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Borel classes of uniformizations of sets with large sections

by

Petr Holický (Praha)

Abstract. We give several refinements of known theorems on Borel uniformizations
of sets with “large sections”. In particular, we show that a set B ⊂ [0, 1] × [0, 1] which
belongs to Σ0

α, α ≥ 2, and which has all “vertical” sections of positive Lebesgue measure,
has a Π0

α uniformization which is the graph of a Σ0
α-measurable mapping. We get a

similar result for sets with nonmeager sections. As a corollary we derive an improvement
of Srivastava’s theorem on uniformizations for Borel sets with Gδ sections.

1. Introduction. We are going to answer a question posed by Piotr
Borodulin-Nadzieja, namely what can be said about the Borel class of Borel
measurable selections of Borel sets with sections of positive Lebesgue mea-
sure. The existence of a Borel uniformization in such a case was shown by
Blackwell and Ryll-Nardzewski [1]. The existence of Borel uniformizations
of sets with large sections in the sense of category was proved by Sarbad-
hikari [10]. An abstract version can be found in [4, Theorem 18.6]. Mauldin
[8] proved the existence of Borel parametrizations in the above cases. In fact,
all the above mentioned results deal with rather more general situations. We
will also deal with a slightly more general setting.

We get uniformization theorems for Borel sets B ⊂ X × Y , for X and
Y Polish, with sections Bx = {y ∈ Y : (x, y) ∈ B} of positive probability
µ(x,Bx) with respect to suitable probability kernels µ and for Borel sets
with sections Bx nonmeager (i.e., not of the first category) in suitable Baire
supersets F (x) ⊂ Y . In both cases we get some information about the Borel
class of the corresponding selection. We also get a continuum of such pairwise
disjoint uniformizations with their union parametrized by X × {0, 1}N in
a Borel isomorphic way. As a corollary of the “category case”, we get a
modification of the Srivastava selection theorem for Gδ-valued mappings
(see [12, Theorem 4.1]). Thus we get information about the Borel class of
the selection also in this case. Our proof is inspired by that of Kechris (see
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[4, Exercise 18.20(iv) and the hint to it] or [11, Theorem 5.9.2]). We also get
a version of this theorem for selectors of partitions.

The main methods we need to get our refinements are well-known. The
first involves a finer description of Borel sets of a given class using a partic-
ular scheme of subsets (cf. [4, Theorem 22.21], or [7, Theorem 2.2] for the
nonseparable case). Another one is the method of getting a selection used in
[6] which we only slightly modify. As is well-known, the latter result yields
some information about the class of the selection, so it is no surprise that
we get our results in this way (cf. also [9] in this context).

Since the methods work almost without any further effort also for X
nonseparable, we formulate our results in this more general setting.

2. Projections along large sections. We modify the elegant proofs of
the preservation of Borelness when projecting sets with large sections to get
some information about the Borel class of the projection. In the case of large
sections in the sense of category we improve a result of Montgomery (see [4,
Exercise 22.22]), as a revision of the proof of the theorem by Montgomery
and Novikov (see [4, Theorem 16.1]). Similarly, we also get the desired mod-
ification of the property “Borel on Borel” from [4, Definition 18.5] for the
case of Borel probability kernels.

We use the standard notation B(Y ) for the set of all Borel subsets of
the topological space Y . We also denote by Σ0

α, Π0
α, ∆0

α the additive,
multiplicative, and ambiguous classes for α ≥ 1. We write, e.g., Σ0

α(Y )
for the family of all Borel sets of class Σ0

α in Y . For this notation, see
e.g. [4].

A family D of sets in a metric space X is discrete if every x ∈ X has
a neighborhood intersecting at most one element of D. The family is σ-
discrete if it is the union of countably many discrete families. It is an easy,
and well-known, observation that D1 ∧ · · · ∧ Dk := {D1 ∩ · · · ∩ Dk : Dj ∈
Dj , j = 1, . . . , k} is (σ-)discrete if every Dj is (σ-)discrete. We repeatedly
use the fact that the union of a discrete family of sets in Σ0

α(X), for a met-
ric space X, is in Σ0

α for every countable ordinal α ≥ 1 (see [5, §30, X,
Theorems 3 and 4]).

To point out what assumptions are needed, we formulate the following
lemma in a more general setting than we need below. Recall that a Borel
measure µ on a topological space Y is τ -additive if sup{µ(A) : A ∈ A} =
µ(

⋃
A) for every family of open sets in Y which is upwards directed (cf. [2,

Definition 2.3]). Every Radon measure is τ -additive ([2, Proposition 6.9]) and
every finite Borel measure on a Polish space is Radon ([4, Theorem 17.11]).

Lemma 2.1. Let X be a metrizable space, Y be a topological space, and
µ : X × B(Y )→ [0, 1] be such that
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(a) µ(x, ·) is a Borel τ -additive probability on Y for every x ∈ X,
(b) {x ∈ X : µ(x,H) > r} is Σ0

α0
-measurable in X (1 ≤ α0 < ω1) for

every open H ⊂ Y and r ∈ R.

Let B ⊂ X × Y be in Σ0
α(X × Y ) for some α with 1 ≤ α < ω1. Then the

set {x ∈ X : µ(x,Bx) > 0} is in Σ0
α∗(X), where α∗ = α0 + α if α ≥ ω and

α∗ = α0 + (α− 1) if α < ω.

Proof. We shall show that π∗µ(B, r) := {x ∈ X : µ(x,Bx) > r} is in
Σ0
α∗(X) for every r ∈ R by induction on α (with α0 fixed).

Let B be an open subset of X × Y . There is a σ-discrete base U of open
subsets of X (see [5, §21, XVI, Corollary 1a]). So B =

⋃
{Ua ×Wa : a ∈ I},

where each Wa is open in Y , and the family {Ua}a∈I ⊂ U is σ-discrete
in X. We use the τ -additivity of µ(x, ·) for each x ∈ X. We apply it to
the upwards directed family of open sets Ax = {Wa1 ∪ · · · ∪ Wak : x ∈
Ua1 ∩ · · · ∩ Uak , a1, . . . , ak ∈ I, k ∈ N}. Since Bx =

⋃
Ax by the equality

B =
⋃
{Ua × Wa : a ∈ I}, we have µ(x,Bx) = sup{µ(x,A) : A ∈ Ax}.

Therefore µ(x,Bx) > r if and only if there are a1, . . . , ak ∈ I such that
x ∈ Ua1 ∩ · · · ∩ Uak and µ(x,Wa1 ∪ · · · ∪Wak) > r. Put U(a1, . . . , ak, r) =
{x ∈ Ua1∩· · ·∩Uak : µ(x,Wa1∪· · ·∪Wak) > r}. The family {U(a1, . . . , ak, r) :
k ∈ N, a1, . . . , ak ∈ I} forms a σ-discrete cover of the set π∗µ(B, r) by sets
from Σ0

α0
(X) (this easy fact follows from the remark before the lemma).

Thus π∗µ(B, r) is in Σ0
α0

(X), which is our claim for α = 1.
Let α > 1 and suppose the claim is valid for all Borel sets C of additive

class β for every 1 ≤ β < α. Let B ⊂ X × Y be in Σ0
α(X × Y ). Thus

there are Bn ∈ Π0
βn

(X × Y ) with Bn ⊂ Bn+1 and 1 ≤ βn < α such that
B =

⋃
n∈NBn. Now

π∗µ(B, r) =
∞⋃
n=1

π∗µ(Bn, r) =
∞⋃
n=1

{x ∈ X : µ(x, (Bc
n)x) < 1− r}

=
∞⋃
n=1

∞⋃
p=1

{x ∈ X : µ(x, (Bc
n)x) ≤ 1− r − 1/p}

=
∞⋃
n=1

∞⋃
p=1

X \ {x ∈ X : µ(x, (Bc
n)x) > 1− r − 1/p}.

By the induction hypothesis, {x ∈ X : µ(x, (Bc
n)x) > 1−r−1/p} ∈ Σ0

β∗n
(X).

It follows that π∗µ(B, r) is a countable union of sets in Π0
β∗n

(X) ⊂ Σ0
α∗(X).

We use the notion of Baire space in the sense of [4, Definition 8.2], i.e.,
it is a topological space with no meager nonempty open subset. Thus the
empty space is a Baire space and let us consider ∅ to be meager even in the
empty space for formal reasons.
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The symbol P(Y ) denotes the power set of Y . The multivalued mapping
F : (X,A) → P(Y ), where Y is a topological space, is lower A-measurable
whenever F−1(H) := {x ∈ X : F (x) ∩H 6= ∅} ∈ A for every open H ⊂ Y .
Here A might be a family of subsets of X or a family of subsets of some
superspace of X etc. Moreover, F is upper A-measurable if F−1(H) := {x ∈
X : F (x) ⊂ H} ∈ A for every open H ⊂ Y . Similarly, we say that f :
X → Y is A-measurable if f−1(H) ∈ A for every open subset H of Y
(H ∈ Σ0

1(Y )). The set graphF := {(x, y) ∈ X × Y : y ∈ F (x)} is the graph
of the multivalued mapping F .

Lemma 2.2. Let X be a metrizable space, and Y be a separable metrizable
space. Let F : X → P(Y ) be lower Σ0

α0
-measurable (1 ≤ α0 < ω1), with F (x)

a Baire subspace of Y for every x ∈ X, and B ⊂ graphF of the type Σ0
α in

X × Y , 1 ≤ α < ω1. Then the set {x ∈ X : Bx is not meager in F (x)} is
in Σ0

α∗, where α∗ is as in Lemma 2.1.

The appearance of F here is related to the modification of the proof of
the Montgomery and Novikov Theorem suggested in the hint to [4, Exercise
18.20(iii)].

Proof. Let us first show the following claim.

Claim. π∗F (B,W ) := {x ∈ X : F (x)∩Bx∩W is not meager in F (x)∩W}
is in Σ0

α∗(X) if B is in Σ0
α(X × Y ), for every open set W ⊂ Y .

We proceed by induction over α. If B =
⋃
{Ua ×Wa : a ∈ I}, where Ua

and Wa are open in X and Y , respectively, and if {Ua}a∈I is σ-discrete, then
π∗F (B,W ) =

⋃
{{x ∈ Ua : F (x)∩Wa ∩W 6= ∅} : a ∈ I} =

⋃
{Ua ∩F−1(W ∩

Wa) : a ∈ I}, which is in Σ0
α0

(X) by our assumptions. Here we have used
the fact that no nonempty relatively open subset of F (x) is meager in F (x).
Thus our claim for α = 1 is proved.

Let α > 1 and assume the claim to be valid for every β ≥ 1 less than α.
Let B ⊂ X × Y be in Σ0

α(X × Y ). Thus there are Bn ∈ Π0
βn

(X × Y ) with
βn < α such that B =

⋃
n∈NBn. For a fixed open set W ⊂ Y we get

π∗F (B,W ) =
⋃
n∈N

π∗F (Bn,W )

=
⋃
n∈N

⋃
W ′∈W
W ′⊂W

{x ∈ X : F (x) ∩ (Bn)x ∩W ′

is residual in F (x) ∩W ′ 6= ∅}
=

⋃
n∈N

⋃
W ′∈W
W ′⊂W

{x ∈ X : F (x) ∩ (Bc
n)x ∩W ′

is meager in F (x) ∩W ′} ∩ F−1(W ′),

where W is a countable base of Y consisting of nonempty open sets. Here
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we have used the fact that a subset with the Baire property of a Baire space
is nonmeager if and only if it is residual in some nonempty open subset (see,
e.g., [4, Proposition 8.26]). Since the sets F−1(W ′) are in Σ0

α0
(X) and the

sets

π∗F (Bc
n,W

′) = X \ {x ∈ X : F (x) ∩ (Bc
n)x ∩W ′ is meager in F (x) ∩W ′}

are in Σ0
β∗n

(X) by the induction assumption, π∗F (B,W ) is in Σ0
α∗(X).

3. Uniformizations of sets with large sections. In the proof of the
uniformization theorems below, we use the existence of a scheme of subsets
of a Borel set in a complete metric space. Our requirements on it will be
similar to but weaker than those for a Luzin scheme in [4, Theorem 22.21]
because they will be sufficient for our purpose and the existence of such a
scheme follows from published results even in the case of α = 1 for general
Polish spaces X and Y , as well as in the case of a nonseparable complete
metric space X and α ≥ 1. We recall some notation first.

If D is any set, D<ω denotes the set
⋃∞
n=1 Dn ∪ {∅} of finite sequences

of elements of D. For s ∈ D<ω, the symbol |s| stands for the length of s.
We also write s′ � s if s′ is a strict extension of s′ (i.e., if s′ extends s and
s′ 6= s). The abbreviation σ|n stands for the sequence of the first n members
of any sequence σ, finite or infinite, of elements of D, and we write s∧d for
the sequence which begins with the finite sequence s ∈ D<ω followed by
d ∈ D.

Recall that we use N for the set of positive integers and set C = {0, 1}N
and Ci = {ι ∈ C : ι|n = i}, where i ∈ {0, 1}n.

We denote by πX and πY the projection mappings of X×Y to X and Y ,
respectively.

Lemma 3.1. Let B be a Borel subset of class Σ0
α, α ≥ 1, in the product

Z = X ×Y of a complete metric space X and a Polish space Y . Then there
are a set D (of sufficiently large cardinality) and sets Bs, s ∈ D<ω, of class
Σ0
α in Z such that

(a) B∅ = B and {Bs∧d : d ∈ D} is a (σ-discrete) cover of Bs for s ∈ D<ω

such that the family {πX(Bs∧d) : d ∈ D} is σ-discrete;
(b)

⋂
{Bσ|n : n = 0, 1, . . . } ⊂ B for every σ ∈ DN;

(c) diamBs ≤ 2−|s| for s ∈ D<ω.

(We consider some fixed complete metrics on X and Y , which are bounded
by 1, and the corresponding maximum metric on X × Y .)

Proof. If X is separable, the existence of such a (countable) scheme of
B follows from [4, Theorem 22.21] for α > 1. In the general case of X and
α ≥ 1, it follows from [7, Theorem 2.2(a)⇒(b)] that there is a complete
sequence of σ-discrete covers Cn of B by sets from Σ0

α(Z). (We need only
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notice that B is of multiplicative class α + 1 in Z to get Bs ∈ Σ0
α(B)

from the cited result. Then Bs ∈ Σ0
α(Z) since B ∈ Σ0

α(Z).) Recall that
the completeness means that each filter F in B with F ∩ Cn 6= ∅ for every
n ∈ N has an accumulation point, i.e.,

⋂
{F : F ∈ F} ∩ B 6= ∅, where the

closures may be understood in B or, equivalently, in Z. Replacing each cover
by an arbitrary refinement we obtain a complete sequence of covers again.
Since the cover of the metric space Z by open balls of diameter at most
2−n has a σ-discrete open refinement Rn, the covers Cn ∧Rn are σ-discrete
refinements of Cn, they consist of sets of diameter at most 2−n, and their
elements belong to Σ0

α(Z). Due to [3, Lemma 2.1], we may also achieve that
even the projections of elements of each cover form a σ-discrete family of
sets of the same additive class. Let C∗n be such refinements of the covers
Cn ∧ Rn. We can index each such cover by elements of a set D such that
C∗n = {Cnd : d ∈ D} (we can repeat some of the sets many times if the
cardinality of C∗n is smaller than that of D). Put Bd1,...,dn = C1

d1
∩ · · · ∩Cndn .

Note that the projections to X of the finite intersections C1
d1
∩ · · · ∩Cndn are

contained in the finite intersections πX(C1
d1

) ∩ · · · ∩ πX(Cndn), which form a
σ-discrete family in X due to our remark before Lemma 2.1. Thus (a) holds.
Condition (c) is obvious. The completeness of the sequence (C∗n) implies (b).
The condition (b) means, due to (c), that if all the sets Bσ|n, n ∈ N, are
nonempty, then the intersection of their closures is a singleton in B.

Note that our requirements above are weaker than those on a Luzin
scheme in [4, Theorem 22.21], in particular we do not require the injectivity
of the mapping σ ∈ DN 7→

⋂
n∈NBσ|n.

We need a reduction theorem for families of Borel sets of an additive
class in metric spaces.

Lemma 3.2. Let Xa, a ∈ I, be a σ-discrete family of Borel sets of class
Σ0
α, α > 1, in a metric space X. Then there are Borel sets X∗a ⊂ Xa for

a ∈ I of class Σ0
α in X which form a partition of

⋃
a∈I Xa. The same holds

for α = 1 if X is 0-dimensional.

Proof. For countable families this is proved in [5, §30, VII, Theorem 1
and §26, II, Theorem 1]. If I =

⋃
n∈N In with {Xa : a ∈ In} discrete, we may

consider the family of X(n) =
⋃
{Xa : a ∈ In}, which belong to Σ0

α(X),
and choose a reduction X∗(n) ⊂ X(n). Finally, put X∗a = Xa ∩ X∗(n) for
a ∈ In.

We are now going to prove our main uniformization theorems. The first
one shows the existence of a selection, the next one shows that under a bit
stronger assumptions there are continuum many disjoint uniformizations
parametrized in a particular way. Although the proof of the first theorem
can be understood from the second one, we prove the existence of one selec-



Borel classes of uniformizations 151

tion first to point out the main idea of getting the uniformization. The same
procedure will be repeated in the proof of the subsequent theorem with some
more technicalities. We point out that although we prove our uniformiza-
tion results for sets of an additive class in a complete metric space, we get
selections defined on a metric space which need not be complete in general.
We need this observation in the proof of Corollary 3.10. We use X̂ to denote
a completion of X.

Theorem 3.3. Let X be a metric space and Y be a Polish space. Let
Ix, x ∈ X, be σ-ideals of subsets of Y such that

(1) π∗(A) := {x ∈ X : Ax /∈ Ix} ∈ Σ0
α∗(X)

for all A ⊂ X × Y in Σ0
α(X × Y ), where 2 ≤ α ≤ α∗ < ω1 are fixed. For X

is 0-dimensional, we may assume 1 ≤ α ≤ α∗ < ω1. Assume that

(2) B ⊂ X×Y is in Σ0
α(X̂×Y ) and Bx /∈ Ix for every x ∈ X∗ := πX(B).

Then there is a Σ0
α∗(X)-measurable selection ξ : X∗ → Y of the mapping

x 7→ Bx. Its graph is a Π0
α∗-measurable uniformization of B in X × Y .

Proof. Fix some complete metrics on X̂ and Y such that the diameters
of X and Y are at most 1 and consider the maximum metric on X × Y .
Let Bs, s ∈ D<ω, be a scheme of the set B ⊂ X̂×Y from Lemma 3.1, which
exists due to assumption (2).

We are now going to define by induction a sequence of σ-discrete par-
titions Pn−1 = {X∗s : s ∈ Dn−1}, n ∈ N, of X∗. We require the following
properties for every n ∈ N:

(i) {X∗s∧d : d ∈ D} is a σ-discrete partition of X∗s for s ∈ Dn−1,
(ii) Pn−1 ⊂ Σ0

α∗(X),
(iii) (Bs)x /∈ Ix for x ∈ X∗s and s ∈ Dn−1.

Put P0 = {X∗∅}, where X∗∅ = π∗(B) = πX(B) due to (2). Property (i)
obviously holds for P0, which also satisfies (ii) and (iii) due to assumptions
(1) and (2).

Given the partition Pn−1 = {X∗s : s ∈ Dn−1} of X∗ satisfying (i) to
(iii) for some n ∈ N, we consider a fixed s ∈ Dn−1. We deduce that the sets
Xs∧d = X∗s ∩π∗(Bs∧d), d ∈ D, form a σ-discrete cover of X∗s by Σ0

α∗(X) sets,
by using the fact that (iii) holds, each Ix is a σ-ideal, and the sets (Bs∧d)x,
d ∈ D, form a countable cover of the separable set (Bs)x (since they form a
σ-discrete family, only countably many of them have a nonempty intersection
with (Bs)x). Using Lemma 3.2, we find pairwise disjoint sets X∗s∧d ⊂ Xs∧d,
d ∈ D, which cover X∗s , and put Pn = {X∗s∧d : s ∈ Dn−1, d ∈ D}, which
is clearly σ-discrete. Thus the existence of Pn−1’s satisfying (i) to (iii) is
proved.
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Now, given x ∈ X∗, there is a unique sx ∈ DN such that x ∈ X∗sx|n for

all n ∈ N. Define ξ(x) ∈
⋂
{(Bsx|n)x : n ∈ N} for x ∈ X∗. The definition is

correct and ξ(x) ∈ Bx for every x ∈ X∗. Indeed, the sets (Bsx|n)x, n ∈ N,
form a descreasing sequence of nonempty (by (iii)) closed sets in Y with
diameter converging to zero by Lemma 3.1(c). By the completeness of the
metric, the value ξ(x) is uniquely defined. By property (b) of the scheme Bs,
s ∈ Dn, we get ξ(x) ∈ Bx. To verify that ξ is Σ0

α∗(X)-measurable, define ξn
to be constant on each X∗s , s ∈ Dn. Let, e.g., ξn(x) for x ∈ X∗s (= X∗sx|n) be
an arbitrary element of the projection of Bs (= Bsx|n) to Y . Then each ξn
is Σ0

α∗(X)-measurable and it converges uniformly to ξ due to the condition
on the diameters of Bs from Lemma 3.1(c). So ξ is Σ0

α∗(X)-measurable as
well (see [5, §31, VIII, Theorem 2]). The graph of ξ is in Π0

α∗ by [5, §31,
VII, Theorem 1]. This concludes the proof.

The next theorem is a strengthening of the previous one under the as-
sumption that the σ-ideals Ix contain singletons. It is inspired by and might
be compared with Mauldin’s [8, Theorem 1.1].

Theorem 3.4. Let X, Y , Ix for x ∈ X, and B ⊂ X × Y satisfy the
assumptions of Theorem 3.3. If, moreover, Ix contains all singletons in Bx
for each x ∈ X, then there is a Borel isomorphism Ξ of X∗×C onto R ⊂ B,
with X∗ := πX(B), which is of the form Ξ(x, ι) = (x, Φ(x, ι)), such that

(a) Φ(·, ι) is a Σ0
α∗(X)-measurable selection of x ∈ X∗ 7→ Bx for every

ι ∈ C;
(b) Φ(x, ·) is a homeomorphism of C onto Rx for every x ∈ X∗;
(c) Ξ : X∗ × C → R is Σ0

α∗(X × Y )-measurable and Ξ−1 : R→ X × C
is Σ0

α∗(R)-measurable;
(d) F : x ∈ X∗ 7→ Rx is both upper and lower Σ0

α∗(X)-measurable;
(e) R = Ξ(X∗ × C) is in Π0

α∗(X × Y ).

Proof. The notions of distance and diameter are related to the maximum
metric, defined using complete metrics on X̂ and Y giving diameter less than
one as in the proof of Theorem 3.3. Let Bs, s ∈ D<ω, be a scheme of the set
B ⊂ X × Y from Lemma 3.1 which exists due to assumption (2).

We are now going to define a sequence of partitions of X∗ by induction.
The elements of the nth partition will be indexed by the elements of the set
Tn of mappings (“strategies”) τ from {0, 1}≤n to D<ω such that

(A) τ(i∧j) � τ(i) for i ∈ {0, 1}<n and j ∈ {0, 1} if n ∈ N,
(B) the sets Bτ(i), i ∈ {0, 1}n, are pairwise disjoint.

We write T0 for the singleton which contains just the mapping τ0 : ∅ → ∅.
The elements of the nth partition will be denoted by X∗n(τ), where τ ∈ Tn.
We denote by Tn(τ) the set of elements of Tn which extend τ ∈ Tn−1, i.e.,
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Tn(τ) := {τ ′ ∈ Tn : τ ′�{0, 1}≤(n−1) = τ}

for n ∈ N. We require the following properties for every τ ∈ Tn and n =
0, 1, . . . :

(i) each X∗n(τ) is in Σ0
α∗(X);

(ii) X∗n(τ) =
⋃
{X∗n+1(τ ′) : τ ′ ∈ Tn+1(τ)};

(iii) (Bτ(i))x /∈ Ix for x ∈ X∗n(τ) and i ∈ {0, 1}n.

Put X∗0 (τ0) = π∗(B) (cf. (1) from Theorem 3.3 for the notation). It is
in Σ0

α∗(X) and it is equal to X∗ by our assumptions (1) and (2). Thus
the partition {X∗0 (τ0)} of X∗ satisfies (i) and (iii). Condition (ii) requires
nothing for n = 0.

Given the partition {X∗n−1(τ) : τ ∈ Tn−1} satisfying (i) to (iii) for some
n ∈ N, we will consider a cover of each X∗n−1(τ) with τ ∈ Tn−1 fixed. For
every τ ′ ∈ Tn(τ), put

Xn(τ ′) = X∗n−1(τ) ∩
⋂
{π∗(Bτ ′(i)) : i ∈ {0, 1}n}.

Observe that the family {Xn(τ ′) : τ ′ ∈ Tn(τ)} is a cover of X∗n−1(τ) for
every τ ∈ Tn−1. Indeed, let x ∈ X∗n−1(τ). By (iii) and (B), (Bτ(i))x /∈ Ix
for every i ∈ {0, 1}n−1 and the sets Bτ(i), i ∈ {0, 1}n−1, are pairwise dis-
joint. Since (Bτ(i))x /∈ Ix, there are two distinct points y0(x, i), y1(x, i) ∈
(Bτ(i))x, for each fixed i ∈ {0, 1}n−1, such that U ∩ (Bτ(i))x /∈ Ix for
every neighborhood U of y0(x, i), and y1(x, i), respectively. (Otherwise,
if there is at most one such point, there would be a cover of the sep-
arable metric space (Bτ(i))x by countably many elements of Ix, namely
countably many neighbourhoods of some points in (Bτ(i))x and at most
one singleton in Bx, a contradiction with (Bτ(i))x /∈ Ix. Here we use the
extra assumption on Ix.) Choose open neighborhoods Uj(x, i) of yj(x, i)
for j = 0, 1 of diameters less than 1

3dist (y0(x, i), y1(x, i)). Since the sets
(Bτ(i))x ∩ Uj(x, i), j = 0, 1, are not in Ix and they are covered by the
countably many sets (Bs)x ⊂ (Bτ(i))x with s � τ(i) for which (Bs)x ⊂
Uj(x, i) and 2−|s| ≤ 1

3dist (y0(x, i), y1(x, i)) by Lemma 3.1(a) & (c), we find
τx(i∧j) � τ(i) such that 2−|τx(i

∧j)| ≤ 1
3dist (y0(x, i), y1(x, i)), (Bτx(i∧j))x ⊂

Uj(x, i), and (Bτx(i∧j))x /∈ Ix for j = 0, 1. The sets Bτx(i∧j) are disjoint,
since Bτx(i∧j) ⊂ Bτ(i), the sets Bτ(i) form a pairwise disjoint family, and
dist(Bτx(i∧0), Bτx(i∧1)) ≥ 1

3dist(y0(x, i), y1(x, i)) > 0. Put τx�{0, 1}(n−1) = τ .
Now x ∈ Xn(τx) and τx ∈ Tn(τ).

Let us check thatXn(τ ′) ∈ Σ0
α∗(X) for all τ ′ ∈ Tn. AsX∗n−1(τ) ∈ Σ0

α∗(X)
for τ ∈ Tn−1 by (i), we see that each Xn(τ ′) = X∗n−1(τ) ∩

⋂
{π∗(Bτ ′(i)) : i ∈

{0, 1}n} is in Σ0
α∗(X) as a finite intersection of elements of Σ0

α∗(X) by (1)
for τ ′ ∈ Tn(τ).
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By Lemma 3.1(a) the family D = {π(Bs) : s ∈ D<ω} is σ-discrete (it
is not difficult to show by induction that all the families {π(Bs) : s ∈ Dn}
are σ-discrete using (a) and realize that D is their countable union). Since
π∗(Bs) ⊂ π(Bs), also the family D∗ = {π∗(Bs) : s ∈ D<ω} is σ-discrete.
Therefore also D1 = D∗, D2 = D∗∧D∗,D3 = D∗∧D∗∧D∗, . . . are σ-discrete,
as also is their (countable) union E =

⋃
n∈NDn. The family {

⋂
{π∗(Bτ ′(i)) :

i ∈ {0, 1}n} : τ ′ ∈ Tn(τ)} is σ-discrete as a subfamily of E . Finally, the
family {X∗n−1(τ)∩

⋂
{π∗(Bτ ′(i)) : i ∈ {0, 1}n} : τ ′ ∈ Tn(τ)} is σ-discrete. We

have proved above that it is a cover of X∗n−1(τ).
Hence we can find a σ-discrete partition {X∗n(τ ′) : τ ′ ∈ Tn(τ)} of X∗n−1(τ)

consisting of elements of Σ0
α∗(X) by applying Lemma 3.2 to the family

{Xn(τ ′) : τ ′ ∈ Tn(τ)}.
Thus for every τ ∈ Tn we have an X∗n(τ) such that conditions (i)–(iii)

are satisfied.
The requirement that x ∈ X∗n(τ) defines uniquely a τ = τxn ∈ Tn

for x ∈ X∗. Due to (ii) there is a unique τx : {0, 1}<ω → D<ω with
τxn = τx�{0, 1}≤n for every n = 0, 1, . . . . We define the required map-
ping Ξ : X × C → B by Ξ(x, ι) ∈

⋂∞
n=0Bτx(ι|n). This indeed defines

a mapping of X × C to B, because the sets Bτx(ι|n) are decreasing and
nonempty (by (iii)) with

⋂∞
n=0Bτx(ι|n) a singleton in B by properties (b)

and (c) of our scheme from Lemma 3.1. Moreover, all the sets Bτx(ι|n) have
nonempty x-section (Bτx(ι|n))x by (iii), i.e., the intersection of Bτx(ι|n) with
the closed set {x}× Y ⊂ X × Y is nonempty, and so

⋂
n∈NBτx(ι|n) ∩ ({x}×

Y ) 6= ∅. Thus this intersection is the singleton {Ξ(x, ι)} =
⋂
n∈NBτx(ι|n),

and Ξ(x, ι) ∈ {x} × Bx. So Ξ is of the form Ξ(x, ι) = (x, Φ(x, ι)) with
Φ : X × C → Y uniquely determined by Φ(x, ι) ∈

⋂
n∈N (Bτx(ι|n))x =

(
⋂
n∈NBτx(ι|n))x.
It remains to show that Ξ has the required properties (a)–(e).
We prove (a) by constructing a sequence of Σ0

α∗-measurable mappings
Φn which converges uniformly to Φ. We define Φn to take a constant value
from πY (Bτ(i)) on X∗n(τ) × Ci for every τ ∈ Tn and i ∈ {0, 1}n. This is
possible since (Bτ(i))x /∈ Ix if x ∈ X∗n(τ) by (iii) and so Bτ(i) 6= ∅.

Let W be open in Y . Then

Φ−1
n (W ) =

⋃
{X∗n(τ)× Ci : τ ∈ Tn, i ∈ {0, 1}n, Φn(X∗n(τ)× Ci) ⊂W},

because Φn is constant on each X∗n(τ)×Ci. Since the σ-discrete union of sets
X∗n(τ)×Ci over any subset of pairs of τ ∈ Tn and i ∈ {0, 1}n is in Σ0

α∗(X×C),
the mapping Φn is Σ0

α∗(X × C)-measurable. The mappings Φn converge to
Φ uniformly (in both x and ι) since the diameter of each πY (Bτ(i)) is at
most 2−n. By [5, §31, VIII, Theorem 2], Φ is also Σ0

α∗(X × C)-measurable.
In particular, (a) is proved.
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The mapping Φ(x, ·) is one-to-one and continuous since Bτx(i) ∩ Bτx(i′)
= ∅ for i 6= i′, i, i′ ∈ {0, 1}n, and since diamπY (Bτx(i)) ≤ 2−n for i ∈ {0, 1}n.
Hence (b) follows by the compactness of C.

Let U be open in X and W be open in Y . Then Ξ−1(U ×W ) = (U ×
Y )∩Φ−1(W ). Thus, to prove that Ξ is Σ0

α∗(X×C)-measurable, it is enough
to show that Φ is Σ0

α∗(X×C)-measurable. However, this was proved above.
So the first claim of (c) is verified.

We see thatΞ is injective by (b). To show thatΞ−1 is Σ0
α∗(R)-measurable,

note that Ξ(U×Ci) = (U×Y )∩Ξ(X∗×Ci) for U open in X and i ∈ {0, 1}n.
Thus we need to prove that Ξ(X∗ × Ci) is in Σ0

α∗ in R for each n ∈ N and
i ∈ {0, 1}n. The point (x, y) ∈ R belongs to Ξ(X∗ × Ci) if and only if
(x, y) ∈ Bτx(i) and x ∈ X∗n(τxn ). Thus Ξ(X∗ × Ci) = R ∩

⋃
{(X∗n(τ)) × Y )

∩ Bτ(i) : τ ∈ Tn}. This is the union of a σ-discrete family of elements
of Σ0

α∗(X × Y ) intersected with R, and so an element of Σ0
α∗ in R. This

concludes the verification of (c).
Let W ⊂ Y be open and nonempty. If x ∈ F−1(W ) then there is a

y = Φ(x, ι) ∈ W for some ι ∈ C. Thus the distance δ of y and W c is
positive and {y} =

⋂
n∈N(Bτx(ι|n))x ⊂ W . So there is an n ∈ N such that

the diameter of Bτx(ι|n) is less than δ and (x, y) ∈ Bτx(ι|n) ⊂ X×W . Having
n and ι such that Bτx(ι|n) ⊂ X ×W , we have {y} =

⋂
n∈N(Bτx(ι|n))x ⊂ W ,

and thus y ∈ W . Therefore x ∈ F−1(W ) if and only if there are n ∈ N and
i ∈ {0, 1}n such that πY (Bτx(i)) ⊂W . Thus

F−1(W ) =
⋃
{X∗n(τ) : n ∈ N, τ ∈ Tn, i ∈ {0, 1}n, πY (Bτ(i)) ⊂W}.

So F is lower Σ0
α∗(X)-measurable.

Let the compact set Φ(x,C) be a subset of W . Thus it has a positive
distance from W c and so Bτx(ι|n) ⊂W for sufficiently large n ∈ N and every
ι ∈ C. Conversely, if the latter condition holds, then Φ(x,C) ⊂W . Thus

F−1(W )=
⋃
{X∗n(τ) : n ∈ N, τ ∈ Tn, πY (Bτ(i)) ⊂W for every i∈{0, 1}n}.

This is again a σ-discrete union of elements of Σ0
α∗(X) and so F is also

upper Σ0
α∗(X)-measurable, and (d) is proved.

Let W be a countable base for the topology of Y . We can easily check
that (x, y) /∈ R if and only if there is a W ∈ W such that y ∈ W , F (x) ⊂
Y \ W since F (x) is closed. As F is upper Σ0

α∗(X)-measurable, the set
Rc =

⋃
W∈W F−1(Y \W )×W is in Σ0

α∗(X × Y ), and (e) is also proved.

As corollaries of Theorems 3.3 and 3.4, and Lemmas 2.1 and 2.2 on the
“generalized projections” π∗µ and π∗F from the previous section, we get the
following results.
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Theorem 3.5. Let X be a metrizable space, Y be a Polish space, and
µ : X × B(Y )→ [0, 1] be such that

(a) µ(x, ·) is a Borel probability on Y for every x ∈ X,
(b) {x ∈ X : µ(·, H) > r} is in Σ0

α0
(X) (1 ≤ α0 < ω1) for every open

H ⊂ Y and r ∈ R.

Let B ⊂ X × Y be in Σ0
α(X̂ × Y ) for some α with 2 ≤ α < ω1, or 1 ≤ α

< ω1 if X is 0-dimensional. Let µ(x,Bx) > 0 for every x ∈ πX(B). Let α∗

be as in Lemma 2.1. In particular, if µ(x, ·) = µ, then α∗ = α.
Then there is a Σ0

α∗(X)-measurable mapping ξ : πX(B) → Y whose
Π0
α∗-measurable graph is a uniformization of B.

If, moreover,

(c) µ(x, ·) does not have atoms for every x ∈ X,

then there is a mapping Ξ : πX(B)× Y → B as in Theorem 3.4.

Proof. Put Ix = {N ⊂ Bx : µ(x,N) = 0} for every x ∈ X. By
Lemma 2.1, we have π∗(A) = π∗µ(A, 0) ∈ Σ0

α∗(X) for every A ∈ Σ0
α(X×Y ),

so we may apply Theorems 3.3 and 3.4.

Theorem 3.6. Let X be a metrizable space and Y be a Polish space. Let
F : X → P(Y ) be such that

(a) F (x) is a Baire subspace of Y for every x ∈ X,
(b) F is lower Σ0

α0
-measurable (1 ≤ α0 < ω1).

Let B ⊂ graphF be in Σ0
α(X̂ × Y ) for some α with 2 ≤ α < ω1, or 1 ≤

α < ω1 if X 0-dimensional. Let Bx be nonmeager in F (x) for x ∈ πX(B).
Let α∗ be as in Lemma 2.1. In particular, if F (x) = Y , then α∗ = α.

Then there is a Σ0
α∗(X)-measurable mapping ξ : πX(B) → Y whose

Π0
α∗-measurable graph is a uniformization of B.

If moreover

(c) F (x) has no isolated point for every x ∈ X,

then there is a mapping Ξ : πX(B)× C → B as in Theorem 3.4.

Proof. Put Ix = {N ⊂ Bx : N is meager in Bx} for x ∈ X. Now
π∗(A) = π∗F (A, Y ) ∈ Σ0

α∗(X) for every A ∈ Σ0
α(X × Y ) by Lemma 2.2.

Finally, we apply Theorems 3.3 and 3.4.

As a particular case, we point out a refinement of the theorem of Sri-
vastava for uniformizations of Borel sets with Gδ sections ([12, Theorem
4.1]).

Corollary 3.7. Let X be a metric space and Y a Polish space. Assume
that B ⊂ X×Y is a Borel subset of class Σ0

α in X̂×Y for some α with 2 ≤
α < ω1, or 1 ≤ α < ω1 if X is 0-dimensional. Let the sections Bx, x ∈ X, be
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Gδ in Y and the mapping F : x 7→ Bx be lower Σ0
α0

(X)-measurable. Then
there is a Σ0

α∗(X)-measurable selection of F , where α∗ is as in Lemma 2.1.

Proof. As Gδ subsets of the Polish space Y , the sets Bx are Baire spaces
and, in particular, they are not meager in themselves for x ∈ πX(B). So we
may put F (x) = Bx and apply Theorem 3.6.

We show in the following example that the class of the selection map-
ping ξ in Theorems 3.5 and 3.6 cannot be improved, even its graph (the
uniformization) cannot be of a lower multiplicative class for sets of nonlimit
ambiguous class higher than 1.

Example 3.8. There is a ∆0
α+1 subset B of R2 for every α ∈ [1, ω1)

such that λ(Bx) > 0 and Bx is nonmeager for every x ∈ R, but there is no
Π0
α uniformization of B.

Proof. We use the notation X = Y = Z = R. Let α ∈ [1, ω1).
Let U ⊂ X × (Y × Z) be a Π0

α universal set for Π0
α sets in Y × Z (e.g.,

U ⊂ C×(Y ×Z) in Π0
α(C×Y ×Z) by [4, Theorem 22.3] is Π0

α in X×Y ×Z
as well).

Let A = {(x, x) ∈ X × Y : λ(U c(x,x)) > 0 and U c(x,x) is nonmeager in R}.
It is Σ0

α in D = {(x, x) : x ∈ X} by the lemmas on generalized projections.
Put B = ([A × Z] \ U) ∪ ([D \ A] × Z). Then B is in ∆0

α+1(D × Z) and
λ(B(x,x)) > 0 and B(x,x) is nonmeagre for every x ∈ R by the definition of B.

Let G be a uniformization of B in Π0
α(D × Z). By the definition of a

uniformization, G(x,x) 6= ∅ for every (x, x) ∈ D since B(x,x) 6= ∅ for every
(x, x) ∈ D.

Since U is universal, there is x ∈ X such that Ux = πY×Z(G). So U(x,y) =
G(y,y) for every y ∈ Y , and in particular U(x,x) = G(x,x) is a singleton. Thus
(x, x) ∈ A. Therefore G(x,x) ⊂ B(x,x) ⊂ U c(x,x). It follows that ∅ 6= G(x,x) =
U(x,x) ⊂ U c(x,x), a contradiction.

As D can be identified with R, B is our example.

We still give a trivial example showing that we cannot replace the addi-
tive class Σ0

α of B in Theorems 3.5 and 3.6 by the multiplicative class Π0
α

to get a uniformization of class Π0
α∗ .

Example 3.9. Let X = {0} ∪ {1/n : n ∈ N}, Y = [−2, 2]. The set
B = {(1/n, y) ∈ X × Y : n ∈ N, y ∈ [(−1)n − 1/n, (−1)n + 1/n]} ∪
({0} × [−1, 1]), is closed, the space X is 0-dimensional, and there is no
closed uniformization. The sets Bx are intervals in Y , so they are of positive
measure µ and nonmeager in Y .

Our result also gives an estimate, probably not the best possible one, on
the Borel class for selectors of partitions into “relatively large sets”. The first
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assumption (a) gives an improvement of Srivastava’s theorem on selectors
for partitions into Gδ sets (see [12, Theorem 5.1]).

Corollary 3.10. Let Y be a Polish space and P be a partition of Y
such that either

(a) P is a nonempty set which is residual in P for every P ∈ P, or
(b) µ(P ) > 1

2µ(P ) for every P ∈ P, with respect to some fixed Borel
probability on Y ,

and the set W ∗ :=
⋃
{P ∈ P : P ∩W 6= ∅} is in ∆0

α for every W ∈ W,
where W is a countable open base of Y and 1 ≤ α < ω1 is fixed. Then there
is a selector mapping s : Y → Y (s(P ) = {y} ⊂ P , for every P ∈ P) which
is Σ0

α+α+1-measurable. There is also a selector set S ⊂ Y (the cardinality
of each S ∩ P for P ∈ P is one) of class Π0

α+α+1.

Proof. Let W = {Wn : n ∈ N}. Let f : Y → C = {0, 1}N be the
characteristic function of the family (W ∗n : n ∈ N), i.e., f(y) = (i1, i2, . . . ),
where in = 1 if and only if y ∈W ∗n . This mapping is clearly Σ0

α-measurable,
so its graph is in Π0

α(Y × C), and thus also in Σ0
α+1(Y × C). We observe

that the following claim holds:

Claim. The equality f(y) = f(y′) is equivalent to y and y′ lying in the
same element of P.

Indeed, if y, y′ ∈ P ∈ P, then f(y) = f(y′). If y ∈ P ∈ P and y′ ∈
P ′ ∈ P, where P 6= P ′, then P ′ \ P 6= ∅ or P \ P ′ 6= ∅ since otherwise P
or P ′ is meager in P = P ′ in case (a), and P or P ′ is of measure at most
1
2µ(P ) = 1

2µ(P ′) in case (b), which contradicts (a) and (b), respectively.
Thus there is a Wn ∈ W such that P ′ ⊂W ∗n and P ∩W ∗n = ∅, or vice versa.
This implies that f(y) and f(y′) have distinct nth coordinates.

To prove case (a) we consider the inverse f−1 : f(Y ) → P(Y ). It is a
multivalued mapping which is lower semicontinuous (lower Σ0

1-measurable)
on X := f(Y ) because f(Wn) = f(W ∗n) = {ι ∈ f(Y ) : ιn = 1} for every
n ∈ N. This follows easily from the Claim. Thus the multivalued mapping
F : X → P(Y ) defined by F (x) = f−1(x) is also lower semicontinuous
on X. The subspaces F (x) are closed (and nonempty) in the Polish space
Y for x ∈ X, so they are Baire spaces. Let Ix denote the σ-ideal of meager
subsets of F (x) for every x ∈ X. Lemma 2.2 implies that condition (1) of
Theorem 3.3 holds for every 1 ≤ α = α∗ < ω1.

We put B=graph f−1. It is in Σ0
α+1(C×Y ) since graph f ∈Σ0

α+1(Y ×C).
The sets Bx = f−1(x) are nonempty residual in F (x) for every x ∈ X by (a).
So assumption (2) of Theorem 3.3 is satisfied with α+ 1 instead of α.

To prove case (b) put B = graph f−1 ∈ Σ0
α+1(C × Y ) again and let

Ix = I be the σ-ideal of µ = µ(x, ·) null sets for x ∈ X = f(Y ). Using
Lemma 2.1, we get (1) of Theorem 3.3 for all 1 ≤ α = α∗ < ω1 again. Each
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Bx is of positive measure µ = µ(x, ·) for x ∈ X = f(Y ) by (b). Thus (2) of
Theorem 3.3 is also satisfied, and we may use its conclusion also in this case
with α+ 1 instead of α.

In both cases, due to Theorem 3.3, there is a selection ξ for f−1(x) = Bx
which is Σ0

α+1(X)-measurable. The mapping s : y 7→ ξ(f(y)) is Σ0
α+α+1-

measurable by [5, §31, III, Theorem 2].
The point s(y) is an element of the set P ∈ P which contains y by

the above Claim. Thus s is a selector for the partition and the set S =
{y ∈ Y : y = s(y)} is a selector set for the partition P which is of class
Π0
α+α+1 in Y . Indeed, the mapping (y, z) ∈ Y × Y 7→ (s(y), z) ∈ Y × Y

is Σ0
α+α+1(Y × Y )-measurable (it suffices to check this on the preimages of

sets of the form Wn ×Wn′) and S is the preimage of the closed diagonal
{(y, y) : y ∈ Y } under it.

In the case α = 2 and for partitions into Gδ sets, a theorem by Miller
[9, Theorem 1] gives a finer result, namely the existence of a Σ0

2-measurable
selector s : Y → Y of the partition, i.e., a mapping such that s(P ) is a
singleton in P . This indicates that our last corollary might not give the
optimal estimates on the classes of selector mappings and selector sets even
for higher classes α.
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