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Abstract. The Hurwitz action of the n-braid group Bn on the n-fold direct product
(Bm)n of the m-braid group Bm is studied. We show that the orbit of any n- tuple of the
n standard generators of Bn+1 consists of the (n− 1)th powers of n + 1 elements.

1. Introduction. The n-braid group, denoted by Bn, has the following
presentation [1, 3]:〈

σ1, . . . , σn−1

∣∣∣∣∣ σiσjσi = σjσiσj (|i− j| = 1)
σiσj = σjσi (|i− j| > 1)

〉
,

where σi is the ith standard generator represented by a geometric n-braid
depicted in Figure 1.1.

1 i i + 1 n

Fig. 1.1

Let G be a group. The following action of Bn on the n-fold product Gn

of G is called the Hurwitz action.

Definition 1.1. The Hurwitz action of Bn on Gn is the right action
defined by

(g1, . . . , gi−1, gi, gi+1, gi+2, . . . , gn) · σi
= (g1, . . . , gi−1, gi+1, gi+1

−1gigi+1, gi+2, . . . , gn),
where σ1, . . . , σn−1 are the standard generators of Bn.
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In this paper, we denote the orbit of (g1, . . . , gn) ∈ Gn under the Hurwitz
action of Bn by (g1, . . . , gn) ·Bn.

There is a strong relationship between the Hurwitz actions of Bn on Gn

and the equivalence classes of braided surfaces when G is a braid group
[7, 8, 9, 5, 10].

We study the Hurwitz action of Bn on (Bn+1)n, so G = Bn+1. Through-
out this paper, we use the symbol “si” to denote the ith standard generator
of Bn+1, and “σi” to denote that of Bn.

In [4], S. P. Humphries proved the following.

Theorem 1.2 ([4]). The orbit (s1, . . . , sn) · Bn consists of (n + 1)n−1

elements.

The following is our main result.

Main Theorem 1.3. For any permutation ϕ of {1, . . . , n}, the orbit
(sϕ(1), . . . , sϕ(n)) ·Bn of the element (sϕ(1), . . . , sϕ(n)) consists of (n+ 1)n−1

elements.

In Section 2, we prepare some notions which are used later. Section 3 is
devoted to the proof of Theorem 3.2 which is a generalization of Theorem 1.3.

Throughout this paper, n is an integer with n ≥ 2.

2. Some notions. Throughout this section, A is a fixed subset of
{2, . . . , n}. For integers i and j with 1 ≤ i < j ≤ n+ 1, we define sAij ∈ Bn+1

by

sAij =
( j−1∏
k=i+1

(sk)
εk
)−1

si

j−1∏
k=i+1

(sk)
εk ,

where εk = 1 if k ∈ A and εk = −1 if k 6∈ A (see Example 2.1(1)).
We call sAij a band generator of Bn+1 associated with A. Note that a

standard generator si of Bn+1 is a band generator sAi,i+1.
Let ΣA be the set of band generators {sAij ∈ Bn+1 | 1 ≤ i < j ≤ n + 1}

associated with A.
Let Pk = (k, 0) ∈ R2 for 1 ≤ k ≤ n+1. Let C1 be the circle in R2 passing

through the points P1 and Pn+1 with the length of the segment P1Pn+1 in
diameter. Take the points Qk ∈ C1 for 1 ≤ k ≤ n + 1 such that Q1 = P1,
Qn+1 = Pn+1 and Qk = (k, yk) for each 2 ≤ k ≤ n, where yk < 0 if k ∈ A
and yk > 0 if k 6∈ A.

For 1 ≤ i < j ≤ n+1, we call the segment QiQj the segment correspond-
ing to sAij . (See Example 2.1(2).)

Remark. The reason to call QiQj the segment corresponding to sAij is
as follows.
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Let P0 = Q0 = (0, 0) ∈ R2 and Pn+2 = Qn+2 = (n + 2, 0) ∈ R2. Let C2

be the circle in R2 passing through the points P0 and Pn+2 with the length
of the segment P0Pn+2 in diameter. Let D be the disk in R2 with ∂D = C2.
Take an isotopy {hu}u∈[0,1] of D such that for each u ∈ [0, 1], h0 = id,
hu|∂Dn+1 = id, and for each u ∈ [0, 1] and each (x, y) ∈ ⋃n+1

i=0 QiQi+1,
hu(x, y) = (x, (1− u)y).

Then h1(Qi) = Pi for any i. For 1 ≤ i < j ≤ n + 1, we define αA
ij to be

the arc h1(QiQj) in D. Note that ∂αA
ij = {Pi,Pj}, αA

ij is above Pk if k ∈ A
and αA

ij is below Pk if k 6∈ A (see Example 2.1(3)).
The braid group Bn+1 is isomorphic to the mapping class group of

(D, {P1, . . . ,Pn+1}) relative to the boundary (cf. [2]).
The band generator sAij corresponds to the isotopy class of a homeomor-

phism from (D, {P1, . . . ,Pn+1}) to itself which twists a sufficiently small
disk neighborhood of the arc αA

ij by a 180◦ clockwise rotation using its col-
lar neighborhood.

By the homeomorphism h1 : (D, {Q1, . . . ,Qn+1})→(D, {P1, . . . ,Pn+1}),
we identify the mapping class group of (D, {Q1, . . . ,Qn+1}) and that of
(D, {P1, . . . ,Pn+1}). Then the band generator sAij corresponds to the isotopy
class of a homeomorphism from (D, {Q1, . . . ,Qn+1}) to itself which twists a
sufficiently small disk neighborhood of the segment QiQj by a 180◦ clockwise
rotation. Therefore, we say that the segment QiQj corresponds to the band
generator sAij ∈ ΣA.

Example 2.1. Let n = 4 and A = {2}.
(1) The band generator sA14 ∈ ΣA is s3(s2)−1s1s2(s3)−1 (see Figure 2.1).
(2) Figure 2.2 shows the segment Q1Q4 corresponding to sA14 ∈ ΣA.
(3) Figure 2.3 shows the arc αA

14 = h1(Q1Q4).

1 2 3 4 5

Fig. 2.1

For an element (g1, . . . , gn) of the n-fold product (ΣA)n of ΣA, we call
an n-tuple (a1, . . . , an) of the segments ai corresponding to gi the segment
system corresponding to (g1, . . . , gn).
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Fig. 2.2. n = 4 and A = {2}
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Fig. 2.3

Let a and a′ be the segments corresponding to elements g and g′ of ΣA. If
∂a = {Qi,Qi′}, ∂a′ = {Qi,Qi′′} and Qi′ 6= Qi′′ , i.e., a and a′ share a common
end point Qi, then we say that a and a′ are adjacent (at Qi). Moreover, if
the end points Qi′ , Qi and Qi′′ appear on C1 counterclockwise in this order,
then we say that a′ is right adjacent to a (at Qi), or a is left adjacent
to a′.
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Definition 2.2. An element (g1, . . . , gn) of (ΣA)n is A-good if the seg-
ment system (a1, . . . , an) corresponding to (g1, . . . , gn) satisfies the following
conditions:

(i) If k 6= l, then ak and al are disjoint or adjacent,
(ii) If k < l and ak and al intersect, then al is right adjacent to a′.

(iii) The union a1 ∪ · · · ∪ an is a tree as a graph.

Example 2.3. Let n = 4 and A = {2}. Then (sA23, s
A
24, s

A
13, s

A
25) is A-

good. The segments a1, . . . , a4 corresponding to sA23, s
A
24, s

A
13, s

A
25 are depicted

in Figure 2.4.
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Fig. 2.4

Let (g1, . . . , gn) be an element of (ΣA)n that is A-good and let (a1, . . . , an)
be the corresponding segment system.

Suppose that al is right adjacent to ak at Qi for some k, l (k < l) and
some i. Put ak = QiQi′ and al = QiQi′′ . Then the points Qi′ , Qi and Qi′′

appear counterclockwise in this order and the following lemma holds:

Lemma 2.4. If ak ∩ am ∩ al = {Qi} for m ∈ {1, . . . , n}, m 6= k, l, then
am intersects Int Qi′Qi′′ if and only if k < m < l. In particular, if l = k+ 1,
then am and Int Qi′Qi′′ are disjoint.

Proof. Put am = QiQj .
(Case I) Suppose that m < k < l. Then am is left adjacent to ak and

al by condition (ii) of Definition 2.2. Hence, the points Qj , Qi, Qi′′ and Qi′

appear counterclockwise in this order. Then am and Int Qi′Qi′′ are disjoint.
(Case II) Suppose that k < m < l. Then am is right adjacent to ak and

left adjacent to al by condition (ii) of Definition 2.2. Hence, the points Qi′ ,
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Qi, Qi′′ and Qj appear counterclockwise in this order. Then am intersects
Int Qi′Qi′′ .

(Case III) Suppose that k < l < m. Then am is right adjacent to ak and
al by condition (ii) of Definition 2.2. Hence, the points Qi′ , Qi, Qj and Qi′′

appear counterclockwise in this order. Then am and Int Qi′Qi′′ are disjoint.
Thus, am intersects Int Qi′Qi′′ if and only if k < m < l.

3. Proof of Theorem 1.3. The following lemma is the first step to-
wards the proof of Theorem 1.3.

Lemma 3.1. For an element ϕ ∈ Sym{1, . . . , n}, let A = {i ∈ N |
ϕ−1(i − 1) < ϕ−1(i), 2 ≤ i ≤ n}. Then (sϕ(1), . . . , sϕ(n)) is an element of
(ΣA)n and it is A-good.

Proof. Since the standard generators of Bn+1 belong to ΣA, it follows
that (sϕ(1), . . . , sϕ(n)) ∈ (ΣA)n. The arc am corresponding to sϕ(m) is
Qϕ(m)Qϕ(m)+1. Suppose that ak ∩ al 6= ∅ for k < l. Then ak ∩ al = {Qϕ(k)}
or {Qϕ(l)}, and |ϕ(k)−ϕ(l)| = 1. Assume ϕ(l)−ϕ(k) = 1, so that ak ∩ al =
{Qϕ(l)} and ϕ(l) ∈ A. Then the points Qϕ(k), Qϕ(l) and Qϕ(l)+1 appear coun-
terclockwise in this order since the y-coordinate of Qϕ(l) is negative. Thus,
al is right adjacent to ak. Assume ϕ(k)−ϕ(l) = 1, so that ak ∩al = {Qϕ(k)}
and ϕ(k) 6∈ A. Then the points Qϕ(k+1), Qϕ(k) and Qϕ(l) appear counter-
clockwise in this order since the y-coordinate of Qϕ(l) is positive. Thus, al
is right adjacent to ak. We easily see that the graph a1 ∪ · · · ∪ an is a tree.

Theorem 1.3 is obtained from the following theorem by Lemma 3.1.

Theorem 3.2. Let A be a subset of {2, . . . , n}. For any element
(g1, . . . , gn) ∈ (ΣA)n that is A-good, the orbit (g1, . . . , gn) · Bn consists of
(n+ 1)n−1 elements.

The rest of this paper is devoted to proving Theorem 3.2.
For (g1, . . . , gn) ∈ (ΣA)n, it is not always the case that (g1, . . . , gn) · Bn

⊂ (ΣA)n. However, we have

Lemma 3.3. Let A be a subset of {2, . . . , n}. If (g1, . . . , gn) ∈ (ΣA)n is
A-good, then, for any k ∈ {1, . . . , n− 1} and any ε ∈ {1,−1}, we have:

(1) (g1, . . . , gn) · (σk)ε ∈ (ΣA)n,
(2) (g1, . . . , gn) · (σk)ε is A-good.

Proof. Let (a1, . . . , an) be the segment system corresponding to
(g1, . . . , gn), and let (b1, . . . , bn) be that corresponding to (g1, . . . , gn) · σk.

First we consider the case where ak and ak+1 are disjoint. Then gk and
gk+1 are commutative, and
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(g1, . . . , gk−1, gk, gk+1, gk+2, . . . , gn) · σk
= (g1, . . . , gk−1, gk, gk+1, gk+2, . . . , gn) · (σk)−1

= (g1, . . . , gk−1, gk+1, gk, gk+2, . . . , gn).

Thus, we obtain (1).
For the proof of (2), it is enough to prove (g1, . . . , gn)·σk is A-good. Since

bk = ak+1, bk+1 = ak and bp = ap for p 6= k, k+1, we see that (g1, . . . , gn) ·σk
satisfies conditions (i) and (iii) of Definition 2.2. Suppose that bp and bq
intersect for some p and q (p < q). Let bp = ap′ , bq = aq′ . Note that
(p, q) 6= (k, k+ 1) and (p′, q′) 6= (k+ 1, k) because bk ∩ bk+1 = ak+1 ∩ ak = ∅.
Thus, we have p′ < q′ because p < q. Since ap′ and aq′ satisfy condition (ii)
of Definition 2.2, so do bp and bq. We have (2).

Now consider the case where ak and ak+1 intersect. Let Qx, Qy, Qz

(x < y < z) be the points such that {Qx,Qy,Qz} = ∂ak ∪ ∂ak+1.
By condition (ii) of Definition 2.2, ak and ak+1 satisfy one of the following

conditions:

(A1) y ∈ A and ak = QxQy, ak+1 = QyQz,
(A2) y ∈ A and ak = QyQz, ak+1 = QxQz,
(A3) y ∈ A and ak = QxQz, ak+1 = QxQy,
(A4) y 6∈ A and ak = QyQz, ak+1 = QxQy,
(A5) y 6∈ A and ak = QxQy, ak+1 = QxQz,
(A6) y 6∈ A and ak = QxQz, ak+1 = QyQz.

Then (gk, gk+1) = (sAxy, s
A
yz), (sAyz, s

A
xz), (sAxz, s

A
xy), (sAyz, s

A
xy), (sAxy, s

A
xz) or

(sAxz, s
A
yz). By direct calculations (gk+1, (gk+1)−1gkgk+1) = (sAyz, s

A
xz),

(sAxz, s
A
xy), (sAxy, s

A
yz), (sAxy, s

A
xz), (sAxz, s

A
yz) or (sAyz, s

A
xy), respectively. This im-

plies that (g1, . . . , gn) · σk and (g1, . . . , gn) · (σk)2 are elements of (ΣA)n and
(g1, . . . , gn) · (σk)3 = (g1, . . . , gn). Note that (g1, . . . , gn) · (σk)−1 ∈ (ΣA)n

since (g1, . . . , gn) · (σk)−1 = (g1, . . . , gn) · (σk)2. Thus, we obtain (1).
For (2), it is sufficient to prove (g1, . . . , gn) · σk is A-good. Note that

bk = ak+1, bk+1 is the edge of the boundary of |QxQyQz| that is neither ak
nor ak+1, and bp = ap for p 6= k, k+1. Thus, we see that bp and bk are disjoint
or bp ∩ bk = {Qi} for p 6= k, k + 1 and some i, and bp and bq are disjoint or
bp∩ bq = {Qi} for p 6= q ∈ {1, . . . , n}\{k, k+ 1} and some i. By Lemma 2.4,
for p 6= k, k + 1, ap and Int bk+1 are disjoint. Thus, bp and bk+1 are disjoint
or bp ∩ bk+1 = {Qi} for p 6= k, k+ 1 and some i, and (g1, . . . , gn) ·σk satisfies
condition (i) of Definition 2.2.

Let X be the space defined by

X = a1 ∪ · · · ∪ ak−1 ∪ |QxQyQz| ∪ ak+2 ∪ · · · ∪ an
= b1 ∪ · · · ∪ bk−1 ∪ |QxQyQz| ∪ bk+2 ∪ · · · ∪ bn.
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Note that X is homotopy equivalent to a1 ∪ · · · ∪ an and b1 ∪ · · · ∪ bn. Since
a1∪· · ·∪an is a tree, we see that b1∪· · ·∪ bn is a tree. Thus, (g1, . . . , gn) ·σk
satisfies condition (iii) of Definition 2.2.

We have already seen that bk and bk+1 satisfy condition (A2), (A3), (A1),
(A5), (A6) or (A4) if ak and ak+1 satisfy (A1), (A2), (A3), (A4), (A5) or
(A6), respectively. Let p 6= q ∈ {1, . . . , n} \ {k, k + 1}. If bp (= ap) and bq
(= aq) intersect, then they satisfy condition (ii) of Definition 2.2. If bk and
bp intersect, then bk = ak+1 and bp = ap satisfy condition (ii) of Definition
2.2 since p < k iff p < k + 1.

The remainder of the proof of (2) is to check that bk+1 and bp satisfy
condition (ii) of Definition 2.2 if bk+1 and bp intersect for p ∈ {1, . . . , n} \
{k, k + 1}.

Let bk ∩ bk+1 = {Qi}, bk = QiQi′ and bk+1 = QiQi′′ . Then we have
already seen that ak = Qi′Qi′′ , ak+1 = bk = QiQi′ and the points Qi′′ , Qi′

and Qi appear counterclockwise in this order.
(Case 1) Suppose that bp is adjacent to bk+1 at Qi and let bp = QiQj .
(Case 1-1) Suppose that p < k. Then we have seen that bp is left adjacent

to bk. Since bk is left adjacent to bk+1, we see that bp is left adjacent to bk+1.
(Case 1-2) Suppose that p > k. Then we have seen that bp is right

adjacent to bk and the points Qi′ , Qi and Qj appear counterclockwise in this
order. By Lemma 2.4, the points Qi′′ , Qi and Qj appear counterclockwise
in this order. Thus, bp is right adjacent to bk+1.

(Case 2) Suppose that bp is adjacent to bk+1 at Qi′′ and let bp = Qi′′Qj .
(Case 2-1) Suppose that p < k. Then we have seen that bp (= ap) is right

adjacent to Qi′Qi′′ = ak at Qi′′ by condition (ii) of Definition 2.2. Thus,
Qj , Qi′′ and Qi′ appear counterclockwise in this order. By Lemma 2.4, Qj ,
Qi′′ and Qi appear counterclockwise in this order. Thus, bp is left adjacent
to bk+1.

(Case 2-2) Suppose that p > k. Then we have seen that bp = ap is right
adjacent to Qi′Qi′′ = ak at Qi′′ by condition (ii) of Definition 2.2. Note that
ak is right adjacent to bk+1. Thus, bp is right adjacent to bk+1.

Consequently, bk+1 and bp satisfy condition (ii) of Definition 2.2 in the
case where bk+1 = QxQz, and this completes the proof of Lemma 3.3.

Let Sn+1 be the symmetric group of degree n+ 1.

Lemma 3.4 ([6]). Let τ1, . . . , τn be the transpositions in Sn+1 satisfying
τi 6= τj (i 6= j). Then the orbit of (τ1, . . . , τn) under the Hurwitz action of
Bn on (Sn+1)n consists of (n+ 1)n−1 elements.

For groups G, H and a homomorphism f : G→ H, let fn : Gn → Hn be
the map defined by (g1, . . . , gn) 7→ (f(g1), . . . , f(gn)). The following lemma
is easily seen.



Orbits of the Hurwitz action 71

Lemma 3.5. For any β ∈ Bn,
fn((g1, . . . , gn) · β) = (fn(g1, . . . , gn)) · β.

Proof of Theorem 3.2. Note that the restriction p|ΣA of the canonical
projection p : Bn+1 → Sn+1 to ΣA is injective and the image p(ΣA) is the
set of all transpositions of Sn+1. By Lemma 3.3, we see (g1, . . . , gn) · Bn ⊂
(ΣA)n. Hence, #((g1, . . . , gn) · Bn) = #(pn((g1, . . . , gn) · Bn)). By Lemma
3.5, #(pn((g1, . . . , gn)) ·Bn) = #((pn(g1, . . . , gn)) ·Bn). By the definition of
A-good, gk 6= gl for k 6= l (since the arcs ak and al corresponding to gk and
gl are disjoint or they meet only in their end point). Hence, pn(g1, . . . , gn) is
an element whose components are mutually distinct transpositions of Sn+1.
By Lemma 3.4, we obtain the result.
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