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Abstract. This paper is devoted to the study of the incompressible Navier-Stokes equations

with mass diffusion in a bounded domain in R
3 with C

3 boundary. We prove the existence of

weak solutions, in the large, and the behavior of the solutions as the diffusion parameter λ→ 0.

Moreover, the existence of L
2-strong solution, in the small, and in the large for small data, is

proved. Asymptotic regularity (the regularity after a finite period) of a weak solution is studied.

Finally, using the Dore-Venni theory, the problem of the L
q-maximal regularity is investigated.

1. Introduction. Presented in this paper is a general existence and regularity theory of

a nonhomogeneous Navier-Stokes model with mass diffusion. Observe that the model in-

cludes as particular cases the classical Navier-Stokes equations and the density-dependent

Navier-Stokes equations. The Navier-Stokes equations are largely studied while the lit-

erature concerning the model considered in this paper is not very extensive. So far, we

focus our attention mainly on the L2(Ω), Lq(Ω)-theory in bounded domains. But the pro-

cedure used here can be adapted to unbounded domains. Moreover, we do not insist on

the precise critical descriptions of the spaces of the initial data.

1.1. The model. We now derive the equations of our physical model (see [9]).

Let Ω be a bounded domain in R3 with boundary Γ. We consider in Ω the motion of a

continuous medium consisting of two components, for example, water and dissolved salt.

Let ρ0
i = cost > 0, i = 1, 2 be the characteristic densities of the components of the mixture

and α and c be the volume and mass concentrations of one of the components, say water.
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We introduce the concept of mean densities ρ1 = αρ0
1, ρ2 = (1−α)ρ0

2 of the components,

ρ = ρ1 + ρ2 of the solution, and also the velocities v1 and v2. The mean-volume and

mass-velocities of the mixture are defined in the usual way: v = αv1 + (1 − α)v2 and

w = cv1 + (1 − c)v2. The equations of the motion in QT = Ω × (0, T ) are given by

(1)

{

ρ(∂tw + w · ∇w − f) − µ′∆w − (µ+ µ′)∇∇ · w + ∇p = 0,

∇ · u = 0, ∂tρ+ ∇ · (wρ) = 0; ∇ · v = 0.

Here p is the pressure, f the external force and µ, µ′ the viscosity constants such that

µ > 0 and 3µ′ + µ > 0.

Making use of the Fick diffusion law

w = v − λ

ρ
∇ρ,

(λ > 0 is the constant diffusion coefficient) we get

(2)











ρ(∂tv + v · ∇v − f) − µ∆v − λ((v · ∇)∇ρ+ (∇ρ · ∇)v)

−λ2

ρ ((∇ρ · ∇)∇ρ− 1
ρ (∇ρ · ∇ρ)∇ρ+ ∆ρ∇ρ) + ∇π = 0,

∂tρ+ v · ∇ρ− λ∆ρ = 0; ∇ · v = 0.

Here π = p+ λv · ∇ρ− λ2∆ρ+ λ(2µ+ µ′)∆ log ρ is the modified pressure.

We complete the system with the following initial-boundary conditions (n is the unit

outward normal to Γ)

v = 0, ∂nρ = 0, on Γ, ∀t > 0,

v(0) = v0, ρ(0) = ρ0 in Ω.

We notice that

∇ ·
(

1

ρ
∇ρ⊗∇ρ

)

=
1

ρ

[

(∇ρ · ∇)∇ρ− 1

ρ
(∇ρ · ∇ρ)∇ρ+ ∆ρ∇ρ

]

.

1.2. Known results. The system (2) includes as particular cases the classical Navier-

Stokes equations (ρ = const), the density-dependent Navier-Stokes equations (λ = 0),

the reduced model (λ2-terms are omitted). The classical Navier-Stokes system is largely

studied (see the classical books by Ladyzhenskaya and Temam). The other models are

less known and the literature on the complete model (2) is not very extensive.

Density-dependent Navier-Stokes equations. A. Kazhikhov proved in [8], via a Galerkin-

type approximation (semi Galerkin method), the existence, in the large, of a weak solution

(see Definition 1 below) and established the existence of a local strong solution. The

uniqueness of strong solution at this time is an open problem. In [10] Ladyzhenskaya and

Solonnikov proved the uniqueness for a smoother solution of the model with λ = 0. The

above results are proved in the case that the initial density ρ0 does not vanish. In [13]

the author solved the open problem of the existence of weak solution of the variational

inequality associated to the model in arbitrary L2-convex sets. Moreover, in [16] and [17],

error estimates bounds for the Galerkin approximations and regularity are investigated.

Reduced model. Kazhikhov and Smagulov [9] established the global existence of weak

solution and local strong solution under the assumption λ < 2µ/(M −m) (M = sup ρ,



NAVIER-STOKES EQUATIONS WITH MASS DIFFUSION 385

m = inf ρ in QT ) via the semi Galerkin approximation and an estimate of a sort of time

fractional derivative:
∫ T

0

|v(t+ h) − v(t)|22dt ≤ c
√
h,

in space dimension n = 3, 4 and assuming the initial density bounded from below by a

positive constant.

The author in [15], among other things, extended the Kazhikhov and Smagulov results

to arbitrary space dimension and the initial density can vanish, making use of the estimate

of the time derivative of ρv. For further development of this method see [11].

Complete model. Beirão da Veiga [2], [3], Secchi [19] established the local existence of

strong solutions using fixed point arguments. Moreover, behavior as λ → 0 and t → ∞
is considered.

Damázio, Guillén, and Rojas-Modar [5] study an approximation of solution by means

of an iterative method, establish some convergence rates for the approximation of the

exact solution for strong and more regular solutions.

The paper is organized as follows. In section 2 we introduce notation and functional

spaces. In section 3 the main results of the paper are presented. Section 4 is devoted to

the proof of Theorem 1. In section 5 the existence of L2 strong solution is proved. In

section 6 the problem of the existence of periodic solution is discussed. In section 7 the

asymptotics and C∞((0, T̄ ) × Ω̄) regularity for a weak solution is investigated and we

prove Theorem 3. Finally, in section 8 Theorem 4, concerning the maximal regularity, is

proved.

2. Notation and functional spaces. In the sequel we will assume that Ω denotes

an open set in Rm which is generally assumed to be bounded hence Ω̄ is compact. Γ

denotes the boundary of Ω. Moreover, it is assumed that Ω is a smooth domain of class

Ck with k a positive integer. Furthermore, we assume that the unit normal vector field

n(x) with x ∈ Γ is outward to Γ. If it is necessary we consider also an extension of n in

a neighborhood of Ω̄.

To simplify the discussion, we do not distinguish in our notations whether the func-

tions are R- or Rm-valued, and c denotes a constant. We define C∞
0 (Ω) to be the linear

space of infinitely many times differentiable functions with compact supports in Ω. Now

let (C∞
0 (Ω))′ denote the dual space of C∞

0 (Ω), the space of distributions on Ω. We denote

by 〈·, ·〉 the duality pairing between (C∞
0 (Ω))′ and C∞

0 (Ω).

Let α = (α1, ..., αn) ∈ Nn and set |α| =
∑n

i=1 αi. We set

∂

∂xi
= ∂xi

, Dα
x = ∂

|α|

x
α1
1

,...,xαn
n
,

∇ = (∂x1
, ..., ∂xm

) the gradient operator and ∇· the divergence operator.

We denote by C∞
0 the linear subspace of divergence free functions of C∞

0 . For any

s, q, s ≥ 0, q ≥ 1, Hs
q (Ω) denotes the usual Slobodeckii-Sobolev space of order s on

Lq(Ω). Further, the norm (defined intrinsically involving first order differences of the

highest-order derivatives) on Hs
q (Ω) is denoted by ‖φ‖s,q.
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We do not consider in this paper Besov space Bs
q(Ω) (the norm involves the second

rather than the first differences). Notice that Bs
q and Hs

q coincide if q = 2, ∀s but not

for non integral s. When q = 2, Hs
2(Ω) is usually denoted by Hs(Ω) and we drop the

subscript q = 2 when referring to its norm. Hs(Ω) (s ∈ N) is a Hilbert space for the

scalar product

((u, v))s =
∑

|α|≤s

∫

Ω

DαuDαvdx.

In particular, in Lq(Ω), we write the Lq-duality pairing (u, v)q =
∫

Ω
uvdx with u ∈ Lq

and v ∈ Lq′

with q′ = q/(q − 1) and the norm |v|q.
Further, we define Hs

q,0(Ω) the closure of C∞
0 (Ω) for the norm ‖ · ‖s,q.

We denote H−s
q′ (Ω) the dual space of Hs

q,0(Ω) and ‖ · ‖−s,q′ denotes its norm where q′

satisfies 1/q + 1/q′ = 1.

Let us introduce the following spaces of divergence-free functions. We denote by

V s = {v|v ∈ Hs
0(Ω),∇ · v = 0}.

V s is the closure of C∞
0 (Ω) for the norm ‖ · ‖s, and it is a closed subspace of Hs(Ω).

We set V 1 = V and V 0 = H. In similar manner we define the spaces V s
q . Moreover,

we introduce the projection operator Pq (P2 ≡ P ) : Lq → V 0
q . It is well known that

the operator Pq is continuous on Lq and the subspace V 0
q is complemented. Thus, the

following decomposition of Lq

Lq = RangePq ⊕KerPq

holds true.

It is interesting to observe that KerPq = {φ ∈ Lq|φ = ∇p1 + ∇p2} where p1, p2 are

generalized solutions of the problems

∆p1 = 0, ∂np1 = f on Γ,

and

∆p2 = ∇ · g, p2 = 0 on Γ,

respectively. Here g ∈ Lq and f ∈ H
−1/q
q (Γ) with 〈f, 1〉Γ = 0. We recall that analogous

decomposition of Lq holds working with the subspace V̄ = {φ|φ ∈ Lq,∇ · φ = 0}.
We further define the Stokes operator on Lq

Aq = −Pq∆,

with domain D(Aq) = H2
q (Ω) ∩ V 1

q .

For any Banach space X and for any T > 0 we denote by Lr(0, T ;X) the set of

X-valued functions defined a.e. in [0, T ] and Lr summable in the sense of Bochner. Fre-

quently, we consider X = Hs
q (Ω). In such cases, for any φ ∈ Lr(0, T ;Hs

q (Ω)), φ stands

for the function φ(t) or φ(·, t).
Throughout the paper we denoteQt = (0, t)×Ω and the parabolic Slobodeckii-Sobolev

space Hs,r
q (QT ) of order s in space variable and of order r in time variable on Lq. We will

denote by ‖ · ‖s,r
q the norm in this space. In the following we make use of the inequality,
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for q > 3,

sup
(x,t)∈QT

|v| ≤ ‖v‖H2,1
q (QT ).

In addition, let us consider the affine space

H̃k(Ω) =

{

φ ∈ Hk(Ω), ∂nφ = 0 on Γ,

∫

Ω

ρdx =

∫

Ω

ρ0dx

}

.

In this manner, the functions in H̃k are uniquely fixed and we can not distinguish the

norms ‖φ‖H2 and |∆φ|2 in H̃2, ‖φ‖H3 and |∇∆φ|2 in H̃3.

Throughout the paper we shall use the following propositions.

Proposition 1 (Gagliardo-Nirenberg inequality). Let Ω ⊂ Rn bounded and sufficiently

regular. The multiplicative inequality
∑

|α|=r

|Dαφ|q ≤ c|φ|1−θ
q1

(

∑

|α|=l

|Dαφ|q2

)θ

,(3)

for 1 ≤ q1, q2 ≤ ∞, 0 ≤ r ≤ l,

n

q
− r = (1 − θ)

n

q1
+ θ

(

n

q2
− l

)

,
r

l
≤ θ ≤ 1,

holds with the following exceptions:

a) if r = 0, l < n
q2

, and q1 = ∞ and Ω unbounded, we assume in addition that either

φ→ 0 as x→ ∞ or φ ∈ Lp for some p > 0;

b) if 1 < q1 < ∞ and l − r − n
q2

is a non-negative integer, then (3) does not hold for

θ = 1.

The following propositions are commonly used in the theory of ordinary differential

equations. We will give a brief proof of Proposition 4 only.

We assume that φ(t), ψ(t), h(t), f(t) are smooth non-negative functions defined for

all t > 0.

Proposition 2. Suppose φ(0) = φ0 and d
dtφ(t) +ψ(t) ≤ g(φ(t)) + f(t) for t ≥ 0 where g

is a non-negative Lipschitz continuous function defined for φ ≥ 0. Then φ(t) ≤ F (t;φ0)

for t ∈ [0, T (φ0)) where F is the solution of the initial value problem d
dtF (t; ·) = g(F (t))+

f(t), F (0; ·) = φ0 and [0, T (φ0)) is the largest interval to which it can be continued. Also,

if g is non-decreasing then
∫ t

0

ψdτ ≤ F̃ (t, φ0),

with

F̃ (t;φ0) = φ0 +

∫ t

0

(g(F (τ ;φ0)) + f(τ ))dτ.

Proposition 3. Suppose φ(0) = φ0 and d
dtφ(t) + ψ(t) ≤ h(t)φ(t) + f(t) for t ≥ 0. Then

φ(t) ≤ F (t;φ0),

∫ t

0

ψdτ ≤ F̃ (t, φ0),

with

F (t, φ0) =

(

φ0 +

∫ t

0

f(τ )e
R τ
0

−h(σ)dσdτ

)

e
R t
0

h(τ)dτ ,
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F̃ (t;φ0) = φ0 +

∫ t

0

(h(τ )(F (τ ;φ0)) + f(τ ))dτ.

Thus, the estimates for φ and
∫ t

0
ψ(τ )dτ are obtained from estimates for φ0,

∫ t

0
f(τ )dτ

and
∫ t

0
h(τ )dτ .

Proposition 4. In Proposition 2 assume f ≡ 0 and suppose g(φ) ≤ c1φ
2 for φ ≤ c2

where c1, c2 are given positive numbers. Suppose also E =
∫ ∞

0
φdt < ∞. Then, for

t > (E/c2) exp(c1E), we have

(4)











φ(t) ≤ exp(c1E) − 1

c1t
,

∫ ∞

t

ψ(τ )dτ ≤ exp(2c1E) − exp(c1E)

c1t
.

Proof. Consider an arbitrary instant t∗ ≥ c−1
2 Eec1E . It is φ∗ = φ(t∗) ≤ c2. If on the

contrary φ∗ > c2, then, thanks to the comparison theorem for differential inequalities,

φ(t) > η(t) for 0 ≤ t ≤ t∗, where η(t) is the solution of the equation η′(t) = c1η
2(t)

satisfying η(t∗) = c2. Furthermore,

η(t) = η(t∗)e−c1

R t∗

t
η(s)ds,

then

(∗∗) E ≥
∫ t∗

0

φ(s)ds ≥
∫ t∗

0

η(s)ds ≥ c2

∫ t∗

0

e−c1

R t∗

t
η(s)dsdt ≥ t∗c2e

−Ec1 .

This contradicts the assumption t∗ > c−1
2 Eec1E . So we have φ(t∗) ≤ c2. From (∗∗) we

get

φ(t∗) ≤ Eec1E

t∗
.

The precise estimate (4)1 is obtained considering the explicit expression of η, i.e. η(t) =

c2[1 − c2c1(t− t∗)]−1. (4)2 follows by integration.

3. Statements. First, we give the definitions of weak and strong solution of system (2).

Definition 1. (v, ρ) is called a weak solution to problem (2) if

i) v ∈ L∞(0, T ;H) ∩ L2(0, T ;V ),

ρ ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), 0 < m ≤ ρ ≤M ;

ii) the diffusion equation is satisfied a. e. in QT ;

iii) the following integral identity holds for all smooth solenoidal φ, φ(T ) = 0,
∫ T

0

((ρv, ∂tφ) + (ρv, v · ∇φ) − µ(∇v,∇φ) − λ(((v · ∇)φ,∇ρ) + ((∇ρ · ∇)φ, v))

−
(

λ2

ρ
∇ρ⊗∇ρ,∇φ

)

+ (ρf, φ))dt = −(ρ0v0, φ(0)).

Definition 2. The functions v, ρ, π are a strong solution of the problem (2) if their

derivatives occurring in (2) are summable and they satisfy the system and the boundary

conditions almost everywhere in the corresponding measure.
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Definition 3. The functions v, ρ, π are an Lq-solution (q > 1) of the problem (2) if

their derivatives occurring in (2) are Lq functions and they satisfy the system and the

boundary conditions almost everywhere in the corresponding measure.

The following theorems are the basic results of the paper.

Theorem 1. Let v0 ∈ H, ρ0 ∈ H̃1(Ω) with 0 < m ≤ ρ0 ≤ M, and f ∈ L2(QT )

or L2(0, T ;H−1(Ω)). Then there exists at least one weak solution if the parameters,

M,m, µ, λ satisfy the relation (21) below. Moreover, as λ → 0, (vλ, ρλ) converges to

a weak solution of the density dependent Navier-Stokes equations.

Theorem 2. If, in addition to the assumptions of Theorem 1, v0 ∈ V, ρ0 ∈ H̃2(Ω), f ∈
L2(QT ) then there exists a T̄ such that there exists a unique strong solution (v, ρ).

In the next theorem we assume f ≡ 0 for simplicity of exposition. In the case of

nonhomogeneous forces the assumptions follow from the estimates that we are proving

in Theorem 3 below.

Theorem 3. Let v0 ∈ H, ρ0 ∈ H̃1(Ω) with 0 < m ≤ ρ0 ≤M and Ω be smooth. Then there

exists at least one weak solution of problem (2) such that there exist T̄ (small enough) and

T ∗ (sufficiently big) such that Dk
xD

l
tv,D

k
xD

l
tρ depend continuously on t ∈ (0, T̄ )∪(T ∗,∞)

in L2(Ω) for all integers k ≥ 0 and l ≥ 0. Consequently, (v, ρ) ∈ C∞((0, T̄ )∪(T ∗,∞)×Ω̄).

Theorem 4. If, in addition to the assumptions of Theorem 1, v0 ∈ H
2− 2

q
q ∩ Vq, ρ0 ∈

H
2− 2

r
r (Ω) ∩ H̃3/2(Ω), f ∈ Lq(QT ), q > 3, r ≥ 5, then there exists a T̄ such that there

exists a unique strong Lq solution (v, ρ, π).

Since we are going to prove Theorems 1−4 using fixed point arguments we follow the

sequent scheme: first, we assign the velocity and consider the diffusion equation proving

the existence and a priori estimates. Next, we pass to consider the existence of a linearized

momentum equation and, finally, we conclude the scheme proving the existence of a fixed

point.

4. Proof of Theorem 1. Following the proof’s scheme mentioned above, first we in-

vestigate the diffusion equation (2)2.

4.1. Existence of the diffusion equation and a priori estimates. We deduce a priori esti-

mates of the solution of the problem

(5)

{

∂tρ+ ψ · ∇ρ− λ∆ρ = 0,

ρ(0) = ρ0, 0 < m ≤ ρ0 ≤M, ∂nρ = 0 on Γ.

Here ψ is a smooth divergence free function with normal component vanishing on Γ and

m,M are fixed constants.

The existence of the diffusion equation (5) can be obtained using Galerkin method.

This procedure is well known in literature so we omit details. We now prove a priori

estimates largely based on the multiplicative inequality

(6) |∇ρ|24 ≤ c|ρ|∞|∆ρ|2,
that holds for all space dimensions.



390 R. SALVI

First, we notice that the maximum principle holds and m ≤ ρ ≤M .

Now, we prove three levels of regularity for ρ.

Multiplying (5) by ρ and integrating by parts in Ω (the boundary terms vanish) we

get

dt|ρ|22 + λ|∇ρ|22 = 0,

then

|ρ(t)|22 + λ

∫ t

0

|∇ρ|22dτ ≤ |ρ0|22.(7)

Now, multiplying (5) by −λ∆ρ and after integration by parts on Ω (the boundary

terms vanish), we obtain

λ

2
dt|∇ρ|22 + λ2|∆ρ|22 = −λ(∇ψ · ∇ρ,∇ρ).(8)

In virtue of (6) we have λ|(∇ψ · ∇ρ,∇ρ)| ≤ cλ|∇ψ|2|∇ρ|24 ≤ c|∇ψ|22 + λ2

2 |∆ρ|22 thus

we get

λ|∇ρ(t)|22 + λ2

∫ t

0

|∆ρ|22dτ ≤ λ|∇ρ0|22 + c

∫ t

0

‖ψ‖2dτ.(9)

Notice that the above estimate requires that ψ ∈ L2(0, T ;H1(Ω)), only. We conclude

this section with theH3 estimate of ρ. First, we apply the ∇ operator to (5) and then mul-

tiply the result by −∇∆ρ, after integration by parts (bearing in mind that the boundary

terms vanish), we deduce

1

2
dt|∆ρ|22 + λ|∆∇ρ|22 = (∇(ψ · ∇ρ),∆∇ρ).

In view of Proposition 1, |∇(ψ · ∇ρ)|22 ≤ c|∇ψ|22‖ρ‖2‖ρ‖3, thus we obtain

(10) dt|∆ρ|22 + λ|∇∆ρ|22 ≤ c

λ3
|∇ψ|42|∆ρ|22,

consequently

(11) |∆ρ(t)|22 + λ

∫ t

0

|∇∆ρ|22dτ ≤ c|∆ρ0|22 exp

∫ t

0

|∇ψ|42
λ3

dτ.

4.2. Auxiliary problem. In this section we solve the linear problem:

Given f ∈ L2(QT ) and ρǫ ∈ L2(0, T ; H̃3(Ω)) ∩ L∞(0, T ; H̃2(Ω)), find a solution vǫ ∈
L2(0, T ;H2(Ω) ∩ V ) ∩H1(0, T ;L2(Ω)) of the problem

(12)











ρǫ(∂tv
ǫ + ū · ∇vǫ − f) − µ∆vǫ − λ((ū · ∇)∇ρǫ + (∇ρǫ · ∇)vǫ)

−∇ · (λ2

ρǫ ∇ρǫ ⊗∇ρǫ) + ∇πǫ = 0,

∇ · vǫ = 0.

Here ū is the composition of regularization (with parameter ǫ) by convolution of

u ∈ L2(0, T ;V ) with respect x-variable and of the projection P . Moreover, ρǫ is the

solution of (5) with ψ ≡ ū.

We introduce the following functional space

F = {φ|φ ∈ L2(0, T ;H2(Ω) ∩ V ) ∩H1(0, T ;L2(Ω))}.
We denote ‖ · ‖F the natural norm on F .
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We let

(13)



















































E(vǫ, φ) =

∫ T

0

(ρǫ(∂tv
ǫ + ū · ∇vǫ) + µAvǫ − λ(∇ρǫ · ∇)vǫ, ∂tφ

+ µ̄Aφ+ αφ)dt+ (vǫ(0), αρ(0)φ(0) + µAφ(0));

L(f, φ) =

∫ T

0

(

λ(ū · ∇)∇ρǫ + ∇ ·
(

λ2

ρǫ
∇ρǫ ⊗∇ρǫ

)

+ ρǫf,

∂tφ+ µ̄Aφ+ αφ

)

dt+ (v0, αρ(0)φ(0) + µAφ(0)).

Here φ is a solenoidal smooth function and µ̄ = µ
M .

First, E(vǫ, φ) and L(f, φ) are a continuous bilinear form and a continuous linear form

on F , respectively.

Moreover, taking in account the diffusion equation and recalling that |∇φ|23 ≤
c|∇φ|2|Aφ|2, we get

E(φ, φ) =

∫ T

0

(ρǫ(∂tφ+ ū · ∇φ) + µAφ− λ(∇ρǫ · ∇)φ, ∂tφ+ µ̄Aφ+ αφ)dt(14)

+ (vǫ(0), αρ(0)φ(0) + µAφ(0))

≥
∫ T

0

(

1

2
|√ρǫ∂tφ|22 + µ̄

µ

2
|Aφ|22 + αµ|∇φ|22 + α(ρǫū · ∇φ, φ)

+
αλ

2
(∆ρǫφ, φ) + (ρǫū · ∇φ− λ(∇ρǫ · ∇)φ, ∂tφ+ µ̄Aφ)

+ α(ρǫ∂tφ, φ) +
µ

2
dt|∇φ|22

)

dt+ (ρ(0)φ(0), αφ(0)) + µ|∇φ(0)|22

≥
∫ T

0

(

1

2
|√ρǫ∂tφ|22 + µ̄

µ

2
|Aφ|22 + αµ|∇φ|22

c|ū|2∞|∇φ|22 − cλ2|∇ρǫ|26|∇φ|23 −
1

8
(|√ρǫ∂tφ|22 + µ̄µ|Aφ|22)

)

dt

+
α

2
(|

√

ρǫ(T )φ(T )|22 + |
√

ρ(0)φ(0)|22) +
µ

2
|∇φ(T )|22 +

µ

2
|∇φ(0)|22

≥ c‖φ‖F ,

for suitable α.

Thanks to the Lax-Milgram theorem there exists a solution vǫ ∈ F of the problem

(15) E(vǫ, φ) = L(f, φ).

Now, let φ̃ be a solution of the problem

(16)

{

∂tφ̃+ µ̄Aφ̃+ αφ̃ = g,

∇ · φ̃ = 0, φ̃(0) = 0, φ̃ = 0 on Γ.

Here g is a smooth divergence free function.
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Replacing in (15) φ by φ̃, we obtain

(17)

∫ T

0

(

ρǫ(∂tv
ǫ + ū · ∇vǫ) + µAvǫ − λ((ū · ∇)∇ρǫ + (∇ρǫ · ∇)vǫ)

−∇ ·
(

λ2

ρǫ
∇ρǫ ⊗∇ρǫ

)

− ρǫf, g

)

dt = 0.

This implies that vǫ satisfies a.e. in QT

(18) ρǫ(∂tv
ǫ + ū · ∇vǫ) + µ∆vǫ − λ((ū · ∇)∇ρǫ + (∇ρǫ · ∇)vǫ)

−∇ ·
(

λ2

ρǫ
∇ρǫ ⊗∇ρǫ

)

+ ∇πǫ − ρǫf = 0.

Now, let φ̃ be the solution of the problem

(19)

{

∂tφ̃+ µ̄Aφ̃+ αφ̃ = 0,

∇ · φ̃ = 0, φ̃(0) = h(x), φ̃ = 0 on Γ.

Here h(x) is a smooth divergence free function.

Replacing φ by φ̃ in (15) we obtain

(v(0) − v0, αρ(0)h+ µAh) = 0,

consequently v(0) = v0.

The existence of the auxiliary problem is proved.

4.3. Approximate problem. We denote by φǫ the regularization of φ using convolution

(with respect to the x-variable) and then applying the projection operator P . We set

Pφǫ ≡ φ̄. We notice that φ̄ is a regular function with the normal component vanishing

on Γ. We now consider the following approximate problem:

Find a solution

vǫ ∈ L2(0, T ;H2(Ω) ∩ V ) ∩H1(0, T ;L2(Ω)),

ρǫ ∈ L∞(QT ) ∩ L∞(0, T ; H̃2(Ω)) ∩ L2(0, T ; H̃3(Ω))

of the problem

(20)























ρǫ(∂tv
ǫ + v̄ǫ · ∇vǫ − f) − µ∆vǫ − λ((v̄ǫ · ∇)∇ρǫ + (∇ρǫ · ∇)vǫ)

−∇ ·
(

λ2

ρǫ
∇ρǫ ⊗∇ρǫ

)

+ ∇πǫ = 0,

∂tρ
ǫ + v̄ǫ · ∇ρǫ − λ∆ρǫ = 0,

∇ · vǫ = 0,

with the usual initial-boundary conditions.

We are going to show the existence of the approximate problem by fixed point argu-

ment. Let B be a convex set in L2(0, T ;V ) defined by ‖φ‖L2(0,T ;V ) ≤ R with R a positive

real number and u ∈ B.

Now we define the map vǫ = Gu given by the composition of r : u → ū, g : ū → ρǫ

and h : (ū, ρǫ) → vǫ. The fixed point of G is the solution of the approximate problem

(20).
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The existence and a priori estimates of the solution of the diffusion equation are

established in section 4.1 with ψ = ū.

We now build vǫ. The existence of a solution of the linear problem

(21)















ρǫ(∂tv
ǫ + ū · ∇vǫ − f) − µ∆vǫ − λ((ū · ∇)∇ρǫ + (∇ρǫ · ∇)vǫ)

−∇ ·
(

λ2

ρǫ
∇ρǫ ⊗∇ρǫ

)

+ ∇πǫ = 0, ∇ · vǫ = 0,

∂tρ
ǫ + ū · ∇ρǫ − λ∆ρǫ = 0,

with the usual initial-boundary conditions, is proved in section 4.2. Moreover, if u ∈ B

then vǫ belongs to a bounded set in L2(0, T ;H2(Ω)) ∩ H1(0, T ;L2(Ω)). Therefore, vǫ

belongs to a compact set in L2(0, T ;V ). To conclude the existence of a fixed point, we

have only to choose λ such that ‖vǫ‖L2(0,T ;V ) ≤ R.

To do this, we multiply the first equation in (21) by vǫ and, after integration by parts,

we get

(22)
1

2
dt|

√
ρǫvǫ|22 + µ|∇vǫ|22

≤ λ|(ρǫDiūj , Djv
ǫ
i )| +

λ3

2m
|∆ρǫ|22 + c2

λM2

2m
|∇vǫ|22 +

6M2

µ
|f |22

≤ 1

2

(

λ(M −m)

2
|∇ū|22 +

λ3

m
|∆ρǫ|22 +

(

λ(M −m)

2
+
c2λM2

m

)

|∇vǫ|22
)

+ C|f |22.

Here c is the constant in (6). Assuming

(23)
λ(M −m)

2
+
c2λM2

m
≤ µ

2

and setting R2 ≥ C(λ2

m |∇ρ(0)|22 + |√ρ(0)v(0)|22 +‖f‖L2(QT )) (C is a constant big enough)

we obtain ‖vǫ‖L2(0,T ;V ) ≤ R. The proof of the existence of a solution of the approximate

problem (21) is completed.

4.3. Existence of weak solution of problem (2). In this section we prove the existence of

a weak solution of (2).

We deduce a priori estimates starting from approximate problem (20).

Energy estimate. Multiplying by vǫ (20) and after integrations by parts we obtain

(24)
1

3
(dt|

√
ρǫvǫ|22 +µ|∇vǫ|22) ≤

1

2

(

λ(M−m)+
λc2M2

m

)

|∇vǫ|22 +
λ3

2m
|∆ρǫ|22 +

6M2

µ
|f |22.

Consequently, we obtain, in view of (23),

(25) ‖vǫ‖L2(0,T ;V )∩L∞(0,T ;H) ≤ c.

Moreover, the diffusion equation gives

(26) m ≤ ρǫ ≤M, ‖ρǫ‖L2(0,T ;H2(Ω))∩L∞(0,T ;H1(Ω)) ≤ c.

Thus, there exists a subsequence (denoted again by) {vǫ, ρǫ} such that, for ǫ→ 0,

(27)







vǫ → v weak∗ in L∞(0, T ;H) and weakly in L2(0, T ;V );

ρǫ → ρ weak∗ in L∞(QT ) and weakly in L2(0, T ;H2(Ω));

vǫρǫ → γ, vǫ
i v̄

ǫ
jρ

ǫ → αij , weakly in Lp, p > 1.
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To complete the existence proof of a weak solution we have to show γ = vρ and

αij = vivjρ. For this we estimate the time derivative of ρǫ and vǫ.

Time derivative estimates and compactness result. The estimates (25), (26) and the dif-

fusion equation imply, for a q > 1,

‖∂tρ
ǫ‖Lq(0,T ;L2(Ω)) ≤ c.

Consequently, ρǫ → ρ strongly in Lp(QT ) for any p > 1 and one deduces that γ = ρv.

The estimate (25), (26) shows that ∂t(Pρ
ǫvǫ) is bounded in L2(0, T ;H−2(Ω)), uni-

formly with respect to ǫ while ρǫvǫ and thus Pρǫvǫ are bounded in L∞(0, T ;L2(Ω)),

uniformly with respect to ǫ. Hence, by classical compactness theorems, {Pρǫvǫ} is com-

pact in L2(0, T ;H−1(Ω)). In particular, since (subsequence) {ρǫvǫ} converges weakly to

ρv, {Pρǫvǫ} converges to Pρv in L2(0, T ;H−1(Ω)). Hence, we have
∫ T

0

∫

Ω

ρǫ|vǫ|2dxdt =

∫ T

0

(ρǫvǫ, vǫ)dt(28)

=

∫ T

0

(Pρǫvǫ, vǫ)dt =

∫ T

0

〈Pρǫvǫ, vǫ〉H−1×H1dt

→
∫ T

0

〈Pρv, v〉H−1×H1 =

∫ T

0

(Pρv, v)dt =

∫ T

0

∫

Ω

ρ|v|2dxdt.

Now, we observe that
√
ρǫvǫ tends to

√
ρǫv weakly in L2(QT ). This weak convergence

combined with (28) yields the strong convergence in L2(QT ) of
√
ρǫvǫ to

√
ρv. This

convergence implies that in (27) αij = ρvivj .

Passing to the limit ǫ → 0. In virtue of the above estimates, the limit of the diffusion

equation in (5) as ǫ→ 0 gives ∂tρ+ v · ∇ρ− λ∆ρ = 0 a.e. in QT .

Now, let φ be a smooth function divergence free such that φ(T ) = 0 vanishing on Γ.

Multiplying (20) by φ and after integration by parts we get
∫ T

0

(

(ρǫvǫ, ∂tφ) + (ρǫv̄ǫ, vǫ · ∇φ) − µ(∇vǫ,∇φ)(29)

− λ(((v̄ǫ · ∇)φ,∇ρǫ) + ((∇ρǫ · ∇)φ, vǫ))

−
(

λ2

ρǫ
∇ρǫ ⊗∇ρǫ,∇φ

)

+ (ρǫf, φ)

)

dt = −(ρ0v0, φ(0)).

The estimates (25), (26) guarantee the convergence of all terms in (29), hence passing

to the limit ǫ → 0 we have proved that (ρ, v) is a weak solution of (2). To complete the

proof of Theorem 1 we study the behavior of the weak solution as λ→ 0.

Behavior of the weak solution as λ → 0. In this section we consider the λ-parameter

dependent weak solution (vλ, ρλ) of the problem (2) and prove that it converges as λ→ 0,

in a certain sense, to a weak solution of the nonhomogeneous Navier-Stokes equations

(30)







ρ(∂tv + v · ∇v − f) − µ∆v + ∇π = 0,

∂tρ+ v · ∇ρ = 0,

∇ · v = 0, v(0) = v0, ρ(0) = ρ0.
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The definition of weak solution of (30), mutatis mutandis, is Definition 1. Giving evidence

on the role of the parameter λ, we have proved in the above steps that

(31)



































m ≤ ρλ ≤M,

(√
λ sup

0≤t≤T
|∇ρλ|2, λ

∫ T

0

|∇ρλ|22dt
)

≤ c,

λ2

∫ T

0

|∆ρλ|22dt ≤ c, ‖∂tρ
λ‖L2(0,T ;H−1(Ω)) ≤ c,

(

‖
√

ρλvλ‖L∞(0,T ;L2(Ω)),

∫ T

0

|∇vλ|22dt
)

≤ c.

In (31) c is a constant independent of λ with λ small enough.

(31) yields ρλ → ρ weakly in Lp(QT ) for any p > 1 and strongly in L2(0, T ;H−1(Ω)),

and vλ → v in L∞(0, T ;L2(Ω)) weak∗ and weakly in L2(0, T ;H1(Ω)), consequently

ρλvλ → ρv weakly in L2(QT ) and for any smooth function φ ∈ C1
0 (QT ),

λ2

∣

∣

∣

∣

∫ T

0

(

∇ ·
(

1

ρλ
∇ρλ ⊗∇ρλ

)

, φ

)

dt

∣

∣

∣

∣

≤ λ2m−1

∫ T

0

|∇ρλ|22dt‖∇φ‖L∞(QT ) → 0

as λ→ 0. Moreover,

(32)

∫ T

0

(∂tρ
λ + vλ · ∇ρλ − λ∆ρλ, φ)dt

= −
∫ T

0

((ρλ, ∂tφ+ vλ · ∇φ) − λ(∇ρλ,∇φ))dt→ −
∫ T

0

(ρ, ∂tφ+ v · ∇ρ)dt

as λ→ 0 for all φ ∈ C1
0 (QT ). The equation of the conservation of mass (30)2 is satisfied

in weak sense by the limit (v, ρ).

We now consider the convergence of the momentum equation. As usual in equations

type Navier-Stokes the crucial term in passing to the limit in the momentum equation

is ρλvλ ⊗ vλ. Thanks to the estimates (25) and (28) the convergence is guaranteed if ρλ

converges strongly in L2(QT ), for example. This seems not to be true. We indicate the

argument that can be used to overcome this difficulty but it does not give better results

than the method introduced above. Instead of ∂tPρ
λvλ we make use of the estimate type

fractional derivative
∫ T

0

|vλ(t+ h) − vλ(t)|22dt ≤ c
√
h,

that can be proved as in [14] (for some details see section 6). This argument requires that

vλ ∈ L2(0, T ;V ) and the space dimension ≤ 4. So the Ascoli-Arzelà-Kolmogorov-Riesz

compactness theorem yields vλ → v as λ→ 0 strongly in L2(QT ).

Now, it is a routine matter to prove that (v, ρ) satisfies
∫ T

0

((ρv, ∂tφ) + (ρv, v · ∇φ) − µ(∇v,∇φ) + (ρf, φ))dt = −(ρ0v0, φ(0)),

for every φ ∈ C1(QT ),∇ · φ = 0, φ(T ) = 0.

Theorem 1 is completely proved.

5. Proof of Theorem 2. We prove Theorem 2 by a fixed point argument following the

scheme of section 4.
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Let B(R) ⊂ F be a ball with center the origin and radius R (F has been introduced

in section 4.2). We fix a function u ∈ B(R) and section 4.1 gives the solution of diffusion

equation (5) with ψ ≡ u and relative estimates on ρ up to the 3-spatial derivatives. Then

we consider the linear problem

(33) ρ∂tv − µ∆v + ρu · ∇u− λ((u · ∇)∇ρ+ (∇ρ · ∇)u)

− λ2

ρ

(

(∇ρ · ∇)∇ρ− 1

ρ
(∇ρ · ∇ρ)∇ρ+ ∆ρ∇ρ

)

+ ∇π − ρf = 0,

complemented with the usual initial-boundary conditions. The existence of a solution of

system (33) has been established in the section 4.2.

5.1. A priori estimates. Now, we multiply by v (33) and after integration by parts we

obtain

(34) dt|
√
ρv|22 + µ|∇v|22 ≤ cM2|u|23|∇u|22 + c

λ2

µ
|∇u|22

+ cλ2M

µ
|∇ρ|3|∇u|22 +

λ4c2M2

µm2
|∆ρ|22 +

M2

µ
|f |22.

Now, we multiply (33) by ∂tv, integrate over Ω, and obtain

(35) |√ρ∂tv|22 +
µ

2
dt|∇v|22

=

(

−ρu · ∇u+ ρf + λ((u · ∇)∇ρ+ (∇ρ · ∇)u) +
λ2

ρ

(

(∇ρ · ∇)∇ρ

− 1

ρ
|∇ρ|2∇ρ+ ∆ρ∇ρ

)

, ∂tv

)

≤ c(|ρu|2∞|∇u|22 + λ2(|u|2∞|∆ρ|22 + |∇ρ|26|∇u|23) +
λ4

m2
|∆ρ|32‖ρ‖3

+M |f |22) +
1

2
|√ρ∂tv|22 ≤ c(M2‖u‖3|Au|2 + λ2‖u‖|Au|2|∆ρ|22

+
λ4

m2
M2|∆ρ|32‖ρ‖3 +M |f |22) +

1

2
|√ρ∂tv|22.

Then, integrating (35) with respect to t, we get

(36)

∫ t

0

|√ρ∂tv|22dτ + µ sup
0≤τ≤t

|∇v(t)|22 ≤ µ|∇v(0)|22

+ c

∫ t

0

(

M2‖u‖3|Au|2 + λ2‖u‖|Au|2|∆ρ|22 +
λ4

m2
M2|∆ρ|32‖ρ‖3 +M |f |22

)

dτ.

Now, we consider the Stokes problem

(37) µAv = −P
(

ρ∂tv+ρu ·∇u−λ((u ·∇)∇ρ+(∇ρ ·∇)u)−∇·
(

λ2

ρ
∇ρ⊗∇ρ

)

−ρf
)

.
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From the theory of the Stokes problem there exists a constant c such that

(38)

∫ t

0

|µ∆v|22dτ ≤ c

(

µ|∇v(0)|22 +

∫ t

0

(

M2‖u‖3|Au|2

+ λ2‖u‖|Au|2|∆ρ|22 +
λ4

m2
M2|∆ρ|32‖ρ‖3 +M |f |22

)

dτ

)

.

Choosing R2 = C(|∇v0|22 + |∆ρ0|22 + M‖f‖2
QT

) with C big enough, (10), (36), (37)

yield

(39)

∫ t

0

(|√ρ∂tv|22 + µ|Av|22)dτ + µ sup
0≤τ≤t

|∇v(t)|22

≤ c

(

|∇v(0)|22 +
√
tR3

(
∫ t

0

|Au|22dτ
)1/2

+
√
tR sup

0≤τ≤t
|∆ρ|22

(
∫ t

0

|Av|22dτ
)1/2

+
√
t sup
0≤τ≤t

|∆ρ|32
(

∫ t

0

‖ρ‖2
3dτ

)1/2

+M‖f‖2
QT

)

≤ c(|∇v(0)|22 +
√
t(R4 +R8 +R12) +M‖f‖2

QT
) ≤ R2,

for t = T̄ small enough. Hence (39) implies

GB ⊆ B.

We now prove the continuity of G. Let {un} ⊂ B be a sequence such that un → u in

L2(QT̄ ). We notice that u ∈ B. Now, let ρn, ρ be solutions of

(40)

{

∂tρ
n + un · ∇ρn − λ∆ρn = 0; ρn(0) = ρ0, ∂nρ

n = 0 on Γ,

∂tρ+ u · ∇ρ− λ∆ρ = 0; ρ(0) = ρ0, ∂nρ = 0 on Γ,

respectively. Then τn = ρn − ρ satisfies

(41) ∂tτ
n + un · ∇τn − λ∆τn = −Un · ∇ρ; τn(0) = 0, ∂nτ

n = 0 on Γ.

Here Un = un − u. The estimate (11), Gronwall’s lemma and Proposition 1 yield that

τn → 0 in L2(0, T̄ ;H2(Ω)) ∩ L∞(0, T̄ ;H1(Ω)). Now, let vn, v be the solutions of

(42)































ρn∂tv
n − µ∆vn + ρnun · ∇un − λ((un · ∇)∇ρn + (∇ρn · ∇)un)

−∇ ·
(

λ2

ρn
∇ρn ⊗∇ρn

)

+ ∇πn − ρnf = 0,

ρ∂tv − µ∆v + ρu · ∇u− λ((u · ∇)∇ρ+ (∇ρ · ∇)u)

−∇ ·
(

λ2

ρ
∇ρ⊗∇ρ

)

+ ∇π − ρf = 0,

with vn(0) = v(0) = v0, respectively. Then V n = vn − v satisfies

(43) ρ∂tV
n − µ∆V n = H(un, u, ρn, ρ) −∇(πn − π) − τn∂tv

n.

It is easy to traceH(·) and prove thatH(un, u, ρn, ρ) → 0 as n→ ∞ in L2((0, T ;H−1(Ω)).

Now, multiplying (43) by V n, after integration by parts, we get
∫ t

0

|∇V n|22dτ + |√ρV n(t)|22 ≤ c

∫ t

0

(‖H‖2
H−1(Ω) + |τn|23|∂τv

n|22)dτ.
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Gronwall’s lemma produces V n → 0 in L2(QT̄ ). Thus, the mapG is continuous in L2(QT̄ ).

The uniqueness can be proved with the same procedure as that used for the continuity

setting v1 ≡ vn, v2 ≡ v, ρ1 ≡ ρn, ρ2 ≡ ρ in the continuity procedure of G where

(v1, ρ1), (v2, ρ2) are two solutions with the same data. We omit details. The existence of

a local solution is completely proved.

6. Periodic problem. This section is devoted to the existence of periodic solution of a

problem related to (2). We notice that for the diffusion equation the periodicity of solution

yields ρ = const, in other words, we find the periodicity of the classical Navier-Stokes

equations. For further development, we consider a semi-homogeneous diffusion equation

that we write

(44) ∂tρ+ v · ∇ρ− λ∆ρ+ αρ = g, ∂nρ(x, t) = 0 on Γ, ρ(0) = ρ0.

We assume that m ≤ ρ0 ≤ M , α ≥ 1 and αm ≤ g ≤ αM . This model is used as a

parabolic approximation of the transport equation in an iterative approach, for example

assuming α = 1, g = ρn−1 and λ = 1/n. Concerning the existence of a periodic solution of

the problem (2)1+ (44) with period T , we adopt the proof’s scheme of section 4 assuming

that the data are periodic functions.

First, let g be an L2 T -periodic function, we consider the existence of a solution of

the problem

(45) ∂tρ+ ū · ∇ρ− λ∆ρ+ αρ = g, ∂nρ(x, t) = 0 on Γ, ρ(0) = ρ0.

Here ū is built as in section 4.1 with u ∈ L2(0, T ;V ), u(0) = u(T ). In this section we drop

the superscript ǫ.

The existence of a solution of problem (45) is well known in literature. We need some

estimates of the solution ρ.

First, we prove thatm ≤ ρ ≤M . In fact, multiplying (45) by (ρ−m)− = min(0, ρ−m),

after integration by parts, we have

dt|(ρ−m)−|22 + λ|∇(ρ−m)−|22 + α|(ρ−m)−|22 = ((g − αm), (ρ−m)−) ≤ 0.

Consequently, ρ ≥ m. Analogously, multiplying (45) by (ρ−M)+ = sup(0, ρ−M)+ and

after integration by parts we get

dt|(ρ−M)+|22 + λ|∇(ρ−M)+|22 + α|(ρ−M)+|22 = ((g − αM), (ρ−M)+) ≤ 0,

thus ρ ≤M . Using the same procedure of section 4.1 we have

λ|∇ρ(t)|22 + λ2

∫ t

0

|∆ρ|22dτ + λα

∫ t

0

|∇ρ|22dτ ≤ λ|∇ρ0|22 + cM2

∫ t

0

(‖ū‖2 + |g|22)dτ.

The H3-estimate of ρ is obtained as in section 4.1, anyway we do not use it so we

omit details.

The existence of a solution of (45) permits to define a map S

(46) Sρ(0) = ρ(T ).

S is a continuous map in L2. In fact, let ρ1, ρ2 solutions of (45) corresponding to

initial conditions ρ1
0, ρ

2
0, respectively. From (45), we get

|Sρ1
0 − Sρ2

0|2 = |ρ1(T ) − ρ2(T )|22 ≤ |ρ1
0 − ρ2

0|22e−αT ,
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consequently S is a continuous map. We notice that we have not used Poincaré’s inequal-

ity.

Moreover, from (45) we deduce

(47) |ρ(T )|22 ≤ e−αT

(

|ρ0|22 +

∫ T

0

eαt|g|22dt
)

.

Now, let B(R) be a ball in L2(Ω) with center the origin and radius R ≥ (1 −
e−αT )−1

∫ T

0
|g|22dt. Thanks to (47) we have SB(R) ⊆ B(R). The fixed point of S yields

the periodic solution of (45).

We now pass to consider the existence of a periodic solution of the momentum equa-

tion.

In section 4.2 we proved the existence of the initial-boundary value problem of the

system

(48)















ρ(∂tv + ū · ∇v − f) − µ∆v + gv − λ((ū · ∇)∇ρ+ (∇ρ · ∇)v)

−∇ ·
(

λ2

ρ
∇ρ⊗∇ρ

)

+ ∇π = 0,

∇ · v = 0,

and the uniform estimates obtained in section 4.2 hold for suitable λ. We have added

the term gv in (48) to avoid additional assumptions on g. Now, multiplying (48) by v,

integrating by parts and using Poincaré’s inequality we get

|ρ(T )v(T )|22 ≤ e−cT

(

|ρ(0)v(0)|22 +

∫ T

0

ect|ρf(t)|22dt
)

.(49)

Now, we consider the map S :
√

ρ(0)v(0) →
√

ρ(T )v(T ). Let B(R) be a ball with

radius R. If R ≥ (1 − e−cT )−1
∫ T

0
|ρf |22dt we get SB(R) ⊆ B(R). To conclude the fixed

point argument we need the continuity of S on L2(QT ).

Let v1, v2 be solutions of problem (48) with initial conditions v1(0), v2(0), respectively.

Thus, V = v1 − v2,Π = π1 − π2 satisfies

(50) ρ(∂tV + ū · ∇V ) − µ∆V − λ(∇ρ · ∇)V + gV + ∇Π = 0.

Multiplying (50) by V , Gronwall’s lemma implies

|
√

ρ(T )V (T )|2 ≤ ect|
√

ρ(0)V (0)|22.
Thus, a fixed point theorem implies v(0) = v(T ). From now on the proof of the existence

of periodic weak solution of the modified model can be concluded with the procedure of

section 4.

In the case of unbounded domains it is not possible to simply extend the methods

used for the bounded domains, since these involve, in general, tools such as Poincaré’s

inequality, compact embedding, etc., that no longer holds for unbounded domains, in

general. Consequently, it is necessary to resort to other arguments. In [18] the author

solved the open problem of the existence of weak and strong periodic solutions for the

Navier-Stokes equations in exterior domains using a different approach. However, the

uniqueness remains on open problem for this type of solutions. Here we briefly present
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the method introduced in [18] giving a sketch of the existence proof of periodic solution

which can be adapted to unbounded domains.

6.1. Elliptic regularization. We assume that ρǫ is a T -periodic solution of equation (44).

Now, we look for a T -periodic solution of the modified momentum equation (48). We

consider the following integral relation

(51)

∫ T

0

(

ǫ(∂tv
ǫ, ∂tφ) + (ρǫ∂tv

ǫ, φ) + µ(∇vǫ,∇φ) + (ρǫv̄ǫ · ∇vǫ, φ) + (gvǫ, φ)

− λ((v̄ǫ · ∇)∇ρǫ + (∇ρǫ · ∇)vǫ, φ) +

(

λ2

ρǫ
∇ρǫ ⊗∇ρǫ,∇φ

)

− (ρǫf, φ)

)

dt = 0.

Here v̄ǫ is defined in section 4. We shall find a solution of (51) in the Hilbert space

H = {φ|φ ∈ L2(0, T ;V ), ∂tφ ∈ L2(QT ), φ(0) = φ(T )}.

We introduce

(52)































E(vǫ, vǫ;φ) =

∫ T

0

(ǫ(∂tv
ǫ, ∂tφ) + (ρǫ∂tv

ǫ, φ) + µ(∇vǫ,∇φ) + (gvǫ, φ)

+ (ρǫv̄ǫ · ∇vǫ, φ) − λ((v̄ǫ · ∇)∇ρǫ + (∇ρǫ · ∇)vǫ, φ))dt,

L(f ;φ) = −
∫ T

0

((

λ2

ρǫ
∇ρǫ ⊗∇ρǫ,∇φ

)

− (ρǫf, φ)

)

dt,

for any smooth solenoidal φ such that φ(0) = φ(T ). We write (51)

E(vǫ, vǫ;φ) = L(f ;φ).(53)

Bearing in mind that

(ρǫ∂tv
ǫ, vǫ) =

1

2
(dt|

√
ρǫvǫ|22 − (∂tρ

ǫvǫ, vǫ))

=
1

2
(dt|

√
ρǫvǫ|22 − λ(∆ρǫvǫ, vǫ) + (v̄ǫ · ∇ρǫvǫ, vǫ) + ((αρ− g)vǫ, vǫ)),

there exists a constant c such that (for a suitable value of λ)

E(vǫ, vǫ; vǫ) ≥ c‖vǫ‖H.

Moreover, for any φ ∈ H, the mapping vǫ → E(vǫ, vǫ;φ) is sequentially weakly con-

tinuous on H. Consequently, using the classical fixed-point theorem due to Brouwer, we

derive the existence of a solution of (53).

A priori estimates. As in section 4, in (53) replacing φ by vǫ, assuming (23) we obtain

(54)

∫ T

0

(ǫ|∂tv
ǫ|22 + µ|∇vǫ|22)dt+ c

∫ T

0

|vǫ|22dt ≤ c

∫ T

0

|f |22dt.

Now, if necessary, we consider the periodic extension of vǫ to the interval (−∞,+∞).

In (53) replacing φ by 1
h

∫ t+h

t
vǫ(s)ds, using the above estimates we get
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(55)

∫ T

0

|vǫ(t+ h) − vǫ(t)|22dt

≤ h

(

ǫ

h

∫ T

0

|(∂tv
ǫ, vǫ(t+ h) − vǫ(t))|dt+Mh−1

∫ T

0

(

|∇vǫ|2 + |∇vǫ|22

+ |f |2 + λ|∇vǫ|2|∇ρǫ|3
∫ t+h

t

|∇vǫ|2ds+ λ2|∆ρǫ|2
)

∣

∣

∣

∣

∫ t+h

t

∇vǫds

∣

∣

∣

∣

2

dt

)

≤ ch1/2.

Estimates (54), (55) and Ascoli-Arzelà -Riesz-Kolmogorov theorem imply that vǫ belongs

to a compact set in L2(QT ) (in unbounded domains in L2(0, T ;L2
loc(Ω)). The periodicity

of the diffusion equation can be proved analogously. Now, we can pass to the limit ǫ→ 0

in (51) and in (45)(with ū ≡ v̄ǫ) and the existence of a periodic weak solution of the

modified model

(56)































∫ T

0

(

(ρv, ∂tφ) + (ρv · ∇φ, v) − µ(∇v,∇φ)

−(αρ, φ) − λ(((v · ∇)φ,∇ρ) + ((∇ρ · ∇)φ, v))

−λ2

(

1

ρ
∇ρ⊗∇ρ,∇φ

)

+ (ρf, φ)

)

dt = 0,

∂tρ− λ∆ρ+ v · ∇ρ+ αρ = g,

is proved.

We remark that if α = 0 and g ≡ 0 in (45) then ρ = constant and the periodic solution

of the classical Navier-Stokes equations is obtained. To obtain the periodic solution of

the reduced model we can use an iterative model type

∂tρ
n − 1

n
∆ρ+ vn−1 · ∇ρ+ ρn = ρn−1

and the related momentum equation.

7. Proof of Theorem 3. This section is devoted to a development of the procedure

of the existence of weak solution to prove that there exists a weak solution that has

regularity properties under some conditions on the data or the existence time. Since we

have not a weak-strong uniqueness theorem, we cannot extend the results to an arbitrary

weak solution. We assume f ≡ 0 for simplicity of exposition. We prove the existence of a

strong solution of (2) using the arguments of section 4.3 starting from the approximate

problem,

(57)



















ρǫ(∂tv
ǫ + v̄ǫ · ∇vǫ − f) − µ∆vǫ − λ((v̄ǫ · ∇)∇ρǫ + (∇ρǫ · ∇)vǫ)

−λ2

ρǫ ((∇ρǫ · ∇)∇ρǫ − 1
ρǫ (∇ρǫ · ∇ρǫ)∇ρǫ + ∆ρǫ∇ρǫ) + ∇πǫ = 0,

∇ · vǫ = 0,

∂tρ
ǫ − λ∆ρǫ + v̄ǫ · ∇ρǫ = 0,

assuming in addition that v0 ∈ V, ρ0 ∈ H̃2 (recall that v̄ǫ = Pvǫ
ǫ). Multiplying the first

equation in (57) by vǫ and working as in section 4 we obtain the estimate

dt|
√
ρǫvǫ|22 + µ|∇vǫ|22 ≤ λ(ρǫDiv̄

ǫ
j , Div

ǫ
j) +

λ2

m
|∇ρǫ|24|∇vǫ|2(58)

≤ λ(M −m)

2
|∇vǫ|22 + c

λ2M

m
|∇vǫ|2|∆ρǫ|2.
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From (58) we can obtain two estimates: the global estimate, in the sense that the con-

stants are independent of t, and a local estimate without any condition on the parameters

but the constants are dependent on t. Integrating (58) with respect to t we get

(59)
1

2
|
√

ρǫ(t)vǫ(t)|22 + µ

∫ t

0

|∇vǫ|22dτ

≤ c|
√

ρ(0)v(0)|22 + λ
M −m

2

∫ t

0

|∇vǫ|22dτ +
λ2M

m

(
∫ t

0

|∇vǫ|22dτ
)1/2( ∫ t

0

|∆ρǫ|22dτ
)1/2

≤ c|
√

ρ(0)v(0)|22 +
λ2

m
|∇ρ(0)|22 +

(

λ
M −m

2
+ c

λM2

m

)
∫ t

0

|∇vǫ|22dτ.

Assuming λ(M −m)/2 + cλM2

m ≤ µ/2 we obtain the global estimate

(60) |
√

ρǫ(t)vǫ(t)|22 + µ

∫ t

0

|∇vǫ|22dτ ≤ c

(

|
√

ρ(0)v(0)|22 +
λ2

m
|∇ρ(0)|22

)

,

otherwise we obtain the local estimate

(61) |
√

ρǫ(t)vǫ(t)|22 + µ

∫ t

0

|∇vǫ|22dτ

≤ |
√

ρ(0)v(0)|22 + λ(M −m)t sup
t

|∇vǫ(t)|22 + c
λ2M2

m
t sup

t
|∇vǫ(t)|2|∆ρǫ(t)|2.

In the sequel of this section we do not use (60) and (61). Now, multiplying (57) by

∂tv + µ
MAv and integrating over Ω we obtain

(62) |√ρǫ∂tv
ǫ|22 + µdt|∇vǫ|22 +

µ2

M
|Avǫ|22 ≤M |vǫ|26|∇vǫ|23

+ cλ2(|vǫ|2∞|∆ρǫ|22 + |∇vǫ|23|∇ρǫ|26) + cλ4(|∇ρǫ|66 + |∇ρǫ|26|∆ρǫ|2|∆∇ρǫ|2).
Now, recalling that |∇vǫ|23 ≤ c|∇vǫ|2|Avǫ|2, |vǫ|2∞ ≤ c|∇vǫ|2|Avǫ|2, setting χǫ =

|∇vǫ|22 + λ|∇ρǫ|22 + λ2|∆ρǫ|22 and adding (62), (8), (10) we obtain

(63) dtχ
ǫ + |√ρǫ∂tv

ǫ|22 +
µ2

M
|Avǫ|22 + |∆ρǫ|22 + |∆∇ρǫ|22 ≤ g(χǫ).

In view of the Proposition 3, there exists T (χǫ(0)) such that

χǫ ≤ F (t;χǫ(0));

∫ t

0

(

|√ρǫ∂tv
ǫ|22 +

µ2

M
|Avǫ|22 + ‖ρǫ‖2

3

)

dτ ≤ F̄ (t, χǫ(0)).

It is a routine matter to pass to the limit ǫ → 0 in (57) so we obtain that the weak

solution built in Theorem 1 is a local strong solution of the problem (2).

7.1. Global existence. Now, we consider the global strong solution for small data and

the weak solution of section 4 is globally strong. Let the initial data u0, ρ0 be such that

χǫ(0) ≤ γ with

cγ − g(γ) > 0,

where c is such that cχǫ ≤ µ2

M |Avǫ|22 + ‖ρǫ‖2
3. Then χǫ(t) ≤ γ for all t for which χǫ exists.

Suppose that the contrary is true. Then there exists a t̄ such that χǫ(t̄) > γ. Define

t∗ = inf{t|χǫ(t) > γ}.
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Clearly χǫ(t∗) = γ. Moreover from (63) dtχ
ǫ(t∗) < 0. But this implies that χǫ(t1) < γ for

some t1 > t∗ which is a contradiction to the definition of t∗.

From the above results, there exists a solution of (63) in a interval (0, T ) where

T = T (v0, ρ0) is the maximal number for which exists a solution of (57). Suppose that

T <∞. Then there exists Tn > 0 such that Tn ր T, and χǫ(Tn) ≤ γ. Hence there exists

an r > 0 such that ‖vǫ(Tn)‖ + ‖ρǫ(Tn)‖2 ≤ r for all n. According to Theorem 2 there

exists an η > 0 such that for any n the solution exists on [Tn, Tn + η). But this implies

that Tn0
+ η > T for some n0 which is a contradiction to the definition of T . Thus the

global existence is proved.

7.2. Global existence and decay. In this section we derive further estimates of the approx-

imate problem (57) and the solutions obtained from them in the context of L2-theory.

Notice, in the following lemma, that neither |∇v0|2, |∆v0|2 nor |∆ρ0|2 are assumed to be

finite. Moreover, we assume f ≡ 0.

Lemma. Under the assumptions of Theorem 1 there exist numbers T ∗, c1, c2, c3 depend-

ing only on v0, ρ0 such that, for t > T ∗,

|∇vǫ|2 ≤ c1t
−1, |Avǫ|2 < c2t

−1/2, |ρǫ − C|2 ≤ e−ct, |∇ρǫ|2 ≤ c3e
−ct.

Proof. The energy inequality (60) implies

µ

∫ t

0

|∇vǫ|22dτ ≤ c(|v0|22 + |∇ρ(0)|22),

for t > 0, and therefore
∫ ∞

0
|∇vǫ|22dt ≤ c(|v0|22 + |∇ρ(0)|22) = Ē.

We now apply Proposition 4 to the differential inequality

(64) dt(|∆ρǫ|22 + µ|∇vǫ|22) + λ|∆∇ρǫ|22 +
µ2

M
|Avǫ|22 + |√ρǫ

∂tv
ǫ|22 ≤ c(|∇vǫ|62 + |∆ρǫ|62).

Setting φ = |∆ρǫ|22+µ|∇vǫ|22, ψ = λ|∆∇ρǫ|22+ µ2

M |Avǫ|22+ |√ρǫ∂tv
ǫ|22 and

∫ ∞

0
(|∆ρǫ|22+

µ|∇vǫ|22)dt = E we get

(65) ∂tφ+ ψ ≤ cφφ2.

From Proposition 4, taking c2 = 1
Ec and cc2 = c1, we get

(66) |∆ρǫ|22 + µ|∇vǫ|22 ≤ E
e− 1

t
≡ ct−1,

and
∫ ∞

t

ψdτ ≡
∫ ∞

t

(

λ|∆∇ρǫ|22 +
µ

M
|Avǫ|22 + |√ρǫ∂tv

ǫ|22
)

dτ ≤ E(e2 − e)

t
≡ ct−1,

for t > ceE2 = T0. Thanks to the above estimates we deduce that
∫ ∞

t

|∂tv
ǫ|22dτ ≤ ct−1.

We can conclude that in (T0,+∞) |Avǫ|2, ‖ρǫ‖3, |∂tρ
ǫ|2, |∂tv

ǫ|2 are uniformly bounded

in L2(T0,+∞).

Now, we continue to study the asymptotic behavior of the solution of problem (57).
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Multiplying the diffusion equation by ρǫ and integrating over Ω we obtain

dt|ρǫ − C|22 + |∇ρǫ|22 = 0.

Consequently, from Poincaré’s inequality,

|ρǫ − C|22 ≤ e−ct|ρ0|22.(67)

Thanks to the Gagliardo-Nirenberg inequality and (67) we have

|∇ρǫ|22 ≤ ce−ct|ρ0|2|∆ρǫ|2, |∆ρǫ|22 ≤ ce−ct|ρ0|1/2
2 |∆ρǫ|1/2

2 ‖ρǫ‖3.(68)

Now, multiplying (57)1 by vǫ and integrating over Ω, one gets

(69) dt|
√
ρǫvǫ|22 + µ|∇vǫ|22 ≤ c|∇ρǫ|2(|∇vǫ|

3
2

2 |Avǫ|
1
2

2 + |∇vǫ|6|∇ρǫ|3).
Taking in account (68) we have, for t > T0,

|vǫ(t)|22 ≤ ce−ct.

Analogously, we multiply (57)1 by Avǫ and ∂tv
ǫ and after integration by parts and

using the usual procedure we obtain

(70) |√ρǫ∂tv
ǫ|22 + µdt|∇vǫ|22 +

µ

M
|Avǫ|22 ≤M |vǫ|

1
2

2 |∇vǫ|
1
2

2 |Avǫ|22

+ λ(|∇ρǫ|
1
2

2 |∇vǫ|
1
2

2 ‖ρǫ‖
1
2

3 |Avǫ|
3
2

2 + |∇ρǫ|
1
2

2 ‖ρǫ‖
1
2

2 |Avǫ|22)

+ cλ2|∇ρǫ|1/2
2 (|∆ρǫ|1/2

2 ‖ρǫ‖3|Avǫ|2 + |∆ρǫ|22‖ρǫ‖
1
2

3 |Avǫ|2).
Thanks to (67) we get

|∇vǫ(t)|22 ≤ ce−ct,

for t > T0. In conclusion, there exists a T ∗ > 0 such that, uniformly with respect to ǫ,

(71)























vǫ ∈ L2(T ∗,+∞;H2(Ω)) ∩ L∞(T ∗,+∞;V ); ∂tv
ǫ ∈ L2(Q(T∗,∞)),

ρǫ ∈ L2(T ∗,+∞;H3(Ω)) ∩ L∞(T ∗,+∞;H2(Ω)),

∂tρ
ǫ ∈ L2(T ∗,+∞;H1(Ω)), m ≤ ρǫ ≤M, vǫ and ρǫ decay like

(|vǫ|2, ‖vǫ‖, |ρǫ − C|2, ‖ρǫ‖2) < ce−ct,

v (= limǫ→0 v
ǫ), ρ (= limǫ→0 ρ

ǫ)) satisfies (2) a.e. for t > T ∗.

7.4. C∞((0, T )× Ω̄)-solution. To conclude Theorem 3 we prove higher order derivatives

for ρǫ and vǫ solution of the approximate problem (57). Since we are mainly interested in a

priori estimates we drop the superscript epsilon and bar of v, for simplicity of exposition.

Our main task is to prove, for any η > 0, the existence of continuous functions

Fk,l(t, η), F̄k,l(t, η) and Gk,l(t, η), Ḡk,l(t, η) of t ∈ [η, T ] such that

(72)















|Dk
xD

l
tv|2 ≤ Fk,l(t, η),

∫ T

η

|Dk+1
x Dl

tv|22dt ≤ F̄k,l(T, η),

|Dk+1
x Dl

tρ(t)|2 ≤ Gk,l(t, η),

∫ T

η

|Dk+2
x Dl

tρ(t)|22dt ≤ Ḡk,l(T, η),

for t ∈ [η, T ). This, in turn, implies (v, ρ) ∈ C∞((0, T ) × Ω̄).

In this section Rl(v, ρ), Sl(v, ρ), θl(v, ρ),Θl(v, ρ),Σl(v, ρ),Λ(v, ρ) stand for continuous

functions of t-derivatives up to the order l of ρ, v and their x-derivatives which appear

in the context. In general Z(·) stands for a continuous functions of its argument. Now,
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we prove further estimates for the solution of the approximate problem (57) and the

related diffusion equation. We assume k = 1 and prove (72) by induction on l. First, we

will show that for every l = 0, 1, 2, ... and every η > 0, there exist continuous functions

Fl(t; η), F̄l(t; η), Gl(t; η), Ḡl(t; η) such that

(73)















|∇Dl
tv|22 ≤ Fl(t; η),

∫ T

η

|D2
xD

l
tv|22dt ≤ F̄l(t; η),

|∆Dl
tρ|22 ≤ Gl(t; η),

∫ T

η

|D3
xD

l
tρ|22dt ≤ Ḡl(t; η),

for t ∈ [η, T ] and Fl(t; η), F̄l(t; η), Gl(t; η), Ḡl(t; η) will depend on l, η and the data.

We prove the estimates (73) by induction on l. For l = 0 Theorem 2 and section 7.1

imply (73).

Assume (73) is true for t-derivatives up to order l.

First, differentiating the diffusion equation in (57) l-times with respect to t, we prove

it for order l + 1. Writing ∂l
tv ≡ vl

t, ∂
l
tρ ≡ ρl

t, one obtains

(74) ρl+1
t − λ∆ρl

t = −vl
t · ∇ρ− v · ∇ρl

t + ...+ cvl−1
t · ∇ρ1

t ≡ Rl.

By assumptions, we have

(75)







vl ∈ L2(η, T ;H2(Ω)) ∩ L∞(η, T ;H1(Ω)),

ρl
t ∈ L2(η, T ;H3(Ω)) ∩ L∞(η, T ;H2(Ω)),

(ρi
t, v

i
t) ∈ C(η, T ;H3(Ω)) × C(η, T ;H2(Ω)), 0 ≤ i ≤ l − 1,

thus the right-hand side Rl belongs to L2(η, T ;H1(Ω)) then
∫ T

η

|ρl+1
t |22dt ≤ Z(Gl(η, T ), Ḡl(η, T ), F̄l(η, T ), Fl(η, T )) ≡ Z(η, T ).

Here Z is a continuous function of its arguments. So we can conclude that there exists a

number τ , η < τ < 2η such that

|ρl+1
t (τ )|22 ≤ η−1Z(η, 2η).

Now, we differentiate (74) with respect to t and obtain

∂tρ
l+1
t − λ∆ρl+1

t = −vl+1
t · ∇ρ− v · ∇ρl+1

t + Sl(v, ρ).(76)

Thanks to the assumptions, we have

Sl ∈ L2(η, T ;H1(Ω))

and its norm is bounded by a function type Z(η, T ). Now, setting ρl+1
t ≡ φ, vl+1 = ψ,

problem (74) can be written

(77) ∂tφ− λ∆φ = −ψ · ∇ρ− v · ∇φ+ Sl(v, ρ).

with φ(η) ∈ L2(Ω) and ∂nφ = 0 on Γ.

We treat (77) in the same manner of the problem (5). We consider the first level of

regularity.

Multiplying (77) by λφ and integrating by parts we have

λdt|φ|22 + λ2|∇φ|22 ≤ c|ψ|22 + |Sl|22,
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then

|φ(t)|22 +

∫ t

η

|∇φ|22dτ ≤ c

(

|φ(η)|22 +

∫ t

η

(|ψ|22 + |Sl|22)dτ
)

.(78)

As usual, there exists a number τ with η ≤ τ ≤ 2η such that

|∇φ(τ )|22 ≤ η−1

(

|φ(τ )|22 +

∫ 2η

η

(|ψ|22 + |Sl|22)dt
)

.(79)

Now, we deduce the second level of regularity for φ. We multiply (77) by −∆φ and after

integration by parts we get

(80) dt|∇φ|22 + λ|∆φ|22 ≤ c(|∇ψ|22|∇ρ|23 + |v|2∞|∇φ|22 + |Sl|22).

Then applying Gronwall’s lemma we obtain

|∇φ(t)|22 +

∫ t

η

|∆φ|22dτ ≤ Z(G0(t, η), F̄0(t, η))

(

|∇φ(η)|22 +

∫ t

η

(|∇ψ|22 + |Sl|22)dτ
)

and

|∆φ(τ )|22 ≤ η−1Z(G0(2η, η), F̄0(2η, η))

(

|∇φ(τ )|22 +

∫ 2η

η

(|∇ψ|22 + |Sl|22)dt
)

(81)

for η ≤ τ ≤ 2η.

Finally, we consider the third level of regularity of φ applying the ∇ operator to (77)

and in the manner of (10) we get

(82) dt|∆φ|22 + |∇∆φ|22 ≤ c(|∇ψ · ∇ρ|22 + |ψ · ∇∇ρ|22 + |∇v · ∇φ|22 + |v · ∇∇φ|22 + |∇Sl|22).

Immediately, we get

(83) |∆φ(t)|22 +

∫ t

η

|∇∆φ2|22dτ

≤ |∆ρ(η)|22 +

∫ t

η

(|∇ψ|22|∆ρ|2||ρ‖3 + (|∇v|23 + |v|2∞)|∆φ|22 + |∇Sl|22)dτ.

We now work on the momentum equation. Differentiating l-times with respect to t

the first equation in (57) we get

(84) ρ∂tv
l
t − µ∆vl

t = −ρl
tv

1
t − ρl

tv · ∇v − ρvl
t · ∇v − ρv · ∇vl

t + λ((vl
t · ∇)∇ρ+ (v · ∇)∇ρl

t

+(∇ρ · ∇)vl
t + (∇ρl

t · ∇)v) + θl−1(v, ρ) + ∂l
t

(

∇ ·
(

λ2

ρ
∇ρ⊗∇ρ

))

≡ Θl(v, ρ).

Thanks to the assumptions, the right-hand side of (84) belongs to L2(η, T ;L2(Ω)),

thus
∫ t

η

|∂l+1
t v|22dτ ≤ c

∫ t

η

(|∆vl
t|22 + |Θl|22)dτ ≤ F̄l(t, η) +

∫ t

η

|Θl|22dτ.

So there exists τ with η ≤ τ ≤ 2η such that

|vl+1
t (τ )|2 ≤ η−1

(

F̄l(2η, η) +

∫ 2η

η

|Θl|22dt
)

.(85)
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Following the procedure used for ρ, writing vl+1
t ≡ ψ, ρl+1

t ≡ φ, differentiating with

respect to t (84) we get

(86) ρ∂tψ − µ∆ψ = −φv1
t − φv · ∇v − ρψ · ∇v − ρv · ∇ψ + λ((ψ · ∇)∇ρ+ (∇φ · ∇)v

+ (v · ∇)∇φ+ (∇ρ · ∇)ψ) −∇ ·
((

λ

ρ

)2

φ∇ρ⊗∇ρ
)

+ ∇ ·
(

λ2

ρ
∇φ⊗∇ρ

)

+ ∇ ·
(

λ2

ρ
∇ρ⊗∇φ

)

+ Σl(vt, ρ).

Thanks to the assumptions

‖Σl‖L2(η,T ;H1(Ω)) ≤ Z(Fl(T, η), F̄l(T, η), Gl(T, η), Ḡl(T, η) ≡ Z(T, η).

We notice that

(87)



























































|φv · ∇v|2 ≤ |v|∞|∇v|2|φ|∞ ≤ |Av|1/2
2 ‖v‖3/2|∇φ|1/2

2 |∆φ|1/2
2 ,

|ρψ · ∇v|2 ≤M |ψ|∞|∇v|2 ≤ c|∇ψ|1/2
2 |Aψ|1/2

2 F0,

|(ψ · ∇)∇ρ|2 ≤ |ψ|∞|∆ρ|2 ≤ c|∇ψ|1/2
2 |Aψ|1/2

2 G0,

|(∇ρ · ∇)ψ|2 ≤ |∇ψ|2|∇ρ|∞ ≤ |∇ψ|2|∆ρ|1/2
2 ‖ρ‖1/2

3 ,

|(v · ∇)∇φ|2 ≤ ‖v‖1/2|Av|1/2
2 |∆φ|2,

|∇φ · ∇)v|2 ≤ |∇v|3|∇φ|6 ≤ ‖v‖1/2|Av|1/2
2 |∆φ|2,

|∆φ∇ρ|2 ≤ c|∆φ|2|∇ρ|∞ ≤ |∆φ|2|∆ρ|1/2
2 ‖ρ‖1/2

3 ,

|φ∂tv|2 ≤ |φ|∞|∂tv|2 ≤ |∇φ|1/2
2 |∆φ|1/2

2 |∂tv|2.
The estimates of the other terms can be found analogously. Now, working in the

manner of (12), we obtain

(88) |√ρ∂tψ|22 + µdt|∇ψ|22 + |Aψ|22 ≤ c|∇ψ|22(‖v‖|Av|2 + |∆ρ|2‖ρ‖3)

+ |∆φ|22((|∇v|2 + |∇v|32)|Av|2 + |∂tv|22 + (|∆ρ|32 + |∆ρ|2)‖ρ‖3) + |Σl|22.
Adding (82) and (88) yields

(89) dt(|∆φ(t)|22 + |∇ψ|22) + |√ρ∂tψ|22 + |Aψ|22 + |∇∆φ|22
≤ c|∇ψ|22(‖v‖|Av|2 + |∆ρ|2‖ρ‖3) + |∆φ|22((|∇v|2 + |∇v|32)|Av|2

+ |∂tv|22 + (|∆ρ|32 + |∆ρ|2)‖ρ‖3) + |∇Sl|22 + |Σl|22.
Gronwall’s lemma, (79), (81), (85) imply that φ and ψ satisfy (72) for k = 1 and l+1,

consequently (72) holds for every l with k = 1.

Now, we use induction on k. Of course, (72) holds true for k = 1. Assuming that (72)

holds for x-derivatives up to order k we now prove it for x-derivatives of order k + 1.

We consider the mass diffusion equation

λ∆ρl
t = ρl+1

t +Dl(v · ∇ρ) ≡ g, ∂nρ
l
t = 0 on Γ.

First of all, in view of the equation (57) we note that the i + 1-regularity level of

ρ corresponds to the i-regularity level of v. In other words, for every l ≥ 1, if vl
t ∈

L∞(0, T ;H1(Ω))∩L2(0, T ;H2(Ω)) then ρl
t ∈ L2(0, T ;H3(Ω))∩L∞(0, T ;H2(Ω)). Notice

that the right-hand side g has, for every l, the x-derivatives up to order k − 1 bounded

in the manner of (72).
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In fact the estimates of all terms in g can be obtained as follows.

(90)











|Di
xv

j
t · ∇Dk−(i+2)

x ρl−j
t |2 ≤ |Di

xv
j
t |6|∇Dk−(i+2)

x ρl−j
t |3, 0 ≤ i < k − 3,

|vj
t · ∇Dk−1

x ρl−j
t |2 ≤ |vj

t |∞|Dkρl−j
t |2,

|Dk−1
x vj

t · ∇ρl−j
t |2 ≤ |Dk−1

x vj
t |2|∇ρl−j

t |∞.
The theory of the Neumann problem for the Laplace operator implies that (72)2 holds

for k and every l. We now pass to the estimates for v. We prove the estimate (72) for v.

We consider the Stokes problem for vl
t

(91)







µAvl
t = −P∂l

t(ρv
1
t + ρv · ∇v − λ((v · ∇)∇ρ

+(∇ρ · ∇)v) − λ2∇ · ( 1
ρ∇ρ⊗∇ρ)) ≡ Λ(v, ρ),

vl
t = 0 on Γ.

We note the the (k − 1) − x derivatives of vl
t satisfy (72)1 for every l. We estimate Λ

in the manner of g. In fact, using the assumptions, we have for i < k − 1

(92)











|ρDk−1vl
t|2 ≤ |ρ|∞|Dk−1vl

t|2,
|vtD

k−1ρl
t|2 ≤ |vt|∞|Dk−1ρl

t|2,
|Di

xρ
j
tD

k−(i+2)
x vl−j

t | ≤ |Di
xρ

j
t |3|Dk−(i+2)

x vl−j
t |6.

Analogously, we can treat the remaining terms (we omit details).

Finally, the theory of Stokes problem gives (72)1 for k and every l. The case t > T ∗

can be treated in the same manner. Theorem 3 is completely proved.

8. Maximal Lq-regularity. This section is devoted to the maximal regularity of the

problem (2) and to the proof of Theorem 4. Some notations used in this section. X

will denote a real Banach space. If S is a linear operator on X, then D(S) stands for

its domain. As usual, σ(S), ρ(S), R(λ, S) are the notation of the spectrum, resolvent set

and resolvent of the operator S. For any T > 0 we denote by W (0, T ;X) the set of

X-valued functions defined a.e. in [0, T ]. If W ≡ Lr they are summable in the sense of

Bochner. Moreover, we continue to denote by S the operator f ∈ W (0, T ;X) 7→ Sf(·)
with domain(S) = {f ∈ W (0, T ;X)|f(t) ∈ D(S), ∀t ∈ (0, T )}. Our primary problem in

this section is the solvability of the differential equation

(93) dtv +Av = f, v(0) = x,

where A is an (unbounded) linear operator (Stokes operator) acting on X with nonempty

resolvent set. We study solvability of (93) by considering the sum of the two commuting

operators d/dt ≡ B,A. The approach is of spectral type in the style of the Dore-Venni

theory [6], and it is not considered the joint spectrum of n-commutating operators in

sense of Taylor. In spectral approach it is crucial that

(94) σ(A+B) ⊆ σ(A) + σ(B), σ(AB) ⊆ σ(A)σ(B).

If A,B are bounded operators the Gelfand transform proves this property. Unfortu-

nately, for unbounded operators the property does not hold, in general.

We will denote by R the class of operators satisfying the first condition in (94) and by

R1 satisfying the second condition in (94). Moreover, we assume that A+B and AB are
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closable. Now we give some definition. We recall the notion of two commuting operators

which will be used in the sequel.

Definition 4. Let A and B be operators on a Banach space X with non-empty resolvent

set. We say that A and B commute if one of the following equivalent conditions holds:

(95)







(i) R(λ,A)R(µ,B) = R(µ,B)R(λ,A), λ ∈ ρ(A), µ ∈ ρ(B);

(ii) x ∈ D(A) implies R(µ,B)x ∈ D(A) and

AR(µ,B)x = R(µ,B)Ax, µ ∈ ρ(B).

For θ ∈ (0, π), r > 0 we denote Σ(θ, r) = {z ∈ C : |z| ≥ r, |argz| ≤ θ}.
Definition 5. Let A and B be commutating operators. Then

(i) A is said to be of class Σ(θ + π/2, r) if there are positive constants θ, r such that

0 < θ < π/2, and

Σ(θ + π/2, r) ⊂ ρ(A) and sup
λ∈Σ(θ+π/2,r)

‖λR(λ,A)‖ <∞,

(ii) A and B are said to satisfy condition P if there are positive constants θ, θ′, r, θ′ < θ

such that A and B are of class Σ(θ + π/2, r) and Σ(π/2 − θ′, r), respectively.

If A and B are commuting operators, A+B is defined by (A+B)x = Ax+Bx with

domain D(A + B) = D(A) ∩ D(B) and AB with domain D(AB) = {x|x ∈ D(B) and

Bx ∈ D(A)}. In this paper we assume that D(A), D(B) are dense in X.

The following assertions hold [1]:

i) if one of the operator A or B is bounded then σ(A+B) ⊆ σ(A) + σ(B);

ii) If A,B satisfy the condition P, A+B is closable and

σ(cl(A+B)) ⊆ σ(A) + σ(B).

This result implies that the class R is not empty.

Moreover, we remark that if

Σ(θ + π/2, r) ⊆ ρ(A), sup
λ∈Σ(θ+π/2,r)

|λ|α‖ R(λ,A)‖ <∞,

and

Σ(π/2 − θ′, r) ⊆ ρ(B), sup
λ∈Σ(+π/2−θ′,r)

|λ|β‖ R(λ,B)‖ <∞,

the assertion (ii) holds if α+ β > 1.

The problem that we are going to study can be formulated in the following form.

Problem Q (Maximal regularity): Find for any f ∈ X a unique solution v ∈ D(A)∩D(B)

solving the problem

(96) Av +Bv = f.

A spectral approach to the existence of a weak solution of problem (96) says that if

ρ(A) ∩ ρ(B) 6= ∅, 0 ∈ ρ(A) or 0 ∈ ρ(B) and A,B belong to the set R then there exists

a weak solution of problem (96) (see later for the definition). Moreover, if 0 ∈ ρ(B),

σ(A), σ(B) ⊆ R+ and A,B−1 belong to the set R1 then v ∈ D(A) ∩ D(B) and v =

B−1(AB−1 + I)−1f is a solution of problem (Q).
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Anyway, the study of the properties of the class of operators R and R1 is beyond the

scope of this paper.

For the Lq-regularity of the solution of problem (2) we consider the theory of two

commutating operators −d/dt = B and A ≡ Aq, the Stokes operator. As described

before, the main goals of that theory are the closeness and the invertibility of the operator

L = −d/dt + A. We refer the reader to [7], [12] and the references therein for more

information on the theory and applications of sums of commuting operators method to

differential equations.

According to the properties of the operator L we recall the following definitions of

the solution of the problem

v′(t) = Av(t) + f(t), v(0) = x.(97)

Definition 6. We say that (97) has Lq-weak solution 1 < q <∞, on [0, T ), 0 < T ≤ ∞
if for every f ∈ Lq(0, T ;X), L is closable and 0 ∈ ρ(L̄).

Definition 7. Let A be the generator of a C0-semigroup. We say that an X-valued

continuous function v(t) is a mild solution of (97) if for every f ∈ BUC((0, T ;X) (X-

valued continuous uniformly bounded function), v(t) satisfies

v(t) = e(t−s)Av(s) +

∫ t

s

e(t−τ)Afdτ, ∀t ≥ s.

Definition 8. We say that (97) has maximal Lq-regularity, 1 < q < ∞, on [0, T ), 0 <

T ≤ ∞ if for every f ∈ Lq(0, T ;X), v(t) ∈ Lq(0, T ;X), has value in D(A) and there is a

constant C <∞ with

‖v′(t)‖Lq(0,T ;X) + ‖Av(t)‖Lq(0,T ;X) ≤ C‖f(t)‖Lq(0,T ;X).(98)

Concerning the existence or the existence and regularity as are conceived in the above

definitions, to the best of our knowledge, so far the sum commuting method is mainly

applied to the Cauchy problem (97) on a finite time interval. The extension of the method

to the infinite time interval is conceived essentially in the direction of regularity of a

solution as is explicated by the following definition.

Definition 9. We say that (97) has maximal Lq-regularity, 1 < q < ∞, on [0, T ), 0 <

T ≤ ∞ if for every f ∈ Lq(0, T ;X), v(t) is almost everywhere differentiable, has value in

D(A) and there is a constant C <∞ with

‖v′(t)‖Lq(0,T ;X) + ‖Av(t)‖Lq(0,T ;X) ≤ C‖f(t)‖Lq(0,T ;X).(99)

This definition is slightly weaker than Definition 8, which also requires v ∈ Lq(0, T ;X).

But for T = ∞ this additional condition implies already s(A) = sup{Reλ : λ ∈ σ(A)} < 0

and this includes the case 0 ∈ ρ(A); in other words, general unbounded domains are

excluded in this approach.

An interpolation space and Stokes problem. LetX,Y be Banach spaces such that Y →֒ X.

For 1 < q <∞ one may define the real interpolation space

(X,Y ) 1

q′
,q = {u(0)|u(t) ∈ H1

q (0, T ;X) ∩ Lq(0, T ;Y )},
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where 1
q′

+ 1
q = 1. In particular, if A generates a holomorphic C0- semigroup T (·) on X,

then

(X,D(A)) 1

q′
,q = {x ∈ X|AT (·)x ∈ Lq(0, T ;X)}.

Thus, the mild solution v = T (·)x of the Cauchy problem

(100) ∂tv +Av = 0, v(0) = x,

is in H1
q (0, T ;X) if and only if x ∈ (X,D(A)) 1

q′
,q. Thanks to this result, in the sequel,

we will assume the initial data v(0) ∈ (X,D(A)) 1

q′
,q.

In the sequel we need the estimates of the Stokes problem

(101)







∂tv − µ∆v + ∇π = f,

∇ · v = g,

v|t=0 = v0, v|∂Ω = 0.

Since we will find solution in the space Lq(0, T ;H2
q (Ω) ∩ V 1

q ), we notice that if Y is the

closure of the domain of the Stokes operator Aq in Lq under the norm |Au|q we can write

Vq = (X,Y ) 1

q′
,q = V 0

q ∩ (Lq, H2
q ∩H1

q,0) 1

q′
,q.

Moreover, the Stokes operator Aq and dt belong to R and Aq, d
−1
t belong to R1 thus,

there exists a solution (v, π) of the solenoidal Stokes problem

(102)







∂tv − µ∆v + ∇π = f,

∇ · v = 0,

v|t=0 = v0, v|∂Ω = 0,

and the following estimate, with v0 ∈ H
2−2/q
q (Ω) divergence-free and vanishing on the

boundary, holds true

(103) ‖∂tv‖Lq(QT ) + ‖∇2v‖Lq(QT ) + sup
0≤t≤T

‖v(t)‖Vq
≤ c(‖f‖Lq(QT ) + ‖v0‖Vq(Ω)).

Here c depends on q,Ω.

For the general case ∇ · v = g the following result plays an important role.

Proposition 5 (Bogovskii [4]). Let Ω ⊂ Rn, n ≥ 2 be a Lipschitz domain, and let

1 < q < ∞, m ∈ N . Then, for each f ∈ Hm
q,0 with

∫

Ω
fdx = 0 there exists at least one

z ∈ Hm+1
q,0 (Ω) satisfying

∇ · z = f, ‖z‖Hm+1
q (Ω) ≤ c‖f‖Hm

q (Ω).

Furthermore, for each f ∈ H−1
q (Ω) there exists at least one z ∈ Lq(Ω) satisfying ∇·z = f

in the sense of distributions, and then

|z|q ≤ c‖f‖H−1
q (Ω).

Here c depends on m,Ω.

The problem (101) can be reduced to the solenoidal Stokes problem (102) if we write

v = u + z where z is a solution of the problem in Proposition 5. With v = u + z the
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problem (101) is transformed into

(104)







∂tu− µ∆u+ ∇π = f − ∂tz + µ∆z,

∇ · u = 0,

u|t=0 = v0, u|∂Ω = 0,

and u satisfies the estimate

(105) ‖∂tu‖Lq(QT ) + ‖∇2u‖Lq(QT ) + sup
0≤t≤T

‖u(t)‖
H

2−2/q
q (Ω)

≤ c(‖f‖Lq(QT ) + ‖v0‖H
2−2/q
q (Ω)

+ ‖∂tg‖Lq(QT ) + ‖∇g‖Lq(QT )).

8.1. Auxiliary problem. This section is devoted to the following problem

(106)







ρ∂tv − µ∆v + ∇π = f,

∇ · v = 0,

v|t=0 = v0, v|∂Ω = 0.

We assume that π has mean zero. An existence and regularity theorem for (106) reads

Theorem 5. Let Ω be a C2+ǫ bounded domain in R3, q > 3, v0 ∈ Vq, f ∈ Lq(QT ) and

ρ ∈ L∞(QT ) ∩ Lq(0, T ;H2
q (Ω)) ∩ Cβ(0, T ;L∞(Ω)) with β ∈ (0, 1), ∇ρ ∈ L∞(QT ) and

m ≤ ρ ≤M . Then (106) has a unique solution (v, π) such that

v ∈ Lq(0, T ;H2
q (Ω) ∩ V 1

q,0(Ω)), ∂tv ∈ Lq(QT ), π ∈ Lq(0, T ;H1
q (Ω)),

and

(107) ‖∂tv‖Lq(Qt) + ‖∇2v‖Lq(Qt) + ‖∇π‖Lq(Qt) + ‖v(t)‖Vq(Ω)

≤M1c
th(M1(t),M2(t))(‖f‖Lq(Qt) + ‖v0‖Vq(Ω)).

Here c depends on q,Ω,m,M, and M1(t) = ‖∇ρ(t)‖Lq(Ω),

M2 = sup
x∈Ω;τ 6=τ ′∈[0,t]

|ρ(x, τ) − ρ(x, τ ′|
|τ − τ ′|β ,

h is a bounded continuous function of M1,M2, and 0 < t ≤ T .

Proof of Theorem 5. The proof of Theorem 5 imitates the proof of Theorem 2 in [10] and

consists of five steps. The existence of problem (106) is given in section 4. We prove the

estimate (107).

Step 1. Density is independent of time. To prove the estimate (107) we use the so-called

freezing method (see [10]). Moreover, thanks to the remark in the above section, we

assume v0 = 0, for simplicity of exposition.

Let (Ωk)1≤k≤n be a covering of Ω by open sets with C2 boundaries. Consider a

partition of unity (φ)1≤k≤n of class C2 such that

1. Suppφk ⊂ Ω,

2.
n

∑

1

φk = 1,

3. 0 ≤ φk ≤ 1,

4. |Diφ|∞ ≤ ci|δ|−i, i = 1, 2, . . . ,

5. n = [(diam(Ω)δ−1)3].
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Let fk = φkf, vk = φkv, πk = φkπ. Let xk be a point (the point of minimum value

of ρ) in Ω̄k ∩ Ω, and ρk = ρ(xk), µk = µ/ρk. Then (vk, φk) satisfies

(108)























∂tvk − µk∆vk + ∇πk

ρk

=
f

ρk
+
ρk − ρ

ρk
∂tvk − µkv∆φk − 2µk∇φk∇v +

π

ρk
∇φk ≡ Fk,

∇ · vk = v · ∇φk ≡ gk,

vk|t=0 = 0, vk|∂Ω = 0.

Let zk be a solution of the problem in Proposition 5 with g = gk and let vk = uk + zk.

Then uk satisfies

(109)







∂tuk − µk∆vk + ∇πk

ρk
= Fk − ∂tzk + µk∆zk,

∇ · uk = 0,

uk|t=0 = 0, uk|∂Ω = 0.

First, to estimate ‖∂tzk‖Lq(QT ) we write (with the use of the convention of repeated

index)

∂tgk =
f

ρ
· ∇φk + π∂i

∂iφk

ρ
− ∂jvi∂j

(

µ

ρ
∂iφk

)

+ ∇ ·
(

µ

ρ
∂iφk∂jvi −

π

ρ
∂iφk

)

≡ h+ ∇ ·H.

Consequently, ∂tzk satisfies

∇ · (∂tzk −H) = h,

and thanks to Proposition 5 we get

(110) ‖∂tzk‖Lq(Qk
T ) ≤ c(((mδ2)−1 + (mδ)−1)(‖π‖Lq(Qk

T ) + ‖∇v‖Lq(Qk
T ))

+ (m2δ)−1(‖π∇ρ‖Lq(Qk
T ) + ‖∇v · ∇ρ‖Lq(Qk

T )) + (mδ)−1‖f‖Lq(Qk
T )).

Moreover

‖Fk‖Lq(Qk
T ) ≤ c(‖f‖Lq(Qk

T ) + (mδ)−1‖∇v‖Lq(Qk
T )(111)

+ (mδ2)−1‖v‖Lq(Qk
T ) + (mδ)−1‖π‖Lq(Qk

T ) + δβ‖∂tv‖Lq(Qk
T )M2).

Bearing in mind the multiplicative inequalities in Proposition 1, in particular ‖φ‖1,q ≤
c(ǫ−1|φ|q + ǫ|D2φ|q), for uk we have the estimate

(112) ‖∂tuk‖Lq(QT ) + µk‖∇2uk‖Lq(QT ) + ‖∇πk‖Lq(QT )

≤ c(‖Fk‖Lq(QT ) + ‖∂tzk‖Lq(QT ) + µk‖∆zk‖Lq(QT ))

≤ c(δ−1‖∇v‖Lq(Qk
T ) + δ−2‖v‖Lq(Qk

T ) + δβ‖∂tuk‖Lq(Qk
T )M2

+ (δ−2 + δ−1)‖π‖Lq(Qk
T ) + δ−1‖∇v‖Lq(Qk

T )

+ δ−1(‖π∇ρ‖Lq(Qk
T ) + ‖∇v · ∇ρ‖Lq(Qk

T )) + δ−1‖f‖Lq(Qk
T )).

Assuming δβM2 = σ with σ small enough, raising to the q-th power and sum-

ming on k of (112), taking into account that the covering has finite multiplicity s and
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∑K
1 ‖Vk‖Lp(Qk

T ) ≤ s‖V ‖Lp(QT ) we obtain

(113) ‖m∂tv‖Lq(QT ) + µ‖∇2v(t)‖Lq(QT ) + ‖∇π‖Lq(QT )

≤ c(δ−2‖v‖Lq(QT ) + δ−1‖∇v‖Lq(QT ) + (δ−2 + δ−1)‖π‖Lq(QT )

+ δ−1(‖∇v · ∇ρ‖Lq(QT ) + ‖π∇ρ‖Lq(QT )) + δ−1‖f‖Lq(QT )).

Combining the Hölder, Gagliardo-Nirenberg and Young inequalities we get

(114)

{ |π∇ρ|q ≤ |∇ρ|∞|π|q,
|∇v · ∇ρ|q ≤ |∇ρ|∞(ǫ−1|v|q + ǫ|D2v|q).

Using the above estimates, with a suitable choice of ǫ in (114) we get

(115) ‖m∂tv‖Lq(QT ) + µ‖∆v‖Lq(QT ) + ‖∇π‖Lq(QT )

≤ c(‖f‖Lq(QT ) +M2
1 ‖v‖Lq(QT ) +M1‖π‖Lq(QT )).

Step 2. Estimate of π. Let χ be the solution of the Neumann problem in divergence form

(116)







∇ · (ρ−1∇χ) = θ,

∫

Ω

χdx = 0,

∫

Ω

θdx = 0,

∂nχ = 0, on Γ.

We recall that ρ is bounded from below and its regularity insures the existence and

uniqueness in H2,q(Ω) with

(117) ‖χ‖2,q ≤ c|θ|q,
c depends on ρ and Ω, q.

In fact, since the problem (116) is in divergence form, the existence of a unique solution

for example in H1(Ω) is well known, and Poincaré’s inequality produces

|χ|2 ≤ c|θ|2.
Concerning the regularity, we write (116)

∆χ−∇ log(ρ)∇χ = θ.

Assuming ∇ log ρ ∈ Lp (p > n if 1 < q ≤ n, or p = q if q > n) produces the estimate

‖χ‖2,q ≤ c(|θ|q + |χ|q),
where c depends on q,Γ, |∇ρ|p. We remark that if p = ∞

|D2χ|q ≤ (c+ |∇ log ρ|2∞)|θ|q, |∇χ|q ≤ (c+ |∇ log ρ|∞)|θ|q.
If q = 2 the above estimates give (117). For q 6= 2, a suitable mean of χ yields (117)

(see [10]).

We now estimate π making use of the functional approach. We consider
∫

Ω

πθdx = −
∫

Ω

ρ−1∇π∇χdx =

∫

Ω

∇χ(∂tv − µρ−1∆v − ρ−1f)dx(118)

≤ µm−1|∇v|q|D2χ|q′ + µm−2|∇ρ|∞|∇v|q |∇χ|q′

+ µm−1‖∇v‖Lq(Γ)‖∇χ‖Lq′ (Γ) +m−1|f |q|∇χ|q′ .
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The Hölder inequality combined with the Gagliardo-Nirenberg inequality yields

(119)
µm−1|∇v|q|D2χ|q′ ≤ cC|∇v|q|θ|q′ ,

‖∇χ‖Lq′ (Γ) ≤ c(|∇χ|q′ + |D2χ|q′) ≤ cC|θ|q′ .

We recall that the constant C in (119) depends on M1. Thanks to (117) we get

(120) |π|q ≤ c(M1|f |q +M2
1 |∇v|q +M1‖∇v‖Lq(Γ))

≤ c(M1|f |q +M2
1 (ǫ−1|v|q + ǫ|D2v|q) +M1(η

−1|v|q + η|D2v|q)).
Thanks to the above estimates with ǫ, η small enough inequality (115) gives

(121) ‖m∂tv‖Lq(QT ) + µ‖∇2u‖Lq(QT ) + ‖∇π‖Lq(QT )

≤ c((1 +M2
1 )‖f‖Lq(QT ) + (M6

1 +M3
1 +M2

1 )‖v‖Lq(QT )).

Step 3. Time dependent density. We remark that, if the density is time-dependent, the

estimate (121) continues to hold true in a small interval. Indeed, (v, π) satisfies

(122)







ρ(0)∂tv − µ∆v + ∇π = f + (ρ(t) − ρ(0))∂tv,

∇ · v = 0,

v|t=0 = 0, v|∂Ω = 0.

Applying the results of steps 1, 2 with density ρ(0), denoting M3 = M6
1 +M3

1 +M2
1 ,

we get

(123) ‖m∂tv‖Lq(Qτ ) + µ‖∇2u‖Lq(Qτ ) + ‖∇π‖Lq(Qτ )

≤ c(M3‖v‖Lq(Qτ ) +M2
1 ‖f‖Lq(Qτ ) +M2

1 |ρ(t) − ρ(0)|∞‖∂tv‖Lq(Qτ )).

Using the Hölder continuity of ρ with respect to t and denoting τ = min(T, (cM2
1M2)

− 1
β )

we get (121) when t ∈ [0, τ ],

(124) ‖m∂tv‖Lq(Qτ ) + µ‖∇2u‖Lq(Qτ ) + ‖∇π‖Lq(Qτ ) ≤ c(M2
1 ‖f‖Lq(Qτ ) +M3‖v‖Lq(Qτ )).

Estimates on the whole interval (0, T ) with T > τ can be performed making use of a

partition of unity (ψk), (k ∈ N, 1 ≤ k ≤ n), with respect to t such that:

1) Supp φ0 ⊂ [0, τ ) and ψ0 ≡ 1 in a neighborhood of 0;

2) for k ≥ 1 Supp ψk ⊂ [k
2 τ, (

k
2 + 1)τ ] and |∂tψk|∞ ≤ c

τ .

Denoting vk ≡ vψk, πk ≡ πψk and fk ≡ fψk, we have

(125)







ρ∂tvk − µk∆vk + ∇πk = fk − vρ∂tψk,

∇ · vk = 0,

vk|t=0 = 0, vk|∂Ω = 0.

For t ≥ kτ/2, with τβ(M2
1 (T )M2(T )) = m

2 we have

‖ρv∂tψk‖Lq(Q kτ
2

) ≤ cM2
1 (M2

1M2)
1
β ‖v‖Lq(Q kτ

2

).

Thanks to (124) we get

(126) ‖m∂tvk‖Lq(Q kτ
2

) + µ‖∇2u‖Lq(Q kτ
2

) + ‖∇πk‖Lq(Q kτ
2

)

≤ c(M2
1 ‖f‖Lq(Q kτ

2

) +M3‖vk‖Lq(Q kτ
2

) + cM2
1 τ

−1‖vk‖Lq(Q kτ
2

)).
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For t > k
2 τ , according to the above estimates, we get

(127) ‖m∂tvk‖Lq(Qt) + µ‖∇2u‖Lp(Qt) + ‖∇π‖Lq(Qt)

≤ c(M2
1 ‖f‖Lq(Qt) +M3‖vk‖Lq(Qt) +M2

1 |ρ(t) − ρ(tk)|∞‖∂tvk‖Lq(Qt)

+M2
1 (M2

1M2)
1
β ‖vk‖Lq(Qt))

≤ c(M2
1 ‖f‖Lq(Qt) +M3‖vk‖Lq(Qt) +M2

1 (M2
1M2)

1
β ‖vk‖Lq(Qt) +M2

1M2‖∂tvk‖Lq(Qt)).

whenever t ∈ [k
2 τ, (

k
2 + 1)τ ].

Now performing the summation on k ∈ {0, · · ·,K} (with (Kτ ≤ T < (K + 1)τ ) we

obtain for (v, π)

(128) ‖m∂tv‖Lq(QT ) + µ‖∇2v‖Lq(QT ) + ‖∇π‖Lq(QT )

≤ c(M2
1 ‖f‖Lq(QT ) +M3‖v‖Lq(QT ) + cM̄‖v‖Lq(QT )).

where M̄(T ) = M2
1 (M2M

2
1 )

1
β .

To conclude the proof we need to estimate v in Lp(Qt).

Step 4. Estimate of |v(t)|q. We recall the inequality

∂t|v|q ≤ |∂tv|q.
For a solution of (106) we get

(129) |v(t)|qq = q

∫ t

0

|v(τ )|q−1
q dτ |v(τ )|qdτ

≤ ǫ

∫ t

0

|v(τ )|qqdτ + cǫ−1

∫ t

0

|∂τv|qqdτ

≤(ǫ+ cǫ−1(M̄ +M3)
q)

∫ t

0

|v(τ )|qqdτ + cǫ−1M2q
1

∫ t

0

|f |qqdτ,

and applying Gronwall’s lemma we get

‖v(t)‖Lq(Qt) ≤ cM2
1 (t)eh(M1,M2)t‖f‖Lq(Qt),

(h(·) is easily traced) and finally we conclude that

(130) ‖m∂tv‖Lq(Qt) + µ‖∇2v‖Lq(Qt) + ‖∇π‖Lq(Qt) ≤ cM2
1 e

h(t)t‖f‖Lq(Qt).

Step 5. General initial data. First, we remark that v satisfying (126) belongs to the

space C(0, T ;Vq). We observed at the beginning of this section that the solution v of the

momentum equation can be written as a sum of two functions, i.e. v = u+w, that satisfy

semi-homogeneous problems, precisely

(131)







m∂tu− µ∆u+ ∇Q = 0, u(0) = v0,

ρ∂tw − µ∆w + ∇Q1 = f + (m− ρ)∂tu,

∇ · u = ∇ · w = 0, w(0) = 0,

with the homogeneous Dirichlet boundary condition, and v0 ∈ H
2− 2

q
q (Ω) (divergence

free). Collecting the above results we get
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(132) ‖m∂tv‖Lq(Qt) + µ‖∇2v‖Lq(Qt) + sup
0≤τ≤t

‖v(τ )‖Vp(Ω)

≤M2
1 (t)eh(t)t(‖v0‖Vq

+ ‖f‖Lq(Qt)).

6. Existence in a small time interval. In this section we prove the Lq-regularity of

problem (2) using the procedure of Theorem 2.

We consider the linear problem

(133)



















∂tρ− λ∆ρ = −u · ∇ρ,
ρ∂tv − µ∆v + ∇π = −ρu · ∇u+ λ((u · ∇)∇ρ+ (∇ρ · ∇)u)

+λ2

ρ ((∇ρ · ∇)∇ρ− 1
ρ (∇ρ · ∇ρ)∇ρ+ ∆ρ∇ρ) + ρf,

∇ · v = 0, v(0) = v0, v = 0 on Γ, ρ(0) = ρ0, ∂nρ = 0 on Γ.

Here u belongs to the set

B = {φ ∈ H2,1
q,0 |max(‖∂tφ‖Lq(QT ), ‖D2φ‖Lq(QT )) ≤ R},

where R is an arbitrary positive number and q > 3.

Making use of density results in section 4 the existence for (133) for regular data is

easily proved. Now the existence and uniqueness of the solution of system (133) enables

us to define the map v = Gu given by the composition of g : u → ρ and h : (u, ρ) → v.

The fixed point of G is the solution in Lq spaces of system (2). It is clear that B is a

compact set in Lq(QT ). As we are going to use a fixed point theorem, we have to show

that GB ⊆ B and G is continuous in B with respect to the norm in Lq(QT ).

Next we prove GB ⊆ B for suitable T̄ .

Assuming ρ0 ∈ (Lr(Ω), H2
r (Ω))( 1

r′
,r) with r > q and recalling

|u · ∇ρ|r ≤ |u|∞|∇ρ|r ≤ |u|∞|ρ|1/2
∞ |D2ρ|1/2

r/2 ≤ c(Ω,M)|u|∞|D2ρ|1/2
r

the maximal Lq theory yields

(134) λ‖∂tρ‖Lr(QT ) + λ2‖∆ρ‖Lr(QT ) ≤ c‖ρ0‖
H

2− 2
r

r (Ω)
+ T

1
rR2,

and from interpolation results we have that

(135)







M2(ρ) ≤ ‖ρ‖H2,1
r

≤ c(‖ρ0‖
H

2− 2
r

r (Ω)
+ T

1
rR2),

M1(ρ) ≤ ‖ρ‖H2,1
r

≤ c(‖ρ0‖
H

2− 2
r

r

+ T
1
rR2),

with β = 1 − 3+r
2r , r ≥ 5.

Now applying the results in Step 4 to system (133) we obtain

(136) ‖m∂tv‖Lq(Qt) + µ‖∇2v‖Lq(Qt) + sup
0≤τ≤t

‖v(τ )‖Vp(Ω) + ‖∇π‖Lq(Qt)

≤ cM2
1 (t)eh(t)t

(

‖v0‖Vq
+ ‖f‖Lp(Qt)

+ ‖u · ∇u‖Lq(Qt) + λ‖(∇ρ · ∇)u+ (u · ∇)∇ρ‖Lq(Qt)

+ λ2

∥

∥

∥

∥

1

ρ

(

(∇ρ · ∇)∇ρ− 1

ρ
(∇ρ · ∇ρ)∇ρ+ ∆ρ∇ρ

)∥

∥

∥

∥

Lq(Qt)

)
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≤ cM2
1 (t)eh(t)t(‖v0‖Vq

+ ‖f‖Lq(Qt) + ‖u‖L∞(Qt)‖∇u‖Lq(Qt)

+ λ(‖u‖L∞(Qt)‖D2ρ‖Lq(Qt) + ‖∇u‖L∞(0,t;Lq(Ω))‖∇ρ‖Lq(0,t;L∞(Ω)))

+ λ2‖D2ρ‖Lq(Qt)‖∇ρ‖L∞(Qt))

≤ c(‖ρ0‖
H

2− 2
r

r (Ω)
+ t

1
rR2)2etR(‖v0‖Vq

+ ‖ρ0‖
H

2− 2
r

r

+ ‖f‖Lq(Qt) +R2t
1
q

+Rt
r−q
qr (‖ρ0‖

H
2− 1

r
r (Ω)

+ t
1
rR2) + t

r−q
qr (‖ρ0‖

H
2− 1

r
r (Ω)

+ t
1
rR2)2).

Assuming R ≥ eC(‖ρ0‖
H

2− 2
r

r

)2(‖v0‖Vq
+ ‖ρ0‖

H
2− 2

r
r

) + ‖f‖Lq(Qt)) and choosing t = T̄

small enough (136) yields

GB ⊆ B.

Since u ∈ L∞(QT ) and q > n, the L2-continuity of G implies the Lq-continuity of G,

then Theorem 2 yields the continuity of G as well as the uniqueness of the solution.

The existence of an Lq-solution of system (2) is proved. Notice that (136) suggests

that if the data are small enough the solution exists for any T > 0. We omit details.
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[1] W. Arendt, F. Räbiger, and A. Sourour, Spectral properties of the operator equation AX +

XB = Y , Quart. J. Math. Oxford Ser. 45 (1994), 133–149.

[2] H. Beirão da Veiga, Diffusion on viscous fluids, existence and asymptotic properties of

solutions, Ann. Sc. Norm. Sup. Pisa 10 (1983), 341–355.

[3] H. Beirão da Veiga, Long time behavior of the solutions to the Navier-Stokes equations

with diffusion, Nonl. Anal. 27 (1996), 1229–1239.

[4] M. E. Bogovskii, Solution of some vector analysis problems connected with operators div

and grad , Trudy Sem. Soboleva 80 (1980), 5–40.

[5] P. D. Damázio, R. Guillén and M. A. Rojas-Medar, An approach of regular solutions for

incompressible fluids with mass diffusion by an iterative method , preprint.

[6] G. Dore and A. Venni, On the closedness of the sum of two closed operators, Math. Z. 196

(1987), 189–201.

[7] Y. Giga and H. Sohr, Abstract L
p estimates for the Cauchy problem with applications to

the Navier-Stokes equations in exterior domain, J. Funct. Analysis 102 (1991), 72–94.

[8] V. A. Kazhikhov, Resolution of boundary value problems for nonhomogeneous viscous

fluids, Dokl. Akad. Nauk SSSR 216 (1974), 1008–1010.

[9] V. A. Kazhikhov and S. Smagulov, The correctness of boundary value problems in a

diffusion model of nonhomogeneous fluids, Dokl. Akad. Nauk SSSR 234 (1977), 330–332.

[10] O. Ladyzhenskaya and V. Solonnikov, The unique solvability of an initial-boundary value

problem for viscous incompressible inhomogeneous fluids, J. Sov. Math. 9 (1978), 687–749.

[11] P. L. Lions, Mathematical Topics in Fluid Mechanics—Incompressible Model, vol. I, Ox-

ford University Press, Oxford, 1996.

[12] J. Prüss, Evolutionary Integral Equations and Applications, Birkhäuser, Basel, 1993.
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