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THE MAJORIZING MEASURE APPROACH
TO SAMPLE BOUNDEDNESS

BY

WITOLD BEDNORZ (Warszawa)

Abstract. We describe an alternative approach to sample boundedness and conti-
nuity of stochastic processes. We show that the regularity of paths can be understood
in terms of the distribution of the argument maximum. For a centered Gaussian process
X(t), t ∈ T , we obtain a short proof of the exact lower bound on E supt∈T X(t). Finally we
prove the equivalence of the usual majorizing measure functional to its conjugate version.

1. Introduction. Consider a Gaussian process X(t), t ∈ T , on a prob-
ability space (Ω,F ,P), that is, a jointly Gaussian family of centered r.v.
indexed by T . We can then provide T with the canonical distance

d(s, t) = (E(X(s)−X(t))2)1/2, s, t ∈ T.
If X(t), t ∈ T , is sample bounded then the space (T, d) is totally bounded
since otherwise by Slepian’s lemma (see e.g. [11, Theorem 3.18]) one can find
a countable subset S ⊂ T such that E supt∈S X(t) = ∞. This implies that
Diam(T ) = sups,t∈T d(s, t) < ∞, and taking the Cauchy closure of (T, d)
one can assume that (T, d) is a compact metric space. This implies that
there exists a separable modification of X(t), t ∈ T (which we refer to from
now on), and therefore supt∈T X(t) is well defined. The sample boundedness
of X(t), t ∈ T , means that supt∈T X(t) < ∞ almost surely. Due to the
Gaussian concentration inequality this is equivalent to the finiteness of the
mean value, namely

(1.1) E sup
t∈T

X(t) <∞.

On the other hand note that

(1.2) E sup
t∈T

X(t) = sup
F⊂T

E sup
t∈F

X(t),

where the supremum is taken over all finite subsets F of T . Hence (1.2) pro-
vides an alternative definition of E supt∈T X(t), which can be used without
introducing any modification of the basic process.
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The second basic question on Gaussian processes is the continuity of
paths. We say that X(t), t ∈ T , is continuous if (T, d) 3 t 7→ X(t, ω) ∈ R is
continuous for almost all ω ∈ Ω. There exists a natural family of quantities
whose analysis implies a complete characterization of the continuity property.
For each δ > 0, define

S(δ) = E sup
s,t∈T, d(s,t)≤δ

|X(s)−X(t)|.

Then continuity is equivalent to limδ→0 S(δ) = 0 (see e.g. [11, Chapter 12]
or [1, Chapter 3]).

In this paper, K denotes a universal constant that may change from line
to line. The standard approach to the regularity of Gaussian processes goes
through entropy numbers. Let B(t, ε) be the ball in T of radius ε, centered
at t, i.e. B(t, ε) = {x ∈ T : d(x, t) ≤ ε}. Denote by N(T, d, ε) the smallest
number of balls of radius ε > 0 that cover T . The simplest upper bound of
E supt∈T X(t) was proved in [6, 13] to be

E sup
t∈T

X(t) ≤ K
∞�

0

√
log2(N(T, d, ε)) dε.

Therefore
	∞
0

√
log2(N(T, d, ε)) dε < ∞ is a sufficient condition for (1.1) to

hold. Since it can also be proved that

S(δ) ≤ K
δ�

0

√
log2(N(T, d, ε)) dε,

the condition
	∞
0

√
log2(N(T, d, ε)) dε < ∞ in fact implies the continuity

of X(t), t ∈ T . Unfortunately entropy numbers do not solve the regularity
questions completely: there are sample bounded Gaussian processes of infi-
nite entropy (e.g. ellipsoids in Hilbert space [17]) and there are discontinuous
Gaussian processes that are sample bounded.

A better tool than entropy is majorizing measures. We say that a prob-
ability Borel measure m is majorizing if

(1.3) sup
t∈T

∞�

0

√
log2(m(B(t, ε))−1) dε <∞.

Generalizing the notion of majorizing measure let, for probability measures
µ, ν,

M(µ, ν, δ) =
�

T

δ�

0

√
log2(µ(B(t, ε))−1) dε ν(dt)
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andM(µ, ν) =M(µ, ν,Diam(T )) =M(µ, ν,∞). Obviously

M(µ, δt, δ) =

δ�

0

√
log2(m(B(t, ε))−1) dε,

where δt is the delta measure at t ∈ T . A simple chaining argument shows
(see [8]) that the existence of a majorizing measure suffices for sample bound-
edness of X(t), t ∈ T .

Theorem 1.1. For each Gaussian X(t), t ∈ T , we have

E sup
t∈T

X(t) ≤ K inf
µ

sup
t∈T
M(µ, δt).

The idea of using majorizing measures to study sample boundedness was
developed in [15] and later in [2]. In the Gaussian setting the difficult part
was to establish that the existence of a majorizing measure is necessary when
X(t), t ∈ T , satisfies (1.1). This was first proved in [14].

Theorem 1.2. For each Gaussian X(t), t ∈ T ,
E sup
t∈T

X(t) ≥ K−1 inf
µ

sup
t∈T
M(µ, δt).

Moreover (see e.g. [11, Chapter 12]) a Gaussian process X(t), t ∈ T , is
continuous if and only if for some probability measure µ,

lim
δ→0

sup
t∈T
M(µ, δt, δ) = 0.

A simpler argument for Theorem 1.2 appeared in [16], and finally in [17] the
language of majorizing measures was replaced by admissible partitions. Each
of the methods contains an important constructive part, where one has to
construct a suitable admissible partition or a majorizing measure.

In this paper we propose a different approach. From [8] it is known that
whenever supµM(µ, µ) < ∞ then there exists a majorizing measure on T ,
namely

inf
µ

sup
t∈T
M(µ, δt) ≤ sup

µ
M(µ, µ).

The quantity supµM(µ, µ) is a natural upper bound for processes. Note that
for each X(t), t ∈ F , where F is a finite subset of T , there exists a random
tF valued in F such that

(1.4) E sup
t∈F

X(t) = EX(tF ).

Definition 1.3. Let µF (t) := P(tF = t) for t ∈ F , where tF is given by
(1.4).

This measure can be treated as the distribution of the supremum ar-
gument on F . We show in Section 2 in the general setting of processes of
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bounded increments thatM(µF , µF ) is the right upper bound for the mean
value of the supremum.

Theorem 1.4. For each Gaussian X(t), t ∈ T , and finite F ⊂ T ,
Emax

t∈F
X(t) ≤ KM(µF , µF ).

Note that in the case of Gaussian processes the above property was proved
in [1, Theorem 4.2], yet it is also mentioned in [7] and was known to Tala-
grand [14]. There are many cases (see [3, 4, 5]) where one can prove the lower
bound for the supremum of stochastic processes in the form supµM(µ, µ).
The benefit of the approach is that the lower bound has to be found for a
given measure µ on T , which better fits the chaining argument. Moreover one
can reduce the constructive part of the lower bound proof to the definition
of a natural partitioning sequence on (T, d), which is described in Section 3.
Consequently (see Sections 4, 5), using this idea we give a short proof of the
following lower bound.

Theorem 1.5. For each Gaussian X(t), t ∈ T ,
E sup
t∈T

X(t) ≥ K−1 sup
µ
M(µ, µ).

In this waywe deduce thatE supt∈T X(t) is comparable with supµM(µ, µ)
up to a universal constant. In particular, this shows the well known property

(1.5) K−1 inf
µ

sup
t∈T
M(µ, δt) ≤ sup

µ
M(µ, µ) ≤ K inf

µ
sup
t∈T
M(µ, δt).

We prove in Section 8 that (1.5) holds in a much generalized setting (of
processes under certain increment conditions). Another question is whether
or not there exists a measure µT such that E supt∈T X(t) is comparable with
M(µT , µT ). Such a measure µT should be treated as an asymptotic argument
supremum distribution, i.e. a weak limit of µFn for an increasing sequence of
finite Fn that approximates T . Apparently the result requires the continuity
of the process X(t), t ∈ T .

Theorem 1.6. If X(t), t ∈ T , is a continuous Gaussian process then
there exists a measure µT on T such that

K−1M(µT , µT ) ≤ E sup
t∈T

X(t) ≤ KM(µT , µT ).

Moreover µT is any cluster point of any sequence (µFn) given by Definition
1.3 where Fn ⊂ Fn+1 and

⋃
n Fn is dense in T .

The meaning of Theorem 1.6 is that for continuous processes there ex-
ists an asymptotic supremum distribution, which also agrees with the result
of [9], where it is proved that the supremum argument exists for continuous
Gaussian processes at least up to a modification of the probability space.
Obviously if there exists a well defined supremum argument, i.e. a random
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variable tT such that E supt∈T X(t) = EX(tT ), then the proof of Theorem 1.5
shows that E supt∈T X(t) ≤ KM(µT , µT ), where µT is the distribution of tT .
Therefore for continuous Gaussian processes there exists a natural measure
µT that can be used to characterize the finiteness of E supt∈T X(t).

In the proof of Theorem 1.6 we use the following general estimate on
S(δ).

Theorem 1.7. For each Gaussian X(t), t ∈ T ,

K−1 sup
c>0

sup
µ

(
M(µ, µ, c)− c

√
log2(N(T, d, δ))

)
≤ S(δ) ≤ K sup

µ
M(µ, µ, 2δ).

In particular X(t), t ∈ T , is continuous if and only if

lim
δ→0

sup
µ
M(µ, µ, δ) = 0.

Proof of Theorems 1.6 and 1.7 are provided in Section 6. Then in Sec-
tion 7 we study the main toy example for the theory—the Hilbert–Schmidt
ellipsoid. In the slightly simplified case of Bernoulli random vectors we give a
sufficient description of the supremum distribution to obtain the right upper
and lower bounds on the expectation of the supremum. We also point out
how the theory may be used in the analysis of small value distribution of
centered random vectors valued in the Euclidean space. Finally, in Section 8
we show a duality principle. We consider the quantity supµ inft∈TM(µ, δt)
and prove that in the general setting of processes of bounded increments it
is comparable with infµ supt∈TM(µ, δt) and hence also with supµM(µ, µ).
This is an extension of the result discussed in a recent paper [12] and used to
prove generalizations of the Dvoretzky theorem to arbitrary metric spaces.
In particular in the Gaussian like setting we have

Theorem 1.8. We have

K−1 sup
µ

inf
t∈T
M(µ, δt) ≤ sup

µ
M(µ, µ) ≤ K sup

µ
inf
t∈T
M(µ, δt).

2. The upper bound. In this section we collect all the upper bounds
required in this paper. The basic theory was given in [15] and then slightly
developed in [2] and [3]. First note that our measure approach works in a
much more generalized setting. Let (T, ρ) be any compact metric space and
ϕ a Young function, i.e. convex, increasing, ϕ(0) = 0 and ϕ(1) = 1. The
centered process X(t), t ∈ T , is of bounded increments if

(2.1) Eϕ
(
|X(s)−X(t)|

ρ(s, t)

)
≤ 1, s, t ∈ T,
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i.e. ‖X(t) − X(s)‖ϕ ≤ ρ(s, t). Let Diamρ(T ) and Bρ(t, ε) be the diameter
and the ball in the ρ metric. Moreover define

σµ,ρ,ϕ(t, δ) =

δ�

0

ϕ−1
(

1

µ(B(t, ε))

)
dε,

Mρ,ϕ(µ, ν, δ) =
�

T

σµ,ρ,ϕ(t, δ) ν(dt).

For simplicity let

σµ,ρ,ϕ(t) = σµ,ρ,ϕ(t,Diamρ(T )), Mρ,ϕ(µ, ν) =Mρ,ϕ(µ, ν,Diamρ(T )).

We use the concept from the Introduction, i.e. let a random tF valued in a
finite F ⊂ T be such that Emaxt∈F X(t) = EX(tF ) and µF (t) = P(tF = t).

Proposition 2.1. There exists a universal constant K < ∞ such that
for any process X(t), t ∈ T , of bounded increments and for every finite set
F ⊂ T ,

E sup
t∈F

X(t)−
�

T

EX(u)µF (du) ≤ KMρ,ϕ(µF , µF ).

Proof. First Theorem 1.2 from [2] shows that for each t ∈ F ,∣∣∣X(t)−
�

T

X(u)µF (du)
∣∣∣

≤ K1σµF ,ρ,ϕ(t) +K2Mρ,ϕ(µF , µF )
�

T×T
ϕ

(
|X(u)−X(v)|

ρ(u, v)

)
ν(du, dv),

whereK1,K2 are absolute constants and ν is a probability measure on T×T .
Denote

Z =
�

T×T
ϕ

(
|X(u)−X(v)|

ρ(u, v)

)
ν(du, dv);

then (2.1) implies that EZ ≤ 1. Let Ωt = {tF = t}. Clearly∑
t∈F

E1ΩtX(t)−
�

T

EX(u)µF (dt) =
∑
t∈F

E1Ωt

(
X(t)−

�

T

X(u)µF (du)
)

≤
∑
t∈F

E1Ωt
(
K1σµF ,ρ,ϕ(t) +K2Mρ,ϕ(µF , µF )Z

)
≤ K1

∑
t∈F

σµF ,ρ,ϕ(t)µF (t) +K2M(µF , µF ) ≤ (K1 +K2)M(µF , µF ).

This completes the proof with K = K1 +K2.

We recall that in the Gaussian case, i.e. when ρ(s, t) = d(s, t) and
ϕ(x) = 2x

2 −1, we simplify the notation and use σµ andM instead of σµ,ρ,ϕ
and Mρ,ϕ. Obviously since Gaussian variables are symmetric, EX(u) = 0
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and hence Proposition 2.1 implies Theorem 1.4. In the case of non-symmetric
processes we have the following bound.

Corollary 2.2. For X(t), t ∈ T , with Gaussian increments, for a finite
set F ⊂ T and for any s ∈ T ,

E sup
t∈T

(X(t)−X(s)) ≤ (K + 2)M(µF , µF ).

Proof. Clearly

E sup
t∈T

(X(t)−X(s))

≤ E sup
t∈T

(
X(t)−

�

T

X(u)µF (du)
)

+
�

T

E(X(u)−X(s))µF (du).

However due to the convexity of ϕ,

E
|X(u)−X(s)|

c
1|X(u)−X(s)|≥c ≤ Eϕ

(
|X(u)−X(s)|

c

)
,

and hence

E|X(u)−X(s)| ≤ 2‖X(u)−X(s)‖ϕ ≤ 2ρ(u, v) ≤ 2 Diamρ(T ).

Therefore�

T

E(X(u)−X(s))µF (du) ≤ 2
�

T

Diamρ(T )µF (du) ≤ 2M(µF , µF ).

Consequently,

E sup
t∈T

(X(t)−X(s)) ≤ (K + 2)M(µF , µF ).

The result follows since σµF (t) ≥ Diamρ(T ) for t ∈ F .

Observe that if µ−F denotes the supremum distribution of −X(t) on F
then

(2.2) E sup
t∈T
|X(t)−X(s)| ≤ (2 +K)

(
M(µF , µF ) +M(µ−F , µ−F )

)
.

3. The partition structure. One of the clear consequences of Gaussian
sample boundedness is that Diam(T ) = sup{d(s, t) : s, t ∈ T} is bounded.
For simplicity assume that Diam(T ) = 1. Recall that we write σµ andM in
this case.

Fix r > 1. Let A = (Ak)k≥0 be a partition sequence such that for each
A ∈ Ak there exists tA ∈ A such that A ⊂ B(tA, r

−k/2). Let Ak(t) be the
element of Ak that contains t. We translate the quantitiesM(µ, ν) into the
language of A.
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Lemma 3.1. For each µ,

σµ(t) ≤ r
∞∑
k=1

r−k

√
log2

(
µ(Ak−1(t))

µ(Ak(t))

)
.

Proof. First observe that
∞�

0

√
log2(µ(B(t, ε))−1) dε ≤ (r − 1)

∞∑
k=1

r−k
√

log2(µ(B(t, r−k))−1).

Then note that for all t ∈ T , we have Ak(t) ⊂ B(t, r−k) and therefore√
log2(µ(B(t, r−k))−1) ≤

√
log2(µ(Ak(t))−1).

By the property
√

log2(xy) ≤
√

log2(x) +
√

log2(y) we obtain

√
log2(µ(Ak(t))−1) ≤

k∑
l=1

√
log2

(
µ(Al−1(t))

µ(Al(t))

)
.

Therefore changing the summation order yields
∞∑
k=1

r−k
√

log2(µ(B(t, r−k))−1) ≤
∞∑
k=1

r−k
k∑
l=1

√
log2

(
µ(Al−1(t))

µ(Al(t))

)

=

∞∑
l=1

( ∞∑
k=l

r−k
)√

log2

(
µ(Al−1(t))

µ(Al(t))

)
=

r

r − 1

∞∑
l=1

r−l

√
log2

(
µ(Al−1(t))

µ(Al(t))

)
.

This completes the proof.

Corollary 3.2. We have

M(µ, ν) ≤ r
∞∑
k=1

r−k
∑

B∈Ak−1

∑
A∈Ak(B)

ν(A)

√
log2

(
µ(B)

µ(A)

)
.

4. Gaussian tools. In the general theory of Gaussian processes there
are two basic properties one can use (see [11, Theorem 3.18], and [10] for
concentration inequalities).

Lemma 4.1 (Sudakov minorization). For a Gaussian X(t), t ∈ T , sup-
pose that d(ti, tj) ≥ a for i, j ≤ m, i 6= j. Then

E sup
1≤i≤m

X(ti) ≥ C−11 a
√

log2(m),

where C1 is a universal constant.
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Lemma 4.2 (Gaussian concentration). For a Gaussian X(t), t ∈ T , let
σ = sups,t∈D(E(X(t)−X(s))2)1/2, D ⊂ T . Then

P
(∣∣∣sup
t∈D

(
X(t)− E sup

t∈D
X(t)

)∣∣∣ ≥ u) ≤ 2 exp

(
− u2

2σ2

)
.

The main consequence of these facts is the basic tool we use (see [17,
Proposition 2.1.4]).

Proposition 4.3. Let (ti)
m
i=1 ⊂ T satisfy d(ti, tj) ≥ a if i 6= j. Consider

σ > 0 such that Di ⊂ B(ti, σ). If
⋃m
i=1Di ⊂ D then

E sup
t∈D

X(t) ≥ C−11 a
√

log2(m)− C2σ
√

log2(m) + min
1≤i≤m

E sup
t∈Di

X(t).

Thus for a ≥ (2C1C2)σ,

E sup
t∈D

X(t) ≥ C−13 a
√

log2(m) + min
1≤i≤m

E sup
t∈Di

X(t),

where C1, C2, C3 are universal constants.

5. The lower bound. In this section for a Gaussian X(t), t ∈ T , we
prove Theorem 1.5. Recall that Diam(T ) = 1. First define a set functional by

F (A) = E sup
t∈A

X(t), A is a Borel subset of T.

Using this functional we define a natural partitioning structure for (T, d).
Recall that F (T ) can be finite only if (T, d) is totally bounded, and hence
using compactification we may refer to (T, d) as a compact space.

Fix r > 1 and ε > 0. We construct A = (Ak)k≥0 in the following way.
Let A0 = {T}. To define Ak, k ≥ 1, we partition each B ∈ Ak−1 into sets
A1, . . . , AM in the following way. Let B0 = B and t1 ∈ B be such that

sup
s∈B0

F (C(s)) ≤ F (C(t1)) + εr−k,

where C(s) = B(s, r−k−1/2) ∩ B0. Let A1 = B(t1, r
−k/2) ∩ B0 and B1 =

B0\A1. We continue the construction, and if for i ≥ 1, Bi−1 6= ∅ then choose
ti ∈ Bi−1 so that

(5.1) sup
s∈Bi−1

F (C(s)) ≤ F (C(ti)) + εr−k,

where C(s) = B(s, r−k−1/2)∩Bi−1. Using ti we construct Ai = B(ti, r
−k/2)

∩ Bi−1 and Bi = Bi−1 \ Ai. Recall that our basic assumption was that
there exists M < ∞ such that BM = ∅, namely by construction M ≤
N(T, d, r−k/2) <∞ due to the compactness of T .

For each B ∈ Ak and l ≥ k denote Al(B) = {A ∈ Al : A ⊂ B}.
Note that by construction for each A ∈ Ak there exists tA ∈ A such that
A ⊂ B(tA, r

−k/2), so the partition satisfies the requirement from Section 3.
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The main result of this section is the following induction scheme. The
result is based on Proposition 4.3 and hence we have to choose r suitably
large. On the other hand, a parameter ε is introduced to avoid some technical
problems with attaining a supremum. This parameter is not particularly
important but again we have to make it sufficiently small in order to apply
Proposition 4.3 properly.

Proposition 5.1. For r sufficiently large, namely r > max{1, 2C1C2},
and ε > 0 sufficiently small, namely ε < (4C3)

−1, there exists a universal
constant L < ∞, namely L = 4C3, such that for each measure µ on T and
B ∈ Ak−1, k ≥ 1,

µ(B)(F (B) + 4r−k) ≥ 1

2L
r−k

∑
A∈Ak(B)

µ(A)

√
log2

(
µ(B)

µ(A)

)
+

∑
C∈Ak+1(B)

µ(C)F (C).

Proof. Fix B ∈ Ak−1, k ≥ 1. By the above construction Ak(B) =

{A1, . . . , AM}. There exists the smallest l0 ≥ 0 such that 1 ≤ M ≤ 22
l0 .

For simplicity let m−1 = 0 and ml = 22
l for l = 0, 1, . . . , l0. We group sets

in Ak(B) using the following scheme. Let Ak,l(B) = {Aml−1+1, . . . , Aml}
for 0 ≤ l < l0, and Ak,l0(B) = {Aml0−1+1, . . . , AM}. Clearly |Ak,l(B)| =

ml−ml−1 for 0 ≤ l < l0, and |Ak,l0(B)| = M −ml0−1. For simplicity denote
Bl =

⋃
Aj∈Ak,l(B)Aj , 0 ≤ l ≤ l0.

By the partition construction there exist points ti, 1 ≤ i ≤M , such that
Ai ⊂ B(ti, r

−k/2) and d(ti, tj) ≥ r−k/2 if 1 ≤ i < j ≤M . Moreover for each
C ∈ Ak+1(Ai) there exists tC ∈ C such that C ⊂ B(tC , r

−k−1/2) ∩ Ai, and
hence by (5.1),

F (C) ≤ F (Di) + εr−k

where
Di = B(ti, r

−k−1/2) ∩Ai for 1 ≤ i ≤M.

Again by the partition construction, if i ≤ j then

F (Dj) ≤ F (Di) + εr−k.

Fix l ≥ 1. We apply Proposition 4.3 with a = r−k/2, σ = r−k−1/2 and m =
ml−1 +1 for the sets Di, 1 ≤ i ≤ m, and deduce that for r > max{1, 2C1C2}
and ε < (4C3)

−1 there exists a universal constant L = 4C3 such that

F (B) ≥ 1

L
r−k2l/2 + F (C) for all C ∈ Ak+1(Aj), Aj ∈ Ak,l(B).
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Consequently,

(5.2) µ(Bl)F (B) ≥ 1

L
µ(Bl)r

−k2l/2 +
∑

Aj∈Ak,l(B)

∑
C∈Ak+1(Aj)

µ(C)F (C).

The remaining bound concerns Ak,0(B). Here we cannot do better than the
simplest estimate

(5.3) µ(B0)F (B) ≥
∑

Aj∈Ak,0(B)

∑
C∈Ak+1(Aj)

µ(C)F (C).

By the concavity of
√

log2 x on [1,∞) we find that for 0 ≤ l ≤ l0,

µ(Bl)2
l/2 ≥

∑
Aj∈Ak,l(B)

µ(Aj)

√
log2

(
µ(Bl)

µ(Aj)

)
.

Moreover for each 0 ≤ l ≤ l0 and Aj ∈ Ak,l(B),√
log2

(
µ(Bl)

µ(Aj)

)
+

√
log2

(
µ(B)

µ(Bl)

)
≥

√
log2

(
µ(B)

µ(Aj)

)
,

and hence

(5.4) µ(Bl)

(
2l/2 +

√
log2

(
µ(B)

µ(Bl)

))
≥

∑
Aj∈Ak,l(B)

µ(Aj)

√
log2

(
µ(B)

µ(Aj)

)
.

Thus if 2l/2 ≥
√

log2(µ(B)/µ(Bl)) then by (5.4),

2µ(Bl)2
l/2 ≥

∑
Aj∈Ak,l(B)

µ(Aj)

√
log2

(
µ(B)

µ(Aj)

)
;

otherwise 2l/2 ≤
√

log2(µ(B)/µ(Bl)), which together with the fact that
x
√

log2(1 + x−1) increases on [0, 1] implies

µ(Bl)

√
log2

(
µ(B)

µ(Bl)

)
≤ 2l/2 + 1

22l
µ(B).

Therefore by (5.4) we obtain

(5.5)
l0∑
l=0

2l/2µ(Bl) +

l0∑
l=0

2l/2 + 1

22l
µ(B) ≥ 2−1

M∑
i=1

µ(Ai)

√
log2

(
µ(B)

µ(Ai)

)
.

Summing (5.2), (5.3) and (5.5) yields
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µ(B)

(
F (B) + r−k

(
1 +

l0∑
l=0

2l/2 + 1

22l

))

≥ 1

2L
r−k

M∑
i=1

µ(Ai)

√
log2

(
µ(B)

µ(Ai)

)
+

∑
C∈Ak+1(B)

µ(C)Fk+1(C).

Clearly 1 +
∑l0

l=0
2l/2+1

22l
≤ 4, which completes the proof.

Proposition 5.1 and a simple induction yield

F (T ) + 4
∞∑
k=1

r−2k+2

≥ 1

2L

∞∑
k=1

r−2k+1
∑

B∈A2(k−1)

∑
A∈A2k−1(B)

µ(A)

√
log2

(
µ(B)

µ(A)

)
.

Note that for each C ∈ A1, the partition sequence A defines C = (Ck)k≥0
by Ck = Ak+1(C). Applying the above inequality to C and C in place of T
and A, and then using the inequality F (T ) ≥

∑
C∈A1

µ(C)F (C) we deduce
that

F (T ) + 4
∞∑
k=1

r−2k+1 ≥ 1

2L

∞∑
k=1

r−2k
∑

B∈A2k−1

∑
A∈A2k(B)

µ(A)

√
log2

(
µ(B)

µ(A)

)
.

Since F (T ) = E supt∈T X(t) and
∑∞

k=1 r
−k ≤ 1 for r ≥ 2, we finally

get

2
(
E sup
t∈T

X(t) + 4
)
≥ 1

2L

∞∑
k=1

∑
B∈Ak−1

∑
A∈Ak(B)

µ(B)

√
log2

(
µ(B)

µ(A)

)
.

Together with Corollary 3.2 and the inequality

E sup
t∈T

X(t) = E sup
t∈T

X(t)−X(s) ≥ sup
t∈T

Emax(X(t)−X(s), 0)

≥ C Diam(T ) = C,

where C is an absolute constant, this completes the proof of Theorem 1.5.

6. Continuity of the process. In this section we prove Theorem 1.7,
i.e. we estimate

S(δ) = E sup
s,t∈T, d(s,t)≤δ

|X(t)−X(s)|

in terms of supµM(µ, µ, δ). Fix 0 < δ ≤ Diam(T ) = 1 and let A be a
partition of (T, d) that satisfies A ⊂ B(tA, δ) for each A ∈ A and some
tA ∈ A. We require that |A| = N(T, d, δ), which is clearly possible by the
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entropy definition. Obviously

{(s, t) : d(s, t) ≤ δ} ⊃
⋃
A∈A

A× {tA}.

Therefore

S(δ) = E sup
s,t∈T,d(s,t)≤δ

|X(t)−X(s)| ≥ E max
A∈Ak

sup
t∈A
|X(t)−X(tA)|(6.1)

≥ sup
A∈Ak

E sup
t∈A

(X(t)−X(tA)) = sup
A∈Ak

E sup
t∈A

X(t).

Using Theorem 1.5 we get

(6.2) E sup
t∈A

X(t) ≥ K−1 sup
µA

M(µA, µA),

where the supremum is taken over all measures supported on A. Observe
that each probability measure µ on T has the unique representation µ =∑

A∈A α(A)µA, where α(A) ≥ 0,
∑

A∈A α(A) = 1 and µA is supported
on A. Consequently, by the property

√
log2(xy) ≤

√
log2(x) +

√
log2(y),

M(µ, µ, c) =
�

T

c�

0

√
log2(µ(B(t, ε))−1) dε µ(dt)

≤
∑
A∈A

α(A)
�

T

c�

0

√
log2((α(A)µA(B(t, ε)))−1) dε µA(dt)

≤
∑
A∈A

[
α(A)

�

T

∞�

0

√
log2((α(A)µA(B(t, ε)))−1) dε µA(dt)

+ cα(A)
√

log2(α(A)−1)
]
.

Using the entropy property∑
A∈A

α(A)
√

log2(α(A)−1) ≤
√

log2(N(T, d, δ))

we deduce that

sup
µ
M(µ, µ, c) ≤

∑
A∈A

α(A) sup
µA

M(µA, µA) + c
√

log2(N(T, d, δ)).

Consequently, by (6.1) and (6.2),

(6.3) S(δ) ≥ K−1 sup
c>0

(
sup
µ
M(µ, µ, c)− c

√
log2(N(T, d, δ))

)
.

This is the lower bound in Theorem 1.7.

Corollary 6.1. If X(t), t ∈ T , is Gaussian and continuous then

lim
δ→0

δ
√

log2(N(T, d, δ)) = 0.
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Proof. By our main characterization, the processX(t), t ∈ T , is Gaussian
and continuous, so limδ→0 S(δ) = 0. Consider now a set F ⊂ T such that
|F | = N(T, d, δ/2) and

⋃
t∈F B(t, δ/2) = T . It is important to observe that F

may be chosen in a such way that points in F are δ/2-separated (this can be
obtained from any set F with the required properties by a simple induction
procedure). We apply (6.3) with c = δ/2 and µ equally distributed on F , i.e.

µ(B(t, c)) = µ(B(t, δ/2)) = µ({t}) = 1/N(T, d, δ/2).

ThereforeM(µ, µ, c) =M(µ, µ, δ/2) = (δ/2)
√

log2(N(T, d, δ/2)) and hence

S(δ) ≥ (δ/2)
(√

log2(N(T, d, δ/2))−
√

log2(N(T, d, δ))
)
.

Using δ = 2−k this proves that

(6.4) lim
k→∞

2−k−1
(√

log2(N(T, d, 2−k−1))−
√

log2(N(T, d, 2−k))
)

= 0.

To finish the argument we observe that by Slepian’s lemma [11, Theorem
3.18] we have

(6.5) sup
k≥0

2−k
√

log2(N(T, d, 2−k)) ≤ KS <∞,

where S = limδ→∞ S(δ). For simplicity, denote N(T, d, 2−k) by ak for any
k ≥ 0. We have ak ≤ ak+1 for k ≥ 0; moreover, (6.4) can be rewritten as
limk→∞ 2−k−1(ak+1 − ak) and (6.5) as supk≥0 2−kak < KS. Suppose there
is a subsequence (kl)l≥0 such that liml→∞ 2−klakl = a > 0. Then obviously
by (6.4), for any m ≥ 0,

lim
l→∞

2−kl+makl−m = 2ma.

Consequently, for large enough m we have a contradiction with the require-
ment that supk≥0 2−kak < KS. This implies that the only possible limit for
subsequences is zero and hence limk→∞ 2−kak = 0.

Corollary 6.1 and (6.3) imply that if X(t), t ∈ T , is Gaussian and con-
tinuous then limδ→0 supµM(µ, µ, δ) = 0.

On the other hand, if F is an N(T, d, δ)-net (i.e. |F | = N(T, d, δ),⋃
t∈F B(t, δ) = T ) then

E sup
s,t∈T

|X(t)−X(s)| ≤ E sup
s∈F

sup
t∈B(t,2δ)

|X(t)−X(s)|.

By the concentration of measure argument based on Lemma 4.2 we deduce
that for a universal K1 <∞,

E sup
s∈F

sup
t∈B(t,2δ)

|X(t)−X(s)|

≤ sup
s∈F

E sup
t∈B(s,2δ)

|X(t)−X(s)|+K1δ
√

log2(N(T, d, δ)).



MAJORIZING MEASURE APPROACH 219

Note that
E sup
t∈B(s,2δ)

|X(t)−X(s)| = 2E sup
t∈B(s,2δ)

X(t)

and E supt∈B(s,2δ)X(t) ≤ K2 supµM(µ, µ, 2δ) by Theorem 1.5. Hence

E sup
s∈F

sup
t∈B(t,2δ)

|X(t)−X(s)| ≤ K
(

sup
µ
M(µ, µ, 2δ) + δ

√
log2(N(T, d, δ))

)
.

Since the argument used in the proof of Corollary 6.1 implies that

sup
µ
M(µ, µ, 2δ) ≥ δ

√
log2(N(T, d, δ)),

we obtain the upper bound in Theorem 1.7. Then limδ supµM(µ, µ, δ) = 0
implies that limδ→0 S(δ) = 0, and therefore the process X(t), t ∈ T , is
continuous.

We now prove Theorem 1.6. Assuming the continuity of X(t), t ∈ T , we
construct µT on T such thatK−1M(µT , µT )≤E supt∈T X(t)≤KM(µT , µT ).
Let (Fn)∞n=0 be any sequence of finite subsets such that Fn ⊂ Fn+1 and⋃
n≥0 Fn is dense in T . By the compactness of (T, d) the set of cluster points

of (µFn)∞n=0 is not empty, and hence going to a subsequence we can assume
that µT is a weak limit of the sequence. By Theorems 1.5 and 1.4,

K−1M(µT , µT ) ≤ E sup
t∈T

X(t) ≤ K lim sup
n→∞

M(µFn , µFn),

so it suffices to show that

lim
n→∞

M(µFn , µFn) =M(µT , µT ).

It is clear that for ε > 0 the functionals

Φε(ν) =
�

T

∞�

ε

√
log2(ν(B(t, ε))−1 dε ν(dt)

are continuous on P(T, d) (space of probability measures with the weak
topology). Therefore to get the convergence ofΦ0(µFn) toΦ0(µT )we need that

sup
n

�

T

ε�

0

√
log2(µFn(B(t, ε))−1)µFn(dt) ≤ sup

µ
M(µ, µ, ε)

tends to 0 as ε→ 0. Theorem 1.7 implies that the convergence holds whenever
X(t), t ∈ T , is continuous. This completes the proof of Theorem 1.6.

7. Hilbert–Schmidt ellipsoid. We are ready to discuss the supre-
mum distribution in the setting of the basic toy example for the theory, the
Hilbert–Schmidt ellipsoid. Consider the real sequences x = (xi)

∞
i=1 equipped

with the Euclidean norm ‖x‖ = (
∑∞

i=1 x
2
i )

1/2. The basic object for our pur-
poses is the `2 space which consists of x = (xi)

∞
i=1 such that ‖x‖ <∞. We use
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the notation x2 = (x2i )
∞
i=1 and xy = (xiyi)

∞
i=1 for any sequences x = (xi)

∞
i=1,

y = (yi)
∞
i=1. For any sequence a = (ai)

∞
i=1 we set

E =
{

(xi)
∞
i=1 ∈ `2 :

∞∑
i=1

x2i /a
2
i ≤ 1

}
.

We can require that ai ≥ ai+1 > 0 for i ≥ 1. Note that E is compact if and
only if ai → 0 as i → ∞. Let g = (gi)

∞
i=1, where the gi are independent

standard Gaussian random variables. Let

X(x) = 〈x, g〉, x ∈ E .
The basic question is when supx∈E X(x) < ∞ a.s. Note that the process is
continuous if it is sample bounded, therefore sample boundedness implies the
existence of the supremum distribution (in the sense of the previous section).
In the case of E this implies that the process X is sample bounded if and
only if

∑∞
i=1 a

2
i <∞. Indeed, for any N <∞ define

EN =
{

(xi)
∞
i=1 :

N∑
i=1

x2i /a
2
i ≤ 1 and xi = 0 for i > N

}
.

Using the Schwarz inequality, we get

(7.1) E sup
x∈EN

X(x) = E sup
x∈EN
〈x, g〉 = E sup

x∈EN

N∑
i=1

xi
ai

(aigi) = E
( N∑
i=1

a2i g
2
i

)1/2
.

Note that the supremum supx∈EN X(x) is attained at x ∈ EN such that
xi = a2i gi/(

∑N
i=1 a

2
i g

2
i )

1/2 for i ≤ N and xi = 0 for i > N . Therefore the
supremum distribution µN on EN is the law of a2i gi/(

∑N
i=1 a

2
i g

2
i )

1/2 for i ≤ N
and 0 for i > N . If

∑∞
i=1 a

2
i = ∞ then the weak limit of µN is δ0 and we

have a contradiction with Theorem 1.6. This implies that E supx∈E X(x) can
be finite only if ‖a‖2 =

∑∞
i=1 a

2
i <∞. Note that in this case the limit of µN

exists and is equal to µ, the distribution of a2i gi/(
∑∞

i=1 a
2
i g

2
i )

1/2, i ≥ 1, i.e.
the law of the random variable a2g/‖ag‖ valued in E . In particular under
the assumption ‖a‖ <∞, we have

(7.2) E sup
x∈E

X(x) = E
( ∞∑
i=1

a2i g
2
i

)1/2
≤
( ∞∑
i=1

a2i

)1/2
= ‖a‖.

It can be proved using the above result and Khinchin’s inequality that
E supx∈E X(x) is comparable with ‖a‖ up to a universal constant. Recall
that by Theorems 1.5 and 1.6, E supx∈E X(x) is comparable withM(µ, µ),
and henceM(µ, µ) is comparable with ‖a‖ up to a universal constant. The
measure µ is a bit complicated and that is why we replace it by a more
comprehensible distribution based on random signs which shares the same
property.



MAJORIZING MEASURE APPROACH 221

First observe that by Theorem 1.5 and (7.2) the quantity ‖a‖ dominates
M(ν, ν) up to a universal constant, where ν is any probability distribution
on E . Following this idea let us slightly simplify the setting and consider the
process

Y (x) = 〈x, ε〉, x ∈ E ,
where ε = (εi)

∞
i=1 is a sequence of independent Bernoulli random variables,

i.e. P(εi = ±1) = 1/2. Clearly Y (x), x ∈ E , is subgaussian, which means
that

‖Y (x)− Y (y)‖ϕ ≤ C‖x− y‖, where ϕ(x) = 22
x − 1,

and C is a universal constant. Obviously E supx∈E〈x, ε〉 = ‖a‖. Therefore
by Proposition 2.1, ‖a‖ is bounded from above by M(ν, ν), where ν is the
supremum distribution of Y (x), x ∈ E . Note that by the same argument
as in the Gaussian case the measure ν is the distribution of the random
variable a2ε/‖a‖ valued in E . On the other hand we have learned from the
Gaussian case that ‖a‖ dominates E supx∈E X(x) and hence alsoM(ν, ν) up
to a universal constant. Therefore M(ν, ν) and ‖a‖ are comparable, which
shows that ν is a good equivalent of µ, and the benefit is that ν has a much
simpler structure.

We start to analyze the measure ν. Note that for any x ∈ E , we have

ν(B(x, δ)) = P
(∥∥a2ε− x‖a‖∥∥ ≤ δ‖a‖).

The upper bound for this quantity is relatively easy to find, by means of the
following construction. We may only consider δ ≤ ‖x‖. For any y ∈ `2 define
y(i) ∈ `2 by y(i)j = 0, j < i and y(i)j = yj for j ≥ i. Denote vi = ‖x(i)‖;
then by the construction v1 = ‖x‖, vi+1 ≤ vi for i > 1 and limi→∞ vi = 0,
therefore (vi)

∞
i=1 forms a partition of [0, ‖x‖]. For simplicity let v0 = a1 ≥ v1.

Lemma 7.1. For each i ≥ 0 and δ > 0 such that δ ≤ 1√
2
vi,

ν(B(x, δ)) ≤ exp

(
−‖a

2(i)‖2

8a4i

)
.

Proof. First observe that for i ≥ 0 and δ ≤ 1√
2
vi, we have

P
(∥∥a2ε− x‖a‖∥∥ ≤ δ‖a‖) ≤ P

(∥∥a2(i)ε− x(i)‖a‖
∥∥ ≤ δ‖a‖)

≤ P
(
2〈a2(i)ε, x(i)〉‖a‖ ≥ ‖a2(i)‖2 + (‖x(i)‖2 − δ2)‖a‖2

)
≤ P

(
2〈a2(i)ε, x(i)〉‖a‖ ≥ ‖a2(i)‖2 + 1

2‖x(i)‖2‖a‖2
)

≤ P
(
2〈a2(i)ε, x(i)〉 ≥ ‖a2(i)‖ ‖x(i)‖

)
≤ exp

(
−‖a

2(i)‖2‖x(i)‖2

8‖a2(i)x(i)‖2

)
≤ exp

(
−‖a

2(i)‖2

8a4i

)
,
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where we have used Hoeffding’s inequality and ‖x(i)‖2−δ2 = v2i −δ, s2 ≥ 1
2v

2
i

= 1
2‖x(i)‖2 and u2 + w2 ≥ 2uw.

Consequently,√
log2(ν(B(x, δ))−1) ≥

√
log2(e)

‖a2(i)‖
2
√

2 a2i
for

vi+1√
2
≤ δ ≤ vi√

2
.

Therefore

(7.3)
�

E

‖x‖�

0

√
log(ν(B(x, δ))−1) dδ ν(dx)

≥
∞∑
i=1

�

T

vi/
√
2�

vi+1/
√
2

√
log(ν(B(x, δ))−1) dδ ν(dx)

≥
√

log2(e)

∞∑
i=1

‖a2(i)‖
4a2i

�

T

(‖x(i)‖ − ‖x(i+ 1)‖) ν(dx).

Therefore it suffices to prove the right lower bound on
	
E(‖x(i)‖ −

‖x(i+ 1)‖) ν(dx) for i ≥ 0.

Lemma 7.2. We have
�

E
(‖x(i)‖ − ‖x(i+ 1)‖) ν(dx) ≥ a4i

2‖a‖ ‖a2(i)‖
.

Proof. First note that

‖x(i)‖ − ‖x(i+ 1)‖ ≥ x2i
2‖x(i)‖

and then observe that
�

E

x2i
2‖x(i)‖

ν(dx) = E
(εia

2
i )

2

2‖a‖ ‖a2(i)ε‖
=

a4i
2‖a2(i)‖ ‖a‖

.

Combining Lemmas 1, 2 and (7.3) implies that

�

E

‖x‖�

0

√
log2(ν(B(x, δ))−1) dδ ν(dx)

≥
√

log2(e)

∞∑
i=1

‖a2(i)‖
4a2i

a4i
2‖a2(i)‖2‖a‖

=

√
log2(e)

8
‖a‖.

This proves that our upper bound on ν(B(x, δ)) is of the right order.
We turn to the proof of a suitable lower bound for ν(B(x, δ)).
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Lemma 7.3. We have
�

E

∞�

0

√
log2(ν(B(x, δ))−1) dδ ≤ 2

√
2 ‖a‖.

Proof. The main trick here is to consider only special a2(i), namely for
i = 2k, k = 0, 1, 2, . . . . Observe that for points x of the form a2ε̄/‖a‖ =
(a2i ε̄i/‖a‖)∞i=1, ε̄i = ±1, on which the measure ν is supported we have

ν(B(x, δ)) = P
(
〈a2ε, a2〉 ≥ ‖a2‖2 − 1

2δ
2‖a‖2

)
.

Let δk =
√

2 ‖a2(2k)‖/‖a‖. Then

ν(B(x, δk)) = P
( ∞∑
i=1

a4i εi ≥
2k−1∑
i=1

a4i

)
.

Now observe that the inequality
∑∞

i=1 a
4
i εi ≥

∑2k−1
i=1 a4i holds at least on

the event where ε1 = · · · = ε2k−1 = 1 and
∑∞

i=2k a
4
i εi ≥ 0, which has

probability 2−2
k . Therefore ν(B(x, δk)) ≥ 2−2

k , and consequently√
log2(ν(B(x, δk))−1) ≤ 2k/2.

Clearly
∞�

0

√
log2(ν(B(x, δ))−1) dδ ≤

∞∑
k=1

2k/2(δk−1 − δk).

Moreover using the triangle inequality we get

δk−1 − δk ≤ ‖a‖−1

√√√√ 2k−1∑
i=2k−1

a4i ≤ ‖a‖
−12(k−1)/2a22k−1 .

Consequently,
∞∑
k=1

2k/2(δk−1 − δk) ≤
√

2 ‖a‖−1
∞∑
k=1

2k−1a22k−1 .

It remains to observe that
∞∑
k=1

2k−1a2k−1 ≤ 2‖a‖2.

Therefore
∞�

0

√
log2(ν(B(x, δ))−1) dδ ≤ 2

√
2 ‖a‖.

Integration of the inequality with respect to ν completes the argument.

The theory is also useful to obtain some lower bounds on the small value
probability. Recall that for points x of the form a2ε̄/‖a‖ = (a2i ε̄i/‖a‖)∞i=1
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with ε̄i = ±1 (the support of ν) the values of ν(B(x, δ)) are all equal to

ν(B(x, δ)) = P
(
〈a2ε, a2〉 ≥ ‖a2‖2 − 1

2δ
2‖a‖2

)
.

On the other hand, the bound M(ν, ν) ≤ K‖a‖, where K is a universal
constant, implies that

δ
√

log2(ν(B(x, δ))−1) ≤M(ν, ν)K‖a‖
for any x of the form = a2ε̄/‖a‖ = (a2i ε̄i/‖a‖)∞i=1, ε̄i = ±1, and hence

ν(B(x, δ)) ≥ exp(−K̄2‖a‖2/δ2)
with K̄ =

√
log2(e)K. In this way we have proved

Corollary 7.4. For any sequence (ti)
∞
i=1 of positive numbers such that

‖t1/4‖ <∞ we have

P
( ∞∑
i=1

tiεi ≥
∞∑
i=1

ti − 1
2δ

2‖t1/4‖4
)
≥ exp(−K̄2/δ2).

Note that lower bounds in the problem of small value probability are
usually difficult to get.

Similar results can be established for Gaussian variables and more gener-
ally for centered random vectors valued in the Euclidean space. Indeed, if X
is a random vector valued in Rn in the isotropic position and A a given n×n
matrix, then for the set T = A∗Bn

1 , where Bn
1 = B‖·‖(0, 1) is the Euclidean

ball of radius 1 in Rn centered at 0, we can consider the process Z(t) = 〈t,X〉,
t ∈ T . Again due to the isotropy assumption E|Z(t)− Z(s)|2 = ‖t− s‖2 for
any s, t ∈ T , and obviously

E sup
t∈T

Z(t) = E‖AX‖.

Moreover the supremum distribution m is the same as the distribution of
the vector A∗AX/‖AX‖, and hence for any x ∈ A∗Bn

1 ,

m(B(x, δ)) = P
(∥∥A∗AX − x‖AX‖∥∥ ≤ δ‖AX‖).

Consequently, whenever the presented Gaussian type approach may be used
to get a lower bound on E‖AX‖ it should result in lower bounds on the small
value probability, i.e. m(B(x, δ)), δ > 0.

8. The duality principle. Let ϕ be a Young function. In this section
we consider general processes X(t), t ∈ T , on (T, ρ) under the increment
condition (2.1). By the result of [3], for ϕ that satisfy

(8.1) ϕ(2x) ≥ 2Cϕ(x) for some C > 1

and small enough x ≥ 0 we have

S = sup
X

E sup
s,t∈T

|X(t)−X(s)| ≥ K−1 sup
µ
Mρ,ϕ(µ, µ),
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where the supremum is taken over all processes X(t), t ∈ T , that satisfy
(2.1). On the other hand, by (2.2),

(8.2) S ≤ K sup
µ
Mρ,ϕ(µ, µ),

and therefore S = supX E sups,t∈T |X(t) − X(s)| is comparable with
supµMρ,ϕ(µ, µ). By the general result on majorizing measures [2] we have

S ≤ K inf
µ

sup
t∈T
Mρ,ϕ(µ, δt),

and hence

(8.3) K−1 inf
µ

sup
t∈T
Mρ,ϕ(µ, δt) ≤ sup

µ
Mρ,ϕ(µ, µ) ≤ K inf

µ
sup
t∈T
Mρ,ϕ(µ, δt)

for a large class of ϕ and ρ on T . The objective of this section is to show
that there is another quantity comparable with supµMρ,ϕ(µ, µ), namely
supµ inft∈TMρ,ϕ(µ, δt). We now state the main result for this section, which
is an extension of Theorem 1.8.

Theorem 8.1. Assuming that ϕ satisfies (8.1) there exists a universal
constant K <∞ such that

K−1 sup
µ

inf
t∈T
Mρ,ϕ(µ, δt) ≤ sup

µ
Mρ,ϕ(µ, µ) ≤ K sup

µ
inf
t∈T
Mρ,ϕ(µ, δt).

Proof. In the proof we need that ϕ−1(1/x) is comparable up to a univer-
sal constant with a convex function and ϕ(1) = 1. Namely by Lemma 2.1 in
[15] there exists a convex function ξ such that

(8.4) 1
2ϕ
−1(1/x) ≤ ξ(x) ≤ ϕ−1(1/x) for x > 0.

Consequently, it suffices to prove the result for a convex function ξ(x) com-
parable up to a universal constant with ϕ−1(1/x), which can also be normed
so that ξ(1) = 1. For simplicity we keep the notation ϕ−1(1/x) even when
ξ(x) is used, but we stress that by ϕ−1(1/x) we always mean the convex
equivalent.

Clearly supµMρ,ϕ(µ, µ) ≥ supµ inft∈TMρ,ϕ(µ, δt), which implies that

(8.5) S ≥ K−1 sup
µ

inf
t∈T
Mρ,ϕ(µ, δt).

By (8.2) and (8.3), for any measure ν on T ,

(8.6) S ≤ K sup
t∈T
Mρ,ϕ(ν, δt).

We show that on each finite subset F ⊂ T there exists an equality measure
νF on F such that σνF ,ρ,ϕ(t) are equal on each t ∈ F and finite. Indeed,
let F = {t1, . . . , tm}, and note that each probability measure µ on F can be
treated as a point (α(1), . . . , α(m)) in the simplex 4m = {(α(1), . . . , α(m)) :
α(i) ≥ 0,

∑m
i=1 α(i) = 1}, namely we set α(i) = µ(ti). We define a mapping
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Φ : 4m → Rm, Φ = (Φ1, . . . , Φm), by

Φi(µ) = σµ,ρ,ϕ(ti) =

Diamρ(T )�

0

ϕ−1
(

1

µ(B(ti, ε))

)
dε.

Lemma 8.2. There exists a unique measure νF on F such that Φi(νF )
are all equal and finite for 1 ≤ i ≤ m.

Proof. Note that by the convexity of ϕ−1(1/x) (the discussion of (8.4)), Φ
is convex and continuous on4m. Moreover Φi(δti) = Diamρ(T ) and Φi(δtj ) =
∞ if i 6= j. Therefore Φ is simplicial in the sense that each facet of 4m, say

4I = {(α(1), . . . , α(m)) : α(i) = 0, i ∈ I; α(i) > 0, i 6∈ I}
for some I ⊂ {1, . . . ,m}, is mapped onto 4̄I , where

4̄I = {(Φ1(µ), . . . , Φm(µ)) : Φi(µ) =∞, i ∈ I; Φi(µ) <∞, i 6∈ I}.
Consequently, 4[m], where [m] = {1, . . . ,m}, must be mapped onto the
convex surface in Rm that connects the points xi = (xi(1), . . . , xi(m)), 1 ≤
i ≤ m, where xi(i) = Diamρ(T ) and xi(j) = ∞ if i 6= j. This implies
that there exists exactly one point of intersection of the surface with y 7→
(y, . . . , y), y ∈ R. Therefore there exists exactly one probability measure ν
such that Φi(ν) are all equal and finite for 1 ≤ i ≤ m.

Consequently, by (8.6) and Lemma 8.2 we obtain

E sup
s,t∈F

|X(t)−X(s)| ≤ K inf
t∈F
Mρ,ϕ(νF , δt),

and therefore

(8.7) S ≤ K sup
ν

inf
t∈T
Mρ,ϕ(ν, δt).

Clearly (8.5) and (8.7) complete the proof.

This proves the duality principle.

Corollary 8.3. The following quantities are comparable up to a uni-
versal constant:

inf
µ

sup
t∈T
Mρ,ϕ(µ, δt) and sup

µ
inf
t∈T
Mρ,ϕ(µ, δt).

That is, either we can search for the optimal measure µ that works for all
t ∈ T , or for all measures we have to find the worst possible point t ∈ T .

As we have pointed out, the result has an application to the extension of
the Dvoretzky theorem to metric spaces [12].

Acknowledgements. This research was partly supported by MNiSW
(grant no. N N201 397437).



MAJORIZING MEASURE APPROACH 227

REFERENCES

[1] R. Adler, An Introduction to Continuity, Extrema, and Related Topics for General
Gaussian Processes, Inst. Math. Statist., Hayward, CA, 1990.

[2] W. Bednorz, A theorem on majorizing measures, Ann. Probab. 34 (2006), 1771–
1781.

[3] W. Bednorz, Majorizing measures on metric spaces, C. R. Math. Acad. Sci. Paris
348 (2010), 75–78.

[4] W. Bednorz, On the convergence of orthogonal series, C. R. Math. Acad. Sci. Paris
349 (2011), 455–458.

[5] W. Bednorz, On the complete characterization of the sample boundedness of orthog-
onal processes, Ann. Probab. 41 (2013), 1055–1071.

[6] R. M. Dudley, Sample functions of the Gaussian process, Ann. Probab. 1 (1973),
66–103.

[7] X. Fernique, Regularité des trajectoires des fonctions aléatoires gaussiennes, in:
École d’Été de Probabilités de Saint-Flour, IV-1974, Lecture Notes in Math. 480,
Springer, Berlin, 1975, 1–96.

[8] X. Fernique, Caractérisation de processus à trajectoires majorées ou continues, in:
Séminaire de Probabilités XII, Lecture Notes in Math. 649, Springer, Berlin, 1978,
691–706.

[9] J. Kim and D. Pollard, Cube root asymptotics, Ann. Statist. 18 (1990), 191–219.
[10] M. Ledoux, The Concentration of Measure Phenomenon, Math. Surveys Monogr.

89, Amer. Math. Soc., 2001.
[11] M. Ledoux and M. Talagrand, Probability in Banach Spaces. Isoperimetry and Pro-

cesses, Ergeb. Math. Grenzgeb. 23, Springer, Berlin, 1991.
[12] M. Mendel and A. Naor, Ultrametric skeletons, Proc. Nat. Acad. Sci. USA 110

(2013), 19256–19262.
[13] V. N. Sudakov and B. S. Tsirelson, Extremal properties of half-spaces for spherically

invariant measures, II, Zap. Nauch. Sem. Leningrad. Otdel. Mat. Inst. Steklov.
(LOMI) 41 (1974), 14–24 (in Russian).

[14] M. Talagrand, Regularity of Gaussian processes, Acta Math. 159 (1987), 99–149.
[15] M. Talagrand, Sample boundedness of stochastic processes under increment condi-

tions, Ann. Probab. 18 (1990), 1–49.
[16] M. Talagrand, A simple proof of the majorizing measure theorem, Geom. Funct.

Anal. 2 (1992), 118–125.
[17] M. Talagrand, The Generic Chaining, Springer, 2005.

Witold Bednorz
Institute of Mathematics
University of Warsaw
Banacha 2
02-097 Warszawa, Poland
E-mail: wbednorz@mimuw.edu.pl

Received 30 October 2013;
revised 24 October 2014 (6061)

http://dx.doi.org/10.1214/009117906000000241
http://dx.doi.org/10.1016/j.crma.2009.11.017
http://dx.doi.org/10.1016/j.crma.2011.02.001
http://dx.doi.org/10.1214/11-AOP712
http://dx.doi.org/10.1214/aop/1176997026
http://dx.doi.org/10.1214/aos/1176347498
http://dx.doi.org/10.1073/pnas.1202500109
http://dx.doi.org/10.1007/BF02392556
http://dx.doi.org/10.1214/aop/1176990936
http://dx.doi.org/10.1007/BF01895708



	1 Introduction
	2 The upper bound
	3 The partition structure
	4 Gaussian tools
	5 The lower bound
	6 Continuity of the process
	7 Hilbert–Schmidt ellipsoid
	8 The duality principle
	REFERENCES

