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Abstract. We develop a calculus for the oscillation index of Baire one functions using
gauges analogous to the modulus of continuity.

1. Introduction. Let X be a metrizable space. A real-valued function
f is said to be of Baire class one (or simply, a Baire 1 function) if it is
the pointwise limit of a sequence of continuous functions on X. The Baire
Characterization Theorem states that if X is Polish (separable completely
metrizable), then f : X → R is of Baire class one if and only if f|F has a
point of continuity for every nonempty closed subset F of X. Recently, Lee,
Tang and Zhao [5] provided a characterization of Baire 1 functions in terms
of gauges analogous to the modulus of continuity for continuous functions.

Theorem 1 ([5]). Suppose that f : X → R is a real-valued function on
a complete separable metric space (X, d). Then the function f is of Baire
class one if and only if for any ε > 0, there exists a positive function δ on
X such that

|f(x)− f(y)| < ε whenever d(x, y) < δ(x) ∧ δ(y).

The Baire Characterization Theorem can be naturally quantified in
terms of the oscillation index of Baire 1 functions [2]. This ordinal index
was used in [3] to give a fine classification of Baire 1 functions. This line of
investigation was continued by various authors: see e.g., [1], [4], [6], [7]. In
this paper, we develop a method to compute the oscillation index of a Baire 1
function. The advantage of this approach is that it provides an easy-to-use
calculus for the oscillation index that enables us to recover and refine all
previously known results.
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Let C denote the collection of all closed subsets of X. A derivation on C
is a map D : C → C such that (i) D(P ) ⊆ P for all P ∈ C and (ii) D(P ) ⊆
D(Q) if P ⊆ Q. A derivation D may be iterated in the usual manner. Let
D0(P ) = P . For all α < ω1, let

Dα+1(P ) = D(Dα(P )).

If α is a countable limit ordinal, set

Dα(P ) =
⋂
γ<α

Dγ(P ).

The index of D, denoted by ι(D), is the least countable ordinal α such that
Dα(X) = ∅, if such an α exists, and ω1 otherwise.

Let ε > 0 and a function f : X → R be given. For any P ∈ C, let
D(f, ε, P ) be the set of all x ∈ P such that for any neighborhood U of x,
there exist x1, x2 ∈ P ∩ U such that |f(x1) − f(x2)| ≥ ε. For fixed f and
ε > 0, D(f, ε, ·) is clearly a derivation on C. Set β(f, ε) = ι(D(f, ε, ·)). The
oscillation index of f is β(f) = supε>0 β(f, ε). It is clear from the Baire
Characterization Theorem that a real-valued function on a complete sepa-
rable metric space is Baire 1 if and only if its oscillation index is countable.
For a countable ordinal ξ, let B

ξ
1(X) denote the set of all Baire 1 functions

on X with β(f) ≤ ωξ.
Let π : X → R be a function that is never zero. For any closed subset H

of X let Z(π,H) be the set of all x ∈ H such that for any neighborhood U
of x, inf{|π(y)| : y ∈ U ∩ H} = 0. Clearly, given a fixed π, Z(π, ·) is a
derivation on C. We define the zero index o(π) of π to be the index of the
derivation Z(π, ·).

We conclude this section by stating two simple facts concerning deriva-
tions that will be used below. They are easily verified by using transfinite
induction.

Proposition 2. Let D and E be derivations.

(1) If DP ⊆ EP for all P , then DαP ⊆ EαP for all P and all α < ω1.
Hence ι(D) ≤ ι(E).

(2) Suppose that D(P ∪ Q) ⊆ D(P ) ∪ D(Q) for all P and Q. Then
Dα(P ∪Q) ⊆ Dα(P ) ∪ Dα(Q) for all P,Q and all α < ω1.

2. Gauges and their zero indices. Let f be a real-valued function on
a separable complete metric space (X, d) and let ε > 0. A positive function
δ : X → R+ is called an ε-gauge of f if for any x, y ∈ X,

|f(x)− f(y)| < ε whenever d(x, y) < δ(x) ∧ δ(y).
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One can easily check that if δ is an ε-gauge of f , then D(f, ε, P ) ⊆ Z(δ, P )
for every closed set P . Applying Proposition 2(1), we obtain the following
immediately.

Proposition 3. Let ε > 0 and a Baire 1 function f : X → R be given.
If δ : X → R+ is an ε-gauge of f, then β(f, ε) ≤ o(δ).

The utility of the gauge approach comes from the fact that the inequality
in Proposition 3 can be made into an equality.

Theorem 4. Let f : X → R be a Baire 1 function. Then for any ε > 0
there exists an ε-gauge δ of f such that o(δ) = β(f, ε).

Proof. For simplicity, write Dα for Dα(f, ε,X) for all α < ω1. For all α <
β(f) and x ∈ Dα \ Dα+1, define δ(x) to be the supremum of all δ such that
δ ≤ min{1, d(x,Dα+1)} and |f(x1)−f(x2)| < ε for all x1, x2 ∈ B(x, δ)∩Dα.
By definition of Dα and Dα+1, δ(x) > 0. We first show that δ is an ε-gauge
of f . Indeed, for x, y ∈ X with d(x, y) < δ(x) ∧ δ(y), we may assume that
x ∈ Dα\Dα+1, y ∈ Dγ\Dγ+1, with α ≤ γ. Then d(x, y) < δ(x) ≤ d(x,Dα+1)
and hence y /∈ Dα+1. Thus α = γ. Choose δ0 such that d(x, y) < δ0 < δ(x).
We have x, y ∈ B(x, δ0)∩Dα and hence |f(x)− f(y)| < ε. This proves that
δ is an ε-gauge for f . By Proposition 3, β(f, ε) ≤ o(δ).

We prove the reverse inequality by showing inductively that Zα(δ,X) ⊆
Dα for all α ≤ β(f). The claim is obvious if α is 0 or a limit ordinal. Suppose
that Zα(δ,X) ⊆ Dα for some α < β(f). Take any x ∈ Zα(δ,X) \ Dα+1. By
the inductive hypothesis, x ∈ Dα \ Dα+1. Choose δ0 so that 0 < δ0 < δ(x).
For any y ∈ B(x, δ0) ∩ Zα(δ,X) ⊆ Dα \ Dα+1, let δ′ = δ0 − d(x, y). Then
0 < δ′ ≤ δ(x) ≤ 1. Also,

d(y,Dα+1) ≥ d(x,Dα+1)− d(x, y) > δ0 − d(x, y) = δ′.

If x1, x2 ∈ B(y, δ′) ∩ Dα, then x1, x2 ∈ B(x, δ0) ∩ Dα and thus we have
|f(x1)− f(x2)| < ε. By definition, δ(y) ≥ δ′ = δ0− d(x, y). This proves that
x /∈ Zα+1(δ,X) and completes the induction.

3. Some computational tools. Before we see some applications of
Theorem 4, we establish some computational tools for estimating the zero
index. The next lemma is implicitly contained in the proof of [3, Lemma 5].

Lemma 5. Let D1 and D2 be derivations. If D is a derivation so that
D(P ∪ Q) ⊆ D(P ) ∪ D(Q) and D(P ) ⊆ D1(P ) ∪ D2(P ) for all P and Q,
then Dωξ(P ) ⊆ Dωξ1 (P ) ∪ Dωξ2 (P ) for ξ < ω1 and all P .

Proof. We prove the lemma by induction on ξ. By hypothesis, the state-
ment holds for ξ = 0. Since the sequences (Dαi P )α, i = 1, 2, are nonin-
creasing, the inductive step for a limit ordinal ξ is clear. Assume that the
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statement holds for some ξ < ω1. We need to show that

Dωξ+1
(P ) ⊆ Dωξ+1

1 (P ) ∪ Dωξ+1

2 (P ).

To this end, we prove that

(3.1) Dωξ·2n(P ) ⊆ Dωξ·n1 (P ) ∪ Dωξ·n2 (P )

for all n ∈ N. For each s ∈ 2k = {(ε1, . . . , εk) : εi = 1 or 2}, k ∈ N, define Ps
as follows:

P1 = Dωξ1 (P ), P2 = Dωξ2 (P )

and
Ps∧1 = Dωξ1 (Ps), Ps∧2 = Dωξ2 (Ps).

To prove (3.1), we first prove that

(3.2) Dωξ·k(P ) ⊆
⋃
s∈2k

Ps

for every k ∈ N. By the inductive assumption, (3.2) is true for k = 1. Assume
that it is true for some k ∈ N. Then

Dωξ·(k+1)(P ) = Dωξ(Dωξ·k(P )) ⊆ Dωξ
( ⋃
s∈2k

Ps

)
⊆
⋃
s∈2k

Dωξ(Ps) by Proposition 2(2)

⊆
⋃
s∈2k

(Dωξ1 (Ps) ∪ Dω
ξ

2 (Ps)) by the inductive hypothesis

=
( ⋃
s∈2k

Ps∧1

)
∪
( ⋃
s∈2k

Ps∧2

)
=

⋃
s∈2k+1

Ps.

Thus (3.2) is verified by induction. Therefore, for all n ∈ N,

Dωξ·2n(P ) ⊆
⋃
s∈22n

Ps

⊆
⋃
{Ps : s ∈ 22n and card({k : s(k) = 1}) ≥ n}

∪
⋃
{Ps : s ∈ 22n and card({k : s(k) = 2}) ≥ n}.

If s takes the value 1 at least n times, then Ps ⊆ Dω
ξ·n

1 (P ). Similarly if s
takes the value 2 at least n times, then Ps ⊆ Dω

ξ·n
2 (P ). Thus (3.1) is proved.

Taking intersection over all n in (3.1) gives

Dωξ+1
(P ) ⊆ Dωξ+1

1 (P ) ∪ Dωξ+1

2 (P ).
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Theorem 6. If π1, π2 : X → R are positive functions with o(π1) ≤ ωξ

and o(π2) ≤ ωξ for some ξ < ω1, then o(π1 ∧ π2) ≤ ωξ.
Proof. Let π = π1 ∧ π2. Consider the derivations D(P ) = Zα(π, P ),

Di(P ) = Zα(πi, P ), i = 1, 2. It is easy to see that these derivations satisfy
the hypotheses of Lemma 5. Therefore, the conclusion follows by the same
lemma.

For any α < ω1, set [α] = inf
{
ωξ : α ≤ ωξ

}
.

Remark. For any Baire 1 function f , we may apply Theorems 4 and 6
to obtain δf : R×X → R+ such that

(a) δf (ε, ·) is an ε-gauge for f,
(b) δf (·, x) is a nondecreasing function for all x ∈ X,
(c) o(δf (ε, ·)) ≤ [β(f)].

Indeed, according to Theorem 4, for each n ∈ N, there is an 1/n-gauge δn
of f such that o(δn) = β(f, 1/n) ≤ [β(f)]. Set δf (1/n, ·) = δ1 ∧ · · · ∧ δn. For
all x ∈ X, (δf (1/n, x))n is nonincreasing. Clearly, δf (1/n, ·) is an ε-gauge
for f if 1/n ≤ ε. Also by Theorem 6, o(δf (1/n, ·)) ≤ [β(f)]. Given ε > 0,
set δf (ε, ·) = δf (1/n, ·) if ε ∈ [1/n, 1/(n− 1)) (1/0 = +∞). Then δf has the
desired properties. A function δf satisfying (a)–(c) will be called a B-gauge
for f.

Proposition 7. Let φ and ψ be positive functions.

(1) If there is 0 < c <∞ such that ψ ≤ cφ, then o(φ) ≤ o(ψ).
(2) o(φ2) = o(φ).
(3) o(φψ) ≤ [o(φ)] ∨ [o(ψ)].

Proof. (1) and (2) are clear. For (3), observe that (φ ∧ ψ)2 ≤ φψ. So by
(1), (2) and Theorem 6,

o(φψ) ≤ o((φ ∧ ψ)2) = o(φ ∧ ψ) ≤ [o(φ)] ∨ [o(ψ)].

Let f be a real-valued function on X. For any closed subset H of X, let

U(f,H) = {x ∈ H : lim sup
y→x
y∈H

|f(y)| =∞}.

Then U(f, ·) is clearly a derivation on C. The unboundedness index u(f) of
f is defined as the index of the derivation U(f, ·).

The following proposition follows easily from the fact that Z(1/(φ+a), ·)
= U(φ, ·) for any a > 0.

Proposition 8. Let φ be a positive function and a > 0. Then

o

(
1

φ+ a

)
= u(φ).
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4. Applications. It was shown in [3, Section 2] that Bξ1(K), the space of
bounded Baire 1 functions f on a compact metric space K with β(f) ≤ ωξ, is
a Banach algebra under pointwise operations. In [6], extension to unbounded
Baire 1 functions was considered. It was found that for a compact metric
space K, if f ∈ B

ξ1
1 (K) and g ∈ B

ξ2
1 (K) then f + g ∈ B

ξ1∨ξ2
1 (K) and

fg ∈ B
ξ
1(K), where ξ = max{ξ1 + ξ2, ξ2 + ξ1}. (See [6], Proposition 4.4

and Theorem 6.5 respectively.) In this section, we show that generalized
versions of these results on a Polish space may be obtained via the gauge
approach using Theorem 4 and the computational tools in §3. In fact, the
gauge approach allows us to obtain estimates of the oscillation index of fairly
general combinations of two Baire 1 functions.

Lemma 9. Suppose that f : X → R is a Baire 1 function and δf is a
B-gauge for f. Let ξ = supε>0 o(δf (ε, ·)). If γ : X → R is a positive function,
then

o(δf (γ(·), ·)) ≤ ξ · o(γ).

Proof. If x 6∈ Z(γ,H), then there exist a > 0 and a neighborhood U of
x such that γ(y) > a for all y ∈ U ∩H. It follows from the monotonicity of
δf in the first variable that

U ∩ Z(δf (γ(·), ·), H) ⊆ Z(δf (a, · ), H).

By induction, we have

U ∩ Zα(δf (γ(·), ·), H) ⊆ Zα(δf (a, · ), H)

for all α < ω1. In particular,

U ∩ Zξ(δf (γ(·), ·), H) = ∅.

It follows that x /∈ Zξ(δf (γ(·), ·), H). Hence

Zξ(δf (γ(·), ·), H) ⊆ Z(γ,H).

By Proposition 2(1), we have

Zξ·α(δf (γ(·), ·), H) ⊆ Zα(γ,H)

for all α < ω1. In particular,

Zξ·o(γ)(δf (γ(·), ·), X) = ∅.

It follows that o(δf (γ(·), ·)) ≤ ξ · o(γ).

Let I, J ⊆ R, and let f : X → I and g : X → J. Given ε > 0, a function
F : I × J → R is said to satisfy property (∗)ε with respect to (f, g) if there
are h1 : I → R and h2 : J → R such that

|F (f(x), g(x))− F (f(y), g(y))| < ε
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whenever

|f(x)− f(y)| < h1(x) ∨ h1(y) and |g(x)− g(y)| < h2(x) ∨ h2(y).

Theorem 10. Suppose that f, g : X → R are functions of Baire class
one with f(X) ⊆ I and g(X) ⊆ J. If F : I × J → R satisfies property (∗)ε
with respect to (f, g), then β(F (f, g), ε) ≤ [β(f)][o(h1)] ∨ [β(g)][o(h2)].

Proof. Let ε > 0 and let h1, h2 be given by property (∗)ε. Set δ(x) =
δf (h1(x), x)∧ δg(h2(x), x), where δf and δg are B-gauges of f and g respec-
tively. We first show that δ is an ε-gauge for F (f, g). Indeed, if d(x, y) <
δ(x) ∧ δ(y), then

d(x, y) < δf (h1(x), x) ∧ δf (h1(y), y)
≤ δf (h1(x) ∨ h1(y), x) ∧ δf (h1(x) ∨ h1(y), y).

Therefore,
|f(x)− f(y)| < h1(x) ∨ h1(y).

Likewise,
|g(x)− g(y)| < h2(x) ∨ h2(y).

By property (∗)ε,

|F (f(y), g(y))− F (f(x), g(x))| < ε.

So δ is an ε-gauge for F (f, g). It remains to estimate o(δ). By the definitions
of δf and δg,

sup
ε>0

o(δf (ε, ·)) ≤ [β(f)] and sup
ε>0

o(δg(ε, ·)) ≤ [β(g)].

By Lemma 9,

o(δf (h1(·), ·)) ≤ [β(f)][o(h1)] and o(δg(h2(·), ·)) ≤ [β(g)][o(h2)].

Therefore, by Theorem 6,

o(δ) = o(δf (h1(·), ·) ∧ δg(h2(·), ·)) ≤ [β(f)][o(h1)] ∨ [β(g)][o(h2)].

The desired conclusion follows from Proposition 3.

Theorem 11. If F : I×J→ R is uniformly continuous, then β(F (f, g))
≤ [β(f)] ∨ [β(g)].

Proof. Since F is uniformly continuous on I×J, for any ε > 0, there are
positive constant functions h1 and h2 that witness the fact that F satisfies
(∗)ε with respect to (f, g). By Theorem 10, β(F (f, g), ε) ≤ [β(f)][o(h1)] ∨
[β(g)][o(h2)] = [β(f)] ∨ [β(g)], as o(h1) = o(h2) = 1.
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Corollary 12 ([3, Section 2], [6, Proposition 4.4]). If f, g ∈ B
ξ
1(X),

then f + g, |f | ∈ B
ξ
1(X). Furthermore, when f, g are bounded, fg ∈ B

ξ
1(X).

Proof. Since F1(u, v) = u+v and F2(u, v) = |u| are uniformly continuous
functions, the first assertion follows easily from Theorem 11. The second
assertion is also clear as the product function is uniformly continuous on
bounded sets.

The next result improves the estimate given in [6, Theorem 6.5].

Theorem 13. β(fg) ≤ [β(f)][u(g)] ∨ [β(g)][u(f)].

Proof. Let 0 < ε < 1. Then F (u, v) = uv has property (∗)ε with respect
to (f, g) with

h1(x) =
ε

3(|g(x)|+ 1)
and h2(x) =

ε

3(|f(x)|+ 1)
.

Indeed, if

|f(x)− f(y)| < h1(x) ∨ h1(y) and |g(x)− g(y)| < h2(x) ∨ h2(y),

then
|f(x)− f(y)| < ε

3(|g(x)|+ 1)
∨ ε

3(|g(y)|+ 1)
≤ 1

and
|g(x)− g(y)| < ε

3(|f(x)|+ 1)
∨ ε

3(|f(y)|+ 1)
≤ 1.

Since |g(y)| ≤ |g(y)− g(x)|+ |g(x)| < 1 + |g(x)|, it follows that

|g(y)| |f(x)− f(y)| ≤ ε|g(y)|
3(|g(x)|+ 1)

∨ ε|g(y)|
3(|g(y)|+ 1)

<
ε

2
.

Similarly,
|f(x)| |g(x)− g(y)| < ε

2
.

Therefore,

|F (f(x), g(x))− F (f(y), g(y))| = |f(x)g(x)− f(y)g(y)|
≤ |g(y)| |f(x)− f(y)|+ |f(x)| |g(x)− g(y)|
< ε/2 + ε/2 = ε.

Thus F has property (∗)ε with respect to (f, g). By Theorem 10 and Propo-
sition 8,

β(fg, ε) ≤ [β(f)]
[
o

(
ε

3(|g|+ 1)

)]
∨ [β(g)]

[
o

(
ε

3(|f |+ 1)

)]
= [β(f)][u(g)] ∨ [β(g)][u(f)].

Taking supremum over all ε > 0 completes the proof.
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Corollary 14 ([6, Theorem 6.5]). If β(f) ≤ ωξ1 and β(g) ≤ ωξ2 , then
β(fg) ≤ ωξ, where ξ = (ξ1 + ξ2) ∨ (ξ2 + ξ1).

Proof. Since u(f) ≤ β(f) and u(g) ≤ β(g), the result follows easily.

Note that an example has been constructed in [6] to show that the above
result is optimal.

Theorem 15. If g(x) 6= 0 for all x ∈ X, then

β

(
f

g

)
≤ [β(f)][o(g)] ∨ [β(g)]([o(g)] ∨ [u(f)]).

Proof. Let 0 < ε < 1. Then F (u, v) = u/v has property (∗)ε with respect
to (f, g) with

h1(x) =
ε|g(x)|

8
∧ 1, h2(x) =

ε

3

(
|g(x)|2

|f(x)|+ 4
∧ |g(x)|

)
.

Indeed, if

|f(x)− f(y)| < h1(x) ∨ h1(y) and |g(x)− g(y)| < h2(x) ∨ h2(y),

then |f(x)| < |f(y)|+ 1,

|f(x)− f(y)| < ε|g(x)|
8

∨ ε|g(y)|
8

and |g(x)− g(y)| < |g(x)|
3
∨ |g(y)|

3
.

It follows that

(4.1)
1
2
|g(y)| ≤ |g(x)| ≤ 2|g(y)|

and thus
|f(x)− f(y)|
|g(y)|

≤ ε

4
.

Also, from |g(x)− g(y)| ≤ ε
3
|g(x)|2
|f(x)|+4 ∨

ε
3
|g(y)|2
|f(y)|+4 , it follows that

|f(x)| |g(x)− g(y)| ≤ ε

3
|g(x)|2|f(x)|
|f(x)|+ 4

∨ ε
3
|g(y)|2|f(x)|
|f(y)|+ 4

≤ ε

3
|g(x)|2 ∨ ε

3
|g(y)|2

≤ 2ε
3
|g(x)| |g(y)| by (4.1).

Thus
|f(x)| |g(x)− g(y)|
|g(x)| |g(y)|

≤ 2ε
3
.
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Therefore∣∣∣∣f(x)
g(x)

− f(y)
g(y)

∣∣∣∣ ≤ ∣∣∣∣f(x)
g(x)

− f(x)
g(y)

∣∣∣∣+
∣∣∣∣f(x)
g(y)

− f(y)
g(y)

∣∣∣∣
= |f(x)|

∣∣∣∣ 1
g(x)

− 1
g(y)

∣∣∣∣+
1
|g(y)|

|f(x)− f(y)|

=
|f(x)| |g(x)− g(y)|
|g(x)| |g(y)|

+
|f(x)− f(y)|
|g(y)|

≤ 2ε/3 + ε/4 < ε.

Hence F (u, v) = u/v has property (∗)ε with respect to (f, g). By Theorems
10 and 6 and Propositions 7 and 8,

β

(
f

g

)
≤ [β(f)]

[
o

(
ε|g|
8
∧ 1
)]
∨ [β(g)]

[
o

(
ε

3

(
|g|2

|f |+ 4
∧ |g|

))]
≤ [β(f)][o(g)] ∨ [β(g)]

([
o

(
|g|2

|f |+ 4

)]
∨ [o(g)]

)
≤ [β(f)][o(g)] ∨ [β(g)](([o(g)] ∨ [u(f)]) ∨ [o(g)])
≤ [β(f)][o(g)] ∨ [β(g)]([o(g)] ∨ [u(f)]).

If o(π1) = m and o(π2) = n are both finite, then the proof of Theorem 6
yields o(π1 ∧ π2) ≤ m + n − 1. Now suppose that f and g are Baire 1
functions with β(f) = m and β(g) = n. By Theorem 4, for any ε > 0,
there are ε/2-gauges δf and δg of f and g respectively such that o(δf ) ≤ m
and o(δg) ≤ n. It is clear that δ = δf ∧ δg is an ε-gauge for f + g. Since
o(δ) = o(δf ∧ δg) ≤ m + n − 1, we see that β(f + g, ε) ≤ m + n − 1 for all
ε > 0. The same argument goes for f ∨ g, f ∧ g, and for bounded f and g,
fg. This recovers Theorem 1.3 of [1].
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