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Abstract. Assuming the existence of a Prk-hypermeasurable cardinal, we construct
a model of Set Theory with a measurable cardinal s such that 2® = ¥ and the group
Sym(k) of all permutations of k cannot be written as the union of a chain of proper
subgroups of length < x*T. The proof involves iteration of a suitably defined uncountable
version of the Miller forcing poset as well as the “tuning fork” argument introduced by the
first author and K. Thompson [J. Symbolic Logic 73 (2008)].

1. Introduction. A deep theorem of Macpherson and Neumann [10]
states that if the symmetric group Sym(k) consisting of all permutations of
a cardinal  can be written as the union of an increasing chain (G; : i < \)
of proper subgroups G;, then A > k. Throughout this paper the minimal A
with this property will be denoted by cf(Sym(k)). It was proven in [22] that
for kK = k<" the pair (cf(Sym(k)),2") can be anything not obviously wrong.
More precisely, for every regular A\ > x and € such that cf(6) > A, there
exist a cardinal preserving forcing extension V¥ such that cf(Sym(k)) = A
and 2¢ = @ in V. Moreover, for inaccessible x we can assume [17, §1] that
P is k-directed closed. Therefore if x is supercompact, then it remains so in
V@P where Q is a Laver preparation forcing making the supercompactness
of x indestructible by x-directed closed forcing notions. The main result of
this paper states that consistency of cf(Sym(k)) > 1 at a measurable x
can be obtained assuming much less than supercompactness.

THEOREM 1.1. Suppose GCH holds and there exists an elementary em-
bedding j : V. — M such that crit(j) = x and (H(x*))V = (H(xTH))M.
Then there exists a forcing extension V' of V' such that k is still measurable

in V' and V' E cf(Sym(k)) = k*T.
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By work of Gitik [I2] a cardinal s of Mitchell order k™ is required for
GCH to fail at a measurable cardinal; thus the hypothesis of our result is
close to optimal (it is in fact equiconsistent with the existence of a cardinal
x whose Mitchell order for extenders is K+ + 1).

A cardinal x for which there exists an embedding as in Theorem
will be called Pyk-hypermeasurable. To the best knowledge of the authors,
cf(Sym(k)) = kT for measurable « in all other known models of Set Theory
constructed under assumptions weaker than (a certain degree of) supercom-
pactness; see Remark [5.6] for a more detailed discussion.

The idea of the proof of Theorem resembles that of the consistency of
u < cf(Sym(w)) established in [23]. In particular, in Section [2{ we introduce
a variant of Miller forcing and a (slightly more general than in [14]) variant
of Sacks forcing at an inaccessible cardinal k. According to Theorem [2.9] it-
erated forcing constructions where at each stage we take any of these forcing
notions do not collapse x*. In Section |3| we introduce a new cardinal char-
acteristic g.;(x), which is a version for k of the classical groupwise density
number g. Section [] is devoted to the proof of the fact that suitably ar-
ranged iterated forcing constructions considered in Section [2| of length x™ "
make cf(Sym(x)) equal to k™. More precisely, the Miller forcing is respon-
sible for cf*(Sym(x)) = k™1, while the Sacks forcing makes cf(Sym(x)) and
ct*(Sym(k)) equal. (Here cf*(Sym(k)) is the minimal length of a special
chain of proper subgroups of Sym(k) introduced in Definition ) And fi-
nally, in Section [5] we show how to extend elementary embeddings to forcing
extensions considered in Section [, and thus prove Theorem [I.1] The idea of
the proof in Section [5|can be traced back to the work [11], where the “tuning
fork” argument was introduced.

2. A variant of Miller forcing for uncountable cardinals. Ba-
sic properties. Alternation with Sacks. In this section we suggest one
of the possible ways to generalize the Miller forcing introduced in [18] to
uncountable cardinals and study some basic properties of iterated forcing
constructions, where at each stage we take either the Miller or Sacks forcing
poset. The discussion is patterned after Kanamori [14]. It is worth mention-
ing here that there are other generalizations of Miller forcing (see e.g. [5]).

Throughout this section x denotes a strongly inaccessible cardinal.

DEFINITION 2.1. Let p C k<F. For s € p we denote by C(p, s) (or simply
by C(s) if p is clear from context) the set {« € k: s"a € p}.

Miller(x) denotes the following forcing. A condition is a subset p of k<"
such that:

(i) sep,t Cs—tep.
(ii) Each s € p is increasing and has a proper extension in p.
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(iii) For every a < k limit, and s € k%, if s[3 € p for arbitrary large
0 < «a, then s € p.

(iv) For every s € p there is ¢t € p with s C ¢ which splits in p (i.e.,
C(p,t) has more than one element). Moreover, if ¢, t; split in p and
to C t1, then C(p,tl) C C(p,to).

(v) If s € p splits in p, then the set C(p, s) is club.

(vi) If a is a limit ordinal, s € k%, and s/ splits in p for arbitrary large
B < a, then s splits in p and C(s) is the intersection of C(s[f) for
all § such that s[( splits in p.

We order Miller(x) by declaring p to be stronger than ¢ (and write p < q)
iff p C q.

It is clear that Miller(x) is x-closed. For every subtree p of k<% we denote
by Split(p) the family of all s € p which split in p. Given s € k<", £(s) denotes
the length of s, i.e. the (unique) « such that s € k. If p € Miller(x) and
a € K, then we denote by Split,, (p) the set

{sep:ot.({tTs:teSplit(p)}) <a, ¥t C s (0.t.(s(¢(t))NC(p,t)) < a)}.

In what follows we shall heavily apply a fusion argument to Miller(k) as well
as to the Sacks forcing.

DEFINITION 2.2. For ¢ < p € Miller(k) and « € & the notation q <, p
means that Split,(p) = Split,(¢). A sequence (p, : @ € k), where p, €
Miller(k), is called a fusion sequence if:

(i) 1f 8 < a, then pa < pp.
(ii) Pa+1 <a Pa-

(iii) ps = (Nocs Pa for limit § € .

The following lemma is straightforward.

LEMMA 2.3. Let (pq : a € k) be a fusion sequence. Then q = ()ye, Pa €
Miller(x) and q <q po for all o € k.

Next, we recall the definition of the Sacks forcing for uncountable cardi-
nals.

DEFINITION 2.4. Let us fix a sequence A = (4, : o < k) such that
|An| < kK for all . Let 7 be the set of all functions ¢ which satisfy the
following conditions:

(i) There exists a such that the domain of ¢ equals a.
(i) For all 8 € dom(t), t(5) € Ag.

—,

Sacks(A) stands for the forcing whose conditions are subsets T of 7 such
that:
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(1) seT,tCs—teT.
(2) Each t has a proper extension in 7.

(3) If t € T and the set of such § that ¢t]3 € T is unbounded in £(t),
thent € T'.

(4) There exists a club C(T') such that the set succy(t) of immediate
successors of an element ¢ € 7' with domain « coincides with {t"a :
a € Ay} provided o € C(T), and |succr(t)| = 1 otherwise.

Extension is defined by S < T iff S is a subset of T.

When each A, is {0,1} we get the usual Sacks forcing considered in
7, 1T}, 14]. Some other sequences A are employed in [9]. Yet another sequence
will be used in Section Y| I But the basic propertles (e.g. chain condition,
fusion) of Sacks(A4) do not really depend on A.

Given any T € Sacks(A) and i € k, we denote by Split,(T)) the set
{teT: (35 <i)l(t) = a;}, where (o : i € k) is the increasing enumeration
of C(T'). Now the notions of <, and of a fusion sequence can be introduced
for Sacks(A) in the same way as for Miller(x).

If v is an ordinal and S°, S' are disjoint subsets of v such that S°US! = ~,
then we denote by ST 50,51 & the forcing poset P, from the iterated forcing
construction <IP’§,@77 : &€ < v, m < ) with supports of size < k defined as
follows:

{n<~:P, - Q,=Miller(k)} = S°, {n < v : P, IF Q, = Sacks(4)} = S*.
DEFINITION 2.5. Suppose that o < k and (pg : B € ) is a decreasing

sequence of elements of STy, S1A The “meet” q¢ = Aﬁeapﬁ e ST 5051 A

is defined as follows: supp(q) = Uﬁe o supp(pg) and for every & € supp(q)
q1€1Fq(§) = Npeq Ps(§)- (Note that in case o = & there could be no such g.)

In order to prove that k™ is preserved by ST, 50 g1 7 and k1T is preserved
for v = k™" we need to employ a suitable variant of fusion.

DEFINITION 2.6. Suppose that « € k, F € [y]<*, and ¢,p € ST

q <pq p means that ¢ < p and ¢[¢ |- ¢(§) <, p(§) for all £ € F
A sequence ((pa,Fa) : a € K) is a generalized fusion sequence (for

STSO 751 7‘4*) lff:

50,81 A"

) |Fa| < k for all a € k.
F, DFgforallﬁ<a</£.

(i )
(iil) pat1 <F,.a Pa for all a.
(EV§ If § is limit, then F5 = s, Fjs and ps = A 4<; Pa-

v) U{Fa:a €k} =U{supp(pa) : a < K}.

(*) The preorder <, here depends on whether ¢ € S° or £ € S*.
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The easy but technical proof of the following lemma is left to the reader.

LEMMA 2.7. Let ((pa, Fa) : @ € K) be a generalized fusion sequence for
STSO,Sl,/T' Then q = Nqyey Pa € STSO,SI,A' and ¢ <F, o Pa for all o € k.

There is no loss of generality to assume that each A, is an element of .

DEFINITION 2.8. Suppose that p € ST g1 5, F' C supp(p) with [F| < &,

and 0 : F — k=" Then p|o is a function with the same domain as p
such that (plo)(§) equals p(&) if & ¢ F and p(€), () otherwise, where for

¢ € Miller(k) U Sacks(A) and t € k<%, ¢; denotes the set of all elements of ¢
compatible with .

It is clear that plo € STq o1 4 if and only if for every £ € F' we have
(plo) 1€ Ik o(§) € p(§). If plo € STgo g1 g, then we say that o lies on p.

THEOREM 2.9. For every ordinal v and decomposition v = S° U S the
forcing STSO,Sl,fY preserves cardinals < k1.

Suppose that 2% = kT in V. If v < kT, then there exists a dense subset
W, C STSO,Sl,/T of size [Wo| < kt. If v = k7T, then STSO,Sl,fY has the
kT -chain condition.

Similar results were discussed in [14] and [7] for the Sacks forcing. Never-
theless, we give complete proofs here. Our exposition follows [14]. The first
part of Theorem [2.9] follows from the lemma below.

LEMMA 2.10.

(1) Assume that p € STgo g1 g and p Itz € V. Then for every I € [y]<*
and ag € Kk there exist ¢ <pqo, p and x € V with |x| < Kk such that
ql-z € x.

(2) Assume that p € STso g1 5 and p - “2 € V and |2| < k”. Then for
every F € [y]<" and ap € k there exist ¢ <po, p and x € V with
|x| < Kk such that q|F 2 C x.

Proof. 1t is well-known how to obtain the second item from the first one
(see [14, Theorem 2.3]).

In order to prove the first item we shall inductively construct a general-
ized fusion sequence ((pa, Fo) : o € k) with (pg, Fg) = (p, F') for all 5 < ay,
and x € V of size |z| < k such that ¢ = A ¢, P and z are as required. The
trivial description of how to construct Fp’s is omitted. The limit step of the
construction is obvious, so we concentrate on the successor case.

Let us enumerate as {04, : @ € n} all ground model functions o : F, —
k**1 which lie on some r < p,, so that r = r|o, 7[€ IF (&) [a € Split,, (pa(€))
for all ¢ € F,,, and o (&) (a) = a for all ¢ € F,NSY. (Here n < & is a cardinal.)
We shall construct a sequence (po; : i € 1) as follows. Set po,—1 = po and
suppose that we have already constructed a decreasing sequence (pq,j : j < 7)
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such that pa j <p, .o Pak forall k < j <. Ifiis limit, we set po,; = /\j<i Paj-
Suppose that ¢ = j + 1. If there is no r < poj such that r = rfo,; and
r[€ - o(&) o € Split, (pa(§)) for all £ € F,, we set po; = pa,j. And if there
is such an r, let 7o ; < r and x,; € V be such that r,; IF 2 = x, ;. Now,
using the Maximal Principle we define p, j+1 to be the amalgamation of p, ;
and 74; as in the proof of [14, Theorem 2.2|. More precisely:

(a) supp(pa,j+1) = supp(ra,;)-
(b) If £ € F,,, then p, j+1(§) is such that

Ta,i 1€ 1F Paj+1(8) = (Pa,j(§) \ Pai(§)o, ;(6) YU Tai(§),
and for any condition ¢ < p, j+1]¢ incompatible with 7, ;[€,
c H_E pa,j+l(£) = pa,j(&)'
(c) If £ € F,, then pq j+1(§) is such that
Ta,j [€F Pa,jt1(§) = 7a,5(§),

and for any condition ¢ < p, j+1[§ incompatible with rq ; €,

¢ Ik pa,j+1(§) = Pa;(§)-

Now we let potr1 = /\Z-@7 Da,i- It follows that pa+1 <fg, o Po- This completes
our construction of ((pa, Fa) : a € k). Set & = {zq,i}.

Cramm 2.11. Suppose that r < q. Then there exists a sequence (rq :
a € RK) of elements of ST507517Z with 1o = r, a sequence (o4 : Fy — K=" |
a < k), and sequences (lia¢,Vag : @ € K, & € Fy) of ordinals less than k
such that:

(i) If B < «, then 1o < rg.
(ii) If € € Fy, then l(0a()) = pae + 1.
(iii) If B < a, then 0g(&) C 04(&) for all § € Fp.
(iv) For every § € Fot1 we have 1a411§ IF “ray1(§) = Tat1(§)ouyy(6)s
Tat1(8) [par1,¢ splits in 74(§), and
Ua+1(§) Wa+1,£ € SphtyaJrL& (q(g))”'
(v) If 0 is limit, then:
e 05(&) 15 = Upes 7al§
o 05(&)(psg) = sup{oa(&)(tag) : a < &} for all € € F5sn S° (we
assume that 0o (§) =0 for all § € F,,).
® Use = SUDy g Vae for all § € Fy.
o 75[¢ IH05(8) € 15(8), 05(§)Imsg splits in rs(£), and
o5(&) [usg € Splity, (q(€))” for all § € Fs.
Proof. The construction proceeds by induction. For limit ¢ we simply
set 05(§) and v5¢ to be as required in (v) and 75 = A\, 57a. Thus pse =
SUPy <5 Ha,e- Let us fix any @ < 6 and £ € Fy N SY. From the above
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it follows that rs[§ |- “og(&)lup,e splits in r4() for all a < B < &7,
and hence 51§ I+ “o5(&)[use splits in ro(§)”, and consequently rsf[¢ I-
“o5(§)Tnse splits in 75(§) = (Ngo575(§)™ By the definition of Miller(x),
51 I Cra(€),05(€) 1156) = Mg C(ral€). 06(8) l1s¢), and hence rs[€ IF
03(E) (15,8) = Sy 03(E) (ue) € Clral€), o5(€)liing)), which implies
that 751 I 05(€)(in) € Crs(©), as(©)liing) = Nass Clral6)sos(E) lise)):
which gives r5[¢ |- 05(§) € r5(§). Finally, the equalities o5(§)[puse =
Uacs al(§) Tta,e and vsg = sup, ¢ Va,e combined with r5[¢ IF 06 (&) [pae €
Split,,, (q(£)) imply 75[€ IF 05(&)[1se € Split,;, (¢(£)), which completes the
limit step.

At successor step a+1 consider the increasing enumeration (&; : ¢ < 1) of
F,41 and find a decreasing sequence (u; : i < ) of elements of STSO’ 514 83
follows: Set u; = /\j<i u; for limit ¢. Now given w;, find v < u;[&;, m € KHFL
for some p € k, and v € k such that m D 0,(&) if § € F, and

vlbg ™€ ra(&i), wlp € Split, (q(&:)) N Split(ra(&:))-

Then we set

uit1 =0 o) " ral(Y\ (&G + 1),  oat1(&) =T

(Ha+1,e and va41e, automatically become equal to p and v respectively.)
With u;’s thus defined, we set 711 = /\; < Wi- This completes the inductive
construction, hence the proof of the claim. =

The following claim is obvious.

CrLamM 2.12. There exists a club C C K such that pae = Vog =
and 04(§)(pae) = a for every o € C and § € F,. Consequently, ro[§ I+
oa(&) e € Split,, (q(&)) for every a € C and £ € F,.

We are in a position now to finish the proof of Lemma Let C be
as in Claim and a € C. Then o, = 04, for some i < n (see the
construction of p,+1 at the beginning of the proof of Lemma . Since
Ta+1l < ¢ < Pa,i, Claim (iv) implies that for every & € Fo41 D F, we
have 744+11€ IF 7a11(§) = ra+1(§) gy (¢)- Therefore the construction of pa,it1
is nontrivial. Since ro11 < ¢ < Payitl, Tatl = ra+1\aa < pa,i+1|aa,i = Ta,i,
and hence rq41 IF 2 = x4,;. Therefore for every r < ¢ there exists r’ < r such
that r' I 2 € x, which finishes our proof. m

Proof of Theorem . The proof is analogous to that of |14, Lemma 3.1].
Let W, be the set of those ¢ € ST, ¢ 5 such that:

(i) There is an increasing sequence (F,, : o € k) of subsets of 7y such that
|Fo| < kforall a, Fs = |J,es Fo for limit 4, and | J,, . Fo = supp(q).
(ii) For every « there exists a (possibly empty) collection X, of ground
model functions o : F, — k%"l of size |¥,| < & such that glo €
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STSO,Sl,Z{ for all o € J,¢, o, and whenever 3 € x and r < g, there
exist « >  and o € ¥, such that r and g|o are compatible.

The proof of Lemma [2.10] gives that W, is dense in ST, g1 7. In addition,

almost literal repetition of the proof of |14, Lemma 3.1| shows that if a pair
of sequences

((Fo:a €KY, (Xy:a€EK))

is a witness for ¢; € W, 7 € 2, then gg < q1 < qo in STSO,Sl,E' It suffices to
note that there are at most x*-many such pairs.

Finally, the fact that ST g x has kt+-chain condition provided v =
kT is a direct consequence of [I, Theorem 2.2|. =

At this point we would like to note that there has been extensive work
by Eisworth, Rostanowski, Shelah and perhaps others on possible general-
izations of proper forcing to uncountable cardinals (see, e.g., [8, 19]). It is
plausible that Theorem follows from one of the general results about un-
countable versions of proper forcing. However, Claim will play a central
role in the proof of Claim and for this reason we gave a complete proof
of Theorem [2.9] instead of trying to put it into the framework of the results
from [8] or [19].

3. Miller(k) and a variant of the groupwise density number.
Throughout this section s is strongly inaccessible, 2f = k™ in V, k™7 =
SOLSY, A = (A, : @ € k) is a sequence of ordinals below #, and S is
kT -stationary (we use U as notation for disjoint union). Here we define a
new cardinal characteristic of x and show that iteration of Miller(x) pushes
it to kT,

DEFINITION 3.1. We say that G C [«]" is a cgd-family (abbreviated from
club groupwise dense) if for every continuous increasing function ¢ : k — k
there exists a club C' C & such that |, .o ¢(a+1)\ ¢(a) € G, and for every
A € G and B € [k]" such that |B\ A| < k we have B € G. In what follows,
the minimal size of a collection & of cgd-families with empty intersection is
denoted by g (k).

THEOREM 3.2. Suppose that G is an STy, ¢ z-generic filter. Then V[G]
): gcl(/{) =kt
The proof of Theorem [3.2] is divided into a sequence of lemmas.

LEMMA 3.3. Suppose that G is an STy g1 z-generic filter. Then for every

subset x of k such that x € V[G] there exists v < k™1 such that z € V[G,],
and the smallest such v has cofinality < k.
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Proof. Let & be an ST, 0 g1_g-hame of x. Note that the set D C W, ++ of
all ¢ € ST, 51,488 in the proof of Theorem . 9| with the additional property
that for every o € ¥, the condition ¢|o decides #(3) for all § < «, is dense
in ST507S1,A- (Any ¢ obtained along the lines of the proof of Lemma
with an extra requirement that r, ; decides &(3) for all 5 < « belongs to D.
Item (ii) from the proof of Theorem [2.9|implies that {glo : 0 € Uy, T} is
predense below g. Therefore for every ¢ € D and 3 € k there exists a subset
E, s predense below ¢ of size < x and such that each element of £, 3 decides
#(3). From the above it follows that for every ¢ € D we have ¢ IF & = 7,
where m = {((B,ig,),7) : B € K, r € E;3} and r I &(3) = ig,. The rest of
the proof is straightforward. m

The following lemma resembles [3, Lemma 5.10].

LEMMA 3.4. Let G be an STy o1 z-generic filter and F € V]G] be a

cgd-family. There is a kT -closed unbounded set of ordinals n < k™ for
which F NV [Gy| € VIGy] and FNV[Gy] is a cgd-family in V[G,)].

Proof. Let F be an ST, 50 g1 f-name for 7 and p € G be a condition which

forces that F is a cgd-family, and 4 < #*+ be such that p € P,. The proof of
Lemmayields a set IT, of Py-names of size |II,| = kT such that for every
P,-generic filter H and x € P(k) N V[H] there exists 7 € I, with z = 7l
For every m € II, we denote by B(m) a maximal antichain of conditions in
P,++ that decide whether 7 € F. Let 11 = n:(7) be the supremum of the
union of the supports of all conditions appearing in some B(w), © € II,.
(Recall that ST, ¢ 5 has k™" -c.c.) Then F NV[G,] € V[Gy,].

For every m € II, we can find a maximal antichain A(7) below p whose
elements decide Whether 7 is (the range of) a continuous increasing function,
and if ¢ € A(m) decides that 7 is such, then for some £(m,¢q) > v and
Orq € He(rq), q forces Orq to be a club and ,eq,  [T(a), m(a + 1)) € F.
Let 19 be the upper bound of the set

{ﬁ(ﬂ',q):ﬂ'eﬂy,qe U A(W)}U{supp(q):qe U A(ﬂ')}.

nell, nell,

Then 7(7) := max{ny, 72} has the properties FZ NV[H,] € V| Hy ], and if
Y € V[H,] is any continuous increasing sequence, then there is a club C' €
V[H, )] such that (o[t (a), ¢(a+1)) € FH where H is any ST, 50,51 4
generic filter containing p.

Let E C ™1 be the x1-closed unbounded set of those 1 such that n(y) <
n for all v < n. We claim that F is as required. Indeed, by Lemma [3-3] for
every 1 € F we have FNV[G,] = {n%" : Iy <n(mell,AB(w JNG, #0 A
the unique element of B(7) NG, forces 7 € F)}, and the last set is obviously
in V[G,]. Now suppose that ) € V[G,] is a continuous increasing function
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from k to k. Applying Lemma we can find v < 7 such that ¢ € V[G,].
From the above it follows that there is a club C' € V[G, ] C V[Gy] such

that U,cc[¥(a), ¥(a + 1)) € FE N V[G,], which finishes our proof. =

LEMMA 3.5. For every p € Miller(k) there exists a continuous increasing
sequence (Vo : a € K) such that for every club C there exists ¢ < p such
that the range of every branch through q is almost (= modulo a subset of size
< k) contained in |J,coVa, Vat1)-

Proof. We define the desired sequence (V4 )aer inductively. Choose 1
arbitrary. For limit 6 € xk we set vs = sup,cs Va. After v, is defined, let
B > v, be such that for every s € p whose range is a subset of v, and
€ € [Va,B), if s°€ € p, then the range of the smallest extension ¢ € Split(p)
of s°¢ is contained in 8. We set vq41 = 0.

We claim that the sequence (v, : o € k) is as required. Indeed, it is
continuous by the construction. Let C' and D C J,cc[Va,Vat1) be clubs.
(The role of D here is to ensure that the splitting nodes of the condition ¢
constructed below split into clubs rather than into sets containing clubs. We
could take, e.g., D = {a € C : v, = a}.) Let ¢ be the tree generated by
the set of those s = $1°¢ € p such that s; € Split(p) and for every ¢ < s,
if t € Split(p), then s(¢(t)) € Unecn ) [Vasvat1) N D, where p(t) is the
minimal ordinal x such that v, contains the range of t. Then ¢ € Miller(x).
It suffices to note that the range of each branch through ¢ is a subset of
Uasecc[Vas Vat1) U B, where 3 is the range of the stem (= smallest splitting
element) of p. =

Proof of Theorem[3.2 A simple density argument based on Lemma [3.5
shows that if H is a Miller(x)-generic filter and F is a cgd-family in V', then
the range of (| H € k" is almost included in some F € F.

Now let § € V[G] be a collection of cgd-families of size k*. For every
F € § Lemma yields a k*-closed unbounded set Cr € P(sTT) NV
such that F N V[G,] € V[G,] and F N VI[G,] is a cgd-family in V|G, for
every n € Cg. Let us fix n € 8N ﬂfeng. From the above it follows
that Gy41 = Gy * H, where H is a Miller(x)-generic filter over V[G,]. As we
already noted, H gives rise to a subset X € V[G) ;1] of k such that for every
F € § there exists F' € F N V[Gy] such that X C F. Therefore X € (3,
which finishes our proof. m

4. A new lower bound for the cofinality of the symmetric group.
In this section x denotes a strongly inaccessible cardinal. The main result
of this section says that for a certain sequence /T, if both S° and S' are
k" -stationary and G is ST ¢ s-generic, then V[G] F cf(Sym(x)) = x*7.
The motivation for this is given in Section [f] We follow the strategy of the
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proof of |23 Theorem 2.2|. In its turn that proof relies upon the methods
developed in 21 §2].
Following [23] we give the following definition.

DEFINITION 4.1. For a subset A of k we shall identify the group Sym/(A)
with the subgroup of Sym(k) consisting of permutations o such that o[(x\ A)
= id,\ -

For every increasing ¢ € " let Py be the group [],c, Sym(i(a + 1)
\ % («)), which will be identified with a subgroup of Sym(k). Let cf*(Sym(x))
be the least cardinal A such that it is possible to express Sym(x) = ;. I3
as the union of a chain of proper subgroups such that for every increasing
continuous ¢ € k" there exists 7 € A such that Py is a subgroup of I5.

For an increasing function 0 : kK — x we set 0(a) = Supge, 0(€) and

Qo = P;. (Note that 0 is continuous and Py C Q)

The following lemma resembles [23, Theorem 2.6]. But the proofs of
Lemma 4.2 and of Theorem 2.6 from [23] are completely different.

LEMMA 4.2. cf*(Sym(k)) > ga(rk).
Proof. The proof is divided into two steps.

CLAIM 4.3. For every m € Sym(k) there exists a continuous increasing
Y € K" such that m € Py.

Proof. For any a € k we set f(a) = min{n(§) : £ > a} and y(a) =
sup{m(§) : € € a}. Since 7 is a bijection, Fodor’s lemma implies that
B(a) > « for club many a’s. Therefore there exists a club C' C k such
that v[C' = id¢ and (a) > « for all & € C. Now, the increasing bijective
enumeration ¢ : K — C'U {0} is as required. m

Given any B € [k]", we denote by ep : K — B the increasing bijective
enumeration of B. Note that continuous strictly increasing functions from s
to k are exactly those of the form eq for a club C.

CLAIM 4.4. Let I' be a subgroup of Sym(k) containing Symg(k) = {7 :
m(a) = a for all but < kK many a’s} and such that (I, g) # Sym(k) for all
g € Sym(k), and Gr = {A € [k]": VB (|B\A| <k = Qepy ¢ I')}. Then
Gr is a cgd-family.

Proof. Let ¢ : kK — k be a continuous increasing function. Since Sym(k)
C I', the family Gr is closed under modifications of size < k of its ele-
ments. Thus it is enough to show that there exists a club C' such that, let-
ting Cp = Upecl®(a),d(a + 1)), we have Cy € Gr, which means Qec,
¢ I'. Assume to the contrary that QE% C I for every club C' C k.

Set O = U, oqql0(a), ¢(a + 1)). We claim that Sym(O) C I. Once this
is established, we get a contradiction with [16, Lemma 2.4|. Let us fix
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o € Sym(0). Claim yields a continuous increasing v : K — K such
that o € [[¢c, Sym([eo 0 9(§),e0 0 P(§ + 1)) N O). Set C = {a :  is limit
and ¢(a) = supge, €0 0 ¥(§)}. It is clear that C' is club. Since elements of C
are limit ordinals, the choice of O ensures that Cy N O = ). We claim that

(1) [¢(a), ¢(a+ 1)) N[eo o v(§),e0 0 yp(§+1)) =0

forall a € C'and € € k. Indeed, if § < a, then egoy(§+1) < sup, ., e0oY(n)

= ¢(a). Now suppose £ > . Then O 3 ep o 9(§) > ¢(a), and therefore

[p(c), p(ar+ 1)) N O = 0 implies ep 0 9 (€) > ¢(a+ 1), which proves (I)). For

any ¢ € k consider a(§),5(€) € k such that «(§) = min{a € C : ¢(a) >

eooY(§+ 1)} and ¢(a(§)) is the 5(€)th element of Cy. Equation (1) gives
[eoo¥(§),e00(§+1)) C [ sup ec,(B),ec,(B(E)))

B<B(€)

= [éc, (B(£)), éc, (B(§) + 1)),

and therefore

L1 Sym(leo o ¥(€).co 0 b(6 +1)) N 0) € Qee, I
EER
which implies o € I' and thus completes our proof. =

Let us express Sym(x) = (J;-, I as the union of an increasing chain of
proper subgroups such that each Py is contained in some I5. Since |Symq(x)|
=k and X > k, we can assume that Symg(k) C Ip. For every A € [k]" there
exists i € X such that Q., = P, C I}, consequently (;cyGr, = 0, and
therefore g.;(k) < A, which finishes our proof. mremma

DEFINITION 4.5. Let ¢g : K — & be the continuous increasing function
such that ¢9(0) = w and ¢p(a + 1) = ¢o(a) + a for all a € K. We set
No = Sym(do(a+ 1)\ ¢o(@)), N = (Na : a < k), and STgo 51 = STgo g1 -

Each branch i’ = (£(a))aex of T € Sacks(N) can be naturally identified
with an element of o7 € Py, such that o] (do(a+1)\ ¢o(a)) = t(a). We also
need the following

DEFINITION 4.6. [k]™" denotes the set {A C k: |A| = |k \ A] = k}. If
A € [K]"" and o € Sym(k), then o is defined by o4 (ea(a)) = ea(o(a)). I
I' is a subgroup of Sym(k), then I'* = {04 : 0 € I'} and I'(A) = {0]A :
oel, oAl = A}

The next lemma is of crucial importance for the proof of the equal-
ity cf*(Sym(k)) = cf(Sym(r)) in V705! for xT-stationary subsets SO, S
of KTT.

LEMMA 4.7. Let ¥ : kK — Kk be a continuous increasing function. Then

for every T € Sacks(N) there exists A € [K]™" such that for every T € Py
there exists S < T such that ozl A = 4 for all branches § of S.
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Proof. Let B={a € k: (o) = ¢o(a) = a}. Then B is obviously a club.
Consider D € [C(T) N B]* such that D is a discrete subspace of x and find

aclub €' C C(T)\ D. Set A= ep(do(a+1)\do(a)) = Uepla, a+a).
We claim that for every § < k there exists a(3) € D such that

(2)  ealv(B),¥(B+1)) C [do(a(B)), do(a(B) +1)) = [a(B), x(B) - 2).

Indeed, let us fix § and find «(5) such that ez (¢(5)) € [a(B), a(F)-2). Since
a(f) is a fixed point of ¢g, it is indecomposable, i.e. it is not equal to the sum
of any two smaller ordinals. By our choice of D, a(3) > sup(D N«(S)), and
hence o0.t.(AN ¢o(a(B))) < po(a(B)) = a(B). Therefore o.t.(ANa(f)-2) =
o.t.(ANgo(a(B))) + a(B) = a(B), which means that e4(a(8)) = a(f) - 2. It
follows that ¥ (5) = o.t.(ANea(v(B))) < o.t.(ANa(f)-2) = a(f). Since
a(f) is a fixed point of ¥, we conclude that ¥)(G+1) < a(f). In other words,
o.t.(ANea(v(B+1))) < o.t.(AN¢o(a(B)+1)), which implies the inequality
ea(¥(B+41)) < ¢o(a(B) + 1) and thus proves ().

Now, let us fix m € Py. A direct verification shows that S € Sacks(N)
such that C(S) = C’ and for every 8 € k and s € S we have

exos(a(B)) o eall(B), v (B +1)) = 7l (8), ¥ (8 + 1))

is as required. =

LEMMA 4.8. Suppose that A= cf(Sym(k)) < cf*(Sym(k)) and ([;:i€N)
is an increasing chain of proper subgroups of Sym(k) such that Sym(k) =
Uica Ii- Then there exists a continuous increasing ¢ : k — k such that
P;;‘ ¢ Ii(A) for alli < X and A € [k]"™".

Proof. Let us fix Ag € [k]™". The same argument as in the proof of [4]
Lemma 2.7] gives us a continuous increasing 1 : k — k such that Pfo 4
I (Ap) for all i < A. We claim that this 1 is as required. Indeed, let A € [k]""*
and m € Sym(k) be such that w[A is the monotone bijection between A
and Ap, and j € A be such that 7w € I';. It is easy to check that if Pf C I;(A)

for some 4, then Pfo C Dnax{i,j} (Ao), which contradicts our choice of 9. u
The next lemma can be proven by the same methods as Lemma [3.4]

LEMMA 4.9. Suppose that 28 = kt in V, k¥t = SOU S is a decom-
position into two k1 -stationary subsets, and G is an STgo g1-generic filter.
For every IT C Sym(k) of size |II| < k™t and every sequence (I; : i < k™) €
V[G] of subgroups of Sym(k) there is a k™ -closed unbounded set of ordinals
n < kTF for which IT € V[Gy), (IiNV[Gy] 1 i < kT) € V[G,)], and for every
A€ [R]"FNV[Gy] and i < kT we have I;(A) N V[G,] = (I; N V[Gy])(A).

Finally, we are in a position to prove the following theorem, which is the
main result of this section.
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THEOREM 4.10. Let S°, S', and G be as in Lemma[d.9] Then V[G] E
cf(Sym(k)) = k™.

Proof. Suppose to the contrary that V[G] E Sym(k) = s*. Let (I :
i < k1) € V[G] be an increasing chain of subgroups of Sym(rx) such that
Sym(k) = U;c.+ Ii- By Theorem and Lemma we have V[G] E
cf*(Sym(k)) = k. Lemma yields a continuous increasing ¢ : kK — K
such that for every A € [x]™" and ¢ < kT we have P;;‘ ¢ I;(A). Fix
A, € [K]™* and for every i < s find m; € Py, such that 7 € Pf* \ [i(Ay).
Observe that IT4 ¢ I;(A) for any A € [k]™F and i < kT, where IT = {m; :
i < kt}. (The condition 7/ ¢ I';(A) holds at least starting from i such that
I'; contains an extension of the order-preserving bijection between A, and A.)

Let n < k1" be an element of the x'-closed unbounded subset provided
by Lemmafor (I : i < &) and IT for which Q, = Sacks(N), i.e. € S'.
We can additionally require A, € V[G)]. Suppose that H is the Sacks(N)-

generic filter over V[G,] such that G,41 = G, * H and h is the common
branch of all trees in H. Applying Lemma [£.7] we conclude that the set

—

{S € Sacks(N) : JA € [k]""NV|[G,| Imr € II
(74 & (TN VIG)(A) A ST ozl A =74}
is dense for all i < xT. Therefore for every i there exist A; € [k]™" N V[G,)]
and j(i) < £ such that o = o [A; = ﬂ'ﬁii) ¢ (I; N V[Gy])(4i). Let i < kT
be such that o € I;. Then
(LN VIG)(A) # ity = ol As € Ti(A) N V[Gy),

which contradicts our choice of 7. »

Now it is natural to ask whether we needed to employ Sacks(N ) at all.

QUESTION 4.11. Is cf(Sym(k)) > gu(k)?

The cardinal characteristic g.;(x) seems to be a natural generalization
of the classical groupwise density number g introduced in [2] and it was
proved in [4] that cf(Sym(w)) > g. But the methods of [4] do not seem to

be applicable to Question [4.11]

5. Proof of Theorem Without loss of generality, j = jg for some
(k, kT 1)-extender E (such embeddings will be called (k,x™")-extender ul-
trapowers in what follows) so that M = {j(f)(a) : f €V, f: H(k) = V,
and a € H(k*)} (see, e.g, [13, pp. 381-384] [(%)]

(*) What we actually use here is the following analogue of [I3, Lemma 20.30]:
A cardinal k is Par-hypermeasurable iff there exists a (1, k' ")-estender E such that
H(k*) Cc Ultg and k7" < jr(k).
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CLAIM 5.1. There exists a cardinal preserving forcing extension V' of V
such that GCH holds in V' and j can be extended to an elementary embedding
j V! — M’ satisfying the following conditions:

(i) H(m++)vl — H(n++)M/,

(i) 7" is given by a (k, kT )-extender ultrapower so that M' = {j'(f)(a) :
fev, f:HEKY =V, andac HxTHEL

(iii) There exist disjoint kT -stationary (in V', and hence in M') subsets
SO St € M' of kT such that S° U S' = kTt and a sequence
((S),50) : k € k), where S) and S} are disjoint p -stationary
subsets of p,‘CH for which p$+ = S) U S}, such that j'{((S,S}) :
k€ k)(k) = (S° 81). (Here pj denotes the kth inaccessible cardinal
below k, k < K.)

Proof. We define a forcing poset R as follows. Let Ry = {1¢}. For k < k
we denote by Si an Ri-name for the poset Fn(pf“, 2, pZJr) adding one Co-
hen subset to p/* (see [I5]). Proceeding this way along all inaccessible car-
dinals < k and using reverse Easton supports we define R. Let G be an
R,-generic over V, g be an S, = Sg—generic over VIG], G, = G N Ry
and gx be such that Gyy1 = G * g for all £ < k. Note that g is the
characteristic function of some subset of SP of p™. It is clear that SP as
well as its complement meet all subsets of p,‘CH of size pz+ which appear
in V[Gg]. Since Rg41 has pfr—c.c., each p;—closed unbounded (in pz+) sub-
set C' € V[Gy41) contains a p; -closed unbounded (in p; ™) subset C € V
(the proof of [13, Lemma 22.25] works in this case as well), and hence S? as
well as pf T\ SY are p-stationary subsets of p{ ™ in V[Gj11]. The rest of
our forcing is p;++—closed, and hence S,g and p;Jr \ S,g remain pZ—stationary
in V[G * g]. Let S° be such that g is the characteristic function of S°
and S' = kTt \ SO Again, S° and S! are x'-stationary subsets of kTt
in V[G * g].

J(R) is the iteration with reverse Easton supports of length j(x) + 1.
A standard argument gives j(R),, = Ry, and hence G is j(R),-generic over
M and (H (k) TH)VIE = (H (k)T T)MIC] (see [T, Lemma 4.4]). From the above
it follows that Fn(st+,2, st )VIC] = Pn(ktt 2,k TH)MIC] and therefore
R = j(R)xy1 and g is Fn(k'+,2, k™ T)-generic over M as well.

Suppose that there exists a j(R)-generic filter G’ = G*x g H x h €
VI[G % g] over M such that H is a j(R), j(.)-generic over M[G * g], h is
Sjw) = §(S,)E*9*H _generic over M[G % g* H], and j[G % g] C G'. Then j can
be extended to an elementary embedding j' : V|G * g] — M|[G’] such that
§'(G % g) = G’ (see [6, Proposition 9.1]). Therefore j/(SY : k € r)(rk) = S°.

(*) We could assume here that the domain of f is still H(k)" and a € H(k™ )V, but
this is irrelevant.



116 S.-D. Friedman and L. Zdomskyy

In addition, conditions (i) and (ii) hold by [6, Proposition 9.3]. Thus j,
V' = V|G x g], and M’ = M[H] are as required.

It suffices to note that such H and h exist: the construction of H is
standard, see, e.g., fourth, fifth and sixth paragraphs of the proof of [7|
Theorem 4.2]; the existence of h follows from the x*-distributivity of S, by
virtue of [0, Proposition 15.1|, which implies that the subfilter h of S
generated by j[g] is as required. =

3 (%)

There is no loss of generality in assuming j = 5, V =V’ and M = M’.
We define a forcing poset P as follows. Let Py = {1¢}. For £ < k we denote
by Qi a Py-name for STSQ, st Proceeding this way along all inaccessible
cardinals < k and using reverse Faston supports we define P. Observe that
Py has p;—c.c., and hence S,g,S,}/, are still pg—stationary in VP*. From the
above and Theorem we see that VF E cf(Sym(k)) = s*+. Thus it
suffices to prove that s is measurable in VF. In order to do this we shall
extend j to an elementary embedding from V¥ into M7(®).

j(P) is an iteration of length j(k) + 1 in M with reverse Easton support.
It is clear that j(P), = P,. Let G be a P,-generic filter over V. Since M
and V have the same H(x™1) and j((S?,S}) : k € k)(x) = (5%, 81, we
have (ktT)MIC] = (57 +)VIG (see [7, Lemma 4.4]) and j(P)..1 = P. Note
that j(P) = j(P,) * j(Qx). Let g be generic for Q¢ over V[G]. We need to
find a suitable j(IP)-generic filter over M in order to lift j to V]G * g]. The
following claim is analogous to [1, Lemma 6.4].

CLAM 5.2. If x C M[G] (resp. * C M|[G * g]), v € V[G] (resp. x €
VIG * g]), and V|G| E |z| < k (resp. V|G x g] E |z| < k), then € M[G]
(resp. x € M[G * g]).

Proof. We present the proof of the G x g part only. The other part is
analogous. Without loss of generality, z is a set of ordinals. Let & be a
P-name such that £“*9 = 2. The kT t-c.c. of P yields a set of ordinals y € V
of size |y| < kT in V and a condition g € P such that ¢ IF & C y. For every
a € y there exists a maximal (in {p € P : p < ¢}) antichain A, of conditions
p such that p IF a € & for every p € A,. Applying Theorem [2.9] we conclude
that |Ay| < kT for every a € y. It is clear that (A, : o € y) € H(k™T),
and hence (A, : a € y) € (H(kT1))M. It suffices to note that z = {a € y :
GxgNAy,#0}. m

In the same way as in the proof of [7, Theorem 4.2] (using Claim
instead of [11, Lemma 3|) we can find a j(P)[(k,j(k))-generic filter H €
VIG * g] over M[G * g]. Thus j[G] = G C G x g * H, and hence j lifts
to an embedding j* : V[G] — M|[G * g * H| definable in V[G = g| (see [0
Proposition 9.1]). Let M* denote M[G * g x H|.

(*) Here S = S° and S} = S*.
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We give Definition [5.3] and Claim [5.4] in full generality for any iteration
of Miller and Sacks forcmgs

DEFINITION 5.3. Let p be a strongly inaccessible cardinal and v be an
ordinal, S°, S' be disjoint sets such that S° U S' = ~, and A= (Ao -
a < p) be a sequence of elements of p. Suppose that ((pa, Fu) : @ € p) is a
generalized fusion sequence for STSO’ 14 4= Na< pPas and i € p. We say
that a function o : F' — p'*! is i-properly situated on q (with respect to the
fusion sequence ((pa,Fo) : a € p)) if F; C F, o lies on some r < ¢ such
that r[¢ IF o(§) i € max Split;(¢(§)) for all £ € F, and o(§)(i) = i for all
e FnsSo.

CrAIM 5.4. Let p, SY, S*, A, ((pa, Fa) : @ € p), q, i be as in Defini-
tionp.3, u < ¢, F,T € [y]<P with F C T, and C C p be a club. Then there
exists v <p; u satisfying the following conditions:

For every o : F — p'™! which lies on v and has the property o(&)(i) =i
for all ¢ € FN SO, there exist j € C and 7 : T U F; — pUtY) such that
m(E)(i+1) =0(&) forall € F, 7 lies on v, v|o = v|mw, and v|7 is a witness
for 7 being j-properly situated on q with respect to ((pa, Fu) : a € p).

Proof. Let us enumerate as {0¢ : ( € n} all 0 : F — p*!l with the
property o(&)(i) = i for all £ € FNS° and which lie on some r < u. Set
up = u and suppose that for some ¢ < 7 and all ' < ¢ we have already
defined u¢s € STqo g1 7 such that ue <p; uer for all ("< < ICis
limit, we set u¢ = /\C/GC Ugr.

Let us consider the case ( = ¢’ + 1. If there is no r < u¢ such that o<

lies on r = T’JCI, then we set u¢c = u¢. Otherwise set rol =, o8 = o<,
and ny = F, UT. Repeating the same argument as in Claim [2.11} we can

construct a sequence (rg i a € p) of elements of ST, o1 7, & sequence
<ag  FS — p<Pla < p), and sequences <ui Vot @ €Ep & E Fg> of
ordinals less than p satisfying (i)—(v) of Claim Claim yields a club

C¢ C p such that ug£ = Ugg = « and ag/(f)(ui ¢) = a for every o € c¢

and & € FC/ NS0, Let us fix j¢' € €' NC and set ¢ = Ufé, and r¢' = ri'+1

By Clalm- 2.11|(iii), (iv) we have <'|7¢" = r<" and r¢’ is a witness for 7¢’ being
7¢ -properly s1tuated on q. Now let u¢ be the amalgamation of u¢ and ¢
defined as follows:

/ /

(a) supp(uc) = supp(r).
(b) If £ € F', then u(§) is such that

r< T8 I ue(€) = (uer (€) \ uer () e ey) U (6),
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and for any condition ¢ < u¢[€ incompatible with r¢1E, e ke ue(§) =
uc’ (5)‘ ! !

(c) If € ¢ F, then uc(€) is such that r¢ [€ I ue(€) = r¢ (€), and for any
condition ¢ < u¢[€ incompatible with e, e ke ue(§) = uer (§).

By the definition of u; we have
udacl =& =2 = (udacl)\ﬂ'c/ = u¢|7TC/

and u¢e <p; uer.

We claim that v = /\C<n u¢ is as required. Indeed, let o : F — pit!
be as in the formulation. Since v < u, we have ¢ = o¢ for some ¢ € n
and the construction of ucyq is nontrivial. From the above it follows that
v|o < uclo® = ue|m, consequently 7¢ lies on v and vjo = v|7¢ < uc|r® =S,
Now it is easy to see that j = j¢ and m = 7€ are as required. m

CLAIM 5.5. Let p, S°, S, and A be as in Definition and p €
STSO,Sl,fT' Then for every sequence (Dy : « € p) of open dense subsets
of STSO,Sl,fY there exists a generalized fusion sequence ((pa,Fu) @ o € p)
with po = p and such that, with ¢ = /\aeppow for every limit © € p and
it+1

o : F; — pt% which is i-properly situated on q, o lies on q and qlo € D;.

Proof. Take 7, € D, in the construction of a fusion sequence from the
proof of Lemmam (the part before Claim instead of demanding that
Ta,j decides Z as a ground model object. The resulting fusion sequence is
easily seen to be as required. m

Let us come back to our main task, namely to extend j* to an ele-
mentary embedding j** : V[G * g] — M*[h] for some Qj(,) = j*(QY) =

M* _ : * Sxk :
STj*(SO),j*(Sl),j*(]\_f) generic filter h over M* so that j** is definable in V [Gxg].

By [6, Proposition 9.1] it is enough to find a Q;(,)-generic h € VG * g] over
M* for which j*[g] C h.

For every £ < k1T we denote by z(£) € "NV [Gxg| the (unique!) branch
through all trees in g(£) and let ag = K (resp. ag = 0) for all £ € S (resp.
¢ € S'). We claim that

h={j*(p)lor:pe€g, I € M* ICjlx"t] |I| =r},

where 07(j(§)) = 2(§) a¢ for all j(§) € I, is Qj(,)-generic over M*. The proof
below is a generalization of the “tuning fork” argument invented in [I1]. Let
D € M* be an open dense subset of Qji(r)- Write D as j*(f)(a), where f has
domain H(x)V, f € V[G], and @ € H(x)Y. There is no loss of generality
to assume that f(a) is open dense in Q, := QF for all a € H(k)V. Let us
enumerate H (k)Y as {ay, : k € k) and set Dy = (< f(ar).



Measurable cardinals and symmetric group 119

Let p € Q, be arbitrary. Claim yields a generalized fusion sequence
((pk, Fx) : k € k) such that pg = p and, with ¢ = A, p, for every
limit & € k and o which is k-properly situated on ¢, o lies on g and
q\a € Dy.

Let (Fy, : k € j(k)) and (py, : k € j(x)) be the results of applying j* to
(Fy : k € k) and (pg : k € k) respectively. By elementarity of j*, ((pg, F}) :
k € j(k)) is a generalized fusion sequence for Qi) :=7"(q) = /\12:<j(n) Drs
and there exists 3 € j(x) so that for each limit & > 3 and & which is
a-properly situated on ¢, & lies on ¢ and glo € D. We can additionally
assume that 3 > k.

Fix u < g and a club C' C & such that j(C) N (k, 0] = 0 (its existence
is established, e.g., in the proof of [11, Lemma 4]). Using Claim , we can
construct a fusion sequence ((ug,Ty) : k € k) with up = u satisfying the
following conditions:

(i) Fy C Ty.

(ii) For every o : T — kF*! which lies on wu; and has the property
o(€)(k) = k for all £ € T N SY, there exist a limit ordinal m €
C\ (k+1) and 7 : T  UFE,, — &+ such that w(&€)[(k+1) = o(£)
for all £ € Ty, m lies on ugy1, Upt1lo = ups1|m, and ugyq|m is
a witness for m being m-properly situated on g with respect to
((pk, i) : k € K).

k

Let (T : k € j(x)) and (ug : k € j(k)) be the results of applying
j* to (T : k € k) and (up : k € k) respectively, v = A, _, ug, and
v =7%v) = /\,—Kj(,{) g. By elementarity of j*, for every & : T, — j(k)"!
which lies on %, and has the property 7(€)(k) = & for all £ € T, N j(S°),
there exist a limit ordinal m € j(C)\ (k+1) and 7 : T 41 U Fy, — j(r) ™+
such that 7(&)[(k+1) = 7(€) for all £ € T}, 7 lies on Uy 41, Upt1|0 = Upt1|7,
and U,1|0 is a witness for 7 being m-properly situated on g with respect
to ((Pg, Fx) : k € j(k)).

Since p and u < ¢ were chosen arbitrarily, we can assume that v € g.
Observe that Ty, = Uy, 4[T%] C j[&T 1], |Tx| = K, and T,, € M*. The elemen-
tarity of j* implies that & := o7, lies on j*(w) for any w € g. In particular,
o lies on 1y, = j*(uy) for all k € , and hence it lies on @, = A\, ¢, Ur as well.
Therefore we can find m € j(C)\ (k4 1) and 7 : Ty 1 U F — j(r) ™+
as above, i.e. Ux41|0 is a witness for 7 being m-properly situated on ¢ with
respect to ((pg, Fr) : k € j(x)). By the construction of ((px, F}) : k € k),
elementarity of j*, the equalities j(C) N (k,3) = 0 and m € j(C) \ (k + 1),
and our choice of 3, we conclude that 7| F} lies on g and ¢|(7[Fy) € D. On
the other hand,
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Q7 Fm) 2 U1 |T = Uny1|0 > 0|6 = j"(v)|og, € h,
which means that A N D # () and thus finishes the proof of Theorem .

REMARK 5.6. 1. To the best knowledge of the authors there are essen-
tially three other different forcing extensions V¥ of V which preserve the
measurability of x and kill the GCH at x under the assumption that x is
Pk-hypermeasurable (see [6, §24], [T1], and [7, §4]). In all three cases we have
cf(Sym(k)) = x* in V. The historically first of them is due to Woodin [6],
§24|. His P can be written as Py *x P x P5, where Py is iteration of Cohen
posets below k with reverse Easton support, and thus |Py| = k and Py has
k-c.c.; Py is the poset adding kT +-many Cohen subsets of x, and P, adds
no new subsets of «. It is clear that V/0*I1  cf (Sym(k)) = kT (see the last
paragraph in [22] p. 894]), and a forcing which does not add new subsets of
x cannot enlarge cf(Sym(k)).

In forcing extensions constructed in [I1] and [7] the equality d(k) = s
holds, and it is well-known (the proof of [21, Proposition 1.4] works for every
regular x) that cf(Sym(r)) < 0(k) for every regular .

2. It is known [22] that the equality cf(Sym(x)) = s+ (and much
more) is consistent for every inaccessible k. But the authors were not able
to lift elementary embeddings to forcing extensions used in [22] @ assum-
ing considerably less than supercompactness. However, such a possibility
is not formally excluded. On the other hand, applying the methods devel-
oped in [I0] to forcing extensions from [22] we could obtain the following
result:

Suppose 0F exists. Then there is an inner model in which cf(Sym(k)) =
k1T for every reqular cardinal k of the form Na,.

It is worth mentioning here that for every cardinal k the inequality
cf(Sym(x)) > k1 implies cf(Sym(xT)) < cf(Sym(k)), and it is not known
even how to obtain cf(Sym(k)) > kT at two consecutive x simultaneously
(see [22]).

3. In order to show that j(P)x+1 = P in the proof of Theorem we
needed suitable stationary sets S°, S' and (S,g, S,i : k € k). Instead of using
the auxiliary forcing introducing such sets we could apply the same inner
model argument as in the proof of [9, Theorem 11].
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(%) The forcing posets used in [22] were developed in [I7, §2,3].
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