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Abstract. This paper deals with a nonstationary problem for the Navier-Stokes equations

with a free slip boundary condition in an exterior domain. We obtain a global in time unique

solvability theorem and temporal asymptotic behavior of the global strong solution when the

initial velocity is sufficiently small in the sense of L
n (n is dimension). The proof is based on

the contraction mapping principle with the aid of L
p-Lq estimates for the Stokes semigroup

associated with a linearized problem, which is also discussed. In particular, we mainly discuss

the local energy decay property of the semigroup which is a key estimate to prove the L
p-Lq

estimates in an exterior domain.

1. Introduction and main results

1.1. Problem. Let O ⊂ Rn (n ≥ 3) be a bounded open set with C2,1 boundary ∂O and

let L0 be a positive real number such that BL0
(0) = {x ∈ Rn | |x| < L0} ⊃ O. Let Ω be

the exterior domain to O, i.e., Ω ≡ Rn \ O. Here O stands for a rigid obstacle and Ω is

assumed to be occupied with the viscous incompressible Newtonian fluid.

Here and in what follows, u = (u1, . . . , un) and π stand for velocity and pressure,

respectively. n stands for the unit normal vector on ∂Ω. Let T(u, π) be the stress tensor

associated with flow defined by T(u, π) = −2D(u) + πIn, where In is the n × n unit

matrix and D(u) = (∇u + t(∇u))/2 is the deformation tensor.
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In this paper, we are concerned with the following initial boundary value problem for

the Navier-Stokes equations concerning the velocity u and pressure π:

(N-S)











∂tu + u · ∇u = ∆u −∇π, div u = 0, x ∈ Ω, t > 0,

n · u = 0, T(u, π) − (n · T(u, π)n)n = 0, x ∈ ∂Ω, t > 0,

u(·, 0) = a, x ∈ Ω.

Here a is a prescribed initial velocity and the dot ‘·’ stands for the usual inner product

in Rn. We call the pair of boundary conditions in (N-S) the free slip boundary condition.

This boundary condition is one of the physically reasonable boundary conditions for the

motion of a viscous fluid around a rigid body. And also, in the study of the free boundary

value problem of a viscous incompressible fluid, the slip boundary condition appears (see

e.g., [11]).

Since n · n = 1, we can easily see that

T(u, π)n − (n · T(u, π)n)n = D(u)n − (n · D(u)n)n.

This relation implies that the free slip boundary condition is independent of the pressure

π. This fact assures that we can use the same Helmholtz decomposition as in the case of

non-slip boundary condition: u|∂Ω = 0. Hereafter, for notational simplicity, we set

T (u, π) ≡ (T(u, π)n − (n · T(u, π)n)n)|∂Ω

= (D(u)n − (n · D(u)n)n)|∂Ω ≡ D(u).

1.2. Known results. For the Navier-Stokes equations with slip boundary condition,

Solonnikov and Ščadilov [11] studied stationary problem of the linearized equations.

They showed some Lp-estimates for the solution of such problem (see Theorem 2.3 later).

When Ω is bounded, Giga [2] studied the nonstationary Navier-Stokes equations with the

boundary conditions: n · u = 0 and a general first order boundary condition including

slip boundary condition. Giga showed that a sufficient condition for generation of ana-

lytic semigroup and by using fractional powers of the Stokes operator, he showed local in

time existence theorem. Recently, using Giga’s result Steiger [12] proved a local existence

theorem and global existence theorem with very irregular initial velocity. When Ω is the

half space, Saal [8] studied the resolvent problem of the Stokes equations with Navier’s

slip boundary condition (intermediate boundary condition of non-slip and free-slip ones).

He showed the resolvent estimate and that the Stokes operator with Navier’s slip bound-

ary condition admits bounded H∞-calculus. He also showed local in time existence of

Lp-strong solutions. However, when Ω is exterior domain, as far as the authors know,

there are no results about the local and global solvability for (N-S) in Lp-framework.

On the other hand, in the case of non-slip boundary condition: u|∂Ω = 0, there are

many results when Ω is an exterior domain. In 1989, Iwashita [4] proved Lp-Lq estimates

for the Stokes semigroup generated by the Stokes operator with non-slip boundary con-

dition and showed existence of a global solution to the initial boundary value problem of

the Navier-Stokes system by using Kato’s iteration scheme [5] with the aid of such Lp-Lq

estimates. Iwashita proved Lp-Lq estimates for the Stokes semigroup by a cut-off proce-

dure based on the Lp-Lq estimates in R
n and local energy decay of the semigroup. Since

the solenoidal projection and the derivative operator commute with each other in R
n, the
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Stokes semigroup in R
n is essentially the same as the heat semigroup et∆. Therefore, key

analysis in an exterior domain is how to get local energy decay. The local energy decay is

derived from analysis of the resolvent operator near the origin. Such resolvent expansion

around the origin also follows from the cut-off procedure based on the resolvent expansion

in Rn and the stationary problem in a bounded domain.

Our aim in the present paper is to establish Lp-approach to (N-S) by Iwashita’s argu-

ment. Since the boundary condition in (N-S) is not the homogeneous Dirichlet boundary

condition, to get an asymptotic expansion of the resolvent operator near the origin, we

need some modification.

1.3. Notation. To state our results precisely, we introduce notation used throughout the

present paper. We set BR = {x ∈ Rn | |x| < R}, ΩR = Ω ∩ BR, DL,R = {x ∈ Rn |

L < |x| < R}.

For function spaces, we use the standard notation: C∞
0 (Ω), Lp(Ω) and Wm,p(Ω). For

function spaces of vector fields, we use the bold letters,

Lp(Ω) = {f = (f1, . . . , fn) | fj ∈ Lp(Ω), j = 1, . . . , n},

‖f‖Lp(Ω) =

n
∑

j=1

‖fj‖Lp(Ω),

likewise W m,p(Ω) and C∞
0 (Ω).

Let X and Y be two Banach spaces. L(X,Y ) denotes the set of all bounded linear op-

erators fromX into Y . IfX = Y , we use the abbreviated form: L(X) = L(X,X). A(U,X)

and BA(U,X) and Ck(U,X) denote the sets of all analytic, bounded and analytic, and

Ck-class functions defined on U with their values in X, respectively. Set

Ur = {z ∈ C | |z| < r}, U̇r = Ur \ (−∞, 0],

Σǫ = {z ∈ C \ {0} | | arg z| < π − ǫ} (0 < ǫ < π).

1.4. Stokes operator with slip boundary condition. In order to treat (N-S) as an evolution

equation, here we shall introduce the Helmholtz decomposition of Lp vector fields. As was

mentioned before, since the slip boundary condition is independent of the pressure, we

can use the same Helmholtz decomposition as in the case of non-slip boundary condition.

Let 1 < p < ∞. Then Lp(Ω) admits the following direct sum decomposition (see

Miyakawa [7]):

(1.1) Lp(Ω) = Lp
σ(Ω) ⊕Gp(Ω),

where

Lp
σ(Ω) = {u ∈ C∞

0 (Ω) | div u = 0}
‖·‖Lp(Ω)

, Gp(Ω) = {∇π |π ∈ Ŵ 1,p(Ω)},

Ŵ 1,p(Ω) = {π ∈ Lp
loc(Ω) | ∇π ∈ Lp(Ω)}.

When Ω is bounded, Lp
loc(Ω) can be replaced by Lp(Ω) in the definition of Ŵ 1,p(Ω).

Moreover, when Ω is bounded Ŵ 1,p(Ω) admits the following characterization: Ŵ 1,p(Ω) =

W 1,p(Ω) ∩ {π ∈ Lp(Ω) |
∫

Ω
π dx = 0}.

It is well known that if ∂Ω ∈ C2,1 the solenoidal space Lp
σ(Ω) can be characterized as

(1.2) Lp
σ(Ω) = {u ∈ Lp(Ω) | div u = 0,n · u|∂Ω = 0}.
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Let P = Pp be the continuous projection from Lp(Ω) into Lp
σ(Ω) associated with

(1.1). Then we define Stokes operator A = Ap with free slip boundary condition:

Apu = −Pp∆u for u ∈ D(Ap),

D(Ap) = Lp
σ(Ω) ∩ {u ∈ W 2,p(Ω) | D(u) = 0 on ∂Ω}.

Note that the boundary condition n · u = 0 is included in D(Ap), because of (1.2). By

using A, we can rewrite (N-S) as an evolution equation in the Banach space Lp
σ(Ω):

(ACP)

{

u′(t) +Au(t) = Nu(t), t > 0,

u(0) = a,

where Nu(t) = −Pp[u(t) · ∇u(t)].

Shibata and the first author [9] obtained a generalized resolvent estimate for the

Stokes system with slip boundary condition. As a consequence of such generalized resol-

vent estimate and the Helmholtz decomposition (1.1), we have a result concerning the

generation of an analytic semigroup.

Proposition 1.1. Let 1 < p <∞. Then −Ap generates a bounded and analytic semigroup

(e−tAp)t≥0 on Lp
σ(Ω).

From Duhamel’s principle, (ACP) is converted into the integral equation

(INT) u(t) = e−tApa +

∫ t

0

e−(t−s)ApNu(s) ds.

Our task is to solve above integral equation by the contraction mapping principle for

sufficiently small initial velocity a ∈ Ln
σ(Ω) (see Kato [5]). To do so, we need some

estimates for handling nonlinear terms in (INT).

1.5. Main results. We are now in a position to state our main results. The first result

concerns Lp-Lq estimates for the Stokes semigroup e−tAp , which play an essential role in

our contraction mapping argument.

Theorem 1.2 (Lp-Lq estimates). For the Stokes semigroup e−tAp , the following Lp-Lq

estimates hold for any a ∈ Lp
σ(Ω) and t > 0 :

‖∇je−tApa‖Lq(Ω) ≤ Cp,qt
− j

2−
n
2 ( 1

p
− 1

q )‖a‖Lp(Ω), j = 0, 1,

where (i) 1 ≤ p ≤ q ≤ ∞, p 6= ∞ and q 6= 1 when j = 0; (ii) 1 ≤ p ≤ q ≤ n, q 6= 1 when

j = 1.

From the contraction mapping principle with the aid of Theorem 1.2, we have the

main result of the present paper.

Theorem 1.3. Let a ∈ Ln
σ(Ω). Then there exists an ǫ > 0 such that if ‖a‖Ln(Ω) ≤ ǫ,

then (N-S) admits a unique strong solution u ∈ BC([0,∞);Ln
σ(Ω)) with

lim
t→0+0

‖u(t) − a‖Ln(Ω) = 0,

u(t) = o(t−
1
2+ n

2q ), n < q ≤ ∞; ∇u(t) = o(t−
1
2 ), t→ 0 + 0,

u(t) = o(t−
1
2+ n

2q ), n ≤ q ≤ ∞; ∇u(t) = o(t−
1
2 ), t→ ∞.

Here BC(I;X) denotes the class of X-valued bounded continuous function on I.
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Remark 1.4. All of our results can be extended to the case of Navier’s slip boundary

condition (Robin type boundary condition of non-slip and free-slip) by the same lines

below (see [10]). However, in the case of Navier’s slip boundary condition, we do not

need any geometric assumption in Theorem 2.4 and we do not need any modification in

the proof of Theorem 1.5.

In order to prove Theorem 1.2, we apply the cut-off procedure developed by Iwa-

shita [4]. The following local energy decay of e−tA near the boundary plays a crucial role.

Theorem 1.5 (local energy decay). Let 1 < p < ∞ and R > L0. Then the following

estimate holds for any a ∈ L
p
R(Ω) and t ≥ 1:

‖e−tAPa‖W 2,p(ΩR) ≤ Cp,Rt
−n

2 ‖a‖Lp(Ω).

Here L
p
R(Ω) = {a ∈ Lp(Ω) |a = 0 for |x| > R}.

Once we get Theorem 1.5, combining the Lp-Lq estimate for the heat semigroup et∆

in R
n, the resolvent estimate obtained in Shibata and Shimada [9] and Theorem 1.5

by cut-off procedure, we can obtain Theorem 1.2 (see e.g., Iwashita [4], Kobayashi and

Shibata [6], Hishida [3] and Yamaguchi [13] and cited therein).

The plan of the present paper is as follows. In § 2 we will introduce classical results

for the Stokes resolvent problem in R
n, stationary Stokes equations when the domain

is bounded and Bogovskĭı’s lemma which will be required later. In § 3, we will give a

sketch of the proof of our results, Theorems 1.2 and 1.5. First we will study the Stokes

resolvent problem in an exterior domain. In particular, our main concern at this step is

asymptotic behavior of the resolvent when the spectral parameter is close to the origin.

After observing the asymptotic behavior of the resolvent, we shall show Theorem 1.5.

Finally, we will give a sketch of the proof of Theorem 1.2.

2. Preliminaries

2.1. Stokes resolvent problem in Rn. In this subsection, we shall give some fundamental

results for the Stokes resolvent problem in Rn:

(2.1) λu − ∆u + ∇π = f , div u = 0, x ∈ R
n,

where λ ∈ C \ (−∞, 0] and f is given. Set

R0(λ)f(x) ≡ F−1
ξ

[

P0(ξ)f̂(ξ)

λ+ |ξ|2

]

(x), Πf(x) ≡ F−1
ξ

[

−iξ · f̂(ξ)

|ξ|2

]

(x),

where f̂ denotes the Fourier transform of f , F−1
ξ [·] stands for the inverse Fourier trans-

form and P0(ξ) is an n× n matrix of the form:

P0(ξ) =

(

δjk −
ξjξk
|ξ|2

)

j,k=1,...,n

.

(R0(λ)f ,Πf) solve (2.1) provided f ∈ Lp(Rn). For operators R0(λ) and Π, the following

two lemmas are well-known.
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Lemma 2.1. Let 1 < p < ∞ and R > L0. Then for λ ∈ U̇3/4 and f ∈ L
p
R(Rn) ≡ {f ∈

Lp(Rn) |f = 0 for |x| > R}, R0(λ) has the expansion

R0(λ)f =

{

λ
n
2 −1G1(λ)f +G2(λ)f , n odd,

λ
n
2 −1(log λ)G0(λ)f + λ

n
2 −1G1(λ)f +G2(λ)f , n even,

where G0, G1 ∈ BA(U̇3/4,Lp,R(Rn)), and G2 ∈ A(U3/4,Lp,R(Rn)). Here and hereafter

Lp,R(Rn) ≡ L(Lp
R(Rn),W 2,p(ΩR)).

Lemma 2.2. Let 1 < p <∞ and R > L0. Set

R0(0) ≡ F−1
ξ

[

P0(ξ)f̂(ξ)

|ξ|2

]

(x), f ∈ L
p
R(Rn).

Then for every f ∈ L
p
R(Rn), (R0(0)f ,Πf) satisfy

sup
|x|≥R+1

|x|n−2|R0(0)f | + sup
|x|≥R+1

|x|n−1|∇R0(0)f | + sup
|x|≥R+1

|x|n−1|Πf |

+‖∇2R0(0)f‖Lp(Rn) + ‖(R0(0)f ,Πf)‖W 1,p(BR+1) ≤ Cp,R‖f‖Lp(Rn).

For f ∈ L
p
R(Rn) and λ ∈ Σǫ (0 < ǫ < π),

‖R0(λ)f −R0(0)f‖W 2,p(BR) ≤ Cp,R(| logλ|ǫ(n)|λ|
n
2 −1 + |λ|

n
2 −1 + |λ|)‖f‖Lp(Rn),

where ǫ(n) = 1 when n is even and = 0 when n is odd.

2.2. Bogovskĭı’s lemma and the result in a bounded domain. As was mentioned in § 1,

to prove Theorem 1.5, we use Iwashita’s cut-off procedure. To apply Iwashita’s method,

we need some results for stationary problem in bounded domain.

(2.2)

{

− ∆u + ∇π = f , div u = 0, x ∈ D,

n · u = 0, T (u, π) = 0, x ∈ ∂D.

Here and in what follows, D ⊂ Rn stands for a bounded domain and ∂D its boundary.

For (2.2), Solonnikov and Ščadilov [11] and Shibata and the first author [9] obtained the

following theorem.

Theorem 2.3 ([11, 9]). Let 1 < p <∞. Assume that ∂D ∈ C2,1 and D is not rotationally

symmetric. Then for any f ∈ Lp(Ω), (2.2) admits a unique solution (u, π) ∈ W 2,p(D)×

Ŵ 1,p(D) which satisfies

‖u‖W 2,p(D) + ‖π‖W 1,p(D) ≤ C‖f‖Lp(D).

Remark 2.4. The reason why we require that Ω is not rotationally symmetric is that

the proofs of [11] and [9] rely on Korn’s first inequality.

In order to keep divergence free condition in the cut-off procedure, we apply the

well-known Bogovskĭı’s lemma. To give a precise statement of Bogovskĭı’s lemma [1], we

introduce the function spaces

Ẇm,p(D) = C∞
0 (D)

‖·‖W m,p (D)
, Ẇm,p

a (D) =

{

f ∈ Ẇm,p(D) |

∫

D

f dx = 0

}

.

Here D stands for a bounded set in R
n with smooth boundary.
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Lemma 2.5 (Bogovskĭı [1]). Let 1 < p <∞ and let m ∈ N0. Then there exists a bounded

linear operator BD : Ẇm,p
a (Q) → Ẇ

m+1,p
(Rn) such that

supp BD[f ] ⊂ D, div BD[f ] = f in R
n.

To use Lemma 2.5, we shall use the following lemma.

Lemma 2.6. Let 1 < p < ∞, 0 < L < R and let ϕ ∈ C∞
0 (Rn) such that ϕ(x) = 1 for

|x| ≤ L and ϕ(x) = 0 for |x| ≥ R. Then

(i) If u ∈ W 2,p(Rn) and div u = 0 in R
n, then (∇ϕ) · u ∈ Ẇ 2,p

a (DL,R).

(ii) If u ∈ W 2,p(Ω) and div u = 0 in Ω and n · u = 0 on ∂Ω, then (∇ϕ) · u ∈

Ẇ 2,p
a (DL,R).

3. Sketch of the proofs. In this section, we sketch the proofs of our main results.

3.1. Analysis of the Stokes resolvent problem in an exterior domain. In order to prove

Theorem 1.5, we consider the Stokes resolvent problem in Ω:

(RP)

{

λu − ∆u + ∇π = f , div u = 0, x ∈ Ω,

n · u = 0, T (u, π) = 0, x ∈ ∂Ω.

Here λ ∈ Σǫ.

The case when λ is large is well studied by Shibata and the first author [9], here our

main concern is with |λ| small. In particular, to prove Theorem 1.5, it is important to get

a resolvent expansion when λ is close to the origin, like Theorem 2.1. The main purpose

of this subsection is to show the following theorem.

Theorem 3.1. Let 1 < p <∞. Then there exists a λ0 > 0 such that

(λ+A)−1Pf = λ
n
2 −1(log λ)ǫ(n)H0(λ) + λ

n
2 −1H1(λ) +H2(λ)

for any λ ∈ U̇λ0
, where ǫ(n) = 1 when n is even and ǫ(n) = 0 when n is odd, and

H0(λ), H1(λ) ∈ BA(U̇λ0
,Lp,R(Ω)) and H2(λ) ∈ A(Uλ0

,Lp,R(Ω)). Here and hereafter

Lp,R(Ω) ≡ L(Lp
R(Ω),W 2,p(ΩR)).

To prove Theorem 3.1, first we shall construct a parametrix to (RP). Fix a positive

real number R > L0 and let D be an open, bounded, and non-rotationally symmetric set

such that D ⊃ BR+3. Then, ΩD ≡ Ω∩D also becomes a non-rotationally symmetric and

bounded domain, and ΩD ⊃ ΩR+3 ≡ Ω ∩BR+3. Given f ∈ L
p
R+3, let f0 denote the zero

extension of f to Rn: f0 = f , x ∈ Ω and f0 = 0, x 6∈ Ω, and let fd denote the restriction

of f to ΩD. Let R0(λ) and Π denote the operators defined in Lemma 2.1.

Since ΩD is a non-rotationally symmetric bounded domain, in view of Theorem 2.3,

let (v, θ) ∈ W 2,p(ΩD) × Ŵ 1,p(ΩD) be a solution to the boundary value problem

(3.1)

{

− ∆v + ∇θ = fd, div v = 0, x ∈ ΩD,

n · v = 0, T (v, θ) = 0, x ∈ ∂ΩD.

Here ∂ΩD ≡ ∂Ω ∪ ∂D and n denotes the unit normal vector on ∂ΩD.
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If θ satisfies (3.1), then θ+ c also satisfies (3.1) for any constant c ∈ R. Therefore, we

may choose a constant c in such a way that
∫

ΩD

(θ + c− Πf0) dx = 0.

Since ΩD is bounded, θ ∈ Ŵ 1,p(ΩD) implies that
∫

ΩD
θ dx = 0. Therefore,

c =
1

|ΩD|

∫

ΩD

Πf0 dx,

where |ΩD| denotes the Lebesgue measure of ΩD. Let us define operators A and B by

relations: Af = v and Bf = θ + c. Summing up the above, Af and Bf satisfy
{

− ∆Af + ∇Bf = fd, divAf = 0, x ∈ ΩD,

n ·Af = 0, T (Af , Bf) = 0, x ∈ ∂ΩD,
∫

ΩD

(Bf − Πf0) dx = 0(3.2)

In order to estimate Bf , we apply the generalized Poincaré inequality:

(3.3) ‖π‖Lp(ΩD) ≤ C

(

‖∇π‖Lp(ΩD) +

∣

∣

∣

∣

∫

ΩD

π dx

∣

∣

∣

∣

)

for any π ∈ W 1,p(ΩD). By Theorem 2.2, Theorem 2.3, (3.2) and (3.3), we obtain A ∈

L(Lp
R+3(Ω),W 2,p(ΩD)), B ∈ L(Lp

R+3(Ω),W 1,p(ΩD)) and

(3.4) ‖Af‖W 2,p(ΩD) + ‖Bf‖W 1,p(ΩD) ≤ C‖f‖Lp(Ω).

Let ϕ ∈ C∞(Rn), 0 ≤ ϕ ≤ 1 and ϕ = 1 for |x| ≤ R + 1 and ϕ = 0 for |x| ≥ R + 2.

Define operators Φλ and Ψ by

(3.5)
Φλf = (1 − ϕ)R0(λ)f0 + ϕAf + B[(∇ϕ) · (R0(λ)f0 −Af)],

Ψf = (1 − ϕ)Πf0 + ϕBf

for f ∈ L
p
R+3(Ω). Here, in order to apply the Bogovskĭı’s operator BDR+1,R+2

introduced

in Lemma 2.5, we have used the facts that

(3.6) (∇ϕ) ·R0(λ)f0, (∇ϕ) ·Af ∈ Ẇ 2,p(DR+1,R+2),

which follow from Lemma 2.6. By Lemma 2.5, we obtain

(3.7)











B[(∇ϕ) · (R0(λ)f0 −Af)] ∈ W 3,p(R3),

div B[(∇ϕ) · (R0(λ)f0 −Af)] = (∇ϕ) · (R0(λ)f0 −Af),

supp B[(∇ϕ) · (R0(λ)f0 −Af)] ⊂ DR+1,R+2.

Here and hereafter, we use the abbreviation B ≡ BDR+1,R+2
.

Substituting (Φλf ,Ψf) defined in (3.5) into (RP), we obtain

(3.8)

{

(λ− ∆)Φλf + ∇Ψf = f + Sλf , div Φλf = 0, x ∈ Ω,

n · Φλf = 0, T (Φλf ,Ψf) = 0, x ∈ ∂Ω.

where
Sλf = 2∇ϕ · ∇(R0(λ)f0 −Af) + (∆ϕ)(R0(λ)f0 −Af) + λAf

− (∇ϕ)(Πf0 −Bf) + (λ− ∆)B[(∇ϕ) · (R0(λ)f0 −Af)].
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From Lemma 2.1, (3.4) and (3.7), we see that Sλf ∈ W 1,p(Ω) and suppSλf ⊂ ΩR+2.

Therefore, Sλ is a compact operator on L
p
R+3(Ω). Since

Sλf − S0f = 2∇ϕ · ∇(R0(λ)f0 −R0(0)f0) + (∆ϕ)(R0(λ)f0 −R0(0)f0) + λAf

+ λB[(∇ϕ) · (R0(λ)f0 −Af)] − ∆B[(∇ϕ) · (R0(λ)f0 −R0(0)f0)],

from Lemmas 2.1 and 2.2, (3.4), and Lemma 2.5, we have

(3.9) ‖Sλf − S0f‖W 2,p(ΩR) ≤ Cp,R|λ|
1
2 ‖f‖Lp(Ω)

provided f ∈ L
p
R+3(Ω) and λ ∈ U̇1/2.

Our task here is to show that (I + Sλ) has the inverse operator and to show that the

inverse operator (I + Sλ)−1 has the expansion of the same type of R0(λ) when λ→ 0 in

Σǫ. To do so, we shall show that (I + S0)
−1 ∈ L(Lp

R+3(Ω)).

Since S0 is a compact operator on L
p
R+3(Ω), by the Fredholm alternative theorem, it

is sufficient to show that I+S0 is injective. So, let f ∈ L
p
R+3(Ω) be a non-trivial solution

of

(3.10) (I + S0)f = 0.

From (3.8) with λ = 0 and (3.10), we obtain
{

− ∆Φ0f + ∇Ψf = (I + S0)f = 0, div Φ0f = 0, x ∈ Ω,

n · Φ0f = 0, T (Φ0f ,Ψf) = 0, x ∈ ∂Ω.

We shall show that f ≡ 0 in Ω.

From the definition of Φ0 and Ψ0 and Lemma 2.2, we see that (Φ0f ,Ψf) ∈ W
2,p
loc(Ω)×

W 1,p
loc (Ω) and Φ0f = R0f0 and Ψf = Πf0 for |x| ≥ R + 2, and

∇jΦ0f = O(|x|2−n−j), j = 0, 1; Ψf = O(|x|1−n)

In order to conclude that f = 0, the next lemma concerning uniqueness plays a crucial

role.

Lemma 3.2. Let 1 < p < ∞. Let (u, π) ∈ W
2,p
loc(Ω) ×W 1,p

loc (Ω) solve the homogeneous

boundary value problem of Stokes equations :

(3.11)

{

− ∆u + ∇π = 0, div u = 0, x ∈ Ω,

n · u = 0, T (u, π) = 0, x ∈ ∂Ω,

and satisfy the following radiation conditions :

(3.12) ∇ju = O(|x|2−n−j) j = 0, 1; π = O(|x|1−n).

Then we have (u, π) ≡ (0, 0).

Proof. By the boot-strap argument, we may take (u, π) ∈ W
2,r
loc(Ω) ×W 1,r

loc (Ω) for any

r ∈ (1,∞). In particular, we take (u, π) ∈ W
2,2
loc(Ω) × W 1,2

loc (Ω). Let χ ∈ C∞(Rn),

0 ≤ χ ≤ 1 and

χ =

{

1, |x| ≤ 1/2,

0, |x| ≥ 1.
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Set χR(x) = χ(x/R). Multiplying the 1st equation of (3.11) by χRu and using Green’s

first identity, we have

0 =

∫

Ω

(−∆u + ∇π) · χRu dx(3.13)

=

∫

∂ΩR

T(u, π)n · χRu dσ + 2

∫

ΩR

D(u) : D(χRu) dx−

∫

ΩR

π div(χRu) dx

=

∫

∂ΩR

χR(n · T(u, π)n)n · u dσ

+ 2

∫

ΩR

D(u) : D(χRu) dx−

∫

ΩR

π div(χRu) dx

= 2

∫

ΩR

χRD(u) : D(u) dx+ 2

∫

ΩR

D(u) : (u ⊗∇χR + t(u ⊗∇χR)) dx.

Here u ⊗ v ≡ (uivj)i,j=1,...,n and we have used the boundary conditions: T(u, π)n =

n · (n · T(u, π)n) and n · u = 0 on ∂Ω.

Since (u, π) satisfy (3.12), letting R → ∞ in (3.13), we obtain ‖D(u)‖L2(Ω) = 0.

Hence we have D(u) = 0, this implies that u is represented as u(x) = Ax+ b, where A

is an n×n anti-symmetric matrix with trA = 0 and b is a constant vector. On the other

hand, u satisfies (3.12), A ≡ 0 and b ≡ 0, hence u ≡ 0 in Ω. Substituting u = 0 into

(3.11), we have ∇π = 0. Therefore π is constant. However, π should also satisfy (3.12),

so π ≡ 0 in Ω. This completes the proof.

From Lemma 3.2, we have

(3.14)

{

Φ0f = (1 − ϕ)R0(0)f0 + ϕAf + B[(∇ϕ) · (R0(0)f0 −Af)] = 0, in Ω,

Ψf = (1 − ϕ)Πf0 +Bf = 0, in Ω.

Since ϕ = 1 for |x| ≤ R+1 and ϕ = 0 for |x| ≥ R+2 and supp B[(∇ϕ) ·(R0(0)f0−Af)] ⊂

DR+1,R+2, we have

(3.15)

{

Af = 0, Bf = 0, for |x| ≤ R + 1,

R0(0)f0 = 0, Πf0 = 0, for |x| ≥ R + 2

Set

w =

{

Af , x ∈ ΩD,

0, x 6∈ Ω,
ψ =

{

Bf , x ∈ ΩD,

0, x 6∈ Ω

By (3.6) and (3.15), (w, ψ) ∈ W 2,p(D) ×W 1,p(D) and satisfy
{

− ∆w + ∇ψ = f0, div w = 0, x ∈ D,

n · w = 0, T (w, ψ) = 0, x ∈ ∂D.

On the other hand, by (3.15), (R0(0)f0,Πf0) also satisfy
{

− ∆R0(0)f0 + ∇Πf0 = 0, divR0(0)f0 = 0, x ∈ D,

n ·R0(0)f0 = 0, T (R0(0)f0,Πf0) = 0, x ∈ ∂D

Since D is a non-rotationally symmetric bounded domain, by virtue of Theorem 2.3, we

have w = R0(0)f0, ψ = Πf0 + c with some constant c ∈ R. Therefore Af = R0(0)f0
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and Bf − Πf0 = c in ΩD. From (3.2), we have c = 0, which yields Bf = Πf0 in ΩD.

Combining these facts with (3.14), we see that

B[(∇ϕ) · (R0(0)f0 −Af)] = 0, x ∈ R
n,

0 = (1 − ϕ)R0(0)f0 + ϕAf = R0(0)f0 + ϕ(Af −R0(0)f0) = R0(0)f0, x ∈ Ω

0 = (1 − ϕ)Πf0 + ϕBf = Πf0 + ϕ(Bf − Πf0) = Πf0, x ∈ Ω.

Therefore, we obtain

0 = −∆R0(0)f0 + ∇Πf0 = f0,

which implies that f = 0 in Ω. This completes the proof of f ≡ 0. Therefore from the

Fredholm alternative theorem, we can conclude that (I + S0)
−1 ∈ L(Lp

R+3(Ω)) exists.

Let M = |||(I + S0)
−1|||. Here and hereafter ||| · ||| denotes the operator norm of

L(Lp
R+3(Ω)). Since

I + Sλ = (I + S0)(I + (I + S0)
−1(Sλ − S0)),

if we choose λ0 > 0 so small that |||Sλ − S0||| < 1/2M for λ ∈ U̇1/2, we have

(I + Sλ)−1 =
(

∞
∑

k=0

[(I + S0)
−1(Sλ − S0)]

k
)

(I + S0)
−1

for any λ ∈ U̇λ0
, where we have used (3.9).

Set R(λ)f = Φλ(I+Sλ)−1f and Π(λ)f = Ψ(I+S−1
λ )f for f ∈ L

p
R+3(Ω) and λ ∈ U̇λ0

.

Then, by (3.8) we have
{

(λ− ∆)R(λ)f + ∇Π(λ)f = f , divR(λ)f = 0, x ∈ Ω,

n ·R(λ) = 0, T (R(λ)f ,Π(λ)f) = 0, x ∈ ∂Ω,

which combined with the Helmholtz decomposition gives (λ + Ap)R(λ)f = Ppf in Ω.

This implies that

(λ+Ap)
−1Ppf = R(λ)f

provided that λ ∈ U̇λ0
and f ∈ L

p
R+3(Ω). The asymptotic expansion of the resolvent

follows from the definition of R(λ): R(λ) = Φλ(I+Sλ)−1 and Lemma 2.1. This completes

the proof of Theorem 3.1.

3.2. Proof of Theorem 1.5. Finally we shall prove the local energy decay. Let t ≥ 1 and

take ǫ0 and δ0 such that 0 < ǫ0 < π/2 and 0 < δ0 < λ0, where λ0 is the same constant

as in Theorem 3.1. Let γ be a contour so that γ = γ1 ∪ γ2, where

γ1 = {z ∈ C | |z| ≤ δ0, | arg z| = ǫ0}, γ2 = {z ∈ C | |z| ≥ δ0, | arg z| = ǫ0}.

The Stokes semigroup e−tA can be represented as

e−tApPpf =
1

2πi

∫

γ1

eλtR(λ)f dλ+
1

2πi

∫

γ2

eλt(λ+Ap)
−1Ppf dλ ≡ J1(t) + J2(t)

for f ∈ L
p
R(Ω). We shall estimate the W 2,p-norm of J1(t) and J2(t) over ΩR separately.

First we shall estimate J2(t). We use the resolvent estimate obtained by Shibata and

Shimada [9]:

(3.16) |λ|‖u‖Lp(Ω) + ‖u‖W 2,p(Ω) ≤ C‖f‖Lp(Ω)
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for any f ∈ Lp
σ(Ω) and λ ∈ Σǫ with |λ| ≥ δ0. By (3.16) and Lp-boundedness of the

Helmholtz projection Pp, we have

(3.17) ‖J2(t)‖W 2,p(ΩR) ≤ C

∫ ∞

δ0

et cos(π−ǫ0)r dr‖Ppf‖Lp(Ω) ≤ C
e−t(cos ǫ0)δ0

t cos ǫ0
‖f‖Lp(Ω).

From Theorem 3.1, we can split J1(t) into the following three terms:

J1(t) =
1

2πi

∫

γ1

eλtλ
n
2 −1(log λ)ǫ(n)H0(λ)f dλ

+
1

2πi

∫

γ1

eλtλ
n
2 −1H1(λ)f dλ+

1

2πi

∫

γ1

eλtH2(λ)f dλ

≡ J1,0(t) + J1,1(t) + J1,2(t).

Since H1(λ) ∈ BA(Uλ0
,Lp,R(Ω)), we have

‖J1,1(t)‖W 2,p(ΩR) ≤ C

∫ δ0

0

eReλt|λ|
n
2 −1 |dλ|‖f‖Lp(Ω)(3.18)

< C

∫ ∞

0

e−(r cos ǫ0)tr
n
2 −1 dr

≤ Ct−
n
2

∫ ∞

0

e−s cos ǫ0s
n
2 −1 ds ≤ Ct−

n
2 .

Here we have used the change of variables: s = rt and the fact that ǫ0 ∈ (0, π/2).

Next we shall estimate J1,2(t). Since H2(λ) ∈ A(Uλ0
,Lp,R(Ω)), changing γ1 to the

path: z = −δ0 cos ǫ0 + is (|s| ≤ δ0 sin ǫ0), by Cauchy’s integral theorem, we have

‖J1,2(t)‖W 2,p(ΩR) ≤ C

∫ δ0 sin ǫ0

−δ0 sin ǫ0

e−(δ0 cos ǫ0)t ds‖f‖Lp(Ω)(3.19)

≤ 2Cδ0 sin ǫ0e
−(δ0 cos ǫ0)t‖f‖Lp(Ω).

Finally we shall estimate J0,1(t) when n ≥ 4 is even. We apply the well known formula

for the gamma function Γ(σ).

Lemma 3.3. Let j be a non-negative integer and σ > 0. For any t > 0,

1

2πi

∫

γ

eλtλj log λ dλ =
d

dσ

[

sin σπ

π
Γ(σ)eiπσ

]
∣

∣

∣

∣

σ=j+1

t−(j+1).

Since n is even, applying Lemma 3.3 with j = n
2 − 1 ∈ N, we obtain

(3.20) ‖J1,0(t)‖W 2,p(ΩR) ≤ Ct−
n
2 ‖f‖Lp(Ω).

Combining (3.17)–(3.20), the proof of Theorem 1.5 is completed.

3.3. Lp-Lq estimate for the Stokes semigroup. In this subsection, we shall give a sketch

of the proof of Theorem 1.2. The basic idea is similar to that of Iwashita [4] (see also

Kobayashi and Shibata [6], Hishida [3] and Yamaguchi [13] and references therein).

Given f ∈ Lp
σ(Ω), we set u(t) = e−tApf . Then u(t) solves the nonstationary Stokes

equations under the free slip boundary condition with suitable pressure term π = π(t).

In order to show Theorem 1.2, as a first step, we shall derive a sharp local energy

decay estimate for f ∈ Lp
σ(Ω).
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Lemma 3.4. Let 1 < p < ∞ and R > L0 + 1. Then there exists a positive constant such

that

‖∂te
−tApf‖W 1,p(ΩR) + ‖e−tApf‖W 2,p(ΩR) ≤ Ct−

n
2p ‖f‖Lp(Ω)

for any t ≥ 2 and f ∈ Lp
σ(Ω).

The proof of Lemma 3.4 is done by a cut-off procedure based on Lp-Lq estimates for

the heat semigroup et∆ in Rn and Theorem 1.2 (local energy decay). We omit the details.

Our next aim is to obtain the following lemma.

Lemma 3.5. Let 1 < p <∞ and f ∈ Lp
σ(Ω). Then

‖e−tApf‖Lq(Ω) ≤ Cp,qt
−n

2 ( 1
p
− 1

q )‖f‖Lp(Ω) for t ≥ 2

provided that p ≤ q ≤ ∞ and n(1/p− 1/q) < 2 and

‖∇e−tApf‖Lp(Ω) ≤ Cpt
− 1

2 ‖f‖Lp(Ω) for t ≥ 2

provided that 1 < p ≤ n.

In view of Lemma 3.4, it suffices to consider the case Ω \BR and t ≥ 2. The proof of

Lemma 3.5 is carried out by the standard cut-off method and elementary calculations.

From the complex interpolation and Sobolev embedding theorem, we obtain

Lemma 3.6. Let 1 < p <∞, 0 < t ≤ 2 and f ∈ Lp
σ(Ω). Then

‖∇je−tApf‖Lq(Ω) ≤ Cp,qt
− j

2−
n
2 ( 1

p
− 1

q )‖f‖Lp(Ω),

where (i) 1 ≤ p ≤ q ≤ ∞ when j = 0; (ii) 1 < p ≤ q <∞ when j = 1.

Finally, combining Lemmas 3.5 and 3.6, we obtain Theorem 1.2.
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