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Abstract. The classical Stokes system is reconsidered and reformulated in a functional analytical

setting allowing for low regularity of the data and the boundary. In fact the underlying domain

can be any non-empty open subset Ω of R
3. A suitable solution concept and a corresponding

solution theory is developed.

0. Introduction. It may seem somewhat surprising that even for the linearized incom-

pressible Navier-Stokes equations there appears to be no “soft analysis” solution theory

as is available e.g. for evolutionary equations. This is partly due to the fact that this

system is what is known as a partial differential-algebraic equation (PDAE). In this note

we want to analyze the Stokes problem, which is just the leading part of the linearized

incompressible Navier-Stokes equations, with functional analytical means in order to de-

velop a solution concept that avoids unnecessary regularity assumptions on data and

quality of the boundary. The approach is based on concepts developed in [2, 3].

The Stokes system can be given in the form

div v = 0,

∂0v − Div T = f,
(1)

where the system is completed by the material relation

T = C Grad v − p 13×3. (2)
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Here the so-called viscosity tensor C commonly characterizes an isotropic medium, i.e.

C =































2µ + κ κ κ 0 0 0

κ 2µ + κ κ 0 0 0

κ κ 2µ + κ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ































, µ, κ ∈ R, (3)

when—following Voigt’s notation—symmetric matrices S = (Si,j)i,j=1,2,3 are represented

as 6-component vectors

S =































S11

S22

S33

S23

S31

S12































.

Note that the 3 × 3 identity matrix is in this notation identified with the vector






























1

1

1

0

0

0































.

The formal differential operators Grad and Div can then be interpreted (see e.g. [1],

chapter 11) as

Grad :=































∂1 0 0

0 ∂2 0

0 0 ∂3

0 ∂3 ∂2

∂3 0 ∂1

∂2 ∂1 0































(4)
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and its formal transpose (or L2-skew-adjoint)

Div :=











∂1 0 0 0 ∂3 ∂2

0 ∂2 0 ∂3 0 ∂1

0 0 ∂3 ∂2 ∂1 0











. (5)

One finds that the eigenvalues of C are µ, 2µ + 3κ, 2µ with multiplicities 3, 2 and 1,

respectively. The quantities µ, κ are known as Lamé constants and for the medium we

must have
µ > 0, 2µ + 3κ > 0

or
µ > 0, 0 < κ +

2

3
µ (6)

in order to ensure that C is positive definite. We mention this only for motivational rea-

sons. In our later development it will turn out that C can be fairly arbitrary, thus allowing

for inhomogeneous and even anisotropic media. Considering the above system of equa-

tions, which formally constitutes a PDAE, i.e. a partial differential algebraic equation,

amounts to studying the system matrix








0 div 0

0 ∂0 −Div

( · ) 13×3 −C Grad 1









.

The resulting system matrix can be transformed into a more “symmetric” form. Starting

with the matrix trace operation given by C
3×3 → C, T 7→ trace(T ), we obtain as trace∗

the operator C → C3×3x 7→ x 13×3, and we get

traceC−1T = trace(Grad v − p C−1 13×3) = traceGrad v − traceC−1 trace∗ p.

Since traceGrad v = div v, we have

traceC−1T = divv − traceC−1 trace∗ p

and we obtain the formally equivalent system matrix ∗)










traceC−1 trace∗ 0 trace C−1

0 ∂0 − div

trace∗ −C Grad 1











(7)

0∗) In the isotropic case we find

1

2µ + κ
trace(C S) =

1

2µ + κ

X

i

X

k,l

CiiklSkl =
1

2µ + κ

X

i,k

CiikkSkk

=
2µ

2µ + κ

X

k

Skk +
κ

2µ + κ

X

k

Skk = trace(S)

for all symmetric S. With S = C−1T we have trace C−1 T = 1

2µ+κ
trace T. Thus in particular,

trace C
−1 trace∗ p =

1

2µ + κ
trace trace∗ p =

3

2µ + κ
p.
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where

trace∗ = 13×3 =































1

1

1

0

0

0































now denotes the induced L2(Ω)-adjoint of trace = (1 1 1 0 0 0) interpreted as an operator

from (L2(Ω))6 to L2(Ω). Here Ω is a non-empty open set in R3 occupied by a medium

described by the tensor C. It seems natural to consider this system in a weighted L2(Ω)-

space denoted by H0 with inner product of the form

〈 · | · 〉0 + 〈 · | · 〉0 + 〈 · |C−1 · 〉0 .

The notation 〈 · | · 〉0 refers to the standard (one-, three- or six-component) L2(Ω)-inner-

product. In other words, we have

H0 = L2(Ω) ⊕ L2(Ω) ⊕ C1/2L2(Ω). (8)

The weight C can be chosen completely general, in particular we may have anisotropies

and inhomogeneities in the medium. The only requirement is that C is a positive definite,

bounded selfadjoint mapping in the space of symmetric matrices with L2(Ω)-entries de-

noted here simply as L2(Ω) again. This weight is chosen such that Div is formal adjoint of

− C Grad. Thus,










traceC−1 trace∗ 0 traceC−1

0 0 0

trace∗ 0 1











is a selfadjoint bounded operator in H0 and we are led to discuss the system matrix










traceC−1 trace∗ 0 traceC−1

0 ∂0 −Div

trace∗ −C Grad 1











as acting in the tensor product space L2(R, µη)⊗H0 for sufficiently large η ∈ R>0, where

L2(R, µη) denotes the space of (equivalence classes of) complex-valued, square-integrable

functions over R (with respect to almost everywhere equality as equivalence relation)

equipped with the weighted measure

µη(M) :=

∫

M

exp(−2ηt) dt, η ∈ R>0.

Its Hilbert space norm will be denoted by | · |η,0. Defining ∂η := i Im ∂0, where ∂0 denotes

the normal realization of the differentiation operator in L2(R, µη). Note that Re ∂0 = η,
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for details of the framework see [3, 2]. We recall, in particular, that the domain D(∂k
0 )

equipped with the norm φ 7→ |∂k
0φ|η,0 is again a Hilbert space denoted by Hk(∂η + η),

k ∈ N. The dual spaces are denoted by H−k(∂η + η) for k ∈ N. In any case, Hk(∂η + η)

can be understood as the completion of D(∂
|k|
0 ) with respect to the norm φ 7→ |∂k

0φ|η,0,

k ∈ Z. By construction ∂0 := ∂η + η maps Hk+1(∂η + η) unitarily onto Hk(∂η + η) for

every k ∈ Z.

In the boundary value case we consider the revised incompressible Stokes system in

the Dirichlet boundary condition case













traceC−1trace∗ 0 traceC−1

0 ∂0 −Div

trace∗ −C
︷ ︷

Grad

◦

1













in H0(∂η + η) ⊗H0. Here
︷ ︷

Grad

◦

denotes the time-dependent extension of the closure of

Grad restricted to smooth vector fields with compact support in the underlying open set Ω

of R3 and − div denotes the time-dependent extension of its L2(Ω)-adjoint. Analogously,

we could consider the Neumann boundary condition













traceC−1 trace∗ 0 traceC−1

0 ∂0 −
︷ ︷

Div

◦

trace∗ −C Grad 1













.

Here
︷ ︷

Div

◦

denotes the the time-dependent extension of the closure of div restricted to

smooth vector fields with compact support in the underlying open set Ω of R3 and −Grad

is re-used to denote the time-dependent extension of its L2(Ω)-adjoint.

In both cases the system is formally of the abstract form

N∂0
(Y ) :=











traceC−1 trace∗ 0 traceC−1

0 ∂0 −Y

trace∗ Y ∗ 1











where Y ∗ ∈ {−C
︷ ︷

Grad

◦

,−C Grad} is the H0(∂η + η) ⊗ C1/2[L2(Ω)]-adjoint of Y ∈

{
︷ ︷

Div

◦

, Div}. However, it is still not fully clear how the above formal matrix system is

to be understood entry by entry. Clearly, N∂0
(Y ) with domain

D = (H0(∂η + η) ⊗ L2(Ω)) ⊕ (H1(∂η + η) ⊗ D(Y ∗)) ⊕ (H0(∂η + η) ⊗ D(Y ))

yields a well-defined operator in H0(∂η + η) ⊗H0 and seemingly it would make sense to
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consider the system

N∂0
(Y )











p

v

T











=











0

f

0











in its natural sense as a partial differential-algebraic equation (PDAE). Unfortunately,

N∂0
—in contrast to the compressible case—is not invertible in the sense that

Nζ(Y ) :=











traceC−1 trace∗ 0 traceC−1

0 ζ −Y

trace∗ Y ∗ 1











has in general no uniformly bounded inverse for ζ ∈ i [R]+R≥η, for some η ∈ R>0. Thus,

our aim is to derive a well-posed substitute problem. This will be conveniently set in the

framework of Sobolev lattices (extrapolation lattices) as developed in [2, 3].

1. Basic setup. We need a weaker concept of applying Y and Y ∗ as well as for time-

differentiation ∂0. This will be accomplished by following construction, which we briefly

recall from [2]. To construct the appropriate setting, let now A : D(A) ⊆ H0 → H1 denote

an arbitrary densely defined, closed linear operator between Hilbert spaces H0, H1. We

may now construct Sobolev lattices (Hk(|A|+i))k∈Z associated with the operator (|A|+i).

Here, |A| =
√

A∗A. We recall from [2] that the Hilbert spaces Hk(|A| + i) are given as

completions of D(|A|k) with respect to the norm

u 7→ |u|k,A := |(|A| + i)k u|H0
,

for k ∈ Z. We also recall that Hk(|A| + i) = (H−k(|A| + i))∗ and that we have the

continuous and dense embeddings Hv(|A| + i) →֒ Hk(|A| + i) for v, k ∈ Z, v ≥ k. We

recall also that the mappings

D(|A|k+v) ⊆ Hv(|A| + i) → Hv−k(|A| + i),

Φ 7→ (|A| + i)kΦ,

extend continuously to unitary mappings for k, v ∈ Z and we shall re-use the notation

(|A| + i)k for these mappings. In the following we shall make use of this construction in

particular for A = Y : D(Y ) ⊆ C1/2L2(Ω) → L2(Ω) and its adjoint Y ∗ : D(Y ∗) ⊆
L2(Ω) → C1/2L2(Ω).

Remark 1. Applying this construction likewise to the above skew-selfadjoint operator

∂η we obtain a chain of Hilbert spaces (Hk(|∂η|+ i))k∈Z. Using u 7→ |(∂η + η)k u|η,0 as an

equivalent norm we recover the spaces Hk(∂η + η) introduced above, k ∈ Z.

Denoting—as usual—the closure of the natural extension ∂0(φ ⊗ h) := ∂0φ ⊗ h,

A(φ ⊗ h) := φ ⊗ Ah of ∂0, A to space- and time-dependent arguments by the same

letters, we may now construct a Sobolev lattice (Hη,j,k,A)j,k∈Z associated with the family
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(∂0, |A|), simply as tensor product spaces

Hη,j,k,A := Hj(∂η + η) ⊗ Hk(|A| + i).

We recall from [2] that the Hilbert spaces Hη,j,k,A can be given as completions of the

algebraic tensor product C
◦

∞(R) ⊗
a

D(|A|k) with respect to the norm

u 7→ |u|η,j,k,A := |∂j
0(|A| + i)k u|η,0,0,A := |∂j

0(|A| + i)k u|H0(∂η+η)⊗H0
,

for j, k ∈ Z. We also recall that

Hη,j,k,A = (Hη,−j,−k,A)∗

and that we have the continuous and dense embeddings Hη,u,v,A →֒ Hη,j,k,A for u, v, j, k ∈
Z, u ≥ j, v ≥ k. The mappings

C
◦

∞(R) ⊗
a

D(|A|k+u) ⊆ Hη,u,v,A → Hη,u−j,v−k,A,

Φ 7→ ∂
j
0(|A| + i)kΦ,

extend continuously to unitary mappings for j, k, u, v ∈ Z and we shall re-use again the

notation ∂
j
0(|A| + i)k for these mappings. Note that there is no conflict with the laws of

compositions of mappings, i.e. we have

∂
j
0(|A| + i)k∂u

0 (|A| + i)v = ∂
j+u
0 (|A| + i)k+v

for j, k, u, v ∈ Z. The next question we need to answer is, how A interacts with |A|.
The answer is given by an abstract transmutation feature, which will be recorded in the

following lemma.

Lemma. Let A : D(A) ⊆ H0 → H1 be a closed, densely defined linear operator between

(complex) Hilbert spaces H0, H1. Then

A |A| = |A∗|A
in H1 and on D(|A|2) = D(A |A|) = D(|A∗|A).

Proof. See corresponding lemmas in [5, 4].

We are now able to establish the meaning of the operator matrix equation










traceC−1 trace∗ 0 traceC−1

0 ∂0 −Y

trace∗ Y ∗ 1





















p

v

T











=











0

f

0











in Hη,0,0 := H0(∂η + η) ⊗ H0 = Hη,0,0,id ⊕ Hη,0,0,Y ∗ ⊕ Hη,0,0,Y . Here id stands for the

identity in the scalar L2(Ω)-space. Now, clearly the first equation

traceC−1 trace∗ p + traceC−1T = 0 (9)

may be understood term by term in Hη,0,0,id, the second equation

∂0v − Y T = f (10)

in Hη,−1,−1,Y ∗ and the third equation

Y ∗v + T + trace∗ p = F (11)
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simply in Hη,0,0,Y . Thus, the entries of the operator matrix are meaningful and the proper

domain of N∂0
(Y ) would be

D(N∂0
(Y )) :=



























p

v

T











∈ Hη,0,0

∣

∣

∣











0 0 0

0 ∂0 −Y

0 Y ∗ 0





















p

v

T











∈ Hη,0,0

















. (12)

2. The formulation of the abstract Stokes problem. We are now ready to explore

the time-dependent formal initial boundary value problem for incompressible linear fluid

flow as described by the Stokes problem. We start by considering the formal system of

equations

N∂0
(Y )











p

v

T











=











0

f

0











. (13)

Eliminating T we obtain

∂0v + Y (Y ∗v + trace∗ p) = f, (14)

traceC−1Y ∗v = 0. (15)

Observing that

trace C−1Y ∗ ⊆ − div
◦

(16)

and

Y trace∗ ⊆ grad (17)

in the Dirichlet case and

traceC−1Y ∗ ⊆ − div (18)

and

Y trace∗ ⊆ grad
◦

(19)

in the Neumann case, a more common if, however, slightly misleading form of the system

can be obtained:

div v = 0,

∂0v + Y Y ∗v + grad p = f.

Utilizing also that formally (only for µ, κ given by multiplication by constants!)

−Y Y ∗ ⊆ µ∆ + (µ + κ) grad div

the system assumes the more familiar form

div v = 0,

∂0v − µ∆v − (µ + κ) grad div v + grad p = f,
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in which, however, all the important information about operator domains has been lost.

We shall therefore and for sake of generality prefer to use the above-given formulation of

the problem.

If we eliminate p (rather than T ) to simplify the system, we obtain




∂0 −Y

Y ∗
E









v

T



 =





f

0



 (20)

with

E := 1 − trace∗(traceC−1 trace∗)−1 traceC−1 (21)

as orthogonal projector onto the null space of traceC−1. Indeed, we note that due to the

scalar nature of (traceC−1 trace∗)

(1 − E)2 = (trace∗(traceC−1 trace∗)−1 traceC−1)2

= (traceC−1 trace∗)−2 trace∗(traceC−1 trace∗) traceC−1

= (traceC−1 trace∗)−1 trace∗ traceC−1

and yields a selfadjoint operator. In this form the non-invertibility becomes apparent,

since from

Re

〈





v

T





∣

∣

∣

∣





∂0 −Y

Y ∗ E









v

T





〉

η,0,0

≥ η 〈v | v〉η,0,0,Y ∗ + 〈ET |ET 〉η,0,0,Y

we see that in general no boundedness information about the solution part (1 − E)T is

available. Recalling that

traceC−1Y ∗v = 0

we may, however, further reduce the system. We have for φ with traceC−1Y ∗φ = 0

〈φ| ∂0v〉η,0,0,Y ∗ − 〈φ|Y T 〉η,0,0,Y = 〈φ| f〉η,0,0,Y ∗ = 〈φ| ∂0v〉η,0,0,Y ∗ − 〈Y ∗φ|T 〉η,0,0,Y

= 〈φ| ∂0v〉η,0,0,Y ∗ − 〈E Y ∗φ|T 〉η,0,0,Y = 〈φ| ∂0v〉η,0,0,Y ∗ − 〈Y ∗φ|E T 〉η,0,0,Y

= 〈φ| ∂0v〉η,0,0,Y ∗ + 〈Y ∗φ|Y ∗v〉η,0,0,Y = 〈φ| ∂0v〉η,0,0,Y ∗ + 〈Zφ|Zv〉η,0,0,Z∗

= 〈φ|Pf〉η,0,0,Y ∗

with

Z : N(traceC−1Y ∗) ⊆ N(traceC−1Y ∗) → {T ∈ Hη,0,0,Y

∣

∣ traceC−1T = 0},
v 7→ Y ∗v,

and where P is an extension of the orthogonal projector onto N(traceC−1Y ∗) as a closed

subspace in L2(Ω). To define P properly we first note that for f ∈ Hη,0,−1,Y ∗ we have

that gf ∈ Hη,0,−1,Z given by

〈gf |φ〉0,Z := 〈f |φ〉0
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for all φ ∈ N(traceC−1Y ∗) is uniquely determined. The mapping

P : Hη,0,−1,Y ∗ → Hη,0,−1,Z ,

f 7→ gf ,

is therefore a well-defined continuous linear mapping. Indeed, we have

|Pf |η,0,−1,Z = sup{|〈f |φ〉0|
∣

∣ φ ∈ N(traceC−1Y ∗), |φ|η,0,1,Z ≤ 1} ≤ |f |η,0,−1,Y ∗ . (22)

In view of the above calculation, we are led to consider

S∂0
(Z) := ∂0 + Z∗Z (23)

in the Hilbert space H0(∂η + η) ⊗ P [L2(Ω)]. The operator |Z|2 is is our representation

of the Stokes operator, which is clearly a selfadjoint, nonnegative operator. We observe

that the Stokes initial value problem

∂0v + Z∗Z v = f0 + δ ⊗ v0 (24)

has a unique solution v ∈ Hη,0,0,Z ⊆ Hη,0,0,Y ∗ for any given f0 ∈ Hη,0,−1,Z with f0 =

χR≥0
(m0)f0 and v0 ∈ H0,Z . This initial value problem would be a suitable well-posed

replacement for the above Stokes problem. We shall take this as a solid starting point for

our careful re-approach of the original question.

Theorem. Let f0 ∈ Hη,0,−1,Z with f0 = χR≥0
(m0)f0 and v0 ∈ H0,Z be given. Then the

Stokes initial value problem (24) has a unique solution v ∈ Hη,0,1,Z depending continu-

ously on the data in the sense that

√
η |v|η,0,0,Z + |Zv|η,0,0,Z∗ ≤ 2

1
√

min{1, η}
(|f0|η,0,−1,Z +

√
π|v0|0,Z).

Proof. Since ∂0 + |Z|2 = ∂0,η +η+ |Z|2 is boundedly invertible as a normal operator with

0 ∈ ̺(∂0,η + η + |Z|2), we obtain uniqueness. Indeed, for the difference w ∈ Hη,0,1,Z of

two such solutions we have

(∂0,η + η + |Z|2)w = 0

holding in Hη,−1,−1,Z . Thus ω := (∂0,η + η)−2(|Z|2 + 1)−1w ∈ Hη,1,1,Z also satisfies

(∂0,η + η + |Z|2)ω = 0

implying ω = 0 and so also w = 0.

As for the existence, we expect that

v = (∂0 + |Z|2)−1f0 + (∂0 + |Z|2)−1δ ⊗ v0

is the solution we seek. We may consider the terms in the sum on the right hand side

separately. Since ∂0 + |Z|2 is indeed a normal operator with ∂0,η as imaginary part and

η+ |Z|2 as real part, we obtain using the spectral theorem for |Z| (with Π|Z| as associated
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spectral family)

|(∂0 + |Z|2)−1f0|η,0,0,Z

≤ |(η + |Z|2)−1f0|η,0,0,Z ≤
√

∫

R

|(η + |Z|2)−1f0(t)|20,Z exp(−2ηt) dt

≤
√

∫

R

∫

R≥0

((1 + λ2)(η + λ2)−2)(1 + λ2)−1d|Π|Z|(λ)f0(t)|20,Z exp(−2ηt) dt

≤ 1
√

η min{1, η}
|f0|η,0,−1,Z

and

||Z|(∂0+|Z|2)−1f0|η,0,0,Z

≤|(|Z| + i
√

η)(η + |Z|2)−1f0|η,0,0,Z ≤|(i√η − |Z|)−1f0|η,0,0,Z

≤
√

∫

R

|(i√η + |Z|2)−1f0(t)|20,Z exp(−2ηt) dt

≤
√

∫

R

∫

R≥0

((1 + λ2)(η + λ2)−1)(1 + λ2)−1d|Π|Z|(λ)f0(t)|20,Z exp(−2ηt) dt

≤ 1
√

min{1, η}
|f0|η,0,−1,Z .

For the second part we utilize the unitarity of the Fourier-Laplace transform with respect

to time. We find

||Z|(∂0 + |Z|2)−1δ ⊗ v0|η,0,0,Z = ||Z|(im0 + η + |Z|2)−1v0|0,0,0,Z

=

√

∫

R

||Z|(iτ + η + |Z|2)−1v0|20,Zdτ

=

√

∫

R

∫

R≥0

λ2|iτ + η + λ2|−2d|Π|Z|(λ)v0|20,Z dτ

=

√

∫

R

∫

R≥0

λ2(τ2 + (η + λ2)2)−1d|Π|Z|(λ)v0|20,Z dτ

≤
√

∫

R≥0

∫

R

λ2(τ2 + (η + λ2)2)−1 dτ d|Π|Z|(λ)v0|20,Z

≤
√

∫

R≥0

πλ2

(η + λ2)
d|Π|Z|(λ)v0|20,Z

≤
√

π

min{1, η} |v0|0,Z =

√

π

min{1, η} |v0|0,Y ∗
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and similarly

|(∂0 + |Z|2)−1δ ⊗ v0|η,0,0,Z = |(im0 + η + |Z|2)−1v0|0,0,0,Z

=

√

∫

R

|(iτ + η + |Z|2)−1v0|20,Zdτ

=

√

∫

R

∫

R≥0

|iτ + η + λ2|−2d|Π|Z|(λ)v0|20,Z dτ

=

√

∫

R

∫

R≥0

(τ2 + (η + λ2)2)−1d|Π|Z|(λ)v0|20,Z dτ

≤
√

∫

R

∫

R≥0

(τ2 + η2)−1d|Π|Z|(λ)v0|20,Z dτ ≤
√

π

η
|v0|0,Z .

These calculations show that v := (∂0 + |Z|2)−1f0 + (∂0 + |Z|2)−1δ ⊗ v0 is a well-defined

solution in the stated class. Moreover, combining these estimates we find

√
η |v|η,0,0,Z ≤ 1

√

min{1, η}
|f0|η,0,−1,Z +

√
π |v0|0,Z

and

|Zv|η,0,0,Z∗ = ||Z|v|η,0,0,Z ≤ 1
√

min{1, η}
|f0|η,0,−1,Z +

√

π

min{1, η} |v0|0,Z .

Adding these inequalities yields the desired continuity estimate.

From the solution theory we also have v ∈ Hη,0,1,Z ⊆ Hη,0,1,Y ∗ and so Y ∗v ∈
Hη,0,0,Z ⊆ Hη,0,0,Y as well as Y Y ∗v ∈ Hη,0,−1,Y ∗ . Consequently,

∂0v + Y Y ∗v − f − δ ⊗ v0 =: w ∈ Hη,−1,−1,Y ∗ .

If we take φ ∈ Hη,1,1,Y ∗ , then

〈φ|w〉η,0,0,Y ∗ = 〈φ| ∂0v + Y Y ∗v − f − δ ⊗ v0〉η,0,0,Y ∗

= 〈φ| ∂0v〉η,0,0,Y ∗ + 〈Y ∗φ|Y ∗v〉η,0,0,Y − 〈φ| f〉η,0,0,Y ∗ − 〈φ(0)| v0〉0,Y ∗

= 〈φ| ∂0v〉η,0,0,Y ∗ + 〈Y ∗φ|Zv〉η,0,0,Y − 〈φ| f〉η,0,0,Y ∗ − 〈φ(0)| v0〉0,Y ∗

and specializing to φ ∈ H1(∂η + η) ⊗ H1(|Z| + i) ⊆ Hη,1,1,Y ∗ we obtain

〈φ|w〉η,0,0,Y ∗ = 〈φ| ∂0v〉η,0,0,Y ∗ + 〈Zφ|Zv〉η,0,0,Z∗ − 〈φ|Pf〉η,0,0,Y ∗ − 〈φ(0)| v0〉0,Y ∗

= 〈φ| ∂0v + Z∗Z v − Pf − δ ⊗ v0〉η,0,0,Z = 0

for all φ ∈ H1(∂η+η)⊗H1(|Z|+i) = H1(∂η+η)⊗N(trace C−1Y ∗). Thus, w ∈ Hη,−1,−1,Y ∗

is in the so-called annihilator (H1(∂η+η)⊗N(traceC−1Y ∗))a of the subspace H1(∂η+η)

⊗ N(traceC−1Y ∗) ⊆ Hη,1,1,Y ∗ .

Thus we finally have arrived at the proper reformulation of the problem originally

posed, which we therefore refer to as the abstract Stokes problem

∂0v + Y Y ∗v − f − δ ⊗ v0 ∈ (H1(∂η + η) ⊗ N(traceC−1Y ∗))a. (25)
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3. The solution theory of the abstract Stokes problem. In summary of our pre-

vious calculations we find the existence part of the following theorem giving the desired

“soft analysis” solution theory for the abstract Stokes problem.

Theorem. Let f ∈ Hη,0,−1,Y ∗ such that f = χ
R≥0

(m0) f and v0 ∈ N(traceC−1Y ∗) be

given, η ∈ R>0. Then, there is a unique solution v ∈ Hη,0,1,Y ∗ of relation (25). This

solution depends continuously on the data in the sense that

√
η |v|η,0,0,Y ∗ + |Y ∗v|η,0,0,Y ≤ 2

1
√

min{1, η}
(|f |η,0,−1,Y ∗ +

√
π|v0|0,Y ∗).

Proof. For the existence part we follow the above argument and let v ∈ Hη,0,1,Z ⊆
Hη,0,1,Y ∗ be the unique solution of (24) with f0 = Pf as ensured by theorem 2. We have

derived that v is then also a solution of (25), which proves existence.

Uniqueness follows, since a solution of (25) with f = 0 and v0 = 0 satisfies

〈φ| ∂0v + Y Y ∗v〉η,0,0,Y ∗ = 0

for all φ ∈ H1(∂η + η) ⊗ N(traceC−1Y ∗). Since

0 = 〈φ| ∂0v+Y Y ∗v〉η,0,0,Y ∗ = 〈φ| ∂0v〉η,0,0,Z + 〈Zφ|Zv〉η,0,0,Z∗ = 〈φ| ∂0v + Z∗Z v〉η,0,0,Z ,

we have

∂0v + Z∗Z v = 0 .

Thus, uniqueness is clear from the uniqueness for the Stokes evolutionary problem (24).

It remains to derive the stated continuity estimate, which can be obtained by considering

(24). By using that

|v|η,0,0,Y ∗ = |v|η,0,0,Z , |Z v|η,0,0,Z∗ = |Y ∗v|η,0,0,Y , |v0|0,Z = |v0|0,Y ∗

and employing the continuity estimate (22) for P we obtain

√
η |v|η,0,0,Y ∗ + |Y ∗v|η,0,0,Y ≤ 2

√

min{1, η}
|f |η,0,−1,Y ∗ +

√
π

(

1 +
1

√

min{1, η}

)

|v0|0,Y ∗

as desired.

Remark 2. In general, we have (note that trace∗[Hη,−1,0,id] ⊆ Hη,−1,0,Y )

Y trace∗[Hη,−1,0,id] ⊆ (H1(∂η + η) ⊗ N(traceC−1Y ∗))a ⊆ Hη,−1,−1,Y ∗

but equality only holds under particular circumstances which, however, as we can see

from the above theorem, are irrelevant for obtaining a solution theory for problem (25).

If, however,

Y trace∗[Hη,−1,0,id] = (H1(∂η + η) ⊗ N(traceC−1Y ∗))a (26)

happens to hold then we have

w = Y trace∗ p

for some p ∈ Hη,−1,0,id and letting

T := −Y ∗v − trace∗ p ∈ Hη,−1,0,Y (27)
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we can recover the familiar equations we heuristically started out with. Indeed, only if

(26) holds we have

∂0v + Y T = ∂0v + Y Y ∗v + Y trace∗ p = f + δ ⊗ v0 (28)

holding in Hη,−1,−1,Y ∗ for some p ∈ Hη,−1,0,id and

traceC−1Y ∗v = 0 (29)

holding in Hη,0,0,Y . Condition (26) characterizes when the abstract Stokes system actually

yields a solution of what one could call the classical Stokes system (28), (27), (29).
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Birkhäuser, Basel, 2001.

[7] W. Varnhorn, The Stokes Equations, Math. Res. 76, Akademie Verlag, Berlin, 1994.


