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Abstract. This paper is devoted to the study of the incompressible Navier-Stokes equations
with mass diffusion in a bounded domain in R® with C® boundary. We prove the existence of
weak solutions, in the large, and the behavior of the solutions as the diffusion parameter A — 0.
Moreover, the existence of L2-strong solution, in the small, and in the large for small data, is
proved. Asymptotic regularity (the regularity after a finite period) of a weak solution is studied.
Finally, using the Dore-Venni theory, the problem of the L%-maximal regularity is investigated.

1. Introduction. Presented in this paper is a general existence and regularity theory of
a nonhomogeneous Navier-Stokes model with mass diffusion. Observe that the model in-
cludes as particular cases the classical Navier-Stokes equations and the density-dependent
Navier-Stokes equations. The Navier-Stokes equations are largely studied while the lit-
erature concerning the model considered in this paper is not very extensive. So far, we
focus our attention mainly on the L?(Q), L(Q)-theory in bounded domains. But the pro-
cedure used here can be adapted to unbounded domains. Moreover, we do not insist on
the precise critical descriptions of the spaces of the initial data.

1.1. The model. We now derive the equations of our physical model (see [9]).

Let © be a bounded domain in R? with boundary I'. We consider in €2 the motion of a
continuous medium consisting of two components, for example, water and dissolved salt.
Let p9 = cost > 0,7 = 1,2 be the characteristic densities of the components of the mixture
and « and c¢ be the volume and mass concentrations of one of the components, say water.
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We introduce the concept of mean densities p; = ap{, p2 = (1 — a)pJ of the components,
p = p1 + p2 of the solution, and also the velocities v; and vy. The mean-volume and
mass-velocities of the mixture are defined in the usual way: v = av; + (1 — a)ve and
w = cv1 + (1 — ¢)va. The equations of the motion in Qr = 2 x (0,7 are given by

) {p<6tw+w-w—f>—M/Aw—<u+u'>vv~w+w=o,

V-u=0, Op+V-(wp)=0; V-v=0.
Here p is the pressure, f the external force and p,u’ the viscosity constants such that
>0 and 3u’ + p > 0.
Making use of the Fick diffusion law

A
w=v——Vp,
p

(A > 0 is the constant diffusion coefficient) we get

p(Ow+v-Vo— f)— pAv—XN(v-V)Vp+ (Vp-V)v)
(2) —2-((Vp-V)Vp = L(Vp-Vp)Vp+ ApVp) + V7 = 0,
Op+v-Vp—AAp=0; V-v=0.

Here 7 = p+ Av-Vp — A2Ap + A2 + p')Alog p is the modified pressure.
We complete the system with the following initial-boundary conditions (n is the unit
outward normal to I")

v=0, ,p=0, on 'Vt > 0,
v(0) = wvg, p(0) = po in Q.
We notice that

1 1 1
V- <;Vp ® Vp> = p {(Vp -V)Vp — ;(Vp -Vp)Vp+ ApVp|.

1.2. Known results. The system (2) includes as particular cases the classical Navier-
Stokes equations (p = const), the density-dependent Navier-Stokes equations (A = 0),
the reduced model (A%-terms are omitted). The classical Navier-Stokes system is largely
studied (see the classical books by Ladyzhenskaya and Temam). The other models are
less known and the literature on the complete model (2) is not very extensive.

Density-dependent Navier-Stokes equations. A. Kazhikhov proved in [8], via a Galerkin-
type approximation (semi Galerkin method), the existence, in the large, of a weak solution
(see Definition 1 below) and established the existence of a local strong solution. The
uniqueness of strong solution at this time is an open problem. In [10] Ladyzhenskaya and
Solonnikov proved the uniqueness for a smoother solution of the model with A = 0. The
above results are proved in the case that the initial density py does not vanish. In [13]
the author solved the open problem of the existence of weak solution of the variational
inequality associated to the model in arbitrary L2-convex sets. Moreover, in [16] and [17],
error estimates bounds for the Galerkin approximations and regularity are investigated.

Reduced model. Kazhikhov and Smagulov [9] established the global existence of weak
solution and local strong solution under the assumption A < 2u/(M —m) (M = sup p,
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m = inf p in Q) via the semi Galerkin approximation and an estimate of a sort of time
fractional derivative:

/T lu(t + h) —v(t)|2dt < eV,
0

in space dimension n = 3,4 and assuming the initial density bounded from below by a
positive constant.

The author in [15], among other things, extended the Kazhikhov and Smagulov results
to arbitrary space dimension and the initial density can vanish, making use of the estimate
of the time derivative of pv. For further development of this method see [11].

Complete model. Beirao da Veiga [2], [3], Secchi [19] established the local existence of
strong solutions using fixed point arguments. Moreover, behavior as A — 0 and t — oo
is considered.

Damézio, Guillén, and Rojas-Modar [5] study an approximation of solution by means
of an iterative method, establish some convergence rates for the approximation of the
exact solution for strong and more regular solutions.

The paper is organized as follows. In section 2 we introduce notation and functional
spaces. In section 3 the main results of the paper are presented. Section 4 is devoted to
the proof of Theorem 1. In section 5 the existence of L? strong solution is proved. In
section 6 the problem of the existence of periodic solution is discussed. In section 7 the
asymptotics and C°°((0,7T) x Q) regularity for a weak solution is investigated and we
prove Theorem 3. Finally, in section 8 Theorem 4, concerning the maximal regularity, is
proved.

2. Notation and functional spaces. In the sequel we will assume that Q denotes
an open set in R™ which is generally assumed to be bounded hence Q is compact. I'
denotes the boundary of 2. Moreover, it is assumed that €2 is a smooth domain of class
C* with k a positive integer. Furthermore, we assume that the unit normal vector field
n(x) with z € T is outward to T. If it is necessary we consider also an extension of n in
a neighborhood of €.

To simplify the discussion, we do not distinguish in our notations whether the func-
tions are R- or R™-valued, and ¢ denotes a constant. We define C5°(£2) to be the linear
space of infinitely many times differentiable functions with compact supports in 2. Now
let (C§°(€2))" denote the dual space of C§°(€2), the space of distributions on Q. We denote
by (-, -) the duality pairing between (C§°(€2))" and C5°(£2).

Let a = (o, ...,an) € N™ and set o] = D1 | ;. We set

9 |
_ a _ glal
axi - amia Da; - 851"1’“.@%7”

V = (O, .-y Or,, ) the gradient operator and V- the divergence operator.

We denote by C3° the linear subspace of divergence free functions of C§°. For any
s,¢, s > 0,¢ > 1, H;(Q2) denotes the usual Slobodeckii-Sobolev space of order s on
L%(Q). Further, the norm (defined intrinsically involving first order differences of the
highest-order derivatives) on H; () is denoted by [|¢||5,q-
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We do not consider in this paper Besov space B; () (the norm involves the second
rather than the first differences). Notice that B and Hj coincide if ¢ = 2, Vs but not
for non integral s. When ¢ = 2, H5(2) is usually denoted by H*(2) and we drop the
subscript ¢ = 2 when referring to its norm. H*(2) (s € N) is a Hilbert space for the
scalar product

((u,v))s = Z D*uD%vdz.
laf<s /<
In particular, in L?(2), we write the L9-duality pairing (u,v), = fQ uvdr with u € L4
and v € L9 with ¢ = ¢/(q — 1) and the norm |v|,.

Further, we define H; 5(£2) the closure of C§°(€2) for the norm || - [|5 4.

We denote H_,*(€2) the dual space of Hy ,(€2) and || - || 5,4 denotes its norm where ¢’
satisfies 1/g+ 1/¢' = 1.

Let us introduce the following spaces of divergence-free functions. We denote by

Ve ={vjv e H;(Q),V v =0}

V¢ is the closure of C§°(€2) for the norm || - ||, and it is a closed subspace of H*(£).

We set V! =V and V° = H. In similar manner we define the spaces V,*. Moreover,
we introduce the projection operator P, (P, = P) : LY — V). It is well known that
the operator P, is continuous on L9 and the subspace qu is complemented. Thus, the
following decomposition of L?

L? = RangeP; ® KerP,

holds true.
It is interesting to observe that KerP, = {¢ € L|¢ = Vp1 + Vps} where p1,psy are
generalized solutions of the problems

Apl = Oa anpl = f on Fv

and

Apy =V -g, pp=0o0onT,

respectively. Here g € LY and f € H;l/q(l") with (f,1)r = 0. We recall that analogous
decomposition of L¢ holds working with the subspace V = {¢|¢ € L9,V - ¢ = 0}.
We further define the Stokes operator on L4

A, = —P,A,

with domain D(A,) = HZ(Q) NV,

For any Banach space X and for any T > 0 we denote by L"(0,7;X) the set of
X-valued functions defined a.e. in [0,7] and L" summable in the sense of Bochner. Fre-
quently, we consider X = H(€). In such cases, for any ¢ € L"(0,T; H;(52)), ¢ stands
for the function ¢(t) or ¢(-,t).

Throughout the paper we denote @; = (0,¢) X and the parabolic Slobodeckii-Sobolev
space H ,‘;’T(QT) of order s in space variable and of order r in time variable on L?. We will
denote by || - |

o the norm in this space. In the following we make use of the inequality,
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for g > 3,

sup  |v] < ||v]| ;21 )
(z,t)EQT Ha™(Qr)

In addition, let us consider the affine space
H*(Q) = {(b e H*(Q),0,¢ =0 on F,/ pdx = / podx}.
Q Q

In this manner, the functions in H* are uniquely fixed and we can not distinguish the
norms @[> and |Ad|z in H?, ||@||gs and [VA@|s in H3.

Throughout the paper we shall use the following propositions.
PROPOSITION 1 (Gagliardo-Nirenberg inequality). Let Q C R™ bounded and sufficiently
regular. The multiplicative inequality

(4
(3) > 106l < clola (D 106l
la]=r |a|=l1
forlgqlquSOOaOSTSla

ﬁr(le)ﬁw(ﬁl),

q q1 a2
holds with the following exceptions:

<h<1

)

~=

a)ifr=0,1< ;‘—2, and g1 = oo and Q unbounded, we assume in addition that either
¢ —0asx— oo or ¢ € LP for some p > 0;

b) ifl<q <ooandl—r— q% is a non-negative integer, then (3) does not hold for
0=1.

The following propositions are commonly used in the theory of ordinary differential
equations. We will give a brief proof of Proposition 4 only.

We assume that ¢(t), ¥(t), h(t), f(t) are smooth non-negative functions defined for
all ¢t > 0.

PROPOSITION 2. Suppose ¢(0) = ¢g and Lo(t) +1(t) < g(o(t)) + f(t) fort >0 where g
is a non-negative Lipschitz continuous function defined for ¢ > 0. Then ¢(t) < F(t; ¢o)
fort € 0,T(¢o)) where F is the solution of the initial value problem £ F(t;-) = g(F(t))+
f(t), F(0;-) = ¢o and [0,T(¢y)) is the largest interval to which it can be continued. Also,
if g is non-decreasing then

/Ot pdr < F(t, ¢o),
with ,
Fltson) = o0+ [ (a(Plrion) + f(r)ar.
PROPOSITION 3. Suppose ¢(0) = ¢o and Lo(t) +1b(t) < h(t)p(t) + f(t) for t > 0. Then
o0) < Flton), [ v < Fit, o0,

with t
F(t7 ¢O) = <¢0 + / f(T)efoT h(o’)dadT> 6f0"- h(‘r)d‘r7
0
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F(t: 60) = do + / (h(r)(F (7 60)) + f(r))dr

Thus, the estimates for ¢ and fo T)dT are obtained from estimates for ¢g, fo T)dT
and fo
PROPOSITION 4. In Proposition 2 assume f = 0 and suppose g(¢) < c1¢® for ¢ < co
where c1,cy are given positive numbers. Suppose also E = fooo ¢dt < oo. Then, for
t > (E/ca)exp(c E), we have

exp(ciF) —1
" wws—J{;L—,
4 oo _

/ w(r)dr < exp(2c1E)C teXp(clE)-
1

Proof. Consider an arbitrary instant ¢* > cglEeclE. It is ¢* = ¢(t*) < co. If on the
contrary ¢* > cg, then, thanks to the comparison theorem for differential inequalities,
B(t) > n(t) for 0 < t < t*, where n(t) is the solution of the equation 7/(t) = c1n?(t)
satisfying 7(t*) = cy. Furthermore,

n(t) = n(t*)eer s,
then

¢ t t
() B> / ¢(s)ds = / n(s)ds > 02/ e f s gy > e Eer
0 0 0

This contradicts the assumption t* > ¢, *Fe“?. So we have ¢(t*) < co. From (%) we
get
N EenP
b < 22
The precise estimate (4); is obtained considering the explicit expression of 7, i.e. n(t) =
ca[l — eacy (t — t¥)]71. (4)2 follows by integration.

3. Statements. First, we give the definitions of weak and strong solution of system (2).
DEFINITION 1. (v, p) is called a weak solution to problem (2) if
i)ve L>=(0,T;H)N L*0,T;V),
pe L=(0,T; H () N L*(0,T; HA(R), 0 < m < p < M;

ii) the diffusion equation is satisfied a. e. in Qr;
iii) the following integral identity holds for all smooth solenoidal ¢, ¢(T") = 0,

T
[ 00.00) + (90,0 96) = u(V0,90) = Al((0- V)6, 9p) + (Vo V)60))
0
)\2
= (5 90© 9nV6) + (o1, 00t = ~(purn, 60,
DEFINITION 2. The functions v, p,m are a strong solution of the problem (2) if their

derivatives occurring in (2) are summable and they satisfy the system and the boundary
conditions almost everywhere in the corresponding measure.
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DEFINITION 3. The functions v, p,m are an L9-solution (¢ > 1) of the problem (2) if
their derivatives occurring in (2) are L? functions and they satisfy the system and the
boundary conditions almost everywhere in the corresponding measure.

The following theorems are the basic results of the paper.

THEOREM 1. Let vg € H, py € HY(Q) with 0 < m < py < M, and f € L*(Qr)
or L*(0,T; H-1(Q)). Then there exists at least one weak solution if the parameters,
M, m, i, X satisfy the relation (21) below. Moreover, as A — 0, (v}, p*) converges to
a weak solution of the density dependent Navier-Stokes equations.

THEOREM 2. If, in addition to the assumptions of Theorem 1, vy € V,py € I:IQ(Q),f €
L?(Qr) then there exists a T such that there exists a unique strong solution (v, p).

In the next theorem we assume f = 0 for simplicity of exposition. In the case of
nonhomogeneous forces the assumptions follow from the estimates that we are proving
in Theorem 3 below.

THEOREM 3. Letvy € H, pg € ﬁl(Q) with0 <m < pg < M and Q be smooth. Then there
exists at least one weak solution of problem (2) such that there exist T' (small enough) and
T* (sufficiently big) such that D¥Dlv, D¥D!p depend continuously ont € (0,T)U(T*,00)
in L2(QQ) for all integers k > 0 and | > 0. Consequently, (v, p) € C*((0, T)U(T*, 00) x ).

22
THEOREM 4. If, in addition to the assumptions of Theorem 1, vo € Hqy * NV, py €

_2 - _
HY 7"(Q) N HY2(Q), f € LYQr), q > 3, v > 5, then there exists a T such that there

exists a unique strong L solution (v, p, 7).

Since we are going to prove Theorems 1 —4 using fixed point arguments we follow the
sequent scheme: first, we assign the velocity and consider the diffusion equation proving
the existence and a priori estimates. Next, we pass to consider the existence of a linearized
momentum equation and, finally, we conclude the scheme proving the existence of a fixed
point.

4. Proof of Theorem 1. Following the proof’s scheme mentioned above, first we in-
vestigate the diffusion equation (2)s.

4.1. Existence of the diffusion equation and a priori estimates. We deduce a priori esti-
mates of the solution of the problem

Op+vY-Vp—AAp =0,

p(0) =po,0 <m < po <M, dpp=0onT.
Here v is a smooth divergence free function with normal component vanishing on I' and
m, M are fixed constants.
The existence of the diffusion equation (5) can be obtained using Galerkin method.
This procedure is well known in literature so we omit details. We now prove a priori
estimates largely based on the multiplicative inequality

(6) IVpl3 < clplo|Apl2,

that holds for all space dimensions.
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First, we notice that the maximum principle holds and m < p < M.
Now, we prove three levels of regularity for p.
Multiplying (5) by p and integrating by parts in  (the boundary terms vanish) we
get
dilpl3+ AIVpl3 =0,

then

t
(7) () + A / T pdr < |pol.

Now, multiplying (5) by —A\Ap and after integration by parts on Q (the boundary
terms vanish), we obtain

A
(8) §dt|vp‘g + M |Apl3 = =MV - Vp, Vp).

In virtue of (6) we have A\|(V1 - Vp, Vp)| < eA[VY|2|Vp|3 < | V|3 + ’\;|Ap\§ thus

we get

t t
(9) V(D3 + N2 / |Apl2dr < AVpol2 + / P dr.
0 0

Notice that the above estimate requires that ¢ € L(0,T; H'(Q2)), only. We conclude
this section with the H? estimate of p. First, we apply the V operator to (5) and then mul-
tiply the result by —V Ap, after integration by parts (bearing in mind that the boundary
terms vanish), we deduce

1
3Bl Al3 + MAVDl3 = (V- Vp), AVp).

In view of Proposition 1, V(¢ - Vp)|3 < ¢|V|3||pll2]lplls, thus we obtain

C
(10) AP+ AV < 5 VUIEIA,
consequently
2 ‘ 2 2 t|v¢‘421
(11) o0+ [ 1Vapar < clamBe [ ik
0 0

4.2. Auziliary problem. In this section we solve the linear problem:
Given f € L*(Qr) and p¢ € L*(0,T; H*(Q)) N L>(0,T; H*()), find a solution v° €
L2(0,T; H2(Q)NV) N HY(0,T; L*(Q)) of the problem
P (O + 0 - Vo — f) — pAv — A((a- V)Vp© + (Vp© - V)ve)
(12) ~V - (22Vpf ® Vpf) + Vi =0,
V.ve=0.
Here @ is the composition of regularization (with parameter €) by convolution of
u € L%(0,T;V) with respect x-variable and of the projection P. Moreover, p¢ is the
solution of (5) with ¢ = @.
We introduce the following functional space
F={¢l¢ € L*(0,T; H*(Q) N V) N H'(0,T; L*(Q))}.

We denote || - || # the natural norm on F.
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We let
T
E(w, ¢) = / (P (O + @ - Vv©) + pAv® — XN(Vp© - Vv, 0,
0
+ 1A¢ + ag)dt + (v(0), ap(0)$(0) + pAG(0));

T )\2
L(f,¢) = /0 (A(u -V)Vp*+ V- (EWE ® Vps) +p°f,

96+ iAo + a<z>) dt + (v0, ap(0)6(0) + pAG(0)).

Here ¢ is a solenoidal smooth function and i = 47.

First, E(v¢, ¢) and L(f, ¢) are a continuous bilinear form and a continuous linear form
on F, respectively.

Moreover, taking in account the diffusion equation and recalling that |Vo¢|3 <
c|V || Apla, we get

T
(14) E(6.0) = / (0 (0rb + @ V) + A — \(Vo© - V)6, 046 + A + a)dt
- (w(0), ap(0)6(0) + pAH(0))

T
> [ (G700 + pylA08 + aulVel + alera- Vo, 0
0
A
+ S (B656,0) + (5T Vo = N(Vp" - V), 06 + 1A9)

+alp0u0,0) + 5 [T9 ) dt-+ (6(0)0(0),a0(0) + p[TH(0)
T
1
> [ (GIviout + iy a0t + aul Vol

1
G IVO ~ XVA RV ~ §1VF00 + nul Aol o

+ S (IVr @)+ Ve0)6(0)3) + SV + 5IV6(0)[3
> cll¢ll,

for suitable «.

Thanks to the Lax-Milgram theorem there exists a solution v¢ € F of the problem
(15) E(v,¢) = L(f, ¢).
Now, let (/3 be a solution of the problem

(16) 0 + 1Ad + ad = g,
V-¢=0,60)=0 ¢=0onT.

Here g is a smooth divergence free function.
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Replacing in (15) ¢ by $, we obtain
T
an |/ (ff(atvﬁ Vo) + pdvt — A((@ - V)V + (Vo V)o)
0

-V (;\fv,oe ® V,tf) —p°f, g)dt =0.
This implies that v¢ satisfies a.e. in Qr
(18)  p“ (0w + @ - Vo) + pAv® — A((a- V)Vp© + (Vp© - V)vo)
-V (;Vﬁ@Vﬁ) +Vrt—p°f=0.

Now, let q~5 be the solution of the problem
0idp+ pAp+ad =0,
V-¢=0, $(0) =h(z), ¢=0o0nT.
Here h(x) is a smooth divergence free function.
Replacing ¢ by ¢ in (15) we obtain

(v(0) — vg, ap(0)h + pAh) = 0,

(19)

consequently v(0) = vp.
The existence of the auxiliary problem is proved.

4.3. Approximate problem. We denote by ¢. the regularization of ¢ using convolution
(with respect to the xz-variable) and then applying the projection operator P. We set
P¢. = ¢. We notice that ¢ is a regular function with the normal component vanishing
on I'. We now consider the following approximate problem:

Find a solution
ve € L2(0,T; H*(Q)NV) N H*(0,T; L*(Q)),
p° € L¥(Qr) N L¥(0,T; H*(Q)) N L*(0, T; H*(%2)
of the problem

P (O 4+ 0° - Vu© — f) — pAve — A(0° - V)Vp© 4 (Vp© - V)ve)
)\2

-V (vae ® Vpg) +Vr¢ =0,

Opp® +v¢ - Vp© — AAp =0,

V.ve =0,

(20)

with the usual initial-boundary conditions.

We are going to show the existence of the approximate problem by fixed point argu-
ment. Let B be a convex set in L?(0,T; V) defined by [|¢|| 12(0,7;v) < R with R a positive
real number and v € B.

Now we define the map v¢ = Gu given by the composition of 7 : v — @, g : © — p©
and h : (@, p¢) — v¢. The fixed point of G is the solution of the approximate problem
(20).
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The existence and a priori estimates of the solution of the diffusion equation are
established in section 4.1 with ¢ = .
We now build v¢. The existence of a solution of the linear problem

p (000" + - Vo — f) — plue — (- V)V + (V- V)or)
)\2

(21) -V <EVp€®Vpe> +Vrc=0, V-v°=0,

Opt +u-Vpt — AAp =0,
with the usual initial-boundary conditions, is proved in section 4.2. Moreover, if u € B
then v¢ belongs to a bounded set in L?(0,T; H*(Q)) N HY(0,T; L?(2)). Therefore, v°
belongs to a compact set in L2(0,T;V). To conclude the existence of a fixed point, we
have only to choose A such that [[v¢|| 120, 7;v) < R.

To do this, we multiply the first equation in (21) by v¢ and, after integration by parts,
we get

1
(22) §dt\\/ﬁ?ve\§ + pVoe[3

= . A3 . AM? 602
< Ao Ditty, D)l + 51895 + 5 Vo3 4+ = I
1AM —m) __ A MM —m)  AAM? .

<5 (P05 hvas + Tias+ (2 S8 Jiweg) + ciri

Here c is the constant in (6). Assuming
MM —m)  AAM? _ p

23 <z
(23) 2 + m 2

and setting R? > C’(%2|Vp(0)|§ +1/P(0)v(0)[3+ || fllL2(@7)) (C is a constant big enough)
we obtain [[v||z20,7;v) < R. The proof of the existence of a solution of the approximate
problem (21) is completed.

4.3. Existence of weak solution of problem (2). In this section we prove the existence of
a weak solution of (2).
We deduce a priori estimates starting from approximate problem (20).

Energy estimate. Multiplying by v¢ (20) and after integrations by parts we obtain

1 1 A2 M? 6M2
20) GV R+ uvo ) < 5 (Aar-m)+ X ;

€ A3 €
)70+ e I

Consequently, we obtain, in view of (23),

(25) v Il L2 0,75v)L> (0, 1:11) < €

Moreover, the diffusion equation gives

(26) m < p* <M, |pllL20.1:H2 Q)L 0,101 (2)) < C-

Thus, there exists a subsequence (denoted again by) {v¢, p°} such that, for e — 0,

v¢ — v weak* in L°°(0,T; H) and weakly in L?(0,T;V);
(27) p¢ — p weak* in L°°(Qr) and weakly in L?(0,T; H2(2));
v — 1y, vfUSpS — ayj, weakly in LP, p > 1.
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To complete the existence proof of a weak solution we have to show v = vp and
oy; = v;v;p. For this we estimate the time derivative of p¢ and v°.

Time derivative estimates and compactness result. The estimates (25), (26) and the dif-
fusion equation imply, for a ¢ > 1,

10ep || La(o,312(0)) < €
Consequently, p¢ — p strongly in LP(Qr) for any p > 1 and one deduces that v = pv.
The estimate (25), (26) shows that 9,(Ppv¢) is bounded in L2(0,T; H=2(Q)), uni-
formly with respect to e while pv¢ and thus Ppv¢ are bounded in L*°(0,T; L?(f2)),
uniformly with respect to e. Hence, by classical compactness theorems, { Ppcv¢} is com-
pact in L2(0,T; H~1(2)). In particular, since (subsequence) {p“v¢} converges weakly to
pv, {Ppv¢} converges to Ppv in L*(0,T; H~1(€2)). Hence, we have

T T
(28) / /,0€|U€|2d$dt=/ (p o<, v°)dt
0o Ja 0
T

T
:/ (Ppeve,ve)dt:/ (Ppv, v g1y dt
0 0

T T T
—>/ (Ppu,v) g-15 11 :/ (Ppuv)dt:/ /p|v|2dmdt.
0 0 0o Ja

Now, we observe that /pv¢ tends to y/p weakly in L?(Qr). This weak convergence
combined with (28) yields the strong convergence in L*(Qr) of \/pv¢ to /pv. This
convergence implies that in (27) o;; = pv;v;.

Passing to the limit e — 0. In virtue of the above estimates, the limit of the diffusion
equation in (5) as € — 0 gives dyp+ v - Vp — AAp =0 a.e. in Q7.

Now, let ¢ be a smooth function divergence free such that ¢(7") = 0 vanishing on T'.
Multiplying (20) by ¢ and after integration by parts we get

(29) /0 ((ﬂeve,aﬁb) + (p0%,v° - Vo) — u(Vo, Vo)
= A((@°- V), Vp©) + ((Vp© - V)o,v))
- (%WE ® Vp©, V¢> + (p° f, cb))dt = —(povo, #(0)).

The estimates (25), (26) guarantee the convergence of all terms in (29), hence passing
to the limit ¢ — 0 we have proved that (p,v) is a weak solution of (2). To complete the
proof of Theorem 1 we study the behavior of the weak solution as A — 0.

Behavior of the weak solution as A — 0. In this section we consider the A-parameter
dependent weak solution (v*, p*) of the problem (2) and prove that it converges as A — 0,
in a certain sense, to a weak solution of the nonhomogeneous Navier-Stokes equations

p(Oww+v-Vo—f)— uAv+Vr =0,
(30) Op+v-Vp=0,
V-v =0, v(0) = vy, p(0) = po.
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The definition of weak solution of (30), mutatis mutandis, is Definition 1. Giving evidence
on the role of the parameter A, we have proved in the above steps that

T
m < p* < M, (ﬁ sup |W|2,A/ W@dt) <c,
0

0<t<T

T
(31) >\2/ |APM3dt < ¢, 0™ 2012 < ¢
0

T
(||\/P)‘U)‘||L°°(0,T;L2(Q)),/ |Vv)‘|§dt> <ec.
0

In (31) c is a constant independent of A with A small enough.

(31) yields p* — p weakly in LP(Qr) for any p > 1 and strongly in L(0,7; H~1(Q)),
and v» — v in L>®(0,T;L%(Q)) weak* and weakly in L2(0,T; H*(Q)), consequently
p*v* — pv weakly in L2(Qr) and for any smooth function ¢ € C}(Q7),

T 1 B T
X / (V' (p—AW @Vp*)w)d’f’ <22t [V R Vel 1 (gn) — 0
0 0

as A — 0. Moreover,

T
62 [ @+ T - as g
0

T T
_ / (0006 + 0 - V) — A(V*, Vi)t — / (9. O+ v - Vo)t
0 0

as A — 0 for all ¢ € C3(Qr). The equation of the conservation of mass (30), is satisfied
in weak sense by the limit (v, p).

We now consider the convergence of the momentum equation. As usual in equations
type Navier-Stokes the crucial term in passing to the limit in the momentum equation
is p*v* ® v*. Thanks to the estimates (25) and (28) the convergence is guaranteed if p*
converges strongly in L?(Qr), for example. This seems not to be true. We indicate the
argument that can be used to overcome this difficulty but it does not give better results
than the method introduced above. Instead of 9, Pp*v* we make use of the estimate type
fractional derivative

T
/ | (¢ + h) — v ()|3dt < eVh,
0

that can be proved as in [14] (for some details see section 6). This argument requires that
v* € L?(0,T;V) and the space dimension < 4. So the Ascoli-Arzela-Kolmogorov-Riesz
compactness theorem yields v — v as A — 0 strongly in L?(Q7).

Now, it is a routine matter to prove that (v, p) satisfies

T
/0 (p0,000) + (pv, 0 - Vo) — u(Vo, Vo) + (o, &))dt = —(povo, H(0)),
for every ¢ € CH(Qr),V - ¢ =0,¢(T) = 0.

Theorem 1 is completely proved.

5. Proof of Theorem 2. We prove Theorem 2 by a fixed point argument following the
scheme of section 4.
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Let B(R) C F be a ball with center the origin and radius R (F has been introduced
in section 4.2). We fix a function v € B(R) and section 4.1 gives the solution of diffusion

equation (5) with ¢ = u and relative estimates on p up to the 3-spatial derivatives. Then
we consider the linear problem

(33)  pow — pAv+ pu-Vu— A((u-V)Vp+ (Vp - V)u)

2 1

A
s ((Vp -V)Vp— ;(Vp -Vp)Vp+ Apr) +Vr—pf =0,

complemented with the usual initial-boundary conditions. The existence of a solution of
system (33) has been established in the section 4.2.

5.1. A priori estimates. Now, we multiply by v (33) and after integration by parts we
obtain

)\2
(34)  dil/pol3 + plVol3 < eMP[ul3|Vul3 + CZ\VU@

A2 M2

M
+ A2 —|Vpl3|Vul? + 5
7 pm

M2
|Apl3 + —|f[3-
1
Now, we multiply (33) by d:v, integrate over €2, and obtain
(35)  |vpowl3 + S Vol
)\2
= (—pu NVu+pf +AX(u-V)Vp+ (Vp-V)u) + " ((Vp -V)Vp
1 2
- ;|VP| Vp+ApVp |, 0
2 2 1 2\2(1,12 2 2 2 At 3
< cllpulelVuly + A (Juls[Aplz +[VlsVuls) + —5[Apl2 ] plls
1
+MIf[3) + §|\/53w|§ < e(MP|lul’|Aulz + N?||ull| Auls|Ap|3
>\—4M2 Apls MIf2) + 102
+ 20180 ol + MIF) + 5 Iv/Adll3
Then, integrating (35) with respect to ¢, we get
t
G0 [ IVpoudr +p sup [V < plTeO)
0 0<7<t
' 20,113 2 o N 3 2
s [ (M1l 1ule + Xl Aol + 232 80l -+ 017 ).
Now, we consider the Stokes problem

2
(37) pAv = P<p8tv+pu-VuA((u-V)Ver(Vp-V)u)V- (%Vp@Vp) pf).
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From the theory of the Stokes problem there exists a constant ¢ such that
t t
) [ aolbar < c(uveo+ [ (ar2pufla,
0 0

/\4
Xl Aol + 232 Aol + 017 ) ).

Choosing R* = C(|Vuol3 + [Apol5 + M|/ f||,.) with C big enough, (10), (36), (37)
yield

t
(39) / (W/pdrol2 + ulAv)dr + u sup [Vo(t)2

0<r<t
1/2

t 1/2 t
< c(|VU(O)|§ + \/ZR?’(/ |Au|§d7) +VtR sup |Ap|§(/ |AU|§dT>
0 0<7<t 0

t 1/2
Vi sup |Ap|3( / ||p|§d7> +M|fII%T>
0<r<t 0

< ([Vo(0)3 + VH(R + B* + R?) + M]|f|[3,) < R?,
for ¢ = T small enough. Hence (39) implies
GB C B.

We now prove the continuity of G. Let {4} C B be a sequence such that v — wu in
L?(Q7). We notice that u € B. Now, let p", p be solutions of

(40) Op™ +u™ - Vp™ — AAp"™ = 0; p"(0) = po, Inp™ =0onT,
dhp+u-Vp—AAp=0; p(0) =po, Opp=0o0nT,

respectively. Then 7" = p™ — p satisfies

(41) Ot +u" - VT = AAT = =U" - Vp; 7"(0) =0, 9, 7" =0onT.

Here U™ = u™ — u. The estimate (11), Gronwall’s lemma and Proposition 1 yield that
™ — 0in L2(0,T; H*(Q)) N L>=(0,T; H'(2)). Now, let v", v be the solutions of

P o™ — pAv™ + p"u" - Vu" — A((u" - V)Vp" + (V" - V)u™)
-V (:—in”QQVp") + V" —p"f =0,

PO — uAv + pu - Vu — AM(u-V)Vp+ (Vp - V)u)

-V ()\;Vp@)Vp) +Vr—pf=0,

(42)

with v™(0) = v(0) = vy, respectively. Then V™ = v™ — v satisfies

(43) pO V"™ — pAV"™ = H(u", u, p", p) = V(1" — ) — 770",

It is easy to trace H(-) and prove that H(u™,u, p", p) — 0 asn — oo in L*((0,T; H~1(Q)).
Now, multiplying (43) by V™, after integration by parts, we get

t t
/0 YV Rdr + |V (1) < e / (I 0 + |7 B0 B)dr.
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Gronwall’s lemma produces V™ — 0 in L?(Q7). Thus, the map G is continuous in L*(Q).
The uniqueness can be proved with the same procedure as that used for the continuity
setting v; = V", vo = v, p1 = p", p2 = p in the continuity procedure of G where
(v1,p1), (v2, p2) are two solutions with the same data. We omit details. The existence of

a local solution is completely proved.

6. Periodic problem. This section is devoted to the existence of periodic solution of a
problem related to (2). We notice that for the diffusion equation the periodicity of solution
yields p = const, in other words, we find the periodicity of the classical Navier-Stokes
equations. For further development, we consider a semi-homogeneous diffusion equation
that we write

(44) Op+v-Vp—ANp+ap=g, Opup(x,t)=00nT, p(0) = pq.

We assume that m < pg < M, a > 1 and am < g < oM. This model is used as a
parabolic approximation of the transport equation in an iterative approach, for example
assuming a = 1,9 = p"~! and A = 1/n. Concerning the existence of a periodic solution of
the problem (2);+ (44) with period T, we adopt the proof’s scheme of section 4 assuming
that the data are periodic functions.

First, let g be an L? T-periodic function, we consider the existence of a solution of
the problem

(45) dp+u-Vp—AAp+ap=g, Opp(z,t)=0o0nT, p(0)= po.

Here  is built as in section 4.1 with u € L?(0,T; V), u(0) = u(T). In this section we drop
the superscript e.
The existence of a solution of problem (45) is well known in literature. We need some
estimates of the solution p.
First, we prove that m < p < M. In fact, multiplying (45) by (p—m)~ = min(0, p—m),
after integration by parts, we have
de|(p —m)~13 + AV(p —m)~ 3+ al(p—m) "5 = ((g — am), (p —m)7) < 0.
Consequently, p > m. Analogously, multiplying (45) by (p — M)* = sup(0,p — M)* and
after integration by parts we get
del(p = M)T3+ AV (p = M)*3 +al(p— M)™[3 = ((9 — aM), (p— M)*) <0,
thus p < M. Using the same procedure of section 4.1 we have
t t t
NV + 3 [ 1adr+3a [ [VoBdr < NTpls+e? [ (Jalf? +IgB)ar.
0 0 0
The H3-estimate of p is obtained as in section 4.1, anyway we do not use it so we

omit details.
The existence of a solution of (45) permits to define a map S

(46) Sp(0) = p(T).
S is a continuous map in L2. In fact, let p', p? solutions of (45) corresponding to
initial conditions pj, p3, respectively. From (45), we get

1Sp — Spgla = 10" (T) — p*(T)|5 < lpg — polae™ 7,
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consequently S is a continuous map. We notice that we have not used Poincaré’s inequal-
ity.
Moreover, from (45) we deduce

T
() or < e (Il + [ o).
0

Now, let B(R) be a ball in L?*(Q) with center the origin and radius R > (1 —
e~ oTH)—1 fOT |g|3dt. Thanks to (47) we have SB(R) C B(R). The fixed point of S yields
the periodic solution of (45).

We now pass to consider the existence of a periodic solution of the momentum equa-
tion.

In section 4.2 we proved the existence of the initial-boundary value problem of the
system

p(Oww+a-Vo—f)—pAv+gv—A(a-V)Vp+ (Vp-V)v)
(48) -V (A—QVp®Vp> + Vr =0,
V-v= 0‘,0
and the uniform estimates obtained in section 4.2 hold for suitable A\. We have added

the term gv in (48) to avoid additional assumptions on g. Now, multiplying (48) by v,
integrating by parts and using Poincaré’s inequality we get

T
(49) p(T)o(T)f; < emF (IP(O)U(O)I§+/O 6“|pf(t)§dt>-

Now, we consider the map S : 1/p(0)v(0) — /p(T)v(T). Let B(R) be a ball with
radius R. If R > (1 —e~°T)71 fOT |pf|3dt we get SB(R) C B(R). To conclude the fixed
point argument we need the continuity of S on L?(Q7).

Let vy, v2 be solutions of problem (48) with initial conditions vy (0),v2(0), respectively.
Thus, V = vy — vg, Il = m; — 7y satisfies

(50) p(OV +a-VV)— uAV — XN(Vp - V)V 4+ gV + VII = 0.
Multiplying (50) by V, Gronwall’s lemma implies

Vo(T)V(T)]2 < ey/p(0)V(0)[5.

Thus, a fixed point theorem implies v(0) = v(T'). From now on the proof of the existence
of periodic weak solution of the modified model can be concluded with the procedure of
section 4.

In the case of unbounded domains it is not possible to simply extend the methods
used for the bounded domains, since these involve, in general, tools such as Poincaré’s
inequality, compact embedding, etc., that no longer holds for unbounded domains, in
general. Consequently, it is necessary to resort to other arguments. In [18] the author
solved the open problem of the existence of weak and strong periodic solutions for the
Navier-Stokes equations in exterior domains using a different approach. However, the
uniqueness remains on open problem for this type of solutions. Here we briefly present
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the method introduced in [18] giving a sketch of the existence proof of periodic solution
which can be adapted to unbounded domains.

6.1. Elliptic regularization. We assume that p€ is a T-periodic solution of equation (44).
Now, we look for a T-periodic solution of the modified momentum equation (48). We
consider the following integral relation

T
(51) / (6(615’1)6, at¢) + (peatvea (b) + M(vv67 V(b) + (peﬁe : v,Ue’ (b) + (gvsa (b)
0
)\2
= A((0°- V)Vp© + (Vp© - Ve, 8) + (;Vpe ® Vo, V¢) —(r°f ¢)>dt =0.
Here 7€ is defined in section 4. We shall find a solution of (51) in the Hilbert space
H = {¢l¢ € L*(0,T;V),8:¢ € L*(Qr), $(0) = ¢(T)}.
We introduce
T
E(UE7 ’Ue; (b) = / (e(atvev 8t¢) + (peatve7 (b) + /.L(v’l}s, V¢) + (g’U€7 (b)
0
(52) + (p°0° - Vu&, 9) — M(T€ - V)Vp© + (Vp© - Vo<, ¢))dt,
T 2
A
0
for any smooth solenoidal ¢ such that ¢(0) = ¢(T"). We write (51)
(53) E(v,v%0) = L(f; ¢).
Bearing in mind that
1
(P 040", v) = S (de[Vpu [ = (Qup™vf, v%))
1
- §(dt|\/p>evelg - )‘(AP€US7 Ue) + (56 ’ Vp€v67 Ue) + ((ap - g)v67 Ue))v
there exists a constant ¢ such that (for a suitable value of \)
E(ve,v50) = efv]n.
Moreover, for any ¢ € H, the mapping v¢ — E(v¢,v¢; ¢) is sequentially weakly con-
tinuous on H. Consequently, using the classical fixed-point theorem due to Brouwer, we

derive the existence of a solution of (53).

A priori estimates. As in section 4, in (53) replacing ¢ by v¢, assuming (23) we obtain

T T T
(54) / (e\@tvfg + u|Vv€|§)dt + c/ |v6|§dt < c/ \f|gdt
0 0 0

Now, if necessary, we consider the periodic extension of v¢ to the interval (—oo, +00).

In (53) replacing ¢ by % f:+h ve(s)ds, using the above estimates we get
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T
(55) / 0 (¢ + h) — v (1) 2t
0
€ T T
< h(ﬁ/ [(Opv, v (t + h) — ve(t))|dt + Mhil/ <VU€|2 + |Vo©|3
0 0

t+h
/ Voueds
t

Estimates (54), (55) and Ascoli-Arzela -Riesz-Kolmogorov theorem imply that v¢ belongs
to a compact set in L?(Qr) (in unbounded domains in L?(0,T; L7 _(Q)). The periodicity

loc

t+h
+1fla + NV s [ wwgdsﬂﬂm)
t

dt> < ch!/?,
2

of the diffusion equation can be proved analogously. Now, we can pass to the limit € — 0
in (51) and in (45)(with @ = v¢) and the existence of a periodic weak solution of the
modified model

T
[ (w0.00) 4 (o0 ¥6.0) = 0. 50)
(56) —(ap,f) = A((v-V)9,Vp) + ((Vp-V),v))
—\? (;Vp ® Vp, V¢> + (pf, ¢)>dt =0,
Op— Np+v-Vp+ap =g,
is proved.
We remark that if « = 0 and g = 0 in (45) then p = constant and the periodic solution

of the classical Navier-Stokes equations is obtained. To obtain the periodic solution of
the reduced model we can use an iterative model type

1
8tpniﬁAp+vn71.vp+pn:pnfl

and the related momentum equation.

7. Proof of Theorem 3. This section is devoted to a development of the procedure
of the existence of weak solution to prove that there exists a weak solution that has
regularity properties under some conditions on the data or the existence time. Since we
have not a weak-strong uniqueness theorem, we cannot extend the results to an arbitrary
weak solution. We assume f = 0 for simplicity of exposition. We prove the existence of a
strong solution of (2) using the arguments of section 4.3 starting from the approximate

problem,
pE(Opve 4 ve - V& — f) — pAvt — A((v¢ - V)Vp© + (Vp© - V)ve)
(57) — 5 ((Vp - V)Vp© = (Vo - Vo )Vp' + ApVpf) + Ve =0,

V-0 =0,
Ogp€ — AMAp® 4+ 0¢ - Vp© =0,

assuming in addition that vy € V, po € H? (recall that o¢ = Pv¢). Multiplying the first
equation in (57) by v¢ and working as in section 4 we obtain the estimate

)\2
(58) de|v/pv° I3 + p|Vue[3 < M(p°Dyv§, Div§) + E|Vpe|421|vyf‘2

A(M — AN2M
<A G e
2 m

[Vu|2|Apcla.
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From (58) we can obtain two estimates: the global estimate, in the sense that the con-

stants are independent of ¢, and a local estimate without any condition on the parameters
but the constants are dependent on t. Integrating (58) with respect to ¢ we get

t
N INZORUE oy M
M-—m (! M [ [t 1zt
< VPO + 25 [ v ([ woar) ([ 1arar)
0 0 0
M — AM? t
< Vo0 + 2 9o + (A + A0 [ oo
0

Assuming A(M —m)/2 + c)‘TMZ < 1/2 we obtain the global estimate

©0) Vo |2+u/ voiar < o |V/am0(0 B+ 21950 8).

otherwise we obtain the local estimate
t
61 WEOrOF+u | 190 Fdr
A2 M2
< |V p(0)v(0)|3 + AN(M — m)tsup |[Vo(t)|3 + ¢
t

In the sequel of this section we do not use (60) and (61). Now, multiplying (57) by
Oyv + 47 Av and integrating over Q2 we obtain

1/2

tsup [V (£) 2] Ap(t)]2-

2
€ € :u’ € € €
(62)  [Vp O[5 + py[Vol3 + T2 A3 < Moe[§| Vv [3
+ N2 ([of 2|80 3 + [Vt IV R) + X (Ve[ + [V R0 2| AV o).

Now, recalling that [Vv¢|]3 < ¢|Voe|a|Ave|e, |62, < c|V|a]|Avela, setting x¢ =

|Vve|3 + A V|3 + A2|Ap¢|3 and adding (62), (8), (10) we obtain
2
(63) dox* + WO+ | Ave 3+ 10} + AV < g(x).

In view of the Proposition 3, there exists T(x¢(0)) such that

t 2 _
PO [ (1w R+ Sav + 108 )ar < At ()

It is a routine matter to pass to the limit € — 0 in (57) so we obtain that the weak
solution built in Theorem 1 is a local strong solution of the problem (2).

7.1. Global existence. Now, we consider the global strong solution for small data and
the weak solution of section 4 is globally strong. Let the initial data wug, pg be such that
x“(0) < with

oy —g(v) >0,
where ¢ is such that ex© < “ﬁz|Av6|3 +|p€||3. Then x¢(t) < « for all ¢ for which x¢ exists.
Suppose that the contrary is true. Then there exists a ¢ such that x¢(¢) > ~. Define

= inf{t[x“(t) > ~}.
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Clearly x“(t*) = 7. Moreover from (63) d;x“(¢*) < 0. But this implies that x(¢1) < y for
some t1 > t* which is a contradiction to the definition of ¢*.

From the above results, there exists a solution of (63) in a interval (0,7') where
T = T(vo, po) is the maximal number for which exists a solution of (57). Suppose that
T < oo. Then there exists T,, > 0 such that T,, /' T, and x(T,) < 7. Hence there exists
an r > 0 such that ||v¢(T,)| + [|p€(Tn)]l2 < r for all n. According to Theorem 2 there
exists an 7 > 0 such that for any n the solution exists on [T}, T, + 7). But this implies
that T,,, +n > T for some ny which is a contradiction to the definition of 7'. Thus the
global existence is proved.

7.2. Global existence and decay. In this section we derive further estimates of the approx-
imate problem (57) and the solutions obtained from them in the context of L2-theory.
Notice, in the following lemma, that neither |Vug|a, |Avg|z nor |Apg|z are assumed to be
finite. Moreover, we assume f = 0.

LEMMA. Under the assumptions of Theorem 1 there exist numbers T, c1,co, c3 depend-
ing only on vy, pg such that, fort > T*,

|Voe|y < et |Ave|y < eot V2, |p¢ — Cla < e |Vpla < cze™ .
Proof. The energy inequality (60) implies
t
p [ 1V Bdr < clful + 1900 B)
0

for t > 0, and therefore [ [Vo©[3dt < c(|vo|3 + [Vp(0)[3) = E.
We now apply Proposition 4 to the differential inequality

2
€ € € K € € € € €
(64) do(| 803 + pIVU[3) + NAVS 3 + S A0 8 + /5 O[3 < e[ T0[§ + | Ap°[5).

. 2
Setting ¢ = |Ap[3+p|Voe[3, ¥ = AMAVp® 3+ 57| Av°[3 +[v/pf0,0°|3 and [ (|Ap°[3+
p|Voe|3)dt = E we get

(65) O + 1 < chpg®.
From Proposition 4, taking co = % and ccy = c1, we get
(66) AR+ Ve < O = e,
and
/too Pdr = /too (AlAWI% + %\Amg + ﬁ@vfl%)dr < w =ct™!,

for t > ceE? = T,. Thanks to the above estimates we deduce that
oo
/ |00 |3dr < et
t

We can conclude that in (T, +00) |Av€|a, ||p¢||3, |0tp|2, |Orv€|2 are uniformly bounded
in LQ(T(), +OO).
Now, we continue to study the asymptotic behavior of the solution of problem (57).
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Multiplying the diffusion equation by p¢ and integrating over ) we obtain
dilp* = CJ5+[Vpel3 = 0.
Consequently, from Poincaré’s inequality,
(67) |0 = C3 < e™|pol3-
Thanks to the Gagliardo-Nirenberg inequality and (67) we have
(68) Vo3 < ce™lpolalAptla, 1p%5 < ce™looly’*|Ap ] o)l
Now, multiplying (57)1 by v¢ and integrating over €, one gets
(69) AoV + Vot < eIV (V0 3 AL + 906 Vls).
Taking in account (68) we have, for ¢ > Ty,
[ (t)|3 < ce™ "

Analogously, we multiply (57); by Av¢ and 9;v¢ and after integration by parts and
using the usual procedure we obtain

(T0) VP03 + | Vor[3 + 42| AvF[3 < MIv*[3 V7|3 | Ao}
1 1 1 3 1 1
Mo 1901 3110 3 14w + Vo3 1715 A7 3)

e1l/2 ell/2) e € € €Nz €
+ XVl P (180% 3 2 [1p la] Avt o + | Apf 310713 | Ave2)-
Thanks to (67) we get
[Vos(8)[5 < ce™,

for t > Ty. In conclusion, there exists a T* > 0 such that, uniformly with respect to e,

ve € L2(T*, 4+o00; H2(2)) N L>®(T*, +00; V); Oy € LQ(Q(T*OO)),

p¢ € L?(T*, +o00; H3(2)) N L= (T*, +00; H?(2)),
(71) Oip€ € L2(T*, +o0; HH(2)), m < p¢ < M,v¢ and p¢ decay like

(<L, el [p° = Cla, [lpfll2) < ce™,

v (= lime_gv9), p (= lime_,q p)) satisfies (2) a.e. for ¢ > T*.

7.4. C>((0,T) x Q)-solution. To conclude Theorem 3 we prove higher order derivatives
for p¢ and v¢ solution of the approximate problem (57). Since we are mainly interested in a
priori estimates we drop the superscript epsilon and bar of v, for simplicity of exposition.

Our main task is to prove, for any n > 0, the existence of continuous functions
Fk,l(ta 77), FkJ(t, 77) and Gk,l(tv 77), Gk,l(tv 77) of t € [’I], T} such that

T
|DEDiv|y < Fi(t,m), / | D Dlv|3dt < Fy (T, n),
(72) o
DM DLp(t)]y < Groalt, ), / DX+ Dl (1) 2dt < G (T, ),
n

for t € [, T). This, in turn, implies (v, p) € C*((0,T) x Q).

In this section R;(v, p), Si(v, p), 01 (v, p), ©1(v, p), Zi(v, p), A(v, p) stand for continuous
functions of ¢-derivatives up to the order [ of p,v and their x-derivatives which appear
in the context. In general Z(-) stands for a continuous functions of its argument. Now,
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we prove further estimates for the solution of the approximate problem (57) and the
related diffusion equation. We assume k = 1 and prove (72) by induction on [. First, we
will show that for every [ = 0,1,2,... and every n > 0, there exist continuous functions
Fi(t;m), Fi(t;n), Gi(t;n), Gi(t;m) such that

T
VD2 < Fi(t;m), / D2 Dlwdt < Fatin),
(73) o
IADYL < Gitin), / D3 Dlpf2dt < Gutim).
n

for t € [, T] and F(t;n), Fi(t;n), Gi(t;n), Gi(t;n) will depend on [,7 and the data.
We prove the estimates (73) by induction on [. For I = 0 Theorem 2 and section 7.1
imply (73).
Assume (73) is true for t-derivatives up to order I.
First, differentiating the diffusion equation in (57) l-times with respect to t, we prove
it for order I + 1. Writing dlv = v}, dlp = p!, one obtains
(74) Pt = AApL = —v! - Vp—v - Vpl 4+ .+ el Vpl = R
By assumptions, we have
vhe L2(n, T3 H?(Q)) N L (n, T; H(Q)),
(75) pi € L2(n, T H?(Q)) N L= (n, T; H*(Q)),
(pisvp) € C(n, T5 HA(Q)) x C(n, T; H*(Q)), 0 < i <1 -1,
thus the right-hand side R; belongs to L?(n, T; H*(2)) then

/ l+1‘2dt < Z(Gl(na )7Gl(n7T)’Fl(naT)7~Fl(777T)) = Z(’hT)

Here Z is a continuous function of its arguments. So we can conclude that there exists a
number 7, n < 7 < 27 such that

D) < 120, 20).
Now, we differentiate (74) with respect to ¢ and obtain
(76) Oip Tt = M = =t Vp — 0 Vit 4 Si(v, p).
Thanks to the assumptions, we have

Sy € L*(n, T; H'())

and its norm is bounded by a function type Z(n,T). Now, setting le = ¢, 0!t =,
problem (74) can be written
(77) 06— AAG = —-Vp — v- Vo + Si(v, p).

with ¢(n) € L?(Q2) and 8,,¢ = 0 on T.

We treat (77) in the same manner of the problem (5). We consider the first level of
regularity.

Multiplying (77) by A¢ and integrating by parts we have

Mde|9f5 + N2 [Vl3 < clvl3 + |3,
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then
@ o+ [ 1volar < c(loi+ [ (0 + Isiyir)
n n

As usual, there exists a number 7 with n < 7 < 29 such that

2n
(19) V()2 < nl(lfb(ﬂl% + [T+ |Sz§)dt>-

Now, we deduce the second level of regularity for ¢. We multiply (77) by —A¢ and after
integration by parts we get

(80) | V|3 + M AGJS < c(IVYIEIVL + [v]% VI3 + 1Si3).

Then applying Gronwall’s lemma we obtain

Vol + [ aafar < 2Galt. o). Folto) (1VonB + [ (V0 +15ifar

and
(B1) A < n1Z<Go<2n,n>,ﬁo<2n,n>>(wr)% + [ v+ |sl|§>dt)

for n <7 < 2.
Finally, we consider the third level of regularity of ¢ applying the V operator to (77)
and in the manner of (10) we get

(82) di|Agl3 + |VAGIS < c(|Ve - Vpl3 + |1 - VVp[5 + Vo - VoI5 +[v- VVo[5 + VS 3).

Immediately, we get

t
83) a0+ [ (VA

n
t

< \Ap(n)@Jr/ (IV9L318pLalplls + (IV0I5 + [v2)| A3 + [V Si[3)dr.
n

We now work on the momentum equation. Differentiating [-times with respect to ¢
the first equation in (57) we get

(84)  pdvl — plAvl = —plo} — plv - Vo — pvl - Vo — pv- Vol + MN((vl - V)Vp + (v- V)Vl
)\2
+(Vp-V)vl + (Vpl - V)v) + 6,1 (v, p) + 9! <V : (?Vp ® Vp>) = 0;(v, p).

Thanks to the assumptions, the right-hand side of (84) belongs to L?(n,T; L?(2)),
thus

t t t
/ 0 o2dr < / (A0 + |@uB)dr < Ftt.n) + / 0 2dr.
n n n

So there exists 7 with n < 7 < 27 such that

(85) o ()] < <Fl<2n,n> -/

n

2n
|@l|§dt>-
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Following the procedure used for p, writing viH = 1, pffl = ¢, differentiating with

respect to t (84) we get
(86)  pOt — pAd = —gv} — Gv- Vo — pib- Vo — pv- Vib + (1 V)Vp + (V6 - V)u

+(v-V)Vé+ (Vp-V)§) — V- <<%>2¢Vp ® Vp>

A2 A2
+V- <?V¢ & VP) +V. (va by V¢> + Xi(ve, ).
Thanks to the assumptions

ISl 2 (. ) < Z(F(T,m), (T, m), Gi(T, ), Gi(T,n) = Z(T',n).

We notice that
|60 - Vol < [0]oo|V0lal@loe < |Av]y *|0][3/2[V o]y % | Adly

o - Vola < M|thloo| Vola < ¢Vl *| Agly/* F,
(- V)Vpla < [¢]eo] Aplz < c|Vol3/?| A% ]} G,
(Vo V)el2 < [Vl Vol < [Vlo|Apl *[I0]13°,
(v V)Vol2 < [[o]] /2| Av]y/*|Ads,
Ve - V)ola < [Vol3|Vels < [[o]]/2]Av]y/*|Ada,
1AV pla < ¢|AGLa|Vploo < [Adla|Aply 2 (lolI5,
|60]s < [Bloo|Opvl2 < VLY 2| AG]3 % |00

The estimates of the other terms can be found analogously. Now, working in the

)

(87)

manner of (12), we obtain

(88)  [VpOl5 + pde| VI3 + [AYI3 < | VRIS ([[v]l|Avlz + [ Apl2lplls)
+1AG[((IVolz + [Vul3)[Avlz + 003 + (1Ap]5 + [Apl2)llplls) + 23
Adding (82) and (88) yields

(89)  de(|Ab(1)[3 + |VYI3) + Vpowl3 + |AY[5 + [V A3
< | Vo[3([vlllAvz + [Apl2llplls) + [AG5((IVo]2 + [Vo[3)| Avl2

+ 0[5 + (18015 + [Apl2)llplls) + [VSi3 + [Zl3-

Gronwall’s lemma, (79), (81), (85) imply that ¢ and 1) satisfy (72) for k =1 and [ +1,
consequently (72) holds for every [ with k = 1.

Now, we use induction on k. Of course, (72) holds true for k¥ = 1. Assuming that (72)
holds for z-derivatives up to order k we now prove it for z-derivatives of order k + 1.

We consider the mass diffusion equation

ML = pffl +D'(v-Vp)=g, Oup.=0o0nT.

First of all, in view of the equation (57) we note that the ¢ + 1-regularity level of
p corresponds to the i-regularity level of v. In other words, for every I > 1, if vl €
L>(0,T; HY(Q)) N L2(0,T; H3(R)) then pl € L2(0,T; H3(Q)) N L>(0,T; H?(S2)). Notice
that the right-hand side g has, for every [, the z-derivatives up to order k£ — 1 bounded
in the manner of (72).
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In fact the estimates of all terms in g can be obtained as follows.

D] -V Dy~ g7y < [Did || VDS P pl s, 0 < i < k-3,
(90) o] - VD1 p, ), S [07[oc| D¥ 177 |2,
— j l—j 1—
|D§ 1“12 “Vp 72 < ‘DI; ! t‘ Vo~ ]‘oo-

The theory of the Neumann problem for the Laplace operator implies that (72)s holds
for k and every . We now pass to the estimates for v. We prove the estimate (72) for v.
We consider the Stokes problem for v!

pAvL = —PoL(pv} + pv - Vo — A((v-V)Vp
(91) +(Vp-V)v) =NV - (3Vp® Vp)) = A(v, p),
vl =0onT.

We note the the (k — 1) — z derivatives of v! satisfy (72); for every 1. We estimate A
in the manner of g. In fact, using the assumptions, we have for i < k — 1

[pD*0l]a < [ploo| D* i,
(92) |’UtDk71 ‘2 < |Ut|oo|Dk71 |27 ) 4
D pi DY U0l < Dl || DY 0l .

Analogously, we can treat the remaining terms (we omit details).
Finally, the theory of Stokes problem gives (72); for k and every I. The case t > T*
can be treated in the same manner. Theorem 3 is completely proved.

8. Maximal L?-regularity. This section is devoted to the maximal regularity of the
problem (2) and to the proof of Theorem 4. Some notations used in this section. X
will denote a real Banach space. If S is a linear operator on X, then D(S) stands for
its domain. As usual, o(95), p(5), R(A, S) are the notation of the spectrum, resolvent set
and resolvent of the operator S. For any T' > 0 we denote by W (0,T;X) the set of
X-valued functions defined a.e. in [0,T]. If W = L" they are summable in the sense of
Bochner. Moreover, we continue to denote by S the operator f € W(0,7;X) — Sf()
with domain(S) = {f € W(0,T; X)|f(¢t) € D(S),vt € (0,T)}. Our primary problem in
this section is the solvability of the differential equation

(93) div + Av = f, v(0) =z,

where A is an (unbounded) linear operator (Stokes operator) acting on X with nonempty
resolvent set. We study solvability of (93) by considering the sum of the two commuting
operators d/dt = B, A. The approach is of spectral type in the style of the Dore-Venni
theory [6], and it is not considered the joint spectrum of n-commutating operators in
sense of Taylor. In spectral approach it is crucial that

(94) 0(A+ B) Co(A)+0(B), 0(AB) Co(A)o(B).
If A, B are bounded operators the Gelfand transform proves this property. Unfortu-
nately, for unbounded operators the property does not hold, in general.

We will denote by R the class of operators satisfying the first condition in (94) and by
R satisfying the second condition in (94). Moreover, we assume that A+ B and AB are
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closable. Now we give some definition. We recall the notion of two commuting operators
which will be used in the sequel.

DEFINITION 4. Let A and B be operators on a Banach space X with non-empty resolvent
set. We say that A and B commute if one of the following equivalent conditions holds:
(i) R(A A)R(p, B) = R(p, B)R(A, A), A € p(A), p € p(B);
(95) (i) « € D(A) implies R(u, B)xz € D(A) and
AR(u, B)x = R(u, B)Az, p € p(B).
For 6 € (0,7),r > 0 we denote X(0,r) = {z € C: |z| > r,|argz| < 6}.
DEFINITION 5. Let A and B be commutating operators. Then

(i) A is said to be of class X(6 4+ 7/2,r) if there are positive constants 8, such that
0<60<m/2, and
(0 +7/2,r) C p(A) and sup [IAR(A, A)|| < oo,
AED(O+7/2,r)

(ii) A and B are said to satisfy condition P if there are positive constants 6,6, r, 6" < 6
such that A and B are of class X(0 + 7/2,r) and X(7/2 — €', 1), respectively.

If A and B are commuting operators, A + B is defined by (A + B)x = Ax + Bx with
domain D(A + B) = D(A) N D(B) and AB with domain D(AB) = {z|z € D(B) and
Bz € D(A)}. In this paper we assume that D(A), D(B) are dense in X.

The following assertions hold [1]:

i) if one of the operator A or B is bounded then o(A + B) C 0(A) 4 o(B);
ii) If A, B satisfy the condition P, A + B is closable and
o(cl(A+ B)) C o(A)+ o(B).

This result implies that the class R is not empty.
Moreover, we remark that if
(0 +7/2,1) C p(A), sup A% R(A, A)| < oo,
AEX (047 /2,7)
and

X(r/2-0"r) C p(B), sup Al R(A, B)|| < o0,
AES(+7/2—0" 1)

the assertion (ii) holds if a + 8 > 1.
The problem that we are going to study can be formulated in the following form.

Problem @ (Mazximal reqularity): Find for any f € X a unique solution v € D(A)ND(B)
solving the problem

(96) Av+ Bv = f.

A spectral approach to the existence of a weak solution of problem (96) says that if
p(A)Np(B) # 0,0 € p(A) or 0 € p(B) and A, B belong to the set R then there exists
a weak solution of problem (96) (see later for the definition). Moreover, if 0 € p(B),
o(A),0(B) C R* and A, B~! belong to the set Ry then v € D(A) N D(B) and v =
B7Y(AB~! + I)~!f is a solution of problem (Q).
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Anyway, the study of the properties of the class of operators R and R, is beyond the
scope of this paper.

For the L%-regularity of the solution of problem (2) we consider the theory of two
commutating operators —d/dt = B and A = A,, the Stokes operator. As described
before, the main goals of that theory are the closeness and the invertibility of the operator
L = —d/dt + A. We refer the reader to [7], [12] and the references therein for more
information on the theory and applications of sums of commuting operators method to
differential equations.

According to the properties of the operator L we recall the following definitions of
the solution of the problem

(97) V'(t) = Av(t) + f(t), v(0) = z.

DEFINITION 6. We say that (97) has L?-weak solution 1 < ¢ < 0o, on [0,7), 0 < T < o0

if for every f € L9(0,T; X), L is closable and 0 € p(L).

DEFINITION 7. Let A be the generator of a Cy-semigroup. We say that an X-valued
continuous function v(t) is a mild solution of (97) if for every f € BUC((0,T;X) (X-
valued continuous uniformly bounded function), v(t) satisfies

t
v(t) = =5 4y(s) +/ A fdr, Yt > s
DEFINITION 8. We say that (97) has maximal L%-regularity, 1 < ¢ < oo, on [0,7T), 0 <
T < oo if for every f € L1(0,T;X), v(t) € L9(0,T; X), has value in D(A) and there is a
constant C' < oo with

(98) [v" ()l ago,rsx) + 1 Av(E)]| Laco,75x) < ClF )l Lago,1:x).

Concerning the existence or the existence and regularity as are conceived in the above
definitions, to the best of our knowledge, so far the sum commuting method is mainly
applied to the Cauchy problem (97) on a finite time interval. The extension of the method
to the infinite time interval is conceived essentially in the direction of regularity of a
solution as is explicated by the following definition.

DEFINITION 9. We say that (97) has maximal Li-regularity, 1 < ¢ < oo, on [0,7), 0 <
T < oo if for every f € L2(0,T;X), v(t) is almost everywhere differentiable, has value in
D(A) and there is a constant C' < oo with

(99) 0" ()] Laco, 1) + |[Av(E) | Lago,7:x) < CNF )| Lago,:x).

This definition is slightly weaker than Definition 8, which also requires v € L4(0,T; X).
But for T' = oo this additional condition implies already s(A) = sup{ReX : A € 0(A)} < 0
and this includes the case 0 € p(A); in other words, general unbounded domains are
excluded in this approach.

An interpolation space and Stokes problem. Let X, Y be Banach spaces such that Y — X.
For 1 < g < oo one may define the real interpolation space

(X,Y) 3, = {u(O)]ult) € H}(0,T;X) N L1(0, T Y)},
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where % + % = 1. In particular, if A generates a holomorphic Cy- semigroup T'(-) on X,
then

(X,D(A))%,q ={z € X|AT()z € LY0,T;X)}.
Thus, the mild solution v = T'(-)x of the Cauchy problem
(100) v+ Av =0, v(0) =z,
is in H,(0,T; X) if and only if z € (X, D(A))#q. Thanks to this result, in the sequel,
we will assume the initial data v(0) € (X, D(A))

In the sequel we need the estimates of the Stokes problem
0w — pAv + Vr = f,
(101) V-v=g,
v]t=0 = vo, v|o = 0.

1.
PIEL]

Since we will find solution in the space L9(0,T; H7(2) N V'), we notice that if ¥ is the
closure of the domain of the Stokes operator A, in L? under the norm |Au|, we can write

Vo= (X,Y) 3 = Vi O (LT HEO Hyg) g

a1
q/ k)
Moreover, the Stokes operator A, and d; belong to R and Ay, d; ! belong to R, thus,

there exists a solution (v,7) of the solenoidal Stokes problem

0w — pAv + Vr = f|
(102) V-v=0,
vlt=0 = vo, v|oq =0,

and the following estimate, with vg € H,? -2/ 7(Q2) divergence-free and vanishing on the
boundary, holds true

(103) 100l Lac@r) + V20l Lac@r) + Sup lv@)llv, < clllfllLa@r) + llvollv,@)-
Here ¢ depends on ¢, Q.
For the general case V - v = g the following result plays an important role.

PROPOSITION 5 (Bogovskii [4]). Let @ C R™, n > 2 be a Lipschitz domain, and let
1< gqg<oo, meN. Then, for each [ € H, with fQ fdx = 0 there exists at least one
z € H;'f0+1(Q) satisfying
Vez=f lzllgreiq) < cllfllap@-
Furthermore, for each f € H; ' (Q) there exists at least one z € LY(Y) satisfying V-z = f
in the sense of distributions, and then
|zl < CHfHH;l(Q)'

Here ¢ depends on m, 2.
The problem (101) can be reduced to the solenoidal Stokes problem (102) if we write
v = u + z where z is a solution of the problem in Proposition 5. With v = u + 2z the
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problem (101) is transformed into

Ou — pAu+ Vo = f— 0z + pAz,
(104) V-u=0,

ult=0 = vo, ulon =0,

and u satisfies the estimate
(105)  [9rulzaom + [V7ullia@m + sup_u(t)ll2-2rnce
0<t<T a

< cllfllca@r) + llvoll yz-2/aqy + 19:9ll La(@ry + IVgllLa(@r))-

8.1. Awuxiliary problem. This section is devoted to the following problem

pOw — pAv 4+ Vr = f,
(106) V.-v=0,

v]i=0 = vo, v|aa = 0.
We assume that 7 has mean zero. An existence and regularity theorem for (106) reads
THEOREM 5. Let Q be a C*T¢ bounded domain in R, ¢ > 3, vo € V,, f € LY(Qr) and
p € L%(Qr) N L9(0,T; H2(Q)) N CP(0,T; L%(Q)) with § € (0,1), Vp € L¥(Qr) and
m < p <M. Then (106) has a unique solution (v,m) such that

v e LI0, Ty H(Q) NV, o (Q), dv € LUQr), m € LU(0,T; H, (),

and

(107)  [l9wwlLac@n) + IV*0llLac@n) + VAllLa@n + To®)llv,@)

< Mlcth(Ml(t)7M2(t))(||fHLq(Qt) + ||1]0qu(ﬂ)).

Here ¢ depends on q,Q,m, M, and My(t) = ||[Vp(t)|| La(0),
z,7)— p(z, T’
Vam D)
z€Q;T#7€[0,t] |T -T |
h is a bounded continuous function of My, Ms, and 0 <t <T.

Proof of Theorem 5. The proof of Theorem 5 imitates the proof of Theorem 2 in [10] and
consists of five steps. The existence of problem (106) is given in section 4. We prove the
estimate (107).

Step 1. Density is independent of time. To prove the estimate (107) we use the so-called
freezing method (see [10]). Moreover, thanks to the remark in the above section, we
assume vg = 0, for simplicity of exposition.

Let (Q)1<k<n be a covering of © by open sets with C? boundaries. Consider a
partition of unity (¢)i1<k<y, of class C? such that

1. Suppor C Q,
n

2. ) k=1
1
3. 0<¢r<1,
D'}l < cild]7%i=1,2,...,
5. n=[(diam(Q)571)3].

e~
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Let fr = o f, vk = dpv, T = Prm. Let zx be a point (the point of minimum value
of p) in Qx N Q, and pr = p(zx), pr = 1/pr. Then (vg, ) satisfies

Qv — prAvg + VIE
o p—p
Opvp — PrvAQL, — 2uE Vo Vo + V¢k = F,

=14
(108) Pk Pk

Vv =v-Vor = gi,
Ugle=0 = 0, vi|an = 0.

Let z; be a solution of the problem in Proposition 5 with g = g and let vy = uy + 2.
Then uy satisfies

Oruy, — /j,kA’Uk + V% =F, — Oz + ,U,kAZk,
(109) V-, =0,
ukli=o0 = 0, uglan = 0.

First, to estimate |[O;z||La(q,) We write (with the use of the convention of repeated
index)

8tgk = f -Vor + TO; —— z¢k 8 ;0 ( zgf)k) <M81v¢>k8jvi — Traigi)k) =h+V-H.
P P P P
Consequently, 9,z satisfies
V- (atZk —H) = h,

and thanks to Proposition 5 we get
(110)  Bezll ooy < el((md®) ™ + (md) (Il zacg) + Vel aos)

+ (m28) " (7Y ol agony + IV - Vol acany) + (m0) M Fllagany):

Moreover

(111)  [|Fxllpacqr) < el fllaqry + (m8) Vol paqr,
+ (md%) " H[vll pa(qry + () "7l Lo (g + 5ﬁ\|3tv|\Lq(Ql;)M2)-

Bearing in mind the multiplicative inequalities in Proposition 1, in particular ||¢||1,, <
c(e7t|ply + €| D?¢),), for ux, we have the estimate

(112)  [OsurllLa(@r) + 1l Vurll La@r) + IV Tkl La(@r)
< (| Frllzac@ry + 192kl La(@ry + pall AzkllLa(qr))
< (6 IVl Laggry + 20l Lacqn) + 55H5tuk|\Lq(Q§)M2

+ (6% + 6_1)||7T||L’1(Q’72) + 6_1||V'U||L’1(Q’72)
+ 571(”7rv/)HLQ(Q’§;) + Vv - VpllLaqr)) + 671||fHLQ(Q’;;))'

Assuming 6°M, = o with o small enough, raising to the g-th power and sum-
ming on k of (112), taking into account that the covering has finite multiplicity s and



414 R. SALVI

K .
>0 Wellzrqry < slVIze(@r) we obtain

(113) 1Mol La(@qr) + HIVZo@)llLa@r) + IVl La(@)
< (672l Lac@r) + 07 IVl Lai@r) + (072 + 07 DIl La(or)
+ 071 (Vo - Vol La@r) + 17V0llLa@ry) + I fllLaor))-
Combining the Holder, Gagliardo-Nirenberg and Young inequalities we get

" {1297k < Vil
Vo - Vplg < [Vploo (e olg + €| D?]y).

Using the above estimates, with a suitable choice of € in (114) we get
(115)  [Imdyvl|La(@r) + AV La(@r) + V7l La(@r)
< (I flLoc@ry + MElvllLac@r) + Mill7lLocor))-
Step 2. Estimate of w. Let x be the solution of the Neumann problem in divergence form
V- (p'Vy) =9, / xdx =0, / Odx = 0,
(116) 0 )
Opx =0, onT.

We recall that p is bounded from below and its regularity insures the existence and
uniqueness in H*%(£)) with

(117) ||X||2,q < C|9|q7

¢ depends on p and €2, gq.
In fact, since the problem (116) is in divergence form, the existence of a unique solution
for example in H'(Q) is well known, and Poincaré’s inequality produces

X2 < c|f]2.
Concerning the regularity, we write (116)
Ay — Vliog(p)Vx = 6.
Assuming Vlogp € LP (p>nif 1 < g <n, or p=qif ¢ > n) produces the estimate
Ixll2.q < (10l + [xlq),
where ¢ depends on ¢, T, |Vpl|,. We remark that if p = co
DXl < (c+[V1og pl2)l0lg, [Vxlg < (¢ + [Viog ploo) 1]y
If ¢ = 2 the above estimates give (117). For ¢ # 2, a suitable mean of x yields (117)
(see [10]).
We now estimate m making use of the functional approach. We consider

(118) / mhdr = —/ p 'V rVxdr = / V(0w — pp~*Av — p~t f)da
Q Q Q

< Mmillvv|q|D2X|q’ + Mm72|v/’|00|v”‘q|vx|q’
+ um [Vl Lo IVX o 0y +m 7 Fla| Vg
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The Holder inequality combined with the Gagliardo-Nirenberg inequality yields
pm | Volg| D x|y < cCIVlql8y,

VXl ot ry < eIVXle + [D?xlgr) < eClolg-

We recall that the constant C' in (119) depends on M;. Thanks to (117) we get

(119)

(120)  |«|q < (M| flq + M7 [Volg + M|Vl Lo(ry)
< C(Ml‘flq + M12(671|U|q + 6|D2U|q) + Ml(nillvlq + U‘D2U|q))-

Thanks to the above estimates with €, 7 small enough inequality (115) gives

(121)  [[mwl|pa(@r) + 1lIVull La(r) + V7| La@r)
< e((L+ M| fllLo@ry + (M7 + M+ MP)[|v] La(gr)-

Step 3. Time dependent density. We remark that, if the density is time-dependent, the
estimate (121) continues to hold true in a small interval. Indeed, (v, 7) satisfies

p(0)040 — plv + Vi = f + (p(t) — p(0))dyo,
(122) V-v=0,
’U|t:0 = 0, ’U|aQ =0.
Applying the results of steps 1, 2 with density p(0), denoting M3 = MY + M3} + M3,
we get

(123)  [[moevlLec.) + mllVZullLa@.) + 1Vl Lo,
< e(MslvllLagq.y + Mi N fllan) + Milp(t) = p(0)clOrvl Laco,))-

Using the Holder continuity of p with respect to ¢ and denoting 7 = min(7, (CMleg)ié)
we get (121) when t € [0, 7],

(124) |lmdyvl|Laco.) + VUl Laq,) + IVT | Lacq.) < (M7 fllLa(q,) + Ms|vl Laq,))-

Estimates on the whole interval (0,7) with T' > 7 can be performed making use of a
partition of unity (¢x), (k € N,1 < k < n), with respect to ¢t such that:

1) Supp ¢g C [0,7) and ¢ = 1 in a neighborhood of 0;
2) for k > 1 Supp ¥y C [E7, (£ + 1)7] and |9ythp]e < <.
Denoting vy, = vy, 1 = ) and fr, = fi), we have

PO, — ppAvyg + Vg = fr, — vpOuy,
(125) Vo, =0,

Vkli=0 = 0, vi]aq = 0.

For t > kt/2, with 77 (MZ(T)Ms(T)) = % we have

1
lpvbrllLay, ) < eMP(MPMz2)7 |[v]|Lagq -

ET
2

Thanks to (124) we get

(126) ||m5wk|\m<Q%T) + M||V2U\|LQ(Q%T> + ||V7TkHL‘1(Qk_{

)
< C(M12Hf||L‘I(QkTT) + MSHUk”L‘I(QkTT) + M okl g

k ))'

ET
2
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For ¢t > %T, according to the above estimates, we get

(127)  [Imdrvrll Loy + 1l VPullon) + V7 La(@u)
< o(M{(Ifza@) + Msl|vellzacq + M 1p(t) = p(te)loo 1 0rvil La(@n)

+ MF (M7 M2)7 vkl Lo @u))
1
< e(MP[Ifllzac@) + MsllvillLaqq + M7 (MFMo) 7 ||ve]|a(Qu) + M Ma||0yvkl Laqn))-
whenever ¢ € [E7, (5 + 1)7].
Now performing the summation on k € {0,-- -, K} (with (K7 < T < (K + 1)) we
obtain for (v, )
(128)  [[mOevllLs(@r) + 1l V*0lLa@r) + IVllLa(or)
< (M| fllLa@r) + MslvllLacory + eMvllLa(qr))-
where M(T) = M2(MyM2)5 .
To conclude the proof we need to estimate v in LP(Q);).
Step 4. Estimate of |v(t)|q. We recall the inequality
Delvlg < [0pvlq.

For a solution of (106) we get
t
(120) o0l = a | (o)l ool e
t t
< e/ |U(T)‘gd7'+6671/ |0-v[ddr
0 0

<(e+ Cfl(MJer)q)/lt [o(7)|dr + e M /t |f13dr,
and applying Gronwall’s lemma we get i i
lo(®)llLai@n) < eMF@)" MDY £ Laqy),
(h(-) is easily traced) and finally we conclude that
(130)  [[mdwllza@ + I V*0ll @ + IVl < eMPe" | L)

Step 5. General initial data. First, we remark that v satisfying (126) belongs to the
space C(0,T';V,). We observed at the beginning of this section that the solution v of the
momentum equation can be written as a sum of two functions, i.e. v = u+w, that satisfy
semi-homogeneous problems, precisely

moyu — pAu+VQ =0, u(0) = vy,
(131) porw — pAw +VQ1 = f + (m — p)osu,
V-u=V-w=0, w(0)=0,
_z2
with the homogeneous Dirichlet boundary condition, and vy € H; 7(92) (divergence

free). Collecting the above results we get
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(132)  [|mdyvllLe(qu) + plIV0llLan + S [lo()lv,@

< ME(O" (Joollv, + 11/ 1Lac@0)-

6. Existence in a small time interval. In this section we prove the L?-regularity of
problem (2) using the procedure of Theorem 2.
We consider the linear problem
Op — AAp = —u-Vp,
pOv — pAv + Vi = —pu-Vu+ A(u-V)Vp+ (Vp-V)u)
2
+2-((Vp-V)Vp = 2(Vp-Vp)Vp+ ApVp) + pf,
V-v=0,v0)=wvg, v=00nT, p(0) = pg, pp=0onT.

(133)

Here u belongs to the set

B={¢eH

max([|0:¢]l Ls(qr)> 1D? | Laor)) < R},

where R is an arbitrary positive number and ¢ > 3.

Making use of density results in section 4 the existence for (133) for regular data is
easily proved. Now the existence and uniqueness of the solution of system (133) enables
us to define the map v = Gu given by the composition of g : u — p and h : (u,p) — v.
The fixed point of G is the solution in L? spaces of system (2). It is clear that B is a
compact set in LI(Qr). As we are going to use a fixed point theorem, we have to show
that GB C B and G is continuous in B with respect to the norm in L4(Qr).

Next we prove GB C B for suitable T.

Assuming pg € (L"(Q), Hf(Q))(%VT) with r > ¢ and recalling

Jus Vple < [uloo| Vol < [uloolplS2[Dpl1)5 < c(2, M)|uloo| D] /2

the maximal L? theory yields
(134) MIGepllr@ry + AN A0l (@) < cllpoll

2z + T+ R?,
H, 7(Q)
and from interpolation results we have that

1
Ma(p) < lipll sz < ellipoll 22+ T+R?),

Mi(p) < llpll gz < ellpoll 22 +T+R?),

T

(135)

with B=1- 3£ r>5.

Now applying the results in Step 4 to system (133) we obtain

(136)  [[mowl|Laq,) + 1Vl La,) + S lv(T)llv, @) + IV7lLaq,

< M2(1) O <||7f0|vq 1 e
+ llu- Vullpa,) + Al(Vp - V)u+ (u-V)VplLaq,)

Lq(Qt)>

+ A2

1 1
p ((Vp -V)Vp — ;(Vp -Vp)Vp+ Apr)
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< eME)" D (lvollv, + 1 f |l za@o + ull ool Vall Lo
+ Allull oo (@0 1D?pll Lac@uy + IVull Lo 0,459 ) VIl La (0,05 (02)))
+ MD?pll La(@n IVPllL=(q1)

1 1
<clllpoll 2z 87 B2 (oollv, + lpoll ooz + 1fllo(@n) + R

(@)

o
(.

1 r—gq 1
trR2) +tar tr R%)?).
: ;(Q)Jr )+ (Ilpollefl + )°)

"(@)

< _2) + [|fllze(q.)) and choosing t = T

Assuming R > e“([lpol|_2-2)*([[vollv, + llpol

2
. T H,
small enough (136) yields

GB C B.

Since u € L>®(Qr) and ¢ > n, the L?-continuity of G implies the L?-continuity of G,
then Theorem 2 yields the continuity of G as well as the uniqueness of the solution.

The existence of an L9-solution of system (2) is proved. Notice that (136) suggests
that if the data are small enough the solution exists for any T' > 0. We omit details.
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