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A gauge approach to an ordinal index of Baire one functions
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Abstract. We develop a calculus for the oscillation index of Baire one functions using
gauges analogous to the modulus of continuity.

1. Introduction. Let X be a metrizable space. A real-valued function
f is said to be of Baire class one (or simply, a Baire 1 function) if it is
the pointwise limit of a sequence of continuous functions on X. The Baire
Characterization Theorem states that if X is Polish (separable completely
metrizable), then f : X — R is of Baire class one if and only if fz has a
point of continuity for every nonempty closed subset F' of X. Recently, Lee,
Tang and Zhao [5] provided a characterization of Baire 1 functions in terms
of gauges analogous to the modulus of continuity for continuous functions.

THEOREM 1 ([5]). Suppose that f: X — R is a real-valued function on
a complete separable metric space (X,d). Then the function f is of Baire
class one if and only if for any € > 0, there exists a positive function § on
X such that

|f(z) — f(y)| <e whenever d(x,y) <d(x)Ad(y).

The Baire Characterization Theorem can be naturally quantified in
terms of the oscillation index of Baire 1 functions [2]. This ordinal index
was used in [3] to give a fine classification of Baire 1 functions. This line of
investigation was continued by various authors: see e.g., [1], [4], [6], [7]. In
this paper, we develop a method to compute the oscillation index of a Baire 1
function. The advantage of this approach is that it provides an easy-to-use
calculus for the oscillation index that enables us to recover and refine all
previously known results.
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Let C denote the collection of all closed subsets of X. A derivation on C
is a map D : C — C such that (i) D(P) C P for all P € C and (ii) D(P) C
D(Q) if P C Q. A derivation D may be iterated in the usual manner. Let
D(P) = P. For all a < wy, let

DHL(P) = D(D*(P)).
If « is a countable limit ordinal, set

D*(P) = () D"(P).

The index of D, denoted by ¢(D), is the least countable ordinal « such that
DY(X) =0, if such an « exists, and w; otherwise.

Let ¢ > 0 and a function f : X — R be given. For any P € C, let
D(f,e, P) be the set of all € P such that for any neighborhood U of z,
there exist 1,22 € PN U such that |f(z1) — f(x2)| > €. For fixed f and
e >0, D(f,e,-) is clearly a derivation on C. Set B(f,e) = «(D(f,e,-)). The
oscillation index of f is B(f) = sup.soB(f,€). It is clear from the Baire
Characterization Theorem that a real-valued function on a complete sepa-
rable metric space is Baire 1 if and only if its oscillation index is countable.
For a countable ordinal &, let ‘Bf(X ) denote the set of all Baire 1 functions
on X with 3(f) < w®.

Let m: X — R be a function that is never zero. For any closed subset H
of X let Z(w, H) be the set of all x € H such that for any neighborhood U
of z, inf{|r(y)| : y € UN H} = 0. Clearly, given a fixed 7, Z(m,-) is a
derivation on C. We define the zero index o(m) of 7 to be the index of the
derivation Z(m, ).

We conclude this section by stating two simple facts concerning deriva-
tions that will be used below. They are easily verified by using transfinite
induction.

PROPOSITION 2. Let D and £ be derivations.

(1) If DP C EP for all P, then D*P C E*P for all P and all o < wy.
Hence (D) < ().

(2) Suppose that D(P U Q) C D(P) U D(Q) for all P and Q. Then
D*(PUQ) CD*P)uDQ) for all P,Q and all o < wy.

2. Gauges and their zero indices. Let f be a real-valued function on
a separable complete metric space (X, d) and let £ > 0. A positive function
§: X — R* is called an e-gauge of f if for any z,y € X,

|f(z) — f(y)| <e whenever d(z,y) <d(x)Ad(y).
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One can easily check that if ¢ is an e-gauge of f, then D(f,e, P) C Z(4, P)
for every closed set P. Applying Proposition (1), we obtain the following
immediately.

PROPOSITION 3. Let € > 0 and a Baire 1 function f: X — R be given.
If §: X — RY is an e-gauge of f, then B(f,e) < o(4).

The utility of the gauge approach comes from the fact that the inequality
in Proposition [3] can be made into an equality.

THEOREM 4. Let f: X — R be a Baire 1 function. Then for any e > 0
there exists an e-gauge 6 of f such that o(6) = B(f,¢€).

Proof. For simplicity, write D for D*(f,e, X) for all & < wy. For all a <
B(f) and x € D>\ D**L, define §(z) to be the supremum of all § such that
§ < min{l,d(z,D*™)} and |f(z1) — f(z2)| < € for all 21,22 € B(x,5)ND™,
By definition of D% and D**!, §(x) > 0. We first show that § is an e-gauge
of f. Indeed, for z,y € X with d(z,y) < §(x) A d(y), we may assume that
x € DN\D*M y € DI\D'! with a < 7. Then d(x,y) < 6(x) < d(z, D)
and hence y ¢ D1, Thus a = «. Choose dy such that d(z,y) < dp < §(z).
We have z,y € B(z,dy) N D% and hence |f(z) — f(y)| < e. This proves that
§ is an e-gauge for f. By Proposition [3| 3(f,¢) < o(é).

We prove the reverse inequality by showing inductively that Z¢(4, X) C
D for all a < B(f). The claim is obvious if cv is 0 or a limit ordinal. Suppose
that Z%(4, X) C D for some a < B(f). Take any z € Z%(4, X) \ D**!. By
the inductive hypothesis, z € D\ D*1. Choose &y so that 0 < dy < d(x).
For any y € B(z,d0) N 2%(6,X) C D\ D" let §' = &y — d(x,y). Then
0< ¢ <d(x) <1. Also,

d(y, D) = d(z, D**) — d(z,y) > do — d(w,y) = 0"
If 21,29 € B(y,d") N D, then 1,22 € B(x,dp) N D* and thus we have

|f(z1) — f(x2)| < e. By definition, (y) > ¢’ = dp — d(z,y). This proves that
x ¢ Z°T1(§, X) and completes the induction. =

3. Some computational tools. Before we see some applications of
Theorem [ we establish some computational tools for estimating the zero
index. The next lemma is implicitly contained in the proof of [3, Lemma 5].

LEMMA 5. Let Dy and Do be derivations. If D is a derivation so that
D(PUQ) C D(P)UD(Q) and D(P) C D1(P) U Dy(P) for all P and Q,
then D*(P) C D¥*(P) U DY (P) for £ < w, and all P.

Proof. We prove the lemma by induction on &. By hypothesis, the state-

ment holds for £ = 0. Since the sequences (D{'P),, i = 1,2, are nonin-
creasing, the inductive step for a limit ordinal £ is clear. Assume that the
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statement holds for some £ < wy. We need to show that
Py c DT (P u DT (P).

To this end, we prove that

(3.1) D2(P) € DY (P) U DS " (P)

for all n € N. For each s € 2% = {(e1,...,e1) : &; = L or 2}, k € N, define P
as follows:

P =D{"(P), Py=D5"(P)
and
Py =DY(P)), Py =D5 (P,
To prove , we first prove that
(3.2) p*(P)c | R
se2k

for every k € N. By the inductive assumption, (3.2)) is true for k£ = 1. Assume
that it is true for some k£ € N. Then

Dwé'(k-i-l) (p) _ wa5 (’Dwgk(P)) c Doﬂ( U Ps)

se2k
c |J o (P) by Proposition (2)
se2k
C U (DTg(PS) U Dgg(Ps)) by the inductive hypothesis
se2k
- (U PSAl) U (U Pm) - | »n.
se2k se2k s€2k+1

Thus (3.2) is verified by induction. Therefore, for all n € N,
Dw£~2’n(P) C U PS

s€22n

- U{PS s €22 and card({k : s(k) = 1}) > n}
U U{PS : s € 22" and card({k : s(k) = 2}) > n}.

If s takes the value 1 at least n times, then Py C D‘l"g'”(P). Similarly if s
takes the value 2 at least n times, then P, C D% (P). Thus (3.1) is proved.
Taking intersection over all n in (3.1)) gives

£+1 1
( (

PPy oy (P)uDY T (P). -
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THEOREM 6. If my, 72 : X — R are positive functions with o(my) < ws
and o(ms) < W& for some £ < wy, then o(my A mp) < Wt.

Proof. Let m = m A my. Consider the derivations D(P) = Z%(x, P),
Di(P) = Z%(m;, P), i = 1,2. It is easy to see that these derivations satisfy
the hypotheses of Lemma [5| Therefore, the conclusion follows by the same
lemma.

For any o < wy, set [a] = inf {w®: a < wt}.

REMARK. For any Baire 1 function f, we may apply Theorems [4] and [0]
to obtain d; : R x X — R™ such that

(a) d¢(e,-) is an e-gauge for f,

(b) 0f(-,x) is a nondecreasing function for all x € X,

(c) o(dg(e;-)) < [B(S)]-

Indeed, according to Theorem |4} for each n € N, there is an 1/n-gauge J,
of f such that o(é,) = B(f,1/n) < [B(f)]. Set §¢(1/n,-) =61 A--- A dy. For
all x € X, (6¢(1/n,x)), is nonincreasing. Clearly, 6¢(1/n,-) is an e-gauge
for f if 1/n < e. Also by Theorem [6, o(6¢(1/n,-)) < [B(f)]. Given & > 0,
set d¢(e,-) =0f(1/n, ) ife € [1/n,1/(n—1)) (1/0 = +00). Then ¢ has the
desired properties. A function 0 satisfying (a)-(c) will be called a B-gauge
for f.
PROPOSITION 7. Let ¢ and v be positive functions.

(1) If there is 0 < ¢ < 0o such that ¢ < c¢, then o(¢p) < o(1)).
(2) o(¢®) = o(¢).
(3) o(dv) < [o(¢)] V [o(4)].
Proof. (1) and (2) are clear. For (3), observe that (¢ A )% < ¢). So by
(1), (2) and Theorem [6]
o(¢1) < o((¢ A)?) = 0o(¢p A%) < [o()] V [o(1))]. m
Let f be a real-valued function on X. For any closed subset H of X, let
U(f, H) = {z € H : limsup | f(y)| = oo}
yerl

Then U(f,) is clearly a derivation on C. The unboundedness index u(f) of
[ is defined as the index of the derivation U(f, ).

The following proposition follows easily from the fact that Z(1/(¢+a), -)
=U(¢p,-) for any a > 0.

PROPOSITION 8. Let ¢ be a positive function and a > 0. Then

0(¢ia> = (@)
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4. Applications. It wasshown in [3, Section 2] that B§ (K), the space of
bounded Baire 1 functions f on a compact metric space K with 8(f) < w¥, is
a Banach algebra under pointwise operations. In [6], extension to unbounded
Baire 1 functions was considered. It was found that for a compact metric
space K, if f € %ﬁl(K) and g € %?2(K) then f 4+ g € %?V&(K) and
fg € %%(K), where § = max{{; + &2,82 + &1} (See [6], Proposition 4.4
and Theorem 6.5 respectively.) In this section, we show that generalized
versions of these results on a Polish space may be obtained via the gauge
approach using Theorem 4] and the computational tools in §3. In fact, the
gauge approach allows us to obtain estimates of the oscillation index of fairly
general combinations of two Baire 1 functions.

LEMMA 9. Suppose that f : X — R is a Baire 1 function and o5 is a
B-gauge for f. Let £ = sup,~q0(d¢(e,-)). If v : X — R is a positive function,
then

o(d7(v(-);)) <&~ o(7)-

Proof. If x ¢ Z(v, H), then there exist a > 0 and a neighborhood U of
x such that v(y) > a for all y € U N H. It follows from the monotonicity of
07 in the first variable that

By induction, we have
un Za((sf(r)/(% ')a H) C Za(éf(av ’ )7 H)
for all @ < wy. In particular,
It follows that o ¢ Z5(5¢(v(-),), H). Hence
By Proposition [2(1), we have
2867 (4(-), ), H) € 2%(y, H)
for all @ < wy. In particular,
259055 (4(), ), X) = 0.
It follows that o(d¢(y(:),")) < &-o(7). =

Let I,J CR,andlet f: X — I and g : X — J. Given € > 0, a function
F :1xJ— Ris said to satisfy property (x). with respect to (f,g) if there
are hy : I — R and hs : J — R such that

|F(f(2),9(z)) — F(f(y),9(y) <e
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whenever

|f(z) = f(Y)] <hi(z) Vhi(y) and |g(z) —g(y)| < ha(z) V ha(y).

THEOREM 10. Suppose that f,g : X — R are functions of Baire class
one with f(X) C I and g(X) C J. If F : I x J — R satisfies property (x).
with respect to (f,g), then B(F(f,g),€) < [B(f)][o(h1)] V [B(g)][o(ha)]-

Proof. Let € > 0 and let hy, hy be given by property (x).. Set d(x) =
df(hi(x), ) Ndg(ha(x), ), where §; and d, are B-gauges of f and g respec-
tively. We first show that § is an e-gauge for F(f,g). Indeed, if d(z,y) <
d(x) A d(y), then

d(z,y) < 0p(hi(x), ) Aop(hi(y),y)
< bp(ha(x) V ha(y), ) Adp(ha(z) vV hi(y), y).

Therefore,

|f(z) = fW)] < hi(x) V ha(y).
Likewise,

9(2) — g(y)| < ha(x) V ha(y).
By property (x).,

[F(f(y),9(y)) — F(f(z),9(x))] <e.

So ¢ is an e-gauge for F'(f, g). It remains to estimate o(J). By the definitions
of 67 and dg,

supo(ds(e,-)) < [B(f)] and  supo(dy(e,-)) < [B(g)]-

e>0 >0
By Lemma[9]

o(65(h1(-),-)) < [B()llo(h1)] and  o(dg(ha(:),-)) < [B(g)][o(h2)].
Therefore, by Theorem [6]
0(8) = o(d5(h1(:),-) Adg(ha(-),-)) < [B(f)][o(h1)] V [B(g)][o(h2)].

The desired conclusion follows from Proposition [3| =

THEOREM 11. If F : I x J— R is uniformly continuous, then B(F(f,g))
< BNV [B(9)]-

Proof. Since F' is uniformly continuous on I x J, for any € > 0, there are
positive constant functions hy and ho that witness the fact that F' satisfies
(). with tespect to (f,g). By Theorem [10, B(F(f,g),e) < [3(f)][o(h1)] V
[8(9)][o(h2)] = [B(f)] V [B(9)], as o(h1) = o(h2) = 1. =
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COROLLARY 12 ([3 Section 2], [0, Proposition 4.4]). If f,g € ‘B?(X),
then f+g,|f| € ‘B%(X). Furthermore, when f,qg are bounded, fg € %ﬁ(X).
Proof. Since Fi(u,v) = u+v and F(u,v) = |u| are uniformly continuous
functions, the first assertion follows easily from Theorem The second

assertion is also clear as the product function is uniformly continuous on
bounded sets. u

The next result improves the estimate given in [0, Theorem 6.5].

THEOREM 13. B(fg) < [B(/)][u(g)] V [B(g)][u(f)]-

Proof. Let 0 < e < 1. Then F(u,v) = uv has property (x). with respect
to (f,g) with

M@ = @ D

£ €
and ho(z) = ST@ D

Indeed, if

|f(x) = ()] < hi(z) Vhi(y) and |g(z) —g(y)| < ha(z) V ha(y),

then

° v c <1
(lg(x)|+1)  3(g(y)|+1) —

g g
9@) =Wl < 3D Y sl D <

Since [g(y)| < |9(y) — 9(@)| + |g(x)| <1+ [g(x)|, it follows that

3 elg(y)| elg(y)| 3
S =T 55+ 1) Y Bgt)l + 1) < 2

F@) = F] < 5

and

Similarly,
€
7@ () — o)l < 5.

Therefore,

|E(f(2),9(z)) = F(f(y), 9)| = |f(x)g(z) — f(y)g(v)|
<IlgWIf(z) = fW)|+[f(@)]]g(x) — g(y)|
<eg/24¢e/2=c¢.

Thus F has property (). with respect to (f, g). By Theorem and Propo-

sition )
6(t.2) < DO o5 )| Y Do (705 )|
— B v B[]

Taking supremum over all € > 0 completes the proof. =
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COROLLARY 14 ([6, Theorem 6.5]). If 3(f) < w’ and B(g) < w2, then
B(fg) < wt, where & = (&1 + &) V (&2 + &)

Proof. Since u(f) < B(f) and u(g) < B(g), the result follows easily. =

Note that an example has been constructed in [6] to show that the above
result is optimal.

THEOREM 15. If g(x) # 0 for all x € X, then

ﬁ(g) < BNlo(g)] v [B(9)([e(9)] V [u()))-

Proof. Let 0 < € < 1. Then F(u,v) = u/v has property (). with respect
to (f,g) with

T X 2
me) = T4 a1, (o) = 5 (2 Al

Indeed, if
|f(z) = f(y)] < hi(z) Vhi(y) and |g(z) — g(y)| < ha(z) V ha(y),
then |f(z)| < [f(y)| + 1,

clg(@)] , <lo(v)
1) = f)] < ZL2 v 2L

and |g(z) — g(y)| <

It follows that

(1) S9w)] < lo(@)] < 2lg(o)
and thus
f(@) - fWl _ e
gl — 4

T 2 € 2
Also, from |g(x) = 9(v)| < 5t v S1tften

o) < SI@PI@ | £ sl @)
@)l lo(o) - a(w)| < 5 2Ly S

€ 2,.,¢ 2
< — V =
< 3Ig(ﬂc)\ 3Ig(y)l

2¢e
< S l9@)lg(y)l by [@.1).

it follows that

Thus
[f@)llg(x) —g9(y)l _ 22

lg(@)g(y)]  — 3~
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Therefore
fl@) f(y)‘ < ‘f(x) _f@] ‘f(ﬂf) N f(y)’
9(@) g " lg(@) 9| l9ly) 9
1 1 1
7) ‘g(w) g(y)‘ " \g(y)!‘f(x) fl
_ f@)g() —g)| | f(=) — fy)]
l9(2)] |g(y)] l9(y)]

<2/3+¢/d<e.

Hence F'(u,v) = u/v has property (%) with respect to (f,g). By Theorems
and [6] and Propositions [7] and

o(5) s ()] o (7))

< it v 1860 [o 25 ) v ota)

< BN v [B@I((o(g)] V [w()]) V [o(9)])
< [BHNlo(a)] v [B(9]([o(9)] V [u(f)]). =

If o(m1) = m and o(m2) = n are both finite, then the proof of Theorem [f]
yields o(m A m3) < m + n — 1. Now suppose that f and g are Baire 1
functions with G(f) = m and ((g) = n. By Theorem {4} for any ¢ > 0,
there are £/2-gauges 0y and &4 of f and g respectively such that o(dr) < m
and o(dy) < n. It is clear that § = dy A J4 is an e-gauge for f + g. Since
0(0) = 0(df Ndg) < m+mn—1, we see that B(f + g,e) < m+n—1 for all
€ > 0. The same argument goes for fV g, f A g, and for bounded f and g,
fg. This recovers Theorem 1.3 of [I].
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