 we now derive further estimates. Firstly, let us note that
from (1.2); and (1.2)3 it follows that

d
3.13 — dr =10
(3.13) ai J,, Xdw =0
which shows that the mean value of x is preserved, i.e.
(3.14) ]Z)g(t)dx = ][ Xodx = xm for t€[0,T].
Q Q
Since

2

2
/X—][XCZx’ d:r:/(x2—2)<][xdw’+ ][Xdil,'/
Q Q Q Q Q

it follows, by Poincaré inequality (1.19) and (3.14) that

2
>dm: / x2dx — Q|’][ xdx
Q Q
X~ ]l xdz'
Q Q

2
3.15)  xlIZ, @ S/ ot mw]{z e

Further, on account of (3.6) and Sobolev imbedding (1.21), we infer that

Y

2
< da||VxlIT, ) + 120X

4dy
316 s [ <di s I < di(Ra 002 ) = e
te[0,T] te[0,T] cr

with constant cs depending on oy and X.,.
Next, we conclude an additional estimate on p.

LEMMA 3.3. Let the assumptions of Lemma 3.2 hold. Then, fort € (0,77,
(3.17) 1117 0,111 (c2y) < a1+ 1)

with a positive constant c4 depending on aq, see (3.24) below.
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Proof. From (1.3) 2, in view of (3.13), it follows that

(3.18) /Q iz = /Q 9+ Vi -+ 0 () + Wi (e(u), x)de.

Hence, using (2.5) and (2.7)1,

/Q udz| < |glI01 2|V al g0 + /Q (X + x| + are(w)| + ar)da

The second term on the right-hand side of (3.19) is bounded by
(3.20) HX||?£4(Q)|Q|1/4 + HX||L4(Q)|Q\3/4 + a1||5(u)\|L2(sz)\Q|l/2 +a1|Q|

(3.19)

1/2
«
< (S0 4 B 0P an () T 012 4l =
1

Hence,
(3:21) [ we] < bl 2190+ 4
Owing to Poincaré inequality (1.19),
2
(3.22) Il oy < @l + o ([ o)
Consequently, recalling estimate (3.6), it follows from (3.21) and (3.22) that
(3.23) 1l 00y < Al VilZ, 00 + 2191V AIZ, @) + %(Cﬁ;)% < ca(l+1),
where
(3.24) cy _max{g—;(d2+2g|2),|%(cﬁl)2}.

This concludes the proof. m
Thanks to Lemma 3.3 we deduce further estimates on .
LEMMA 3.4. Let the assumptions of Lemma 3.2 hold. Then, fort € (0,T],
(3.25) X117 4002 (52)) < €51+ 1),
with a positive constant c5 depending on o and X, -

Proof. Multiplying (1.3); by Ary and integrating over Qf, t € (0,71, gives

//AFX drdt’ —// 4 g V() + Wile(u), x) + B Arxdadt

Hence, using the Young inequality, and then (2.5), (2.7); together with estimates (3.6),
(3.16) and (3.17), we infer that

(3.26) IArXIIT, @y < 5lelZ, @0 + 19 - VElZ, @0 + 19 00N, @0
+ W (e(w), )17, ) + 18X 17,00
<[+ 9P llZ 0.0 m1)) + Sltl/p(HXH%S(Q)

Il 2722 + 2a§(51tl/p le(u)lIZ, ) + 192Dt + B2 lIxe 17, @)
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« «
<5les(l + |gH)(1+1t) + (c§+c3(2|2/3)t+2a§(c—1 + |Q|)t+62c—l} < (141,
1 P

where, by definition of c3, ¢4 (see (3.16), (3.24)), constant ¢§ depends on «; and xp,.

Finally, taking into account the inequality
2
(3.27) Iy < (I arxIe + | [ xa] )

which holds true due to the ellipticity property of the operator Ar, we conclude on
account of (3.26) and (3.14) the bound (3.25). =

Using standard duality arguments we shall estimate also time derivative wy;.
LEMMA 3.5. Let the assumptions of Lemma 3.2 hold, and b € Ly(Q). Then
(328) Hut’t’ H%Q(O,t;Hé(Q))/) < 66(1 + t),
with constant c¢ depending on ay and ||b|, ).

Proof. We test (1.15); with € Ly(0,T; H5(Q)) and integrate over Qf, t € (0,T]. Then,
using the Cauchy-Schwarz inequality and recalling estimate (3.6), it follows that

/ Uy - pdxdt’
Qt

| [FAs(u) + vAe(u)) ) + (/00BYX +b) - aldad

< (|Allle(w)ll L,y + vIAllle(we) | Ly e))lle(m) Lot
+ (12O BIIVX | Loty + 1Bl 2o @) 17 2, 02t
< (14 tl/Q)H"?HLQ(o,t;Hg(Q)) for all n € Ly(0,t; H(9)),

/2 This implies

where constant ¢z depends on |Al, v, |2 (x)B| < a1, ||b]|z, o+ and o
that
Hut’t’||2L2(0,t;(Hg)(Q)’) <ecg(l+1), cg=2(c)?

and thereby shows (3.28). m

4. Absorbing set estimate. In this section we prove an absorbing set estimate. This
estimate allows firstly, to prolong the solution step by step on the infinite time interval
and secondly, to conclude the existence of an absorbing set for system (1.1)—(1.3). The
latter property is of interest in the long-time analysis of the problem.

LEMMA 4.1. Let us define

(a.1) 6(0) = [ 5l + 990 4 600 + Wle(w).

+ VC;dl (ut cu+ ge(u) : Ae(u))] dz,

satisfying
602 [ [fhul + 39 DV + 000 + Wlelw) )

Then there exists a positive constant

. veedr cr 2 1 [cudy cody
4.2 5* = 9 IETRE ) )
(42) mm{ 8 ‘ded iV 2 s
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where d' = 242 (dy + |g|?), such that solutions of (1.1)-(1.3) satisfy the inequality

CcpCp

d Vc*dl cp
(4.3) 7O TG+ —— el 0 + IHVMH%Q(Q) +eplxllT, @) < balt)

forte (O,T), where

. 1 2 i 3 = 2
(4.4) b4(t) = <2V+ 21/C*d1)||b(t)||L2(Q) + ‘Q| |:d/ ( + 5 2d )

L o9 5 275 X; lg| 2 2 16@121‘Q|2(1 + X5 )
—veld n U A d me.
tgradas gt | AN bt g @y

Proof. Multiplying (1.3)1 by ¥, integrating over 2 and by parts using (1.3)2, gives
(4.5) /Q Vx - TVyxdz + /Q [V (0)x + Wy(e(u), x)x]dz = / pxdr — / g - Vuxdz.
Q Q

Writing the first integral on the right-hand side of (4.5) in the form

(4.6) /,uxdx: /(,u— ][ udsc')xd:z:—i—/ udsc]l xdz,
Q Q Q Q Q

and next applying the Young and the Poincaré inequality (1.19) to the first term on the
right-hand side of (4.6) and the mean value property (3.14) to the second one, we get

51 ) 1 2
/qudx < EHXHLZ(Q) + T&dﬂ\v/‘HLz(Q) + /Q'udx

The second integral on the right-hand side of (4.5) is estimated with the help of the
Cauchy-Schwarz and the Young inequalities to give
(4.8)

/ - Vuxdx

Using (4.7), (4.8) in (4.5) and taking into account (2.6), we arrive at

(4.9) gp/ |VX|2dx+/Q[w/(X)X"’W,X(E(u)7X)X]d$

(4.7 [Xml, 61 >0.

<|glIVullo@llxllze < ”X”Lz @t 55 25 912V ull7, @) 02> 0.

5 +4 g
< B+ 3 (8 + )10l + | [ e

Now, recalling estimate (3.15) and setting d; = 02 = 2972, we deduce from (4.9) the
inequality

(4.10) T [ 19xPde+ [ 00x+ W et n)lds

IXm]-

Q
<—F<d2+|g\ a0 + G Vﬂdw Xonl-

Let us turn now to energy identity (3.2). In view of (3.1), (2.2) and structure condition
(2.12) it follows that
d

(4.11) o

[ |31+ 9x TV 4+ 000 + Wie(w) )| ds

e o + er IVl 0 + el 0) < [ b
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By the Holder, Young and Korn (see (1.18)) inequalities,

Q

Hence, setting d3 = veydy, (4.11) yields

d

412 5 [ 3w+ 9 090+ 00+ Wietw o

03, 12 L ds 2 Lo
< ?”utHLQ(Q) + EH”HLZ(Q) < E”E(ut)”Lz(Q) + 2_63”bHL2(Q)'

VC* 1
HE(ut)HLQ(n +ep(IVali, o + Ixel7,@) < m||b||%2(ﬂ)-

Let us multiply now (4.12) by the constant

2d
(4.13) d="(dy+|g|*) >0
PCr
and add to (4.10) to get
d 1
(1.14) 0% [ [50uP + 9090 + 60 + Wetw) 0 s

* /Q {QFVXQ + 9" (X)X + W,X<s<u),x)x] da

l/dc* d'cp
+ le(uo)llZ, @) + —— > HVMHL2 @ +deplxii, g

CF|Q\ '/de

Noting that [, '(x)xdz = [,(x* — x*)dz and

1 1 1
Po)dz = - / O+ 12 )de = / O = X)da 4 - / (1 - \?)da,
Q 4 Q 4 Q 4 Q

he + || HLQ(Q)

we have

(4.15) /Qw(x)dw = i/ﬂw’(x)xd:v + i/ﬁ(l —x*)dz < i/ﬂw’(x)xdwr %Q‘.

Further, by assumption (2.6),

1
(4.16) Q—F/ |Vx|?dz > %—F/ —Vx -T'Vydz.
2 Ja cr Jo 2
Using (4.15) and (4.16) in (4.14), and dividing the result by d’ > 0 gives
d 1
a1 5 [ Sl + Vi D0+ s+ Wit do
1
+3 / [ -V - TVX A+ 49 (x) + W,X(E(u)aX)X:| dz
Ve,

+

+ b3,

|Xm|
||€(ut)||L2 Q)+ 21Vl + cplixll?, @ < de

where

1 ]
b= ——||b||2 4+ 223 ).
1 2VC*d1 H ||L2(Q) + d’ ( + 2d2Xm
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Let us turn now to elasticity system (1.1). Multiplying (1.1); by u and integrating
over () yields

(4.18) % uds+ [ Wele(w) X)-s(u)dm+u/e(u)-As(ut)das
Q Q
:/b.udac+/ |ug|?de.
Q Q
Using that

We(e(u),x) - e(u) = e(u) - A(e(u) — €(x)) = 2W(e(u), x) + &(x) - A(e(u) —&(x)),

we obtain from (4.18) the equality
(4.19) —/ (ut u+ e u) - Ae(u))dm+2/QW(e(u)7x)dx
— : u) — € X - udx Uy 2dx.
- /Qeoo Ale(w) — 2(0)dn+ [ bouds+ [ fufa

We use now the following inequalities (see (2.8), (2.10), (1.18))

[ o> S [ letw - et
420 ; c ; 1 c c
Wieode = 5 [ (Gl = E00F )do = S ulfine - Gadiol
Q 2 Jo\2 4
and
/an) Ale(w) — e(x)dz| < [e()]|A] / le(u) — &(x)|da
1) 1
(4.21) g—“/ le(w) — E0)2dz + ——a2|A]2, 64> 0,
2 Jo 204
b-ude| < 2 Jull2, @ + =[] 5> 0
o uadr| < B) u Ly(Q) 2(55 Ly(Q)» 5 .

On account of (4.20), (4.21) we infer from (4.19) the inequality

(4.22) %/ <ut'u+ge(u)~As( >dm+lc—*/|s —&(x)|2dx

1C*d1
s g + / W (e(w), X)dx

04 1 5
<% /Q w) — 200 Pde + 53 AP + Ll 0

1 c*a3

+ 55 Bl + 5 510 + el 0

Assuming that 64 = ¢, /4, d5 = c*d1/8, (4.22) leads to

(4.23) %/ﬂ (ut-u+g€(u)-As(u))dm+c—*/ le(u) — &(x)|%dx

C*dl
el oy + [ Wlew. e <l 0 + 5
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where )
by = —a3| AP + —C*ag|Q|+ ||bHL2(Q)
Now we multiply (4.23) by a constant dg > 0 (to be Chosen later on) and add to (4.17)

to get after using Korn’s inequality (1.18)
d 1
420 5 [ [0+ 9590 4000 + Wietw.
+ dg (ut cu+ %E(u) . Ae(u))]dm

1 (56C*d/

b || EE e rox 1000+ 5 efw) - sl
+%ﬁ? uv%rm)+%4W@u¢Xﬂm
Vo uuthl(m + LIVl + ep el
<3 /W X)xdz| + ‘Ej"‘ /Q/ida: + O |wel|7, ) + debi + b7

We estimate the first two integrals on the right-hand side of (4.24). In view of (2.10)3,

7| | Waletwxxde| < Saslal [ letw - eolda
Q

< Lo A2 e (u) — ()1

— d/ 2(9)'

(4.25) 5

Recalling the identity

/ i — / 9 Vi + &' (x) + W (e(u), )ldz,
Q Q

we have

\ / ude| < gl 1Vl +‘ /g ¥ () da

Further, on account of (3.14),

/Q W' (x)da /Q (X = x)da

Hence, by the Young inequality,

3 1

3 4/3 4

dx < =6 dx + Q
and the fact that (see (2.9)) x* < 8¢(x) + 2, we deduce that

3
[ weous] <00 [ weads+ (5617 + g )i
Consequently

(4.26) ‘/Qudx < gl 2V pll . o) + aa AIQI2le(w) — €00 20

4/3 3 4/3
-m@‘éwmm+<f7 4&>m

+aa| || e (u) — €00 Lo

=| [t il < [ xan + 90l
Q Q
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Using (4.25) and (4.26) in (4.24), and then choosing constants dg, 07 such that
veedy Xl 4/3 _ 1

4.27 0 < ——, =260, — 80 07 = -———277

0 el e B i

we obtain

428) 5 [ [0wb + 93 Tv0 000 + Wletwhn)

+ 86 (Ut cu 4 ge(u) - Ae(u))] de + — [QTFVX TV +2¢(x)

d/
660* d/ 66 Cx dl

4 20 e — a2 4 2 (Vu|2+u>+66d/w<e<u>,x>}dx

vesdy
+THut”H1(Q)+ 2NV}, 0 + crlixdl?, @

1 _ | m|
< gazx\AHQIW(IXmI + 1)lle(w) = €00l Lo(e) + 5 1912V ]| o) + b3,

where
24 27xh

b = bt +d6b3 + —

2.

Estimating

1 _
JCMIAIIQII/Q(Xm +Dle(u) e

1 aj|APIQ(x +1)

1 _
< —8||€(U) — E0)ITa0) +

58 (d’)Q ’
|Xm| 1/2 1 xhlgl* 1€
B gl 2Vl ) < —||VM||L2(Q %y (AR
and choosing constants dg, dg so that
(56C* cp
6 = 6 = —
8 S ) 9 2 )
inequality (4.28) is reduced to the form
d 1
(1.20) i [ [50u + 990 4 000+ Wetw) )
+ 6| ur-u+ gs(u) . As(u))} dx
1 dgcad’
b [ & vy v+ 20600 + 2L (o) e
) *d
+ B (TP 4 uf?) 4 80 W (), )| d
vesdy
+ —”utHHl(Q) + HWIILQ @ T CP||Xt||1:2 @ = < b3,
where
8 af|APIQP(GL +1) | xhlgl9]
b2 = b2 + 4 + :

d6Cx (d')? cp(d')?
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Let

(4.30) 610) = [ 5 + x93 + 600 + Wle(w).

+ 56 <ut At gs(u) : Ae(u)ﬂ da.

‘We choose constant d19 > 0 so that

1 dgCid’ _

431 060 < 3 [ [ v rvis 2000+ Bl e(w) -0
dgcedid veodid
=gl + [Vul?) 4+ 06d W (e(u), x) + =g (el + [Vue|*) | e

This can be satisfied under the following conditions:

) veed vesd

%Iut\r" < 1—61‘ut|2’ so d19 < 3 ,

d10 1 cr Cr

—V -I'Vx SEZT, SO 510§E7

2
d109(x) < d,¢( X) so 010 < 7
d10W(e(u), x) < d6W(e(u),x), so 6bio0 < de,
1 veed OgCsd
61066ut U S 51056< ‘ t|2 + —— 25 |2> S T1|ut|2 + 61—61|u|2,
SO e.g.
veedr V02d2
d #?
1= g50ss i = s
dgCsd
Sr00s5e(u) - Ae(w) < L (jul? + [Vul?),
2 16
SO
C*dl
< .
o0 < 8v

Consequently, choosing

. veudy cp 2 cdr [V cedy
4.32 = 506, —— [ =
( 3 ) 610 min { ] d'ér g 65 S 56 Y ’

inequality (4.29) yields

vesdy

d
(4.33) EG(t)+51oG(t)+—IIUtHH1Q>+ CIVHlL, ) +eplxeliy ) < b

Finally, we choose constant dg > 0 so that
1 1
a3y GOz [ [fhl+ T 00+ Wietw). )
Q
In fact, taking into account that (see (1.18), (2.2))

/ e(u) - Ae(u)dz > c*dl/ |u|?dx
Q Q



358 I. PAWEOW AND W. M. ZAJACZKOWSKI

we have

1 1
602 [ [Jul + 390 DO+ 00 + W(e(u) )
1 1 v
—dg (§|ut|2 + 2—6|u|2> + 56§c*d1|u2] dx

where § > 0. Hence, choosing

666 - 1 d % - 66VC*d1
2 4 MY T T o

that is, § = —L— and Js = 2% we ensure the bound (4.34).

veyedy - 2

For 8 = “% condition (4.32) becomes

5 . veedr ¢ 2 1 [eudr cody
= min —, = .
10 8 'ded 4V 2 s

Thereby the assertion of lemma is proved. =

5. Existence of weak solutions

Proof of Theorem 2.1. The proof modifies slightly the proofs of Theorems 3.1 and 3.2
from [BarPaw05].

Step 1. The Faedo-Galerkin approximation. We introduce the following eigenvalue prob-
lems

(5.1) —Qu; = A§1)vj in , v;=0 on S, jeN,
where @Q is the elliptic operator defined by (1.11). Moreover,

(5.2) —Apw; = A§-2)wj in Q,

(5.3) ~Arz; =AYz inQ,

with boundary conditions

n-(MVw;+hzj)=0 on S,
(5.4)
n-I'Vz; =0 on S.

The sets {v;}, {w;} and {z;}, j € N, form bases in H{(Q), H'(Q), and H'(Q), respec-
tively. Define

Vo =span{vy,...,vn}, W, =span{wi,...,wy}, Zpn =span{zi,...,2m}

To construct the Faedo-Galerkin approximation for (1.1)—(1.3) we consider the fol-
lowing regularization of (1.1)—(1.3):
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wly = V- [Wele(w), ) + vAe(u])] = b in Q7
u” |i—o = uo, uz|t:0 =ux in €,
u’' =0 on ST,
! +x] =V (MY +hyy) =0 in Q7
(5.5) X lt=0 = Xo in €,
n-(MVy'+hyx])=0 on ST,
P =g -Vl ==V -TVX" +¢'(x7) + W(e(w?),x") + 8x] in Q"
n-I'Vx” =0 on ST,
1 |e=0 = po in Q,

where g € L2(2). Suppose that

m

(e t) = Y e (oile),

(5.6) p (@, t) = Z di"* (t)wi(z),

@t = Yo e (1))

satisfy for a.e. t € [0,T] the identities with initial conditions
(wf™,vi) my @)y my @) T (We(e(@”™),x"™),v5) + vA(e(u!™), e(v;))
= (b,v;), w"imo =ug', u/"|=0=ui",
Y™ wi) + O wy) + (MVE?™ + "™, Vwy) = 0,
(5.7) w " =0 = mg',
(W™ =g -Vl z5) = (TVXT™, Vzj)
+ @) + W (e(u™),x7™) + Bxi™, %),
X" |t=0 = X0
forall j =1,...,m, where

ul — wugy strongly in H(Q),

(5.8) X' — xo strongly in H'(Q),

ul® — uy, pgt— po strongly in Lo(€2).
The above regularization yields a well posed system for the coefficients d* (t), c*(t), e (¢),
i =1,...,m. Hence the system of ordinary differential equations (5.7) has a unique local

solution.

Step 2. Estimates for Faedo-Galerkin approximation. Multiplying (5.7)1 by €7*, (5.7)2 by
d7" and (5.7)3 by —cj', summing over j from 1 to m we obtain the equality
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d /y m m m m
69 5 (3l + Far™ o)

v [ el ™) Ast e+ [ [V MY ] g ) i
Q Q

B ™) ) = / by dr,
Q

where F is defined by (3.1). By the same arguments as presented formally in Section 3
we deduce the estimates

1 ym
(5.10)  Alp"™ 7 0.1 Lac0)) F 5”“/ 1% . 0102
i 1
+ crfju” L”ix(O,T;Hé(Q)) + §QFHVX%mH%OO(O,T;LZ(Q))

1 m m
+§HX% ||%&(0,T;L4(Q)) +cpl|Vu? H%Z(QT)

+eplIX? T, ) +vedle(u! ™)L, or) < @
and
6™ 1%, 0,10y < ca(l+T),
(5.11) X" ™1, 0,702 (02y) < €s(1+T),
lwgy™ | Ly o,msm3 )y < co(1+T),
where oy is defined in (2.17) and ¢y, ¢5, ¢ in (2.18).

Step 3. Passage to the limit m — oo. From the estimates (5.10), (5.11) it follows that
there exist functions w”, x7, 47 with

u € Loo(0,T; H(Q)), ul € Loo(0,T;5 La(Q)),  uj; € La(0,T; (H(Q))),
XY € Loo(0,T; HY(Q)) N Ly(0, T; H*(2)),
p' € Ly(0,T; H(Q)), 727 € Loo(0,T; La())

and a subsequence of solutions ™, x7"™ u?¥™ to (5.7) (which we still denote by the
same indices) such that as m — oo:

u?™ Y weakly-* in Lo (0, T; Hy(Q)),

utm s ) weakly-" in Lo (0,T; L2(£2)),

wl™ — weakly in Lo(0,T; (HL(R))),
o X = XY weakly-* in Loo(0,7; H'(Q)) and
(5.12) weakly in Lo (0, T} HQ(Q))a

X7 = weakly in Ly(Q7),

prm s weakly in L (0,T; H'(Q)),

A2 Y27 weakly-* in Loo(0,T; Lo ().
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Then by the standard compactness results it follows that

uw?™ — u?  strongly in C([0,T]; L,(Q)), ¢ <6, and a.ein QT

(5.13) w)™ — wu] strongly in C([0,T]; (H(Q))'),
X'™ — x?  strongly in Ly(0,T; H(Q)) N C([0,T]; L2(Q))
and a.e. in Q7.
Hence,

u?™(0) = u’ — up strongly in L, (),
(5.14) w)"™(0) = u" — u; strongly in (Hy(Q))',
X7(0) = xt — xo  strongly in Ly(92),
which together with convergences (5.8) implies that
u(0) = up, u{(0)=u1, x7(0) = xo-

We introduce the weak formulation corresponding to the Galerkin approximation (5.7),
T
/0 [(wds,m) )y m1 Q) T (Wele(@™™),x"™),n)

+vA(e(] ) )i = [ o

T
(5:13) /0 (T E) + (G E) 4 (MY 4 hd ™, VE) = A(i €(0)),

T T
/ (W™ —g-Vurm Q)dt = / (TVX™™, V()
0 0

+ ' (X)W (e(u™),X7™) + Bx]™, ¢)dt,

where n € Ly(0,T;V ), £ € CL([0,T), W), ¢ € Ls(0,T; Z,,) with £&(T) = 0.
In view of (5.12)—(5.14), following [BarPaw05], we can pass to the limit m — oo
in (5.15).

Step 4. Passage to the limit v+ — 0. A priori estimates (5.10), (5.11) and the weak
convergences (5.12) imply that the limit functions w?, x7, 47 satisfy the estimates (5.10),
(5.11) uniform in v. Hence, we can deduce the convergences for v — 0 as in (5.12)—(5.14).
Moreover, by virtue of the estimate

1/2
(5.16) P 00 < 01/

it follows that v — 0 strongly in L (0,T; Lo(€2)). Consequently, passing to the limit
~v — 0 in the integral identities for u”, x7, u” analogous to (5.15) we obtain (2.16). This
concludes the proof. m

6. Global existence

Proof of Theorem 2.2. From (3.2) we deduce the continuity of F(t), because

+ 1/2
F(t) = P(")] < clt’ — t"|1/2( / ||b<t>||%2(mdt) 7
t//
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for |t/ — ¢"’| small. Moreover (3.6) implies that for any k € NU {0}

3
e (R Z, () + IXET) 1 F o) + (BT [ o) < 2F(0) + S IBIIZ, (ko) + €2

Hence the local solution from Theorem 2.1 can be prolonged step by step on intervals
kT, (k+1)T]uptok=00. m

Before proving Theorem 2.3 we prepare a lemma. Let us simplify (4.4) to the form

(6.1) ba(t) = 1 llb(t)lIZ, ) + 72
where 71,2 are positive constants.

LEMMA 6.1. Assume that

V3= k;\}tlzo} ”b(t)||2L2(kT,(k+1)T;L2(Q)) < oo.

Moreover, let G(0) < oo, where G is defined by (4.1). Then

+ 1
(6.2) Gy < BT8R

e +e*TG0) for keNU{0}.

Proof. Multiplying (4.3) by €+ and integrating with respect to time from i7 to (i +1)T
we have

1
(6.3) G(i+1DT) <mvys+ 52 + e TGQT).
Integrating (6.3) with respect to ¢ from 0 to k — 1 we obtain (6.2). m

Proof of Theorem 2.3. From (4.3) we infer that G(t) is continuous because

t

(6.4) G(t) - Gt < / 13, 0y’ + 2t — 1)
t

"

for |[¢' — ¢"’| small. Moreover, (6.2) implies that for any k € N,

MY+ 5

= + eszhTG(O).

(6.5) wkT) 3 ) + e (RT)Z, 0y + IXET) 1) <

Hence the local solution from Theorem 2.1 can be prolonged step by step on intervals
kT, (k+1)T]uptok=o00. m

7. Proof of Theorem 2.4. Let (u1, x1, 1) and (we, x2, 42) be two solutions of (1.1)—
(1.3) (in simplified form (1.15)—(1.17)) corresponding to the same data. Subtracting the
corresponding equations and denoting
U=ui—uz, H=x1—-x2 Y=m—pe,

yields the following system for (U, H,Y):

Uy — QU —vQU, = 2 (x1)BVx1 — 2/ (x2) BVx2 in QF,
(7.1) Uli=0 =0, Uili=0=0 in Q,

U=0 on ST,
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H,—V-(MVY +hH,) =0 inQ7,
(7.2) Hl|i—o =0 in Q,
n-(MVY +hH;) =0 on ST,

Y —g-VY =-V-TVH+¢'(x1) —¢'(x2)

+2'(x1)(B - e(u1) + Dz(x1) + E) — 2'(x2)(B - €(u2) + Dz(x2) + E)

+ GH, in QT
n-TVH =0 on ST,

To get estimates we proceed similarly as in Section 3. Multiplying (7.1); by Uy, integrat-
ing over {2 and by parts, using boundary condition (7.1)3 yields

2dt[/ U QdH/ (U)~A€(U>dz] +V/Q€(Ut)-A€(Ut)d:c

—/( "(xs)HBVx1 + 2’ (x2)BVH) - U,dz,
Q

(7.3)

where x. € (x1, x2). Hence, recalling (2.2) and using assumptions on z,

1d
331 (100 + [ 0)- Ac@)ie) +ve. @I o

< c/ |H|\VX1||Ut|dx+c/ \VH||U,|dz.
Q Q

(7.4)

Next, we multiply (7.2); by Y, integrate over Q and by parts using (7.2)3, to get
(7.5) / H,Ydz + / (VY - MVY + H,h - VY)dz =
Q Q

Further, we multiply (7.3); by —H, integrate over £ and by parts using (7.3)9, to arrive
at

(7.6) /VH I‘VHd:c—l—ﬁ/Hde—/Yth:E—i—/Htg VYdz

2 dt
_— / (W (x1) — o' (x2)) Hodar — / 2 (1)(B - e(u)
Q Q

+ Dz(x1) + E) — 2 (x2)(B - e(uz) + Dz(x2) + E)]|Hdx.

Now, let us sum up (7.5) and (7.6). Taking advantage of structure condition (2.12), using
that

(1) — ¥ (x2) = H(xT + xaxe +x3 — 1),

and recalling assumptions on z, we deduce the inequality

(7.7) / VH - -T'VHdz + 0p(||VY||L2 @ T ||Ht||L2 )

2dt
<c [ IHIOG + 33+ )| Hildo + ¢ | |Hletw)|[Hildo +c [ |e(O)]|Hildz.
Q Q Q
Next, we estimate the mean value of Y. Since, by (7.2),

d
(7.8) —/Hd:czO and /Hd:czO for te0,7T],



364 I. PAWLOW AND W. M. ZAJACZKOWSKI
we deduce from (7.3) that
/ Y — / VYdr + / (W (x1) = ¥’ (xa))d

/Q[ '(x1)(B - &(u1) + Dz(x1) + E) = 2/ (x2)(B - €(u2) + Dz(x2) + E)]dx.

Hence,

(7.9) ‘ /ﬂ Yda

< c/ |VY|da:—|—c/ (3 43 + 1)de
Q Q

—|—c/ﬂ\H||€(u1)|dx+c/ﬂ|€(U)|dx.

Consequently, by the Cauchy-Schwarz inequality,

(7.10) ’ /Q Ydx

< el VY Iz, + ellxallZ, + 2l o) + DIH | Lue)

+clle(u)ll @ 1 H | Lo + clle@) ] Lo
From (7.10), owing to the Poincaré inequality (see (1.19)),

2
/Y2d:cgc/ VY|2d:r+c</ de> :
Q Q Q

we deduce the estimate
(7.11) Y1) < ellVY 17,0 + clllxallz o) + Ixelli. @) + DIHIL, @
+ clle(un)lz, @22, @) + cle@)llL, @)
Finally, similarly as in Lemma 3.4, multiplying (7.3); by ArH = V-I'VH, integrating
over 2 and by parts using (7.3)2, gives

(7.12) / VH - TVHdz + | ArH|2,

2 dt
¢ [ QY1+ VY DIArHIds + ¢ [ (6 433+ 1) H] ArH|da
Q Q

+c/ |E(U1)HH||A1“H|de+C/ le(U)||ArH|dx.
Q Q

We shall show below that estimates (7.4), (7.7), (7.11) and (7.12) imply by Gronwall’s
lemma that (U, H,Y) = (0,0,0).
From (7.4), by the Holder and Young inequalities, we deduce that

1d
113 55 (100 + [ e0)- AcW)de) + eI, o

o1 2 c 2 2
< 3\|Ut||LG(Q) + EHVXIHLS/Q(Q)||HHL6(Q)

52 C
+ EHUtH%G(Q) + EHVHH%Q(Qy 01,02 > 0.

Hence, in view of Korn’s inequality (1.18) and Sobolev imbedding (1.21), constants d1, Ja
can be chosen so that the terms with U, become absorbed by the left-hand side of (7.13).



CAHN-HILLIARD-GURTIN SYSTEM 365

Thus
710 L4 U)- Ae(U)d Ve ()12
(7.14) > 10|, @t QE( ) Ae(U)dz +7||€( Lo

< Vxallz, o 1 HllL @) + ellVHIL, @) < cllVXalL,, @ + DIVEIL, @)

where in the last inequality we used the fact that, by the Sobolev imbedding and the
Poincaré inequality, owing to (7.8),

(7.15) [H||Lo(0) < cllHlm0) < cl[VH| Ly (0)-
Next, let us turn to (7.7). Applying the Young inequality leads to

cp
(7.16) /VH I‘Vde—i—cPHVYHLZ(Q HHtHL2 Q)

2dt
< c/ H?(x{ + x5 + Ddx + c/ H?|e(uy)|?dx + c/ le(U)|?de = I + I + I5.
By the Hijlderﬂinequality, ! !

(7.17) Iy < e H Ly (X1 Lo + X2l o) +1)-

The term I is bounded with the help of the interpolation inequality (see [BIN96]):

I < CHHHQLOO(Q)”E(ul)”%z ()

1 4 3/4
< (03 1 H 220y + e85 HIHIZ, ) e (@) 12, 0,

where d3 > 0. We choose d3 so that
1/4

(7.18)

||€(u1)||L2(Q) = 0.

with d, > 0 to be selected later on. With such a choice of d3,

(7.19) I < 0.[|H | %2y + ¢8.*le(un) |, 1H 12, 0)-

The term I3 is bounded by

(7.20) I < clle(U)]12, -

Combining estimates (7.17), (7.19), (7.20) in (7.16) and using (7.15) gives

1d

(121 o

cp
VH TVHdz + cp||VY|[T,0) + 7|\Ht|\2L2(Q)

< elllxalzo@) + Ix2llzy@) + DIVHIL, @

+ 0. HllFp2 0y + e85 le(w) 2, o) [VHIZ, () + clleUlz,)-
Finally, let us turn to (7.12). Applying the Young inequality leads to

B d
2 dt

with I, I, I3 defined in (7.16).
The first term on the right-hand side of (7.22) is estimated by (7.11), Ij-term by
(7.17), Is-term by (7.20), and I-term, similarly as in (7.18), by

1/4 —-3/4
Iy < (85" 1 H |3 + e85 HIHIZ, o) lle (@) 13,0

with a constant d4 > 0 to be chosen in a moment.

(722) / VH FVHdJ? —|— _HAFH”LQ(Q) < C||Y||H1 Q) —|— Il —|— Ig —|- 13
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Combining the aforementioned estimates in (7.22) and using (7.15) we arrive at
(7.23) 2 = / VH -TVHdz + - ||AFH|\L2(Q
< dllVY NIz, +clxallz, @) + X2z, + DIVHIL, @
+ clle(u)| 2, IVHIE, 0 + cle@)l1, @)

1/4 —3/4
+54/ HE(UI)H%Z(Q)HH”%{?(Q)+C§4 / ||€(U1)||%2(Q)HVHH%2(Q)-

Let us note that owing to the ellipticity property of Ar and the fact that fQ Hdz =0,
the following inequality holds true (see (3.27)):

(7.24) IH |2 < aill ArHI|7, )
with a constant ¢; > 0. Thus, choosing d4 so that
1
1/4
5 erlle(un) 3,0 = 7

and consequently
—3/4
03 ()30 = (4en) (w3, 0

inequality (7 23) simplifies to
(7.25) 2 p / VH - -TVHdx+ - ||AI~HHL2(Q
< el VY 11,0 +ellxillz, @) +lIx2lz, @) +lle()lz, @) + DIVEIL, @ +cle@)IL,q):

where we distinguished constant ¢y in front of the first term on the right-hand side of
(7.25). Now, multlplymg (7.25) by 32 and adding to (7.21), we get

Bep d
(7.26) (402 +3) 3 |, VH TVHdz +_HAFH||L2(Q)

+ 7(HVY||L2(Q) + | HilIZ )

< clxallzocoy + Ix2ll7 @) + le(@)liz, @) + DIVHIZ, g
+CH€(U)H%2(Q) +5*HH”§{2(Q) Jr6573H€(u1)”i2(§2)||VH||%2(Q)'

In view of (7.23), choosing constant 0. = 1522, the last but one term on the right-hand
side of (7.26) is absorbed by its left-hand side. Adding the resulting inequality to (7.14),
we finally arrive at

020 55 (0 + [ e@): As(U)dx)

ﬂCP d
+ <4C2 + = dt VH FdeZ‘+ ||€(Ut)HL2(Q)

C8 2 cp 2 2
* 166, ”AFHHLZ(Q) + 5 UIVY 0 + [ Hillz )

< cllxall i@ + Ix2llTe@) + le@)lE, @
+IVxalz, L0 + DIVHIZ, ) +clle@)I, 0
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Denoting

D(t) = (||Ut|L2<Q /Qs<U>-Ae<U>dx)+(ﬁcj+2) [ i ron

p(t) = cllxallzy@) + Ix2lLo@) + ez, @ + 1VxallZ, @) + D
and recalling (2.2), (2.6), it follows from (7.27) that

= l\Dl»—l

(7.28) %D( £+ 2

Cg 2
Hs(Ut)HL2(Q @HAFHHLQ(Q)
cp
+ 5 (IVY L) + 1Hel L) < (D).
Hence, by the Gronwall lemma,

D(t) < D(0) eXp/O p(t')dt'.

Since D(0) = 0, and due to energy estimates (2.17)

¢
| it < cllhaleo ooy + Ieliommo)
0
+ ||u1HE[;,°O(07T;H1(Q)) + 1)T S ' < o0,
we conclude that D(t) = 0 for ¢ € [0, T]. Moreover, from (7.28) it follows that
leUi)llL.e) = 1AL H | L 0) = |Htll2,@) = IVY[L,2) = 0.

Hence, U = 0 and H = 0 in Q7 and by (7.11), IY||a1() =0, so that Y = 0 in Q7. This
proves the uniqueness of the solution (u, x, ) in the interval [0,7]. m
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