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Abstract. The existence of steady states in the microcanonical case for a system describing the

interaction of gravitationally attracting particles with a self-similar pressure term is proved. The

system generalizes the Smoluchowski–Poisson equation. The presented theory covers the case of

the model with diffusion that obeys the Fermi–Dirac statistic.

1. Introduction. We consider the following nonlocal elliptic boundary value problem

with given mass M0 > 0 and the energy E0 ∈ R:

∆ϕ = θd/2H−1

(

c − ϕ

θ

)

in Ω,(1)

ϕ = 0 on ∂Ω,(2)

M0 =

∫

Ω

∆ϕ dx,(3)

E0 =
d

2

∫

Ω

θd/2+1P (θ−d/2∆ϕ) dx − 1

2

∫

Ω

|∇ϕ|2 dx,(4)

where P (z) is a given function, H(z) is a primitive of P ′(z)/z, Ω ⊂ R
d is a bounded

domain with smooth boundary ∂Ω, and finally the unknowns: θ is a positive constant

temperature, ϕ = ϕ(x) the gravitational potential and c is some constant to be deter-

mined.

The solutions of the above problem can be regarded as the stationary solutions of

the following parabolic-elliptic system, motivated by some astrophysical models of self-

gravitating particles and derived by statistical mechanics approach:

nt = ∇ · (θP ′2 ∇n + nP ′ ∇ϕ) in Ω × (0,∞),(5)
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∆ϕ = n in Ω × (0,∞),(6)
(

θP ′2 ∇n + nP ′ ∇ϕ
)

· ν̄ = ϕ = 0 on ∂Ω × (0,∞),(7)

n(0) = n0 ≥ 0 in Ω,(8)

where n = n(x, t) is a nonnegative density of the particles inducing the gravitational

potential ϕ = ϕ(x, t). The equation (5) for P ′ = const and given exterior force ∇ϕ goes

back to the paper [13] by the Polish physicist Marian Smoluchowski. Here the potential

ϕ is coupled with the density n via the Poisson equation (6). This specific model was

considered by Chavanis et al. in [8] and treated rigorously in a different framework in [2].

For the related papers see also the references in [14]–[17].

The proof of the existence of at least one solution for the problem (1)–(4) under a

suitable assumptions on the data and the form of P including the one obeying Fermi–

Dirac statistics is the main result of this paper. This will be obtained by the minimization

of the neg-entropy functional W defined by

W(n, θ) =

∫

Ω

(

nH −
(

d

2
+ 1

)

Pθd/2

)

dx,(9)

for the functions n = n(x) = ∆ϕ(x) from L1+2/d(Ω) satisfying constraints (3)–(4), where

the functions P (z), H ′(z) = P ′(z)/z depend on z = nθ−d/2. The neg-entropy W plays

here the role of a Lyapunov functional for the problem (5)–(8), (10), (11) (cf. [4]) from

which we shall derive its stationary counterpart (1)–(4).

2. Derivation of the steady state problem. Note that due to the boundary condition

(7) mass conservation

M(n)
df
=

∫

Ω

n dx = M0(10)

readily follows from the integration of (5) and together with (6) justifies (3).

The problem (5)–(8) can be considered in the canonical (isothermal) setting with the

constant temperature θ or, as in our case, in the microcanonical (nonisothermal) setting,

i.e. with the given energy and the temperature to be determined so that the energy

relation

E(n, θ)
df
=

d

2

∫

Ω

θd/2+1P (nθ−d/2) dx +
1

2

∫

Ω

n∆−1n dx = E0(11)

is satisfied where ϕ = ∆−1n solves the Poisson equation ∆ϕ = n with the homogeneous

Dirichlet boundary consition. This can be rephrased for the stationary problem as (4).

Multiplying (5) by θH + ϕ and integrating by parts one obtains, for some constant c,

the equation for the steady states

θH + ϕ = c(12)

or, if the function H is increasing, equivalently (1).

Note, that applying the Lagrange Multiplier Rule for W defined by (9) (or to be exact

for W − αE − βM) we get the Euler-Lagrange equation (with the Gateaux derivative

denoted as ′)

W
′ − αE′ − βM ′ = 0(13)
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with constraints (10) and (11), or equivalently computing the partial derivatives with

respect to n and θ accordingly,

H(z) − α∆−1n − β − d

2
P ′(z)(1 + αθ) = 0,(14)

((

1 +
2

d

)

P (z) − P ′(z)z

)

(1 + αθ) = 0,(15)

where z = nθ−d/2 and (10)-(11) hold. Therefore, if P is not a polytropic pressure density

of order 1 + 2/d, i.e. Cz1+2/d, then α = −1/θ and from the first equation we get the

equation for the steady states, namely (12) with c = βθ.

3. Overview of the known results for various pressure forms. Numerous pressure

formulas coming from statistical mechanics of self-interacting particles have been collected

in [4] including Maxwell–Boltzmann, Bose–Einstein, Fermi–Dirac and polytropic distri-

butions as in the examples below. General approach to the entropy methods can be found

in [1].

Example 1. In the Maxwell–Boltzmann case PMB = I. This classical Boltzmann rela-

tion leads to the linear Brownian diffusion term ∆n in (5). Note that the steady states

were fully analyzed in [6] and [7] as the critical points for the corresponding neg-entropy

functional W on the space of functions with
∫

Ω
n log n dx < ∞ as H(z) = log z. There-

fore the functional setting is totally different from the examples requiring the power-like

growth of H(z) as presented below.

Example 2. For the Fermi–Dirac distributions one has

PFD(z) =
µ

d
(fd/2 ◦ f−1

d/2−1)

(

2

µ
z

)

.(16)

The function fα denotes the Fermi integral of order α > −1 defined by

fα(z) =

∫ ∞

0

yα dy

ey−z + 1
.(17)

This leads to a nonlinear diffusion in (5). Properties of Fermi integrals (17) (convexity,

asymptotics, etc.) relevant to study the system (1)–(4) and (5)–(8) are collected in [2,

Sec. 2], [3, Sec. 5] or [17, Appendix]. In this case the leading term coefficient, being the

limit of PFD(z)z−1−2/d as z → ∞, equals p1 = 2
d+2 ( d

µ )2/d, where µ = η02
d/2Gσ2

d and G

is the gravitational constant, σd the measure of the unit sphere in R
d and η0 a bound on

the density in the (x, v) phase space. The problem of the existence of steady states has

been considered e.g. in [15] and [16].

Example 3. An analogous construction is used to define the Bose–Einstein distributions

which properties, however, differ from those of Fermi–Dirac ones. The pressure assumes

the form

PBE(z) =
µ

d
(gd/2 ◦ g−1

d/2−1)

(

2

µ
z

)

,

which again leads to a nonlinear diffusion in (5). Here gα denotes the Bose–Einstein
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integral of order α > −1 (cf. [4, Sec. 2]) defined, for z < 0, by

gα(z) =

∫ ∞

0

yα dy

ey−z − 1
.(18)

In this case, however, due to the fact that, for α > 0, G = supz<0 gα(z) is finite, PBE

could be defined only for 2
µ

n
θd/2

≤ G, and a totally different approach should be applied.

Example 4. Polytropes are classical equations of state of a gas

P1+γ(z) = κγz1+γ(19)

with a polytropic constant κγ > 0 and 0 < γ < 2/d so that ∂p
∂θ > 0, which is physically a

natural condition. The limit value γ = 2/d leads to the pressure

P1+2/d(z) = κ2/dz
1+2/d,(20)

independent of θ. The limit case γ ց 0 corresponds to the Boltzmann density-pressure

relation. The polytropic relations define evolution equations with nonlinear diffusions as,

e.g., in the porous media equation (cf. [10]). Note that the steady states in this case are

described by the same equation but with different boundary condition (the Neumann

one) as for the model of chemotaxis (see [11] and [12] for the steady states and [9], [18]

and [19] for the evolution problem).

A common feature for all the aforementioned examples is the dependence of the

pressure P on the ratio n/θd/2. Due to this property of the problem (5)–(8), (10) and

(11), the neg-entropy functional exists (for the proof see [4]).

4. Main results. We shall use the following energy a priori estimates for the solutions

of (1)–(4) (cf. [5]).

Lemma 4.1. For any d ∈ {2, 3, 4} and
∫

Ω
n dx = M0 we have the estimate

∣

∣

∣

∣

∫

Ω

n∆−1n dx

∣

∣

∣

∣

≤ CM
1−2/d
0

∫

Ω

n1+2/d dx.(21)

Proof. The proof follows directly from the Sobolev-Gagliardo-Nirenberg inequality.

Lemma 4.2. Let ν = 4/(d(4 − d)) for any 2 ≤ d < 4. Assume that, for all z ≥ 0,

P (z) ≥ p1z
1+2/d.(22)

Then, for any ε with d
2p1 > ε > 0 and any n satisfying (11) with

∫

Ω
n dx = M0, the

following estimate holds:

E0 + CM1+ν
0 ≥ max

{

ε

∫

Ω

n1+2/d dx,

∣

∣

∣

∣

∫

Ω

n∆−1n dx

∣

∣

∣

∣

}

.(23)

Proof. The proof, analogous to the one of the previous lemma, makes use of assumption

(22) (cf. [3] and [4]).

Now we are ready to formulate the main existence theorem.

Theorem 4.3. Assume that P is a C1, nonnegative, increasing function satisfying (22)

and, for some positive constants p1, C, M0,

P ′(z) ≥ p1,(24)
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max{P (z), zP ′(z)} ≤ C(1 + z1+2/d),(25)

(P ′(z)z−2/d)′ ≤ 0,(26)

lim inf
z→∞

(H(z) − (d/2 + 1)P (z)/z) > Wmin/M0,(27)

where Wmin = infM0,E0
W is negative. Then the neg-entropy functional W attains its

negative minimum Wmin and therefore problem (1)-(4) possesses a solution, provided the

data satisfies dp1 > CM
1−2/d
0 for d = 4 (for d < 4 no smallness condition appears).

Proof. Using the Direct Method in the Calculus of Variations we shall show that the

minimizing sequence (nk, θk) converges to the minimizer of the functional W satisfying

(3) and (4). Unfortunately due to assumptions (22), (25) the leading terms in (9) being

of order 1 + 2/d may cancel out and lower order terms might not provide any a priori

estimates for the densities nk. However, due to the energy constraint (4) and the estimate

(22) we obtain, for nk = ∆ϕk, that

dp1

2

∫

Ω

n
1+2/d
k dx ≤ E0 −

1

2

∫

Ω

nk∆−1nk dx,(28)

which together with Lemma 4.1 gives, for sufficiently small data (dp1 > CM
1−2/d
0 for

2 ≤ d ≤ 2(1 +
√

2)), the required estimate for the L1+2/d(Ω) norm |nk|1+2/d, i.e.

(dp1 − CM
1−2/d
0 )

∫

Ω

n
1+2/d
k dx ≤ 2E0.(29)

If we want to obtain the result for any mass (possibly large one) but only for 2 ≤ d < 4,

then we may apply Lemma 4.1 to the inequality (28) and get

dp1

2

∫

Ω

n
1+2/d
k dx ≤ 3

2
E0 + CM1+ν

0 ,(30)

or directly use the estimate (23).

Thus, in any case, due to the boundedness of the L1+2d norm of nk we can extract a

weakly convergent subsequence still denoted nk.

Then using another lower bound for the pressure P (z) ≥ p1z, which follows from (24),

we get
dp1

2
θkM0 ≤ E0 −

1

2

∫

Ω

nk∆−1nk dx(31)

and using once again Lemma 4.1 and the bound for |nk|1+2/d we get the upper bound

for θk.

Next, we focus on showing that the sequence θk is bounded from below. We use a

similar approach as in [5] and [14] where a priori bounds on the temperature for (5)-(8),

(10), (11) were proved for negative initial values of the entropy W(0) < 0.

It follows from the assumption (27) that for Wmin < 0 and ε > 0 such that ε +

Wmin/M0 < 0, we can find δ > 0 such that for any z ≥ δ we have

R(z)
df
= H(z)z − (d/2 + 1)P (z) ≥ z(ε + Wmin/M0).(32)

Next, due to the assumption (24), fix some negative number W0 ≤ infz≤δ R(z). Then we
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obtain

W(nk, θk) =

(
∫

{nk/θ
d/2

k ≥δ}

+

∫

{nk/θ
d/2

k <δ}

)

θ
d/2
k R

(

nk

θ
d/2
k

)

dx

≥ M0(ε + Wmin/M0) + W0|Ω|θd/2
k .

This leads to the required bound θ
d/2
k ≥ εM0

2|Ω|(−W0) , since for any k large enough we have

W(nk, θk) − Wmin ≤ εM0/2.

Thus we can consider the subsequence (nk, θk) weakly covergent to some element

(n0, θ0). Therefore, by (26) the convexity of W(·, θ0) and continuity implies its weak

lower semi-continuity, hence

lim inf
k→∞

W(nk, θ0) ≥ W(n0, θ0).

Finally, from the estimates on |nk|1+2/d and, by the use of (25), on the derivative

∂W

∂θ
= θd/2

(

d

2

)2 ∫

Ω

P ′(z)z − (1 + 2/d)P (z) dx,

we obtain the equality

lim inf
k→∞

W(nk, θk) = lim inf
k→∞

W(nk, θ0)

which guarantees that the minimum is attained at (n0, θ0).

Corollary 4.4. Assume that we have

P (z) = p1z
1+2/d + o(z1+2/d).(33)

with o(z)/z → 0 as z → ∞. Moreover, let the assumptions of Theorem 4.3 be satisfied

except (27) to be replaced by

lim
z→∞

(G(z) − (d/2)zG′(z))
df
= G0 ≥ 0,

where

H ′(z) = h1(2/d)z2/d−1 + G′(z),

with G′(z) = o(z2/d−1). Then the neg-entropy functional W attains its negative minimum

and the problem (1)-(4) has at least one solution.

Proof. If (33) holds, then the highest order terms appearing in (27) cancel. Then

lim
z→∞

H(z)z − (d/2 + 1)P (z)

z
= lim

z→∞
(H(z) − d

2
zH ′(z))

= lim
z→∞

(G(z) − (d/2)zG′(z))
df
= G0 ≥ 0

which guarantees (27). In particular, it should be noted that for the specific pressure

forms we have to deal with the lower order term, e.g. G′(z) = g1z
β + o(zβ) with some

β < 2/d − 1.

Corollary 4.5. The same statement as in Corollary 4.4 holds for the Fermi–Dirac

pressure P = PFD defined in Example 2 in Section 3.

Proof. As was noted before we are left with the analysis of the lower order term G′(z) =

g1z
β + o(zβ) with some β < 2/d − 1. Namely, if β < −1 then G0 = 0, e.g. for the
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Fermi-Dirac model. The other required properties of the Fermi–Dirac pressure follow

from the papers that have been already cited in Example 2.

Final comments and remarks. It should be noted however, that the Euler–Lagrange

equation was derived formally and in fact, holds only when the density of the minimizer

n0 is positive. To prove this one can argue by contradiction either as in [15] where fixed

mass and the temperature were considered for Fermi–Dirac model or in [7] where mass

and the energy were fixed for the case corresponding to Maxwell–Boltzmann distribution.

If the density n0 was positive on some set we could shift part of mass to zero level set

decreasing thus the value of the entropy density (note that the absolute value of the

entropy grows fastest in the neighbourhood of zero). The question arises: how to obtain

this, keeping the energy value constant? Some arguments were provided for the linear

case in [7] or for the Fermi–Dirac case with fixed mass in [15]. The full exposition of this

argument in the microcanonical case for the Fermi–Dirac model lies beyond the scope of

this paper.
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[4] P. Biler and R. Stańczy, Parabolic-elliptic systems with general density-pressure rela-

tions, in: Variational Problems and Related Topics, M. Misawa and T. Suzuki (eds.),
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[17] R. Stańczy, On an evolution system describing self-gravitating particles in microcanonical

setting, preprint, submitted.

[18] Y. Sugiyama, Global existence and finite time blow up for some degenerate Keller–Segel

model, in: Variational Problems and Related Topics, Y. Naito and T. Suzuki (eds.),
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