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Abstract. Erdős space E is the “rational” Hilbert space, that is, the set of vectors in
`2 with all coordinates rational. Erdős proved that E is one-dimensional and homeomorphic
to its own square E × E, which makes it an important example in dimension theory.
Dijkstra and van Mill found topological characterizations of E. Let Mn+1

n , n ∈ N, be the
n-dimensional Menger continuum in Rn+1, also known as the n-dimensional Sierpiński
carpet, and let D be a countable dense subset of Mn+1

n . We consider the topological
group H(Mn+1

n , D) of all autohomeomorphisms of Mn+1
n that map D onto itself, equipped

with the compact-open topology. We show that under some conditions on D the space
H(Mn+1

n , D) is homeomorphic to E for n ∈ N \ {3}.

1. Introduction. All spaces in this paper are assumed to be separable
and metrizable. If X is locally compact then we equip the group H(X)
of homeomorphisms of X with the compact-open topology. If A is a sub-
set of X then H(X,A) stands for the subgroup {h ∈ H(X) : h(A) = A}
of H(X).

Let D be a countable dense subset of a locally compact space X. In [5]
Dijkstra and van Mill show that if X contains a nonempty open subset
homeomorphic to Rn for n ≥ 2, to an open subset of the Hilbert cube,
or to an open subset of some universal Menger continuum µn for n ∈ N,
then H(X,D) is homeomorphic to E. In line with these results we consider
in this paper the topological group H(Mn+1

n , D) for n ∈ N. Here Mn+1
n is

the n-dimensional Menger continuum in Rn+1 (see Engelking [6, §1.11]),
also known as the n-dimensional Sierpiński carpet, and D is a countable
dense subset of Mn+1

n . In our main result, Theorem 3.1, we show that under
some conditions on D the space H(Mn+1

n , D) is homeomorphic to E for
n ∈ N \ {3}. The proof is based on the proof of [5, Theorem 10.4] where
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Dijkstra and van Mill use their characterization of E to deal with the µn case.
We also heavily rely on Dijkstra [4, §5] where it is shown that there are closed
imbeddings of Erdős-type subspaces of `1 (see Theorem 2.14) in H(Mn+1

n )
if n ∈ N \ {3}. The main complication is that Mn+1

n , in contrast to the
n-dimensional universal Menger continuum considered in [5, Theorem 10.4],
is not homogeneous.

2. Preliminaries. Let R+ = [0,∞). We shall use a number of compact-
ifications of Rm. Let Sm denote the one-point compactification of Rm. We
let R̂ denote the compactification [−∞,∞] of R. We shall use the convention
that ±∞+ t = ±∞ when t ∈ R. This extends the addition operation on Rm

to a continuous function from R̂m×Rm to R̂m. An m-cell is any space that
is homeomorphic to Im, where I = [0, 1]. For a set A in a topological space
we let ∂A denote the boundary of A and Int(A) the interior of A.

Recall that for a compact space X the compact-open topology on H(X)
coincides with the topology of uniform convergence. We denote the identity
element of H(X) by eX . If O is an open subset of X then we say that
h ∈ H(X) is supported on O if h is equal to the identity on X \ O, i.e. if
h�(X \ O) = eX\O. We write HO(X) for the subgroup of H(X) consisting
of all homeomorphisms of X that are supported on O, so HO(X) = {h ∈
H(X) : h�(X \ O) = eX\O}. Furthermore, we let HO(X,A) stand for the
subgroup HO(X) ∩H(X,A) of H(X).

We need the following elementary result; see [5, Lemma 10.3].

Lemma 2.1. Let f : X → Y and g : Y → Z be continuous. If g ◦ f is
a closed imbedding then so is f .

We give the definition of an n-dimensional Sierpiński carpet.

Definition 2.2. Let n ∈ N. A nowhere dense subset X of Sn+1 is
called an n-dimensional Sierpiński carpet if the collection {Ui : i ∈ N} of
components of Sn+1 \X forms a null sequence such that the closures of the
Ui’s are a pairwise disjoint collection and every Sn+1 \ Ui is an (n+ 1)-cell.

The Menger continuum Mn+1
n , constructed according to the “middle

third” method (see Engelking [6, §1.11]) is a standard example of an n-
dimensional Sierpiński carpet. The following characterization theorem is due
to Whyburn [11] (for n = 1) and Cannon [2] (for n ≥ 2).

Theorem 2.3. Let X and Y be two n-dimensional Sierpiński carpets
for n ∈ N \ {3} and let U and V be components of Sn+1 \ X, respectively
Sn+1 \Y . If h is a homeomorphism from the boundary of U to the boundary
of V , then h can be extended to a homeomorphism from X to Y .

Remark 2.4. In Theorem 2.3, let S and T be components of Sn+1 \X,
respectively Sn+1 \Y , such that S 6= U and T 6= V . The proofs of Lemma 1
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and Theorem 1 in [2] together with the Annulus Theorem ([2]), which enables
one to control where the boundary of a component of Sn+1 \X is mapped
to, imply that we can extend h to a homeomorphism h : X → Y in such
a way that h(∂S) = ∂ T .

Definition 2.5. A point x of an n-dimensional Sierpiński carpet X is
called a boundary point of X if it lies on a nonseparating copy S of Sn in X,
that is, X \S is connected. If x is not a boundary point we call it an interior
point of X.

Using the notation of Definition 2.2, it follows easily from Brouwer’s
Invariance of Domain [8, Theorem 3.6.8] and the generalized Jordan Curve
Theorem [9, Theorem 36.3] that x is a boundary point of X if and only if
x ∈

⋃∞
i=1 ∂Ui and that every ∂Ui is homeomorphic to Sn. Note that these

definitions of boundary point and interior point of X do not coincide with
the usual meaning of these notions since Int(X) = ∅. Boundary points and
interior points are two topologically different types of points in X, both of
which are represented in X. This means that X is not homogeneous. It is
well known that these points are topologically the only two different types
of points in X if dimX 6= 3 (cf. Theorem 2.3 and Lemma 2.7).

Lemma 2.6. Let n ∈ N \ {3} and suppose that x ∈ ∂U , where U is
a component of Sn+1 \Mn+1

n . Then there is a local basis Bx at x such that
for every B ∈ Bx and every y ∈ B ∩ ∂U there is a homeomorphism h of
Mn+1
n with h(x) = y that is supported on B.

Proof. Note that it follows from Theorem 2.3 and the homogeneity of Sn

that all boundary points of Mn+1
n are topologically equivalent. Therefore, it

is enough to consider the boundary point x = (0, . . . , 0) ∈ ∂(In+1), where
∂(In+1) is the boundary of the unbounded component of Rn+1 \ Mn+1

n .
For Bx we take the collection {Bi : i ∈ ω}, where Bi = Mn+1

n ∩ [0, 3−i)n+1.
Now take i ∈ ω and a point y ∈ Bi ∩ ∂In+1. If y = x then the iden-
tity map obviously satisfies the requirements of the lemma, so we suppose
that y 6= x. The closure of Bi in Mn+1

n is Ci = Mn+1
n ∩ [0, 3−i]n+1, so

Ci = 3−iMn+1
n , which means that Ci is again an n-dimensional Sierpiński

carpet. Note that Di = ∂([0, 3−i]n+1) is the boundary of the unbounded
component of Rn+1 \ Ci. Since Bi ∩Di is open and connected in Di, and Di

is homeomorphic to Sn, it follows that Bi∩Di is path connected and we can
use the strong local homogeneity of Sn to see that there is a homeomorphism
gi : Di → Di, with gi(x) = y, supported on Bi ∩Di. By Theorem 2.3 we can
extend gi to a homeomorphism gi of Ci. If we now define hi : Mn+1

n →Mn+1
n

by
hi(x) =

{
gi(x) if x ∈ Ci,
x otherwise,

then hi is as required.
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We want to derive a similar result for the interior points of Mn+1
n with

n ∈ N \ {3}. For this we use the following lemma. Recall that ∂(In+1) is the
boundary of the unbounded component of Rn+1 \Mn+1

n .

Lemma 2.7. Let n ∈ N\{3} and let x and y be interior points of Mn+1
n .

Then there is a homeomorphism h : Mn+1
n → Mn+1

n with h(x) = y and
h�∂(In+1) = e∂(In+1).

Proof. If x = y we can take h = eMn+1
n

, so suppose that x 6= y. Clearly,
we can find quotient mappings qx, qy : Rn+1 → Rn+1 with q−1

x ({x}) = In+1

and q−1
y ({y}) = In+1 such that qx : Rn+1\In+1 → Rn+1\{x} and qy : Rn+1\

In+1 → Rn+1 \ {y} are homeomorphisms. Then q−1
x (Mn+1

n ) \ Int In+1 and
q−1
y (Mn+1

n ) \ Int In+1 are Sierpiński carpets and we denote them by Sx,
respectively Sy.

Let Bx, respectively By, be the boundary of the unbounded component of
Rn+1\Sx, respectively Rn+1\Sy. So Bx = q−1

x (∂In+1) and By = q−1
y (∂In+1).

Note that g = (q−1
y ◦ qx)�Bx is a homeomorphism from Bx to By such

that qy ◦ g = qx�Bx. It follows from Remark 2.4 that we can extend g to
a homeomorphism g : Sx → Sy such that g(∂In+1) = ∂In+1.

Now define the function h : Mn+1
n →Mn+1

n by

h(z) =
{
y if z = x,
(qy ◦ g ◦ q−1

x )(z) if z 6= x.
It is easy to see that h is a bijection such that h ◦ qx = qy ◦ g. Since qx is
a quotient mapping and qy ◦ g is continuous, it follows that h is continuous.
By compactness of Mn+1

n we see that h is a homeomorphism.
Take z ∈ ∂(In+1). Then q−1

x (z) ∈ Bx and since g is an extension of g we
see that

h(z) = (qy ◦ g)(q−1
x (z)) = (qy ◦ g)(q−1

x (z)) = qx(q−1
x (z)) = z.

This shows that h�∂(In+1) = e∂(In+1), so h is as required.

Lemma 2.8. Let n ∈ N \ {3} and suppose that x is an interior point of
Mn+1
n . Then there is a local basis Bx at x such that for every B ∈ Bx and

every interior point y of Mn+1
n in B there is a homeomorphism h of Mn+1

n

with h(x) = y that is supported on B.

Proof. It follows from the construction of Mn+1
n that x has arbitrarily

small open neighbourhoods B in Mn+1
n such that B, the closure of B in

Mn+1
n (or in Rn+1), is homeomorphic to Mn+1

n and the boundary ∂B of B
in Mn+1

n is the boundary of the unbounded component of Rn+1 \ B. Let
Bx be the collection of those neighbourhoods B of x. Clearly, Bx is a local
basis at x. If y is an interior point of Mn+1

n such that y is an element of
a B ∈ Bx, then y is an interior point of B. It follows from Lemma 2.7 that
we can find a homeomorphism of B that maps x to y and is the identity
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on the boundary of B in Mn+1
n . This homeomorphism can be extended to

Mn+1
n by taking the identity on Mn+1

n \ B. This shows that the local basis
Bx at x is as required.

Lemma 2.9. Let O be an open subset of Mn+1
n for n ∈ N \ {3} and

let D1 and D2 be countable subsets of O. Suppose that for j ∈ {1, 2} the
interior points of Mn+1

n contained in Dj are dense in O, and Dj ∩ ∂Ui is
dense in ∂Ui ∩O for all i. Then there is a homeomorphism h of Mn+1

n that
is supported on O and satisfies h(D1) = D2.

Proof. This proof uses a well known back-and-forth construction; see
for instance [1] or [8, Theorem 1.6.9]. Write D1 = Di

1 ∪ Db
1 , where Di

1 is
the set of all points of D1 that are interior points of Mn+1

n , and Db
1 is

the set of all points of D1 that are boundary points of Mn+1
n . Similarly,

write D2 = Di
2 ∪ Db

2 . Let {a1, a2, . . .} and {ã1, ã2, . . .} be enumerations
of Di

1, respectively Db
1 , and let {b1, b2, . . .} and {b̃1, b̃2, . . .} be enumerations

of Di
2, respectively Db

2 . Using the Inductive Convergence Criterion [8, 1.6.2]
we construct a sequence (hm)m∈N of homeomorphisms of Mn+1

n such that
h = limm→∞ hm ◦ · · · ◦h1 exists and is a homeomorphism, and the following
conditions are satisfied:

(1) hm is supported on O for all m ∈ N;
(2) hm ◦ · · · ◦h1(aj) = h4j−2 ◦ · · · ◦h1(aj) ∈ Di

2 for all j and m ≥ 4j− 2;
(3) (hm ◦ · · · ◦ h1)−1(bj) = (h4j−1 ◦ · · · ◦ h1)−1(bj) ∈ Di

1 for all j and
m ≥ 4j − 1;

(4) hm ◦ · · · ◦ h1(ãj) = h4j ◦ · · · ◦ h1(ãj) ∈ Db
2 for all j and m ≥ 4j;

(5) (hm ◦ · · · ◦ h1)−1(b̃j) = (h4j+1 ◦ · · · ◦ h1)−1(b̃j) ∈ Db
1 for all j and

m ≥ 4j + 1.

These conditions ensure that h ∈ HO(Mn+1
n ), h(Di

1) = Di
2 and h(Db

1) = Db
2 .

Put h1 = eMn+1
n

and assume that h1, . . . , h4j−3 are defined for certain j ∈ N.
If h4j−3 ◦ · · · ◦ h1(aj) ∈ Di

2, take h4j−2 = eMn+1
n

. Otherwise, we use
Lemma 2.8 to find a small neighbourhood V4j−2 ⊂ O of h4j−3 ◦ · · · ◦ h1(aj)
which is disjoint from the finite set

{b1, . . . , bj−1, b̃1, . . . , b̃j−1} ∪ h4j−3 ◦ · · · ◦ h1({a1, . . . , aj−1, ã1, . . . ãj−1})
and moreover has the property that we can map h4j−3 ◦ · · · ◦ h1(aj) to any
other interior point of Mn+1

n in V4j−2 by a homeomorphism supported on
V4j−2. Since Di

2 is dense in O we have Di
2 ∩ V4j−2 6= ∅. This means that we

can find a homeomorphism f4j−2 of Mn+1
n supported on V4j−2 such that

f4j−2 ◦ h4j−3 ◦ · · · ◦ h1(aj) ∈ Di
2.

We put h4j−2 = f4j−2.
If (h4j−2 ◦ · · · ◦ h1)−1(bj) ∈ Di

1, we take h4j−1 = eMn+1
n

. Otherwise, we
use Lemma 2.8 again to find a small neighbourhood V4j−1 ⊂ O of bj that is
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disjoint from the finite set

{b1, . . . , bj−1, b̃1, . . . , b̃j−1} ∪ h4j−2 ◦ · · · ◦ h1({a1, . . . , aj , ã1, . . . ãj−1})

and has the property that we can map bj to any other interior point of Mn+1
n

in V4j−1 by a homeomorphism supported on V4j−1. Since (h4j−2◦· · ·◦h1)(Di
1)

is dense in O, by (2) we know that (h4j−2 ◦ · · · ◦ h1)(Di
1) ∩ V4j−1 6= ∅. This

means that there is a homeomorphism f4j−1 of Mn+1
n supported on V4j−1

such that
f−1
4j−1(bj) ∈ (h4j−2 ◦ · · · ◦ h1)(Di

1).

We put h4j−1 = f4j−1.
Using the same argument as above, but now applying Lemma 2.6 instead

of Lemma 2.8, we find neighbourhoods V4j , V4j+1 ⊂ O of (h4j−1◦· · ·◦h1)(ãj),
respectively b̃j , and homeomorphisms h4j , h4j+1 inHV4j (Mn+1

n ), respectively
HV4j+1(Mn+1

n ), such that

h4j ◦ h4j−1 ◦ · · · ◦ h1(ãj) ∈ Db
2 , h−1

4j+1(b̃j) ∈ h4j ◦ · · · ◦ h1(Db
1).

If the neighbourhoods V4j−2, V4j−1, V4j , V4j+1 are chosen small enough, then
the conditions of the Inductive Convergence Criterion are satisfied.

Remark 2.10. It follows immediately from this lemma that if D1 ∩ ∂Ui
and D2∩∂Ui are dense in ∂Ui∩O for every i with ∂Ui∩O 6= ∅, and D1 and
D2 do not contain any interior points of Mn+1

n , there is a homeomorphism
h of Mn+1

n supported on O that maps D1 onto D2. Similarly, if D1 and
D2 both entirely consist of interior points of Mn+1

n , there also exists such
a homeomorphism.

Now let p ≥ 1 and consider the Banach space `p of all sequences z =
(z0, z1, . . . ) ∈ Rω such that

∑∞
n=0 |zn|p <∞. The topology on `p is generated

by the p-norm ‖z‖p = (
∑∞

n=0 |zn|p)1/p. It is well known that ‖ ·‖p is a Kadec
norm with respect to the coordinate projections, that is, the norm topology
is the weakest topology that makes all the coordinate projections z 7→ zn and
the norm function continuous. This fact can also be formulated as follows:
the norm topology on `p is generated by the product topology (inherited
from Rω) together with the sets {z ∈ `p : ‖z‖p < t} for t > 0. We extend
the p-norm over R̂ω by putting ‖z‖p =∞ for each z ∈ R̂ω \ `p.

Definition 2.11. Let X be a space. A function f : X → R̂ is called
lower semicontinuous (abbreviated LSC ) if f−1((t,∞]) is open in X for
every t ∈ R.

Note that the norm as a function from R̂ω to [0,∞] is LSC but not
continuous because the norm topology on `p is much stronger than the
topology inherited from Rω. It is easily checked that f : X → R̂ is LSC if
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and only if f(limn→∞ xn) ≤ lim infn→∞ f(xn) for every convergent sequence
(xn)n∈ω in X.

We define Erdős space

E = {x ∈ `2 : xn ∈ Q for all n ∈ ω}.

Let T be the zero-dimensional topology that E inherits from Qω. We
noted that T is weaker than the norm topology, so clopen sets separate
points, that is, E is totally disconnected. By the remark above, the graph
of the norm function, when seen as a function from

(
E, T

)
to R+, is hom-

eomorphic to E. This means that we can informally think of E as a “zero-
dimensional space with some LSC function declared continuous”.

We point out the following connection between the two topologies on E.
Because the norm is LSC on Rω, every closed ε-ball in E is also closed in the
zero-dimensional space Qω. This means that every point in E has arbitrarily
small neighbourhoods which are intersections of clopen sets.

Definition 2.12. A subset A of a space X is called a C-set in X if A
can be written as an intersection of clopen subsets of X. A space is called al-
most zero-dimensional if every point of the space has a neighbourhood basis
consisting of C-sets. If Z is a set that contains X then we say that a (sep-
arable metric) topology T on Z witnesses the almost zero-dimensionality
of X if dim(Z, T ) ≤ 0, O ∩ X is open in X for each O ∈ T , and every
point of X has a neighbourhood basis in X consisting of sets that are closed
in (Z, T ). We will also say that the space (Z, T ) is a witness to the almost
zero-dimensionality of X.

Thus E is almost zero-dimensional. The space Qω is a witness to the
almost zero-dimensionality of Erdős space. More generally, if ϕ : Z → R is
an LSC function with a zero-dimensional domain then it follows easily that
Z is a witness to the almost zero-dimensionality of the graph of ϕ. Clearly,
a space X is almost zero-dimensional if and only if there is a topology on
X witnessing this fact. Oversteegen and Tymchatyn [10] proved that every
almost zero-dimensional space is at most one-dimensional.

Definition 2.13. Let X be a space and let A be a collection of subsets
of X. The space X is called A-cohesive if every point of X has a neighbour-
hood that does not contain nonempty clopen subsets of any element of A.
If a space X is {X}-cohesive then we simply call X cohesive.

Again, let p ≥ 1. As a generalization of the construction of E, consider
a fixed sequence E0, E1, E2, . . . of subsets of R and let

E = {z ∈ `p : zn ∈ En for every n ∈ ω}.
The following two results were proved in Dijkstra [3].
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Theorem 2.14. Assume that E is not empty and that every En is zero-
dimensional. The following statements are equivalent:

(1) there exists an x ∈
∏∞
n=0En with ‖x‖p =∞ and limn→∞ xn = 0,

(2) every nonempty clopen subset of E is unbounded,
(3) E is cohesive,
(4) dim E > 0.

Recall that if A0, A1, . . . is a sequence of subsets of a space X then
lim supn→∞An =

⋂∞
n=0

⋃∞
k=nAk.

Corollary 2.15. If 0 is a cluster point of lim supn→∞En then every
nonempty clopen subset of E is unbounded (and hence dim E 6= 0).

We need some new notions. The following definitions are taken from
Dijkstra and van Mill [5].

Definition 2.16. If A is a nonempty set then A<ω denotes the set
of all finite strings of elements of A, including the null string λ. If s =
a0a1 . . . ak−1 ∈ A<ω for some k ∈ ω, then |s| denotes its length k. In this
context the set A is called an alphabet. Let Aω denote the set of all infinite
strings a0a1 . . . of elements of A. If s ∈ A<ω and σ ∈ A<ω ∪ Aω then we
put s ≺ σ if s is an initial substring of σ, that is, there is a τ ∈ A<ω ∪ Aω
with saτ = σ, where a denotes concatenation of strings. If σ = a0a1 . . . ∈
A<ω ∪Aω and k ∈ ω with k ≤ |σ|, then σ�k = a0a1 . . . ak−1.

Definition 2.17. A tree T on an alphabet A is a subset of A<ω that
is closed under initial segments, that is, if s ∈ T and t ≺ s then t ∈ T .
An infinite branch of T is an element σ of Aω such that σ�k ∈ T for every
k ∈ ω. The body of T , written as [T ], is the set of all infinite branches
of T . If s, t ∈ T are such that s ≺ t and |t| = |s| + 1 then we say that t
is an immediate successor of s, and succ(s) denotes the set of immediate
successors of s in T .

Now we introduce the concept of an anchor.

Definition 2.18. Let T be a tree and let (Xs)s∈T be a system of subsets
of a space X such that Xt ⊂ Xs whenever s ≺ t. A subset A of X is called
an anchor for (Xs)s∈T in X if for every σ ∈ [T ], the sequence Xσ�0, Xσ�1, . . .
converges to a point in X whenever Xσ�k ∩A 6= ∅ for all k ∈ ω.

Example 2.19. As noted before, Qω is a witness to the almost zero-
dimensionality of E. Let T be the topology that E inherits from Qω. Put
T = Q<ω, and for s = q0 . . . qk−1 ∈ T with k ∈ ω, let Qω

s be the closed
subset of Qω given by

Qω
s = {x ∈ Qω : xi = qi for 0 ≤ i ≤ k − 1}.
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Put Es = Qω
s ∩E for s ∈ T and let B be a bounded subset of E. We show

that B is an anchor for (Es)s∈T in (E, T ). Let σ = q0q1 . . . ∈ [T ] be such that
Eσ�k∩B 6= ∅ for all k ∈ ω. It is clear that Eσ�k converges to the point σ ∈ Qω

in the product topology of Qω, where we identify the string q0q1 . . . with the
sequence (q0, q1, . . .). It suffices to show that σ ∈ E. Since B is bounded there
is an M ∈ N such that B ⊂ {x ∈ Qω : ‖x‖ ≤M}, and because Eσ�k ∩B 6= ∅
for all k ∈ ω this means that ‖(q0, q1, . . . , qk−1, 0, 0, . . .)‖ ≤M for all k ≥ 0.
We have

‖σ‖ = lim
k→∞

‖(q0, q1, . . . , qk−1, 0, 0, . . .)‖ ≤M,

so σ ∈ E.

Dijkstra and van Mill [5, §8] introduced the following class E′ of spaces.

Definition 2.20. E′ is the class of all nonempty spaces E such that there
exists an Fσδ-topology T on E that witnesses the almost zero-dimensionality
of E and there exist a nonempty tree T over a countable set and subspaces
Es of E that are closed with respect to T for each s ∈ T \ {λ} such that

(1′) Eλ is dense in E and Es =
⋃
{Et : t ∈ succ(s)} whenever s ∈ T ,

(2′) each x ∈ E has a neighbourhood U that is an anchor for (Es)s∈T in(
E, T

)
,

(3′) for each s ∈ T \ λ and t ∈ succ(s), Et is nowhere dense in Es,
(4′) E is {Es : s ∈ T}-cohesive,
(5′) E can be written as a countable union of nowhere dense subsets

that are closed with respect to T .

In [5, Theorem 8.13] Dijkstra and van Mill prove

Theorem 2.21. A space E is homeomorphic to E if and only if E ∈ E′.

As an illustration we show that E satisfies the conditions of Defini-
tion 2.20. Let T be the product topology that E inherits from Qω, put
T = Q<ω and let Es for s ∈ T be as defined in Example 2.19. Since Q is a
σ-compact space, it is easy to see that Qω is an absolute Fσδ-space. Further-
more, E is an Fσ subset of Qω, which means that T is indeed an Fσδ-topology
on E that witnesses the almost zero-dimensionality of E. It is clear that Es
is closed in (E, T ) for all s ∈ T and conditions (1′), (3′) and (5′) are easily
seen to be satisfied. For (2′) and (4′) note that it follows from Example 2.19
and Corollary 2.15 that every bounded neighbourhood of a point x in E is
an anchor for (Es)s∈T in

(
E, T

)
that contains no nonempty clopen subsets

of any Es.

3. Homeomorphism groups of a Sierpiński carpet. We prove the
following theorem for n-dimensional Sierpiński carpets as an extension of
the results in [5, Chapter 10].



10 J. J. Dijkstra and D. Visser

Theorem 3.1. Let n ∈ N \ {3}, let {Ui : i ∈ N} be the collection of
components of Sn+1\Mn+1

n , and let D be a countable dense subset of Mn+1
n .

If O is a nonempty open subset of Mn+1
n such that either D ∩ ∂Ui = ∅ for

every i with ∂Ui ⊂ O, or D ∩ ∂Ui is dense in ∂Ui for every i with ∂Ui ⊂ O,
then HU (Mn+1

n , D) is homeomorphic to Erdős space for every open U that
contains O.

As noted before, Mn+1
n is not homogeneous, which is why we need the

conditions on D here. If we choose for instance a set D ⊂ Mn+1
n such that

|D ∩ ∂Ui| = i for every i then H(Mn+1
n , D) contains only the identity map.

Note that if D ∩ ∂Ui = ∅ for all ∂Ui ⊂ O, there can still be j ∈ N with
D ∩ ∂Uj ∩ O 6= ∅. Similarly, if D ∩ ∂Ui is dense in ∂Ui for all ∂Ui ⊂ O,
there can still be j ∈ N such that D ∩ ∂Uj ∩ O is not dense in ∂Uj ∩ O.
The following claim shows that for the proof of Theorem 3.1 we can avoid
these situations. Furthermore, it shows that if D∩∂Ui is dense in ∂Ui for all
∂Ui ⊂ O, we may assume that the set of interior points of Mn+1

n contained
in D ∩O is either empty or dense in O. This observation will also be useful
in the proof of Theorem 3.1.

Claim 3.2. It suffices to prove Theorem 3.1 for the following three cases:

(i) D ∩O consists entirely of interior points of Mn+1
n ;

(ii) D ∩ ∂Ui ∩ O is dense in ∂Ui ∩ O for every i ∈ N and the interior
points of Mn+1

n contained in D ∩O are dense in O;
(iii) D∩∂Ui∩O is dense in ∂Ui∩O for every i ∈ N and D∩O contains

no interior points of Mn+1
n .

Proof. Suppose that we are in the situation of Theorem 3.1. Let Di be
the set of all points of D that are interior points of Mn+1

n . We define O′ ⊂ O
by

O′ =
{
O \Di if O \Di 6= ∅,
O otherwise.

Clearly, O′ is a nonempty open subset of Mn+1
n such that either Di∩O′ = ∅

or Di ∩O′ is dense in O′. Next we define O′′ ⊂ O′ by

O′′ = O′ \
⋃
{∂Ui : ∂Ui \O′ 6= ∅}.

Since the interior points of Mn+1
n are dense in Mn+1

n and the collection
{Ui : i ∈ N} forms a null sequence, it follows that O′′ is a nonempty open
subset of Mn+1

n . Furthermore, if ∂Ui ∩ O′′ 6= ∅ then ∂Ui ⊂ O′′ ⊂ O. It is
clear that O′′ satisfies one of the conditions (i), (ii) or (iii), and if we prove
the theorem for O′′ then we will have also proved it for O.

We introduce some notation.
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Definition 3.3. We define subspaces E2 and E4 of `1 as follows:

E2 = {z ∈ `1 : 2izi ∈ ω for all i ∈ ω},
E4 = {z ∈ `1 : 4izi ∈ ω for all i ∈ ω}.

We write Z2 for the space consisting of the set E2 equipped with the
zero-dimensional topology inherited from the product space Rω, that is,
the topology generated by the coordinate projections. Similarly, we write
Z4 for the set E4 equipped with the zero-dimensional topology inherited
from Rω. For i ∈ ω we let ξi : E4 → E4 denote the projection given by
ξi(z) = (z0, z1, . . . , zi, 0, 0, . . .).

We will use the following proposition in the proof of Theorem 3.1.

Proposition 3.4. Let n ∈ N \ {3} and let O ⊂ Mn+1
n be open

and nonempty. Then there exists a closed imbedding G : E4 3 z 7→ Gz
∈ HO(Mn+1

n ), a copy R̂c of R̂ in O and a sequence p1, p2, . . . ∈ O \ R̂c

such that

(a) limi→∞ pi = 0c ∈ Rc, where Rc = R̂c \ {±∞c},
(b) for each r ∈ R̂c and z ∈ E4 we have Gz(r) = r + ‖z‖ ∈ R̂c,
(c) for each x ∈Mn+1

n \Rc there is an i ∈ ω such that Gz(x) = Gξi(z)(x)
for every z ∈ E4,

(d) β ◦ G : Z4 → β(H(Mn+1
n )) is a closed imbedding, where A =

{∞c, p1, p2, . . .} and β : H(Mn+1
n ) → (Mn+1

n )A is given by β(h) =
h�A (the restriction of h to A is an element of the infinite product
space (Mn+1

n )A).

The sets Rc and A can be chosen such that either both consist of interior
points of Mn+1

n or both consist of boundary points of Mn+1
n . Moreover, for

n = 1 the sets Rc and A can be chosen such that Rc consists of interior
points of M2

1 and A consists of boundary points of M2
1 .

Proof. Dijkstra [4, Remark 3] showed that there exists a closed imbed-
ding H of E2 in H(B), where B is a topological copy of Mn+1

n that contains
a copy R̂c of R̂ and a sequence p1, p2, . . . ∈ B\R̂c such that properties (a)–(d)
are satisfied. Note that we can imbed E4 in E2 by the map g : E4 → E2 given
by

g(z0, z1, . . .) = (z0, 0, z1, 0, z2, 0, . . .).

Now g is even an isometry such that g(E4) is closed with respect to the
weak and (therefore also) strong topology on E2. This means that we may
assume that H is a closed imbedding of E4 in H(B) with properties (a)–(d).
We prove the proposition for n = 1 and n ≥ 2 separately.

Case I: n ∈ N \ {1, 3}. This is the easy case because in the construc-
tion of Dijkstra [4, §5] the points of R̂c ∪ {p1, p2, . . .} all lie in the same
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boundary ∂U of some component U of the complement of B. From [4, Re-
mark 4] it follows immediately that there is an imbedding G as described
in the proposition and such that Rc and A both consist of boundary points
of Mn+1

n .
To show that there is also a suitable imbedding G such that both Rc and

A consist of interior points of Mn+1
n , we consider two disjoint copies B1, B2 of

B in Sn+1. Let ∂U1, respectively ∂U2, be the boundary of the component of
Sn+1\B1, respectively Sn+1\B2, that contains the set R̂c∪{p1, p2, . . .} in B1,
respectively B2. Then, using Theorem 2.3, we make a new Sierpiński carpet
B from B1 and B2 by identifying the points of ∂U1 with the corresponding
points on ∂U2. This means that the set R̂c ∪ {p1, p2, . . .} ⊂ B1 now only
contains interior points of B. Dijkstra’s imbeddings of E4 in H(B1) and
H(B2) naturally give rise to an imbedding G of E4 in H(B) that satisfies
the requirements of the proposition and is such that Rc and A both consist
of interior points of B. Applying [4, Remark 4] we see that there exists an
imbedding G as in the proposition with Rc and A both consisting of interior
points of Mn+1

n .

Case II: n = 1. In this case the set R̂c consists of boundary points of
B and the sequence p1, p2, . . . consists, with the exception of one point, of
interior points of B; see [4, §5]. We note that all points of R̂c ∪ {p1, p2, . . .}
that are boundary points of B lie in the boundary of the same component
of S2 \ B. This means that we can use the same argument as in the case
n ∈ N \ {1, 3} to show that we can find an imbedding G as required and
such that Rc and A both consist of interior points of M2

1 .
Now we observe that it follows from the definition of g and the construc-

tion of Dijkstra that all the points pi might as well be chosen as boundary
points of B. By [4, Remark 4] we can then find the desired imbedding G
with Rc and A both consisting of boundary points of M2

1 .
Consider now two disjoint copies B1, B2 of B in S2 and assume that

all the points pi in B1 are boundary points. Let ∂U1, respectively ∂U2,
be the boundary of the component of S2 \ B1, respectively S2 \ B2, that
contains R̂c. The set R̂c in B1 is an arc in the simple closed curve ∂U1,
and similarly the set R̂c in B2 is an arc in ∂U2. This means that, using
Theorem 2.3, we can form a new Sierpiński carpet B from B1 and B2 by
simply identifying the points of the set R̂c in B1 with the corresponding
points of the set R̂c in B2. Then Rc ⊂ B consists of interior points of B and
the points ±∞c are boundary points of B. Dijkstra’s imbeddings of E4 in
H(B1) and H(B2) naturally extend to an imbedding G of E4 in H(B) that
satisfies properties (a)–(d) and is such that Rc consists of interior points
of B, and A consists of boundary points of B. Applying [4, Remark 4]
we see that there exists an imbedding G as in the proposition with Rc
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consisting of interior points of M2
1 and A consisting of boundary points

of M2
1 .

We can now give the proof of Theorem 3.1.

Proof of Theorem 3.1. Take an open subset U of Mn+1
n that contains O.

Let ρ be a metric on Mn+1
n and let ρ̂ be the induced metric on H(Mn+1

n ):
ρ̂(f, g) = maxx∈Mn+1

n
ρ(f(x), g(x)) for f, g ∈ H(Mn+1

n ). Note that ρ̂ is right-
invariant: ρ̂(f ◦ h, g ◦ h) = ρ̂(f, g) for any h ∈ H(Mn+1

n ). We prove the
theorem by showing that HU (Mn+1

n , D) satisfies the conditions of Definition
2.20. The result then follows from Theorem 2.21. Without loss of generality
we may assume that D ∩ (Mn+1

n \ U) is dense in Mn+1
n \ U . Let T be

the topology that HU (Mn+1
n , D) inherits from the zero-dimensional product

space DD via the injection h 7→ h�D. It follows from [5, Theorem 10.1]
that T is an Fσδ-topology that witnesses the almost zero-dimensionality of
HU (Mn+1

n , D).
Consider the spaces E4 and Z4 and the projection map ξi : E4 → E4 for

i ∈ ω as given in Definition 3.3. We let P be the countable dense subset⋃∞
i=0 ξi(E4) of E4. Consider now the Cantor set

C ′ = {z ∈ E4 : zi ∈ {0, 4−i} for i ∈ ω},
and note that since

∑∞
i=0 4−i < ∞, the norm topology and the product

topology coincide on C ′. Let δ : C ′ → R+ be the imbedding given by the
rule δ(z) = ‖z‖. We define C = δ(C ′), γ = δ−1�C, and Q = δ(C ′ ∩P ). Thus
C is a Cantor set with Q as a countable dense subset and ‖γ(r)‖ = r for
each r ∈ C. We define subspaces Ec and E of `1 by

Ec = {z ∈ `1 : zi ∈ C for i ∈ ω}, E = {z ∈ `1 : zi ∈ Q for i ∈ ω}.
The subscript c refers to the fact that Ec is a complete space. We let Zc and
Z stand for Ec respectively E with the witness topologies that these spaces
inherit from Rω. Let ν : ω × ω → ω be a bijection such that ν(i, j) ≥ j for
all i, j ∈ ω. We define an imbedding ζ : Ec → E4 by the rule (ζ(z))ν(i,j) =
(γ(zi))j for z ∈ Ec and i, j ∈ ω. It is clear from the definition and the
fact that the norm and product topology coincide on the compactum C ′

that ζ : Zc → Z4 is a closed imbedding. Note that ‖ζ(z)‖ = ‖z‖ for each
z ∈ Ec, which implies that ζ is also a closed imbedding with respect to the
norm topologies (recall that the norm topology is generated by the product
topology together with the norm function).

We select a null sequence of nonempty open sets V0, V1, . . . whose closures
are disjoint subsets of O. Put V =

⋃∞
k=0 Vk. Using Proposition 3.4 we can

find for every k ∈ ω a closed imbedding Gk : E4 → HVk
(Mn+1

n ), a copy
R̂k of R̂ in Vk and a sequence pk1, p

k
2, . . . ∈ Vk \ R̂k such that conditions

(a)–(d) of Proposition 3.4, with R̂c replaced by R̂k and pi replaced by pki ,
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are satisfied for Gk. If x ∈ R̂ we write xk for the representation of x in R̂k.
Let Ak = {∞k, p

k
1, p

k
2, . . .} and let βk : H(Mn+1

n ) → (Mn+1
n )Ak be given by

βk(h) = h�Ak. Then condition (d) of Proposition 3.4 is satisfied for Gk with
the set Ak and the map βk.

We now define H : Ec → HV (Mn+1
n ) by

(1) Hz(x) =


G0
ζ(z)(x) if x ∈ V0,

Gkγ(zk−1)(x) if x ∈ Vk for some k ∈ N,
x if x ∈Mn+1

n \ V ,

for z ∈ Ec. Since the Vk’s form a null sequence it is clear that every Hz is a
homeomorphism of Mn+1

n and that Hz depends continuously on z ∈ Ec. Let
Π : HV (Mn+1

n ) → HV0(Mn+1
n ) be the continuous map defined by Π(h) =

(h�V0)∪eMn+1
n \V0

. Since ζ and G0 are closed imbeddings and Π ◦H = G0◦ζ,
Lemma 2.1 implies that H : Ec → HU (Mn+1

n ) is also a closed imbedding.
Now we consider the three cases of Claim 3.2 separately.

Case (i). In this case D∩O consists entirely of interior points of Mn+1
n .

Choose a k ∈ ω. By Proposition 3.4 we can choose the imbedding Gk in (1)
such that Ak and Rk consist of interior points of Mn+1

n . Note that Rk is a
nowhere dense subset of Vk. This means that we can find a countable dense
subset Dk of Vk, consisting of interior points of Mn+1

n , with Dk∩Rk = ∅ and
Ak ⊂ Dk. Since P is countable and Gkz(Rk) = Rk for all z ∈ E4 (see property
(b) of Proposition 3.4), we may assume that Gkz(Dk) = Dk for each z ∈ P .
Let Q4 be the additive group {i4j : i, j ∈ Z} and note that C ∩ Q4 = Q.
Let Qk

4 be the copy of Q4 that lies in Rk, so Qk
4 consists of interior points

of Mn+1
n . As observed in Remark 2.10, we may assume that the set D has

the properties

(2) D ∩ V0 = D0, D ∩ Vk = Dk ∪Qk
4 for k ∈ N.

We verify that
E = {z ∈ Ec : Hz(D) = D}

and hence that H�E is a closed imbedding of E into HU (Mn+1
n , D) for n ∈ N.

If Hz ∈ HU (Mn+1
n , D) and k ∈ N then by property (b) of Proposition 3.4 we

have Hz(0k) = ‖γ(zk−1)‖ = zk−1 ∈ Q4. Since z ∈ Ec we also have zk−1 ∈ C
and hence zk−1 ∈ Q. Thus z ∈ E . Conversely, let z ∈ E . If x ∈ Vk \ Rk for
some k ∈ ω then by property (c) of Proposition 3.4 there is a z′ ∈ P such that
Hz(x) = Gkz′(x). Since Gkz′(Dk) = Dk it follows that x ∈ Dk = D ∩ Vk \ Rk

if and only if Hz(x) ∈ Dk. Note that Hz(R0) = R0 and that this set is
disjoint from D. Consider finally the case that x ∈ Rk for k ∈ N. Then
zk−1 ∈ Q ⊂ Q4 and Hz(x) = Gkγ(zk−1)(x) = x+ ‖γ(zk−1)‖ = x+ zk−1, which
is in Q4 if and only if x ∈ Q4.



Homeomorphism groups of Sierpiński carpets 15

Remember that T is the topology on HU (Mn+1
n , D) inherited from DD.

Let T ′ be the topology that H(Mn+1
n ) inherits from (Mn+1

n )D and note
that T ′ restricts to T on HU (Mn+1

n , D). We first verify that H : Zc →
(H(Mn+1

n ), T ′) is continuous. Let x ∈ D. If x /∈ V or if x ∈ Vk for some
k ∈ N, then Hz(x) depends on at most a single coordinate of z, so conti-
nuity with respect to the product topology is obvious. Let x ∈ V0 and thus
x ∈ D0 ⊂ V0 \ R0. Then by property (c) of Proposition 3.4, G0

z′(x) depends
on only finitely many coordinates of z′ ∈ E4 and hence Hz(x) = G0

ζ(z)(x)
also depends on only finitely many coordinates of z ∈ Zc. This shows that
H is continuous with respect to the product topologies. From property (d)
of Proposition 3.4 we find that β0 ◦H = β0 ◦ G0 ◦ ζ is a closed imbedding
of Zc into β0(H(Mn+1

n )). Since A0 ⊂ D, the mapping β0 : (H(Mn+1
n ), T ′)→

(Mn+1
n )A0 is continuous. Thus from Lemma 2.1 we conclude that H : Zc →

(H(Mn+1
n ), T ′) is a closed imbedding. Since Z = H−1(HU (Mn+1

n , D)), also
H�Z is a closed imbedding of Z in (HU (Mn+1

n , D), T ).
Consider the point 01 ∈ Q1

4 ⊂ R1. For every a ∈ D we define Γa = {h ∈
HU (Mn+1

n , D) : h(01) = a}. Note that every Γa is closed with respect to T
and that

⋃
a∈D Γa = HU (Mn+1

n , D). For i ∈ N, let zi = (4−i, 0, 0, . . .) ∈ E
and let h ∈ Γa. Since limi→∞ z

i = 0, where 0 denotes the zero vector
in Rω, it follows that limi→∞ h ◦H−1

0 ◦Hzi = h in HU (Mn+1
n , D). However,

h ◦ H−1
0 ◦ Hzi /∈ Γa. To see this, note that it follows from Proposition 3.4,

property (b), that H0�R̂1 = eR̂1
and Hzi(01) = (4−i)1. This implies that

h(H−1
0 (Hzi(01))) = h((4−i)1) 6= h(01) = a. Thus Γa is nowhere dense in

HU (Mn+1
n , D) and condition (5′) of Definition 2.20 is satisfied.

We now make an observation which will be the key to satisfying condi-
tions (2′) and (4′) of Definition 2.20.

Claim 3.5. If A is an unbounded subset of E then

diamρ̂{Hz : z ∈ A} ≥ ρ(−∞0,∞0).

Proof. Let z ∈ A and let n ∈ N be arbitrary. Select a zn ∈ A such that
‖zn‖ > ‖z‖ + 2n. It follows from (1), condition (b) of Proposition 3.4 and
the fact that ‖ζ(z)‖ = ‖z‖ for all z ∈ Ec that

Hz((−‖z‖ − n)0) = G0
ζ(z)((−‖z‖ − n)0) = −n0.

Similarly, we see that

Hzn((−‖z‖ − n)0) = (‖zn‖ − ‖z‖ − n)0.
We conclude that

diamρ̂{Hz : z ∈ A} ≥ lim sup
n→∞

ρ̂
(
Hz, Hzn

)
≥ lim

n→∞
ρ(−n0, (‖zn‖ − ‖z‖ − n)0) = ρ(−∞0,∞0),

proving Claim 3.5.
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Let T = Q<ω and define for s = q1 . . . qk ∈ T with k ∈ ω the subspace
Es of E by

Es = {z ∈ E : zi−1 = qi for 1 ≤ i ≤ k}.

With the same arguments as given after Theorem 2.21 we see that the
spaces Es satisfy the conditions of Definition 2.20, every bounded subset of
E is an anchor for (Es)s∈T in Z, and every nonempty clopen subset of any
Es is unbounded. Let J = {fq : q ∈ Q} be a countable dense subset of
HU (Mn+1

n , D). Since H : Z → (HU (Mn+1
n , D), T ) is a closed map, the set

Xs = {Hz : z ∈ Es} is closed with respect to T for each s ∈ T . We define
(Es)s∈T as follows:

Eλ = Xλ ◦ J, Es = Xq1...qk ◦ fq0 if s = q0 . . . qk ∈ T \ {λ}.

Note that if f ∈ HU (Mn+1
n , D) then the map h 7→ h◦f is a homeomorphism

of (HU (Mn+1
n , D), T ) as well as of HU (Mn+1

n , D). So every Es is closed with
respect to T provided s 6= λ.

It remains to show that (Es)s∈T satisfies conditions (1′)–(4′) of Defini-
tion 2.20. Since Xλ 6= ∅, the set Eλ, just as J , is dense in HU (Mn+1

n , D).
The other part of condition (1′) follows with the same ease. Since H : E →
HU (Mn+1

n , D) is an imbedding, condition (3′) is satisfied. Now let W be an
arbitrary set in HU (Mn+1

n , D) such that diam(W ) < ρ(−∞0,∞0). We show
that W works for condition (2′) as well as for (4′). Let σ = q0q1 . . . ∈ [T ] be
such that Eσ�k ∩W 6= ∅ for each k ∈ ω. Putting τ = q1q2 . . . ∈ [T ] we have
Xτ�k ∩ (W ◦ f−1

q0 ) 6= ∅ for each k ∈ ω. Since ρ̂ is right invariant it follows
that

diamρ̂(W ◦ f−1
q0 ) < ρ(−∞0,∞0)

and hence F = {z ∈ E : Hz ∈W ◦ f−1
q0 } is bounded by Claim 3.5. Thus F is

an anchor for (Es)s∈T in Z and obviously Eτ�k ∩F 6= ∅ for each k ∈ ω. Thus
Eτ�0, Eτ�1, . . . converges to an element z in Z. Then Xτ�0, Xτ�1, . . . converges
to Hz and Eσ�0, Eσ�1, . . . converges to Hz ◦fq0 , both with respect to T . Thus
condition (2′) is satisfied. Now let C be a nonempty clopen subset of some
Es such that C ⊂W . We may assume that |s| ≥ 1 and we put q = s�1 and
qat = s. So diamρ̂(C◦f−1

q ) < ρ(−∞0,∞0) and C◦f−1
q is a nonempty clopen

subset of Xt. This means that {z ∈ E : Hz ∈ C ◦f−1
q } is a nonempty, clopen,

bounded subset of Et. As mentioned above, this contradicts Corollary 2.15,
so we conclude that (4′) is satisfied and HU (Mn+1

n , D) ∈ E′. Now apply
Theorem 2.21 to see that HU (Mn+1

n , D) is homeomorphic to E.

Case (ii). In this case D ∩ ∂Ui ∩O is dense in ∂Ui ∩O for every i and
the interior points of Mn+1

n contained in D ∩ O are dense in O. We use
the same method as in case (i). Take k ∈ ω. By Proposition 3.4 we choose
the imbedding Gk in (1) again such that the sets Ak and Rk both consist
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of interior points of Mn+1
n . Noting that Rk is a nowhere dense subset of

Mn+1
n we can find a countable dense subset Dk of Vk such that Ak ⊂ Dk,

Dk ∩ Rk = ∅, Dk ∩ ∂Ui is dense in ∂Ui ∩ Vk for every i with ∂Ui ∩ Vk 6= ∅,
and the interior points of Mn+1

n in Dk are also dense in Vk. Furthermore,
we may assume that Gkz(Dk) = Dk for each z ∈ P , since P is countable and
Gkz(Rk) = Rk for all z ∈ E4. It follows from Lemma 2.9 that we may assume
that D has the properties in (2). We continue in precisely the same way as
in case (i) to conclude that HU (Mn+1

n , D) ∈ E′ and hence HU (Mn+1
n , D) is

homeomorphic to E according to Theorem 2.21.

Case (iii). In this case D ∩ ∂Ui ∩O is dense in ∂Ui ∩O for every i and
D ∩ O contains no interior points of Mn+1

n . Again, we want D to have the
properties (2) for appropriate sets Dk so that in the same way as in case (i)
(and (ii)) we can conclude that HU (Mn+1

n , D) is homeomorphic to E. We
have to treat the cases n = 1 and n > 1 separately.

First we consider the case n = 1. We want D ∩ V0 = D0, with D0

a countable dense subset of V0 with A0 ⊂ D0 and D0∩R0 = ∅. Since D only
contains boundary points of M2

1 , we want D0 to consist of boundary points
of M2

1 . Furthermore, since we are aiming towards Remark 2.10 again, we
also want D0 to be dense in ∂Ui ∩ V0 for every i with ∂Ui ∩ V0 6= ∅. This
means that R0 cannot be contained in the boundary of some component
Ui of the complement of M2

1 . Therefore, we choose G0 in (1) such that A0

consists of boundary points of M2
1 , and R0 consists of interior points of M2

1 .
This is possible according to Proposition 3.4. It is then clear that we can
find a set D0 as required and by Remark 2.10 we may indeed conclude that
D ∩ V0 = D0.

Now take k ∈ N. Just as in (2) we want D ∩ Vk = Qk
4 ∪ Dk, where Dk

is a countable dense subset of Vk with Dk ∩ Rk = ∅ and Ak ⊂ Dk. Since D
consists entirely of boundary points of M2

1 , we choose Gk in (1) such that
both Ak and Rk contain only boundary points of M2

1 . This can be done
according to Proposition 3.4. Suppose that Rk ⊂ ∂Uik for some component
Uik of the complement of M2

1 . Noting that Rk is a nowhere dense subset of
M2

1 we can choose Dk so that it consists of boundary points of M2
1 , it is

dense in ∂Ui ∩ Vk for every i ∈ ω \ {ik} with ∂Ui ∩ Vk 6= ∅, and it is dense
in (∂Uik \Rk) ∩ Vk. We see that Dk ∪Qk

4 is a countable dense subset of Vk,
entirely consisting of boundary points of M2

1 , that is dense in ∂Ui ∩ Vk for
every i with ∂Ui ∩ Vk 6= ∅. It then follows from Remark 2.10 that we may
assume that indeed D ∩ Vk = Qk

4 ∪Dk.
We conclude that we may assume that D satisfies (2). As before, we may

assume that Gkz(Dk)=Dk for all k∈ω and z∈P , so we can continue in the
same way as in case (i) to conclude that HU (Mn+1

n , D) is homeomorphic
to E.
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Now consider the case n ∈ N \ {1, 3}. This is easier than the one-
dimensional case. Take k ∈ ω. Using Proposition 3.4 we choose the imbed-
ding Gk in (1) such that both the sets Ak and Rk consist of boundary points
of Mn+1

n . Note that if Rk ⊂ ∂Uik then Rk is, in contrast to the case n = 1,
nowhere dense in ∂Uik . This means that we can find a countable dense sub-
set Dk of Vk, consisting of boundary points of Mn+1

n , such that Ak ⊂ Dk,
Dk∩Rk = ∅ and Dk∩∂Ui is dense in ∂Ui∩Vk for all i such that Vk∩∂Ui 6= ∅.
From Remark 2.10 it follows that we may assume that D∩V0 = D0 if k = 0
and D ∩ Vk = Qk

4 ∪ Dk if k ∈ N, so we may assume (2). Again, without
loss of generality we have Gkz(Dk) = Dk for all k ∈ ω and z ∈ P , so the
same reasoning as in case (i) shows that HU (Mn+1

n , D) is homeomorphic
to E.

In analogy to [5, Theorem 10.4] and [5, Remark 10.7] we can adapt the
proof of Theorem 3.1 to produce the following slight generalization.

Theorem 3.6. Let X be a locally compact space and let D′ be a count-
able dense subset of X. Suppose that X contains an open subset O′ that is
homeomorphic to an open O ⊂Mn+1

n for some n ∈ N\{3}, such that D′∩O′
corresponds to a countable dense subset D of O that satisfies the conditions
of Theorem 3.1. Then HU (X,D′) is homeomorphic to E for every open set
U that contains O′.
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