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Linear differential equations and
multiple zeta values. I. Zeta(2)

by

Michał Zakrzewski and Henryk Żołądek (Warszawa)

Abstract. Certain generating fuctions for multiple zeta values are expressed as val-
ues at some point of solutions of linear meromorphic differential equations. We apply
asymptotic expansion methods (like the WKB method and the Stokes operators) to solu-
tions of these equations. In this way we give a new proof of the Euler formula ζ(2) = π2/6.
In further papers we plan to apply this method to study some third order hypergeometric
equation related to ζ(3).

1. Introduction. Let a1, . . . , ak be integers such that ai ≥ 1, ak ≥ 2.
The quantity

(1.1) ζ(a1, . . . , ak) :=
∑

0<n1<···<nk

1
na1

1 . . . nak
k

is called a multiple ζ-value (see [15]). We introduce the following generating
function for zeta values:

fa1,...,ak
(x) := 1− ζ(a1, . . . , ak)xa + ζ(a1, . . . , ak, a1, . . . , ak)x2a(1.2)

− ζ(a1, . . . , ak, a1, . . . , ak, a1, . . . , ak)x3a + · · · ,
where a = a1 + · · · + ak. We distinguish the generating function associated
with ζ(2), i.e.

f2(x) = 1− ζ(2)x2 + ζ(2, 2)x4 − · · · =
∏(

1− x2

n2

)
(1.3)

=
1

Γ (1 + x)Γ (1− x)
=

sinπx
πx

.

Formula (1.3) allows to show that ζ(2m) = π2m×(rational number) (see
[18]).
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In [18] the following result was proved. Consider the following differential
operators which act on functions θ(t;x), t ∈ R:

∂ = ∂/∂t, R = (1− t)∂, Q = t∂, P = RQa1−1RQa2−1 . . . RQak−1.

Theorem 1.1 ([18]). The generating function (1.2) equals

(1.4) fa1,...,ak
(x) = ϕ1(1;x),

where ϕ1(t;x) is the solution to the differential equation

(1.5) Pg + xag = 0

such that ϕ1(t;x) is analytic in t near t = 0 and ϕ1(0;x) = 1.

Equation (1.5) associated with the generating function f2(x) is the hy-
pergeometric equation (with the parameters α = x, β = −x and γ = 1)

(1.6) (1− t)∂t∂g + x2g = 0

and has a solution

(1.7) g = ϕ1(t;x) = F (x,−x; 1; t) = 1− x2

(1!)2
t+

x2(x2 − 1)
(2!)2

t2 + · · · ,

which is one of the hypergeometric functions (see [1]).
The function F (x,−x; 1; t) is the generating function for the polyloga-

rithms

Liak,...,a1(t) =
∑

0<n1<···<nk

tnk

na1
1 . . . nak

k

(1.8)

=
�

0<ta1+···+ak
<···<t1<t

dt1
Aε1(t1)

· · · dta1+···+ak

Aεa1+···+ak
(ta1+···+ak

)

(see [8] and (2.3)–(2.4) below). The latter integral is the Drinfeld–Kontsevich
integral ([9]) with εj = 0 or εj = 1, A0(t) = t, A1(t) = 1−t and the sequence
(ε1, . . . , εa1−1, εa1 , εa1+1, . . . , εa1+···+ak−1, εa1+···+ak

)=(0, . . . , 0, 1, 0, . . . , 0, 1),
i.e. with 1’s in the places a1, a1 + a2, . . . , a1 + · · ·+ ak.

The generating function f2(x) was computed in (1.3) due to the known
product expansion of the function sin. The aim of the present paper is to
calculate f2(x) directly from the hypergeometric equation using so-called
WKB asymptotic expansions and Stokes operators.

The space of solutions to (1.6) is two-dimensional. Near t = 0 the basic
solutions are ϕ1(t;x) (from (1.7)) and ϕ2(t;x) = ϕ1(t;x) ln(x2t) + ϕ3(t;x),
with an analytic germ ϕ3. Near s = 1 − t = 0 two independent solutions
can be chosen in the form θ1(s;x) = x2s + a2s

2 + · · · and θ2(s;x) =
θ1(s;x) ln(x2s) + b0 + b1s + · · · = θ1(s;x) ln(x2s) + θ3(s;x), where b0 = −1
and the other coefficients can be effectively calculated (see the next section).
Therefore near t = 1 the function ϕ1 can be written as follows:

(1.9) ϕ1(t;x) = A(x) · θ1(1− t;x) +B(x) · θ2(1− t;x),
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and we have

(1.10) f2(x) = ϕ1(1;x) = B(x)b0 = −B(x).

So the problem is to find the connection coefficient B(x). Here the solution
ϕ1 is defined uniquely, while to θ1 we can add const · θ1, but the formula is
invariant with respect to such changes.

The WKB method allows one to find another pair of solutions to the
hypergeometric equation (1.6). These are formal asymptotic solutions as
x→∞ of the following form:

(1.11) g±0 (t;x) ∼ e(±ix)S(t)

{
ψ1/2(t)

(±ix)1/2
−

ψ3/2(t)
(±ix)3/2

+ · · ·
}
.

Here the “action” S(t) is
	t
0(τ(1 − τ))−1/2 dτ and the coefficient functions

ψ1/2, ψ3/2, . . . satisfy a series of linear “transport equations”; we solve this
system in Section 4.

The initial exponent γ = −1/2 of x in (1.11) is calculated from the
behavior of the solutions ϕ1,2(t;x) as x → ∞, t → 0 but y = x2t is finite.
We find ϕ1,2(t;x) ≈ Φ1,2(y), where G = Φ1,2 are basic solutions to the Bessel
type equation

(1.12) ∂yy∂yG+G = 0;

in particular, we have Φ1(y) = J0(2
√
y) (where Jµ is the Bessel function, see

(3.2) below). Next, one can use the asymptotic behavior of J0(r) as r →∞.
Analogously we can look at the asymptotic behavior of the functions θj
as x → ∞ and s = 1 − t → 0 and z = x2s is finite. It turns out that
θ1,2(s;x) ≈ Θ1,2(z), where Θ1,2 are basic solutions to another Bessel type
equation

(1.13) z∂2
zH +H = 0;

we have Θ1(z) =
√
zJ1(2

√
z).

The idea is to expand the solution ϕ1 in the WKB basis (g+
0 , g

−
0 ), next

represent the functions g±0 in the basis (θ1, θ2) and find the desired repre-
sentation of ϕ1 in the basis (θ1, θ2). Unfortunately, there is a problem with
the series representing WKB solutions of differential equations with large
parameter: they are generally divergent. They are also divergent in our case
and the divergence is measured in terms of so-called Stokes matrices. To be
more precise, there exist asymptotic series g±(t;x) analogous to (1.11) which
represent analytic functions in two sector-like domains in the (t, x) variables
(see Proposition 4.1 below). The relations between the WKB solutions g±
and the solutions (1.11) are of the form

(1.14) g± = C±(x−1)g±0 ,

where C±(x−1) = 1 + O(x−1) are some asymptotic series. We shall show
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that C+(x−1) = C−(x−1) = C(x−2) and that

ϕ1 = (1/
√
π)(g+ + g−);

in the proof we use some oscillatory integrals (see Lemma 4.4) or a direct
reduction of the corresponding two-dimensional system to a normal diagonal
form (see Remark 4.1). Therefore the solutions g± are more important that
the solutions g±0 .

In general, it is hard to compare the solutions in these two domains,
but it is possible to do it near t = 0 (and x ≈ ∞) and near s = 0 (and
x ≈ ∞). In our next paper [16] we prove a theorem (see also Proposition 3.1
below) which says that the hypergeometric equation (1.6) is equivalent to
the Bessel-like equation (1.12) via a transformation H0 which is analytic
in (t, x−1) ∈ (C2, (0, 0)) (this is a generalization of a theorem from Wasow’s
book [13] about an analogous reduction to the Airy equation). For (1.12) the
point y = ∞ is an irregular singular point and one finds there asymptotic
solutions (also called WKB solutions) of the form

(1.15) G±(y) = e±2i
√
yy−1/4{1 + · · ·},

also defined by divergent series but being analytic functions in larger sectors
(than in the hypergeometric case). Anyway, it is possible to compare these
WKB solutions in the intersections of adjacent sectors and in this way the
Stokes operators arise.

The above mentioned theorem from [16] gives an equivalence of equation
(1.6) rewritten using the “time” s = 1 − t with the Bessel-like equation
(1.12) and the equivalence matrix H1 is analytic in s and x−1. The basic
WKB solutions to (1.6) are of the form

(1.16) H±(z) = e∓2i
√
zz1/4{1 + · · ·}.

In the case of the hypergeometric equation (1.6) there exists an additional
fundamental relation

(1.17) θ1,2(s;x) = −s∂sϕ1,2(s;x)

between solutions near t = 0 and near t = 1 (see Proposition 2.1). One way
to find the connection coefficient B(x) uses the latter relation (and some
calculus).

But there exists another way, which seems to admit a generalization to
other equations (1.5) from Theorem 1.1. Namely analysis of the Stokes phe-
nomena near the points t = 0 and t = 1 demonstrates that the connection
coefficient B(x) is represented by WKB type functions x−1eiπx(1 + · · · ) and
x−1e−iπx(1 + · · · ) with trivial Stokes operators. So, the corresponding se-
ries are convergent and these WKB functions are single valued holomorphic
functions on C near x = ∞ (see Theorem 5.1). Then it is easy to see that
B(x)/(sinπx/x) is an entire and bounded function, hence a constant.
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Anyway, formulas obtained in this paper are new and seem beautiful.
Moreover, we develop an approach to the Stokes phenomenon in the WKB
method which has not been used before.

In the paper [17] in preparation we calculate some Stokes operators as-
sociated with a hypergeometric equation

(1.18) (1− t)∂t∂t∂g + x3g = 0

related to the generating function f3(x) associated with ζ(3) (compare The-
orem 1.1). It turns out that f3(x) can be expressed by WKB type functions
x−3/2e2πσx/

√
3(1 + · · · ), σ = −1, eiπ/3, e−iπ/3. Moreover, it looks as if these

WKB type summands are subject to a nontrivial Stokes phenomenon. In
some sense the present paper is a testing work; it is easier to make calcu-
lations for f2(x) and check some conjectures which could be generalized to
more general cases.

The plan of the paper is the following. In the next section we present
the basic solutions of (1.6). In Section 3 we give some integral formulas
for the Bessel functions related to the hypergeometric equation and their
asymptotic behavior (via the stationary phase formula). In Section 4 we
explore the WKB method for (1.6) with large x. In Section 5 we study the
Stokes phenomenon associated with the WKB solutions.

2. Solutions near t = 0 and near t = 1

2.1. Solutions near t = 0. The indicial equation (for solutions g ∼ tα)
associated with (1.6) near the singular point t = 0 is α2 = 0. So we look for
a solution of the form

(2.1) g = ϕ1(t;x) = 1 + a1t+ a2t
2 + · · ·

and we get the recurrent relations (n + 1)2an+1 + (x2 − n2)an = 0. The
solution to this system gives the hypergeometric series ϕ1 = F (x,−x; 1, t)
defined in (1.7). Next we look for another solution of the form

(2.2) g = ϕ̃2(t;x) = ϕ1 · ln t+ b1t+ · · · = ϕ1 · ln t+ ϕ3(t;x);

thus ϕ3 satisfies the equation {(1− t)∂t∂ + x2}ϕ3 + 2(1− t)∂ϕ1 = 0 and it
is easy to see that the corresponding recurrent relations for bn are solvable.
In particular, we have b1 = −2a1 = 2x2.

We can look at these solutions as functions of x. We write

(2.3)
ϕ1 = ϕ1,0(t)− ϕ1,1(t)x2 + ϕ1,2(t)x4 − · · · ,
ϕ̃2 = ϕ2,0(t)− ϕ2,1(t)x2 + ϕ2,2(t)x4 − · · · ,

where ϕj,k satisfy the system

(t∂)2ϕj,0 = 0, (1− t)∂t∂ϕj,k+1 = ϕj,k.



212 M. Zakrzewski and H. Żołądek

The first equation has solutions ϕ1,0(t) = 1 and ϕ2,0(t) = ln t, and the other
equations are solved by

ϕj,k+1(t) =
t�

0

dt1
t1

t1�

0

ϕj,k(t2)
1− t2

dt2.

We get

ϕ1,1(t) =
∑
n

t�

0

dt1
t1

t1�

0

tn2 dt2 = Li2(t)

(see (1.8)) and, generally,

(2.4) ϕ1,k(t) = Li2,...,2(t)

(with k 2’s). Using the formula
t�

0

tn1 ln t1 dt1 =
tn+1

n+ 1

(
ln t− 1

n+ 1

)
we get ϕ2,1(t) = Li2(t) ln t− 2 Li3(t) and, generally,

(2.5) ϕ2,k(t) = Li2,...,2(t) · ln t− 2
k∑
j=1

Li2,...,3,...,2(t),

where the indices of the Lia1,...,ak
are either a1 = · · · = ak = 2, or aj = 3

and other ai = 2 (in the sum).

Remark 2.1. Putting t=1 in (2.4) and (2.5) we get ϕ1,k(1)=ζ(2, . . . , 2)
(as expected) and ϕ2,k(1) = −2 ·

∑k
j=1 ζ(2, . . . , 3, . . . , 2). After a simple

resummation of the series we find

(2.6) ϕ̃2(1) = 2x2 · f2(x) · {ζ(3) + ζ(5)x2 + ζ(7)x4 + · · · }.
Therefore the value at t = 1 of the second solution to the hypergeometric
equation defines a generating function for the zeta values at odd integers.

However we should not regard (2.6) as something important. The fact is
that only the solution ϕ1 is unique, while ϕ̃2 can be changed to ϕ̃2 +P (x)ϕ1

without affecting the basic properties of this solution, e.g. monodromy about
t = 0. Below we shall see that some other choices of the second (non-analytic)
solution are more natural.

One of the choices of the second solution is

(2.7) ϕ2(t;x) = ϕ1(t;x) · ln(x2t) + ϕ3(t;x).

2.2. Solutions near t = 1. With the variable s = 1− t equation (1.6)
takes the form

(2.8) s∂s(1− s)∂sg + x2g = 0,
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where ∂s = ∂/∂s. We easily find that the independent basic solutions can be
chosen in the following form:

(2.9)
θ1(s;x) = x2s− x2(x2 − 1)

2! · 1!
s2 +

x2(x2 − 1)(x2 − 22)
3! · 2!

s3 − · · · ,

θ̃2(s;x) = θ1(s;x) · ln s− 1 + b1s+ · · · = θ1 · ln s+ θ3(s;x),

where the function θ3(s;x) is analytic near s = 0.
We shall also consider the following “second solution”

(2.10) θ2(s;x) = θ1 · ln(x2s) + θ3.

The following result is mentioned in the Introduction.

Lemma 2.1. Let

ϕ1(t;x) = A(x) · θ1(1− t;x) +B(x) · θ2(1− t;x)

be the representation of the function ϕ1(t;x) near t = 1 in the basis θ1, θ2.
Then the generating function f2 for the zeta values equals

f2(x) = −B(x).

Finally, we note the following fundamental relation between solutions to
the hypergeometric equation (1.6) near t = 0 and near s = 1− t = 0.

Proposition 2.1. A function g(t) is a solution to (1.6) if and only if
the function

h(s) = s∂sg(s)

is a solution to (2.8). In particular,

θ1(s;x) = −s∂sϕ1(s;x), θ2(s;x) = −s∂sϕ2(s;x),

where ϕ1,2 are defined in Subsection 2.1. Moreover,

θ2(s;x) = −ϕ1(0;x) +O(s), s→ 0.

Proof. Putting h(s) into (2.8) we get

s∂s(1− s)∂sh+ x2h = s∂s[(1− s)∂ss∂sg + x2g] = 0.

Next, since the functions s∂sϕ1(s) and s∂sϕ2(s) are independent, they form
a basis of solutions to (2.8).

Remark 2.2. The functions ϕ1(t;x) and ϕ̃2(t;x) are entire functions
of x (being the generating functions for polylogarithms). Moreover, for any
fixed x they are independent as functions of t. The same is true of θ1(s;x)
and θ̃2(s;x).

Moreover, for x = 0 near t = 1 we have ϕ1(t; 0) = 1 and ϕ̃2(t; 0) = ln t =
−s+O(s2). This implies that the connection matrixM(x) between the bases
(ϕ1, ϕ̃2) and (θ1, θ̃2) is entire as a function of x ∈ C.
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3. Bessel type approximations and their asymptotic expansions

3.1. Bessel approximations. Let us consider the series in (1.7) when
x → ∞. Then the recurrent relations for the coefficients in (2.1) become
an+1 ≈ −

(
x

n+1

)2
an and we find that when x → ∞ but y = x2t remains

finite,

(3.1) ϕ1(t;x) ≈ Φ1(y) :=
∞∑
n=0

(−y)n

(n!)2
= J0(2

√
y).

Here and below,

(3.2) Jµ(w) =
∞∑
n=0

(−1)n

Γ (µ+ n+ 1)n!

(
w

2

)2n+µ

is the Bessel function with index µ (see [2, 6]).
The function G = Φ1(y) satisfies the equation ∂yy∂yG+G = 0, obtained

from (1.6) by replacing t with y/x2 and passing with x to infinity; it is the
Bessel type equation (1.12) from the Introduction.

Another solution to (1.12) is of the form

(3.3) Φ2(y) = Φ1(y) ln y + Φ3(y),

where Φ3(y) = O(y) is an entire function of y ∈ C.
We call a linear meromorphic equation of the Bessel type if it has only

two singular points, at t = 0 and at t =∞ (see also [16]).
For solutions near t = 1 we analogously find that when x → ∞ but

z = x2s is bounded,

(3.4) θ1(s;x) ≈ Θ1(z) :=
√
zJ1(2

√
z),

where the function Θ1(z) satisfies the Bessel type equation (1.13), with an-
other solution

(3.5) Θ2(z) = Θ1(z) ln z +Θ3(z)

(where Θ3(z) is an entire function).
The importance of the above approximations can be seen from the fol-

lowing result, which is a special case of a more general theorem proved in
[16, Theorem 2].

Proposition 3.1. There exist matrix-valued functions H0(t, x−1) and
H1(s, x−1), defined in a neighborhood of (0, 0) ∈ C2 and analytic there, such
that

(ϕ1, ϕ2)H0 = (Φ1, Φ2), (θ1, θ2)H1 = (Θ1, Θ2).

Remark 3.1. Let

F0 =
(
ϕ1 ϕ2

∂ϕ1 ∂ϕ2

)
, G0 =

(
Φ1 Φ2

∂Φ1 ∂Φ2

)
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be the fundamental matrices associated with the bases (ϕ1, ϕ2) (see (2.1)
and (2.7)), and (Φ1, Φ2) (see (3.1) and (3.3)), and ∂Φj = x2∂yΦj means
differentiation with respect to the time t. Then we have

H0(t;x) = F−1
0 G0.

Analogously the fundamental matrices

F1 =
(
θ1 θ2

∂sθ ∂sθ2

)
, G1 =

(
Θ1 Θ2

∂sΘ1 ∂sΘ2

)
(where ∂s = x2∂z) define the matrix-valued function

H1(s;x) = F−1
1 G1.

It was proved in [16] that the matrices H0,1 are analytic in (t, x−1) and in
(s, x−1) (respectively) near (0, 0). (In the proof one uses the fact that the
matrices F0 and G0 have the same monodromy properties as t goes around
0 and as x goes around ∞ and have almost the same asymptotics as t → 0
and x→∞, e.g. in sectorial domains.)

Theorem 2 from [16] is a generalization of a theorem of W. Wasow from
[13] about reduction of equations of the form ẍ = λ2ta(t) + λb(t, 1/λ),
a(0) = 1 (with analytic germs a and b and large λ) to the Airy equation
∂2
T y = Ty, T = tλ2/3, which is also of the Bessel type.

3.2. Integral formulas. Bessel functions admit representations via con-
tour integrals.

Lemma 3.1. The following formula holds for all integer n:

(3.6) Jn(2
√
y) =

1
2π

π�

−π
exp(2i

√
y sinα)e−inα dα.

Proof. Formula (3.6) was obtained by Bessel and can be found in the
literature (see [2, 6] ). Let us recall the simple argument that can be used in
more general situations.

We have

Jn(2
√
y) =

∞∑
m=0

(−1)mym+n/2

(m+ n)!m!

= resu=0
1

un+1

(∑ (
√
yu)m

m!

)(∑ (−√y/u)m

m!

)
=

1
2πi

�

|u|=1

exp(
√
y(u− 1/u))

du

un+1
.

Putting u = eiα we get the result.
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Lemma 3.2. For a non-integer index µ we have the following Schläfli
representation:

Jµ(w) =
1

2π

π�

−π
exp(i(w sinα− µα)) dα(3.7)

− sinπµ
π

∞�

0

exp(−w sinhβ − µβ) dβ.

Proof. This follows from some generalization of the residue formula for
Jn with integer n. We have

Jµ(w) =
1

2πi

�

C

exp
(

1
2
w(u− 1/u)

)
u−µ−1 du

where C is a contour which begins and ends at u = −∞ and surrounds
u = 0 in the positive direction. Next the contour C is deformed to two
half-lines along (−∞,−1) (parametrized by −eβ) and the circle |u| = 1. For
more details we refer the reader to [2, formula 7.3(9)] (see also the proof of
Lemma 4.2 below).

In the original Schläfli formula the first integral in (3.7) is replaced with
π−1

	π
0 cos(w sinα− µα) dα.

Lemma 3.3. The solution Φ2 to the Bessel type equation (1.12) can be
defined as

(3.8) Φ2(y) = lim
ν→0

1
ν
{Jν(2

√
y)− J−ν(2

√
y)} − 2γΦ1(y),

where γ is the Euler–Mascheroni constant. It admits the following integral
formula:

Φ2(y) + 2γΦ1(y) =
1
iπ

π�

−π
α exp(2i

√
y sinα)dα(3.9)

− 2
∞�

0

exp(−2
√
y sinhβ) dβ

where the function Φ2(y) is given in formula (3.3).

Proof. Take the following perturbation of (1.12):

{(y∂y)2 + y − ν2/4}G = 0,

where ν 6= 0 is a small parameter. Its independent solutions are Jν(2
√
y)

and J−ν(2
√
y), as can be easily checked. Of course, the right hand side of

(3.8) defines a solution to the unperturbed equation. Next, we have
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Jν(2
√
y) =

1
Γ (1 + ν)

yν/2
{

1− y

(1 + ν)1!
+

y2

(1 + ν)(2 + ν)2!
− · · ·

}
= J0(2

√
y){1− νΨ(1) + (ν/2) ln y}+ ν{c1y + c2y

2 + · · ·}+O(ν2)

(see (3.2)), where
Ψ(z) = Γ ′(z)/Γ (z)

is the Euler Psi-function (with Ψ(1) = −γ).
To prove formula (3.9) we first note that limν→0 ν

−1{Jν(2
√
y)−J−ν(2

√
y)}

= 2 ∂
∂νJν(2

√
y)|ν=0. Next we use the Schläfli formula (3.7).

3.3. Oscillatory integrals. Recall (see [7]) that the stationary phase
formula concerns integrals of the type

(3.10) I(λ) =
�
eλφ(α)χ(α) dkα

over a k-dimensional manifold when |λ| → ∞. Assuming that the “phase”
φ(α) has finitely many critical points α1, . . . , αn, which are Morsean, one
has the following asymptotic stationary phase formula:

(3.11) I(λ) ∼
∑
i

χ(αi)
1√

det(−D2φ(αi))
eλφ(αi)

(
2π
λ

)k/2
.

Usually, in applications, the large parameter λ is imaginary and the phase
φ is a real function; then the integral in (3.10) is called an oscillatory integral.
This is the case considered in this paper.

3.4. Asymptotics for Φj and Θj. In the integral (3.10), specified
to (3.6), the phase function φ(α) = 2i sinα has two critical points α1 = π/2
with φ(α1) = 2i, φ′′(α1) = −2i and α2 = −π/2 with φ(α2) = −2i, φ′′(α2)
= 2i. Therefore we obtain the following (well known) asymptotic formula for
y →∞:

(3.12) Φ1(y) = J0(2
√
y) ∼ 1

2
√
πy1/4

(ei(2
√
y−π/4) + e−i(2

√
y−π/4)).

On the right hand side of (3.9) the second integral can be ignored, because
it decreases like y−1/2 (without any exponent). The first integral in that
formula is an oscillatory integral and a standard application of (3.11) gives
(for y →∞)

(3.13) Φ2(y) + 2γΦ1(y) ∼
√
π

2iy1/4
(ei(2

√
y−π/4) − e−i(2

√
y−π/4)).

Concerning the solutions Θj(z) to the Bessel type equation (1.13), we
could find integral formulas (analogous to those above). But it is more nat-
ural to use Proposition 2.1, which implies

(3.14) Θj(z) = −z∂zΦj(z).
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Therefore (3.12)–(3.13) give (for z →∞)

Θ1(z) ∼ z1/4

2i
√
π

(ei(2
√
z−π/4) − e−i(2

√
z−π/4)),(3.15)

Θ2(z) + 2γΘ1(z) ∼ −
√
π

2
z1/4(ei(2

√
z−π/4) + e−i(2

√
z−π/4)).(3.16)

Remark 3.2. The above asymptotic formulas are true when y is real
(respectively when z is real). In the case of a non-real argument only one
term, which dominates, is correct. This is related to the Stokes phenomenon
discussed in Section 5.

4. The WKB solutions. Equation (1.5) for a large parameter x theo-
retically can be solved using the WKB method. This means that one repre-
sents a solution as a finite sum of terms of the form

exS(t){ψγ(t)x−γ + ψγ+1(t)x−γ−1 + · · ·}.
In general the series in the above formula are divergent, but this divergence
can be somehow controlled. Below we present three approaches to the WKB
solutions to (1.6): formal, via the stationary phase formula and via normal
forms.

The name of the method comes from the names of its authors, G. Wentzel
[14], H. Kramers [10] and L. Brillouin [4]. Originally it was used to solve
approximately the Schrödinger equation [11], but here we apply it to the
hypergeometric equation.

4.1. Formal WKB solutions to the hypergeometric equation.
We look for so-called WKB solutions to the hypergeometric equation (1.6)
of the form g = exS̃(t)ψ(t;x). Substituting this to (1.6) we get the equation

(4.1) {(1− t)t(∂S̃)2 + 1}+ x−1(1− t){2(t∂S̃)∂ψ + (∂(t∂S̃))ψ}
+ x−2(1− t)∂(t∂ψ) = 0.

This implies the “Hamilton–Jacobi equation”

t(1− t)(∂S̃)2 = −1

with two solutions

(4.2) S̃(t) = ±i
t�

0

dτ√
τ(1− τ)

=: ±iS(t).

Thus we get two independent solutions to the hypergeometric equation,
g±0 (t;x) = e±ixS(t)ψ±(t;x).

Let
x± = ±ix.
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Then we can take the following asymptotic expansion (valid for both solu-
tions):

(4.3) g±0 (t;x) = ex±S(t){ψ1/2(t)x−1/2
± − ψ3/2(t)x−3/2

± + ψ5/2(t)x−5/2
± + · · · },

where

(4.4) x
1/2
± = e±iπ/4

√
x (for x > 0)

and the functions ψj satisfy the “transport equations”

2(t∂S)∂ψ1/2 + (∂(t∂S2))ψ1/2 = 0,(4.5)
2(t∂S)∂ψj + (∂(t∂S2))ψj = ∂(t∂ψj−1), j > 1/2.(4.6)

We choose a solution to (4.5) in the form

(4.7) ψ1/2(t) = (t∂S)−1/2 = 4

√
1− t
t

.

To solve the other equations we introduce the new variable

(4.8) u = 4

√
t

1− t
;

thus

t =
u4

1 + u4
, ∂ = ∂t =

(1 + u4)2

4u3
∂u

and

(4.9) ψ1/2(t) = ψ̃1/2(u) = 1/u.

The functions ψj(t) = ψ̃j(u), j > 1/2, satisfy the equations

(4.10) ψ̃′j +
1
u
ψ̃j =

1
8u2

(u(1 + u4)ψ̃′j−1)′,

where the prime denotes ∂u. The recursive solutions to (4.10) have the form

(4.11) ψ̃j = T ψ̃j−1, (Tϕ)(u) =
1

8u

u� 1
w

(w(1 + w4)ϕ′(w))′dw.

We find

(4.12) ψ̃3/2 =
−1
2 · 8

(u−3 + 3u), ψ̃5/2 =
3
83

(3u−5 − 5u3)

and ψ̃7/2 = − 3·5
2·84 (5u−7 + 7u5)− 9·5

2·84 (u−3 + 3u), ψ̃9/2 = 3·52·7
2·86 (7u−9 − 9u7)+

3·5·11
2·85 (3u−5 − 5u3).

These formulas suggest introduction of the functions

ωn(u) = (n− 2)u−n + (−1)n(n+1)/2n · un−2, n = 3, 5, 7, . . . .
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One easily verifies the following recurrent relations:

Tω3 = −3 · 1
8 · 4

ω5,

Tωn = −n(n− 2)
8(n+ 1)

ωn+2 −
n(n− 2)
8(n− 3)

ωn−2, n = 5, 7, . . . .

It follows that

ψn/2(t) = ψ̃n/2(u)(4.13)

= an,nωn(u) + an,n−4ωn−4(u) + · · · , n = 3, 5, . . . ,

for some coefficients an,m which are calculated inductively and grow very
fast with n; for instance, an,n = (n− 2)(−1/8)(n−3)/2((n− 4)!!)2/(n− 3)!!.

The solution (4.11) to (4.10) is only a particular solution; a general solu-
tion would contain the term const·u−1. But the Laurent polynomials ψ̃n/2(u),
n = 3, 5, . . . , in (4.13) do not contain the term with u−1 proportional to ψ̃1/2.

Recall that the hypergeometric equation is related to some Bessel type
equations. Therefore these Bessel type equations should also admit solu-
tions of WKB type. Indeed, the Bessel type equations (1.12) and (1.13)
have y = ∞ (respectively z = ∞) as an irregular singular point (see [19]).
As suggested by the asymptotic formulas (3.12)–(3.15) they admit formal
asymptotic solutions

(4.14) G±(y) = e±2i
√
yy−1/4

{
1− a1

±iy1/2
+

a2

(±iy1/2)2
− a3

(±iy1/2)3
+ · · ·

}
and

(4.15) H±(z) = e±2i
√
zz1/4

{
1− b1

±iz1/2
+

b2

(±iz1/2)
− b3

(±iz1/2)3
+ · · ·

}
,

where the coefficients aj and bj are defined recursively (compare (1.15)–
(1.16)).

Definition 4.1. We define the testing WKB solutions g±0 (t;x) by the
right hand side of (4.3) where ψj are defined by (4.9) and (4.11) with the
condition that ψj , j > 1/2, do not contain the monomial u−1. In other words,
ψj are defined as in (4.13).

The (formal) function G±(y) and H±(z) are called the WKB solutions
for the Bessel type equations (1.12) and (1.13) respectively.

4.2. Integral representations and a stationary phase formula.
The solutions to the hypergeometric equation admit integral formulas given
in the lemmas below.
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Lemma 4.1. We have

(4.16) ϕ1 = F (x,−x; 1; t) =
1

2πi

�

|v|=1

(
1 +
√
tv

1 +
√
t/v

)x dv
v
.

Proof. This follows from the residue formula and the expansions

(1 +
√
tv)x = 1− x(−

√
tv) +

x(x− 1)
2!

(−
√
tv)2 + · · · ,

(1 +
√
t/v)−x = 1 + x(−

√
t/v) +

x(x+ 1)
2!

(−
√
t/v)2 + · · · .

(This representation is slightly different from the standard Euler integral.)

The next lemma is a generalization of the Schläfli formula.

Lemma 4.2. For Re(γ − β) > 0 and 0 < t < 1 we have

(4.17)
Γ (γ − β)

Γ (1− β)Γ (γ)
· t(γ−1)/2 · F (α, β; γ; t)

=
1

2π

π�

−π
(1 +

√
teiϕ)γ−β−1(1 +

√
te−iϕ)−αei(1−γ)ϕ dϕ

+
sinπ(γ + α)

π

1/
√
t�

1

(1−
√
tw)γ−β−1(1−

√
t/w)−α

dw

wγ
.

Proof. We have the following analogue of the Euler integral:

(4.18)
Γ (γ − β)t(γ−1)/2

Γ (1− β)Γ (γ)
F (α, β; γ; t)

=
1

2πi

�

Υ

(1 +
√
tv)γ−β−1(1 +

√
t/v)−α

dv

vγ
,

where Υ is a contour in the complex v-plane which begins and ends at v =
−1/
√
t and surrounds the point v = 0 in the counterclockwise direction.

To prove (4.18) we expand the factor (1+
√
t/v)−α=

∑ Γ (α+n)
Γ (α)n! t

n/2(−v)−n

and then we use the Euler Beta function relation

(−1)n
�

Υ

(1 +
√
tv)γ−β−1v−n−γ dv

= (eiπγ − e−iπγ)
0�

−1/
√
t

(1 +
√
tv)γ−β−1(−v)−n−γ dv
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= 2i sinπγ · t(n+γ−1)/2Γ (γ − β)Γ (−n− γ + 1)
Γ (−n− β + 1)

= 2i sinπγ · t(n+γ−1)/2 · Γ (γ − β) · Γ (β + n) sinπβ
Γ (γ + n) sinπγ

,

where sinπβ = π/Γ (1− β)Γ (β).
Finally one deforms the contour Υ to the unit circle {v = eiϕ : −π < ϕ

< π} and two straight line segments along {v = −w : 1 ≤ w ≤ 1/
√
t}.

Lemma 4.3. The second basic solution near t = 0 to the hypergeometric
equation (1.6) (for Rex > 0) can be taken in the form

(4.19) ϕ̂2 =
1

2πi

�

|v|=1

(
1 +
√
tv

1 +
√
t/v

)x
ln
(

1 +
√
tv

v2(1 +
√
t/v)

)
dv

v

−
1/
√
t�

1

(
1−
√
tv

1−
√
t/v

)x{sinπx
π

ln
(

1−
√
tv

v2(1−
√
t/v)

)
+ 3 cosπx

}
dv

v
.

Proof. We take the family of Riemann equations t{(1− t)∂t∂g+ x2g} −
µ2g = 0, µ ≈ 0; it is a perturbation of (1.6). It has the solutions ηµ(t;x) and
η−µ(t;x), where

ηµ =
Γ (1 + x+ µ)

Γ (1 + x− µ)Γ (1 + 2µ)
· tµ · F (µ+ x, µ− x; 1 + 2µ; t)

= ϕ1 + µ{2Ψ(1 + x)− 2Ψ(1) + ln t} · ϕ1

+ µ
∂

∂µ

∣∣∣∣
µ=0

F (µ+ x, µ− x; 1 + 2µ; t) +O(µ2)

and Ψ denotes the Euler Psi-function. It follows that ϕ̂2 = limµ→0
1
2µ{ηµ −

η−µ} is a solution to (1.6) with the logarithmic term. Now, using the gener-
alized Schläfli formula (4.17) with α = µ+ x, β = µ− x and γ = 1 + 2µ, we
get

ηµ =
1

2πi

�( 1 +
√
tv

1 +
√
t/v

)x+µ dv

v1+2µ
− sinπ(x+ 3µ)

π

�( 1−
√
tv

1−
√
t/v

)x+µ dv

v1+2µ
,

where the path of integration in the first integral is {v = eiα : 0 < α < 2π}
and the corresponding path in the second integral is the interval [1, 1/

√
t].

Remark 4.1. Since

F (µ+ x, µ− x; 1 + 2µ; t) = 1 +
µ2 − x2

1 + 2µ
t+ · · · ,

it follows that the analytic part ϕ3(t) = O(t) of the solution ϕ̃2 = ϕ1 ln t+ϕ3
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from (2.2) equals

ϕ3(t) =
∂

∂µ
F (µ+ x, µ− x; 1 + 2µ; t)

∣∣∣∣
µ=0

= 2x2t+O(t2).

Moreover, from the expansion Ψ(1+x) = −γ+ζ(2)x−ζ(3)x2+ζ(4)x3−· · ·
(see [1, Eq. 1.17(5)]) and (2.6) in Remark 2.1 we get

(4.20) ϕ̂2 = ϕ̃2 + (2Ψ(1 + x)− 2Ψ(1)) · ϕ1

and
ϕ̂2(1;x) = f2(x){2ζ(2)x+ 2ζ(4)x3 + 2ζ(6)x5 + · · ·}.

But π
tanπx = 1

x−2ζ(2)x−2ζ(4)x3−· · · (compare [1, Eq. 1.21(3)]). Therefore
ϕ̂2(1;x) = − cosπx

x + x−1f2(x). This implies that the function

(4.21) ϕ̌2(t;x) := ϕ̂2(t;x)− x−1 · ϕ1(t;x)

is a solution to (1.6) independent of ϕ1 and such that

(4.22) ϕ̌2(1;x) = −cosπx
x

.

There is also a natural relation between the solution ϕ̂2 and the solution
ϕ2 = ϕ̃2 + ϕ1 lnx2 (see (2.7)). Indeed, from the Stirling formula it follows
that Ψ(1 + x) ∼ lnx + 1

2x + O(x−2) as x → ∞. Therefore, as x → ∞, we
have

(4.23) ϕ̂2 ' ϕ2 + (2γ +O(x−1))ϕ1

(compare (3.9) above).
Anyway, we have found four candidates for the second solution to (1.6):

ϕ̃2, ϕ2, ϕ̂2 and ϕ̌2. All are natural and reasonable.

Having integral formulas for solutions to our equation (1.6) we can use
the stationary phase formula. We begin with (4.16).

The integral in (4.16), with v = eiα and large x > 0, is an oscillatory
integral (see (3.10)) with the “phase”

(4.24) φ =
1
i
{ln(1 +

√
tv)− ln(1 +

√
t/v)}.

The stationary phase formula states that the leading contribution to the
integral in (4.16) comes from neighborhoods of critical points of the phase.
There are two critical points α± which correspond to v± = eiα± = −

√
t ∓

i
√

1− t. The corresponding critical values of the phase are

φ± = ∓1
i

ln
1− iu2

1 + iu2
= ±S(t), u = 4

√
t

1− t
,

where S(t) =
	t
0(τ(1− τ))−1/2dτ is the same as in (4.2) above.

The critical points α± are non-degenerate. We can see this by putting
v = v±e

ia into (4.24) and expanding φ in powers of (small) a. We find
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φ(α) = φ± ∓ u2a2 + · · · , or ixφ = x±S(t) − x±u
2a2 + · · · , x± = ±ix.

Therefore the leading term of the oscillatory integral corresponding to the
critical point α± equals

ex±S(t) · 1
2π

�
exp(−x±u2a2) da ∼ 1

2u√πx±
ex±S(t).

Let us now look at the further terms of the integral in (4.16). For this we
put a = A/(u√x±) and expand

ix∆±φ := ix(φ− φ±)

in powers of x−1/2
± . We get

ix∆±φ = ± ix± ln(1∓ iu2(eiA/u
√
x± − 1))(4.25)

∓ ix± ln(1∓ iu2(e−iA/u
√
x± − 1)).

The x0
±-term of this expression equals −A2, and the other terms, denoted

by Ω(A), can be grouped as follows:

(4.26) x±u
2

[ ∑
m≥0, n≥2

cm,nu
4m

(
A2

u2x±

)n]

+ (±i√x±u3A)
[ ∑
m≥0, n≥1

dm,nu
4m

(
A2

u2x±

)n]
for some real coefficients cm,n and dm,n (which do not depend on the sign ±).
We get an integral of the form

1
2πu√x±

�
e−A

2 × eΩ dA,

where eΩ(A) is expanded in powers of A and integrated. By analogy with the
Gaussian integrals we can assume that

〈An〉 :=
1√
π

�
e−A

2
AndA = (n− 1)!! ·

(
1
2

)n/2
if n is even, and zero otherwise.

We have computed a few initial terms in the expansion of ϕ1(t;x) and we
have found that it is a sum of two asymptotic series 1

2(πx±)−1/2ex±S(t)
{

1
u +

1
16x
−1
± (u−3 + 3u)− 2 · 8−3x−2

±
(

10
u − 3(3u−5− 5u3)

)
+ · · ·

}
, i.e. 1

2π
−1/2ex±S(t)

times{
ψ̃1/2(u)x−1/2

± − ψ̃3/2(u)x−3/2
± +

(
5

256
ψ̃1/2(u) + ψ̃5/2(u)

)
x
−5/2
± + · · ·

}
(compare (4.12)); we do not present these rather tedious calculations here.
Anyway, we can state the following result.
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Lemma 4.4. We have

(4.27) ϕ1 ∼
1

2
√
π
C(x−2)(g+

0 + g−0 ) =:
1

2
√
π

(g+ + g−),

where C(x−2) is a formal series with real coefficients such that

(4.28) C(x−2) = 1 +
5

256x2
+ · · · 6≡ 1.

Proof. We prove only the formula (4.27). The expansion of eΩ, with Ω
given in (4.26), gives a sum of the following monomials in u and x±:

u4
P
kjmj+4

P
k′jm

′
j−2

P
kj(nj−1)−

P
k′j(2n

′
j−3) · x

−
P
kj(nj−1)−

P
k′j(n

′
j−1/2)

±

= u4M+4M ′−2N+2K−2N ′+3K′ · x−N+K−N ′+K′/2
± ,

where M =
∑
kjmj , M

′ =
∑
k′jm

′
j , N =

∑
kjnj , N

′ =
∑
k′jn
′
j , K =

∑
kj ,

K ′ =
∑
k′j (and the primes are related to the expansion of the exponent of

the second sum in (4.26)). We are interested in the monomials involving u0.

Since there are no terms with half-integer powers of x± (as 〈A2n+1〉 = 0),
we see thatK ′ = 2K ′′ is an even integer. Therefore the condition 4M+4M ′−
2N − 2N ′ + 2K + 6K ′′ = 0 implies N +N ′ −K −K ′′ = 2(M +M ′ +K ′′),
i.e. an even power of x±.

Definition 4.2. The formal functions

(4.29) gσ = C(x−2) · gσ0
are called the principal WKB solutions to (1.6).

Consider now the solution ϕ̂2 defined by (4.19). The right hand side of
(4.19) consists of two integrals, of which only the first, along {v = eiα : 0 <
α < 2π}, is essential when applying the stationary phase formula.

We have an oscillatory integral I =
	
eixφ(α)χ(α) dα with the same phase

as in (4.21) but with different amplitude χ(α) = i
2π (φ(α)− 2α). We write

(4.30) ϕ̂2 ∼ I = I+ + I−,

where I± are contributions from neighborhoods of the critical points α± of
the phase. Since

(4.31) χ(α± + a) =
∓i
2

+
i

2π
∆±(a)− i

π
a,

we get

(4.32) I± = J± +K± + L±,

where the integrals J±,K±, L± correspond to the three summands in χ.
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Lemma 4.5. We have

(4.33) ϕ̂2 ∼
√
π

2i
{D+(x−1)g+

0 −D−(x−1)g−0 },

where D±(x−1) are formal series satisfying

(4.34) D+(x−1) +D−(x−1) = 2C(x−2).

Proof. Of course, J± = ±iπ · C(x−2)g±0 .
We shall prove that the integrals K++K− and L++L− (from (4.32)) are

both proportional to g+
0 + g−0 ; this is sufficient. For this it is enough to show

that the Gauss type integrals
	
eix∆±∆± (in K±) and 1

ux
−1/2
±

	
Ae−A

2
eΩ dA

(in L±) have “correct” coefficients of u−1.

Consider first the integral related to L±. Repeating the expansion of eΩ
from the proof of Lemma 4.4 we find monomials of the form

±i · u4M+4M ′−2N+2K−2N ′+3K′−1 · x−N+K−N ′+K′/2−1/2
± ,

whereK ′ = 2K ′′+1 must be odd. The condition 4M+4M ′−2N+2K−2N ′+
6K ′′ + 2 = 0 implies that the latter monomial equals ±i · x2(M+M ′+K′′)+1

± =
(−1)M+M ′+K′′+1 · x2(M+M ′+K′′)+1, i.e. it does not depend on the sign ±.

Note that

e−x±SK± =
i

2π

�
eix∆±φ∆±φda =

∂

∂x

1
2π

�
eix∆±φ da

=
1

2
√
π

∂

∂x
C(x−2){u−1x

−1/2
± + · · ·}

(compare above). The coefficient of u−1x
−1/2
± on the right hand side equals

(1/2
√
π){−2x−3C ′(x−2) − 1

2C(x−2)x−1} = −1/4
√
πx and does not depend

on the sign ±.
More precise calculations show that K+ + K− + L+ + L− = (1/2x

√
π

+ · · ·){g+
0 + g−0 }.

4.3. Reduction to a normal form. Putting h = ġ/x we rewrite (1.6)
as the first order system

(4.35)
(
ġ

ḣ

)
= A(t;x)

(
g

h

)
,

where

A = xA1(t) +A0(t), A1 =
(

0 1
1/t(t− 1) 0

)
, A0 =

(
0 0
0 −1/t

)
.

The normal form of such a system is a diagonal (or independent) system
obtained by means of a formal linear change which depends on t.
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The first step is the diagonalization of the matrix A1(t) with the eigen-
values ±λ(t),

λ(t) = i/
√
t(1− t).

We put

(4.36) X = λ(t)g + h, Y = −λ(t)g + h

and we get

(4.37)
Ẋ = λ(t)xX − 1

4

(
3
t
− 1

1− t

)
X − 1

4

(
1
t

+
1

1− t

)
Y,

Ẏ = −λ(t)xY − 1
4

(
1
t

+
1

1− t

)
X − 1

4

(
3
t
− 1

1− t

)
Y.

The general theory says that such a system can be diagonalized by means
of an infinite series of “shearing” transformations (see [5, 7]). Let us apply
some initial transformations, in order to compare the (partial) normal form
obtained with the results of the previous and next subsections. We put

(4.38)
X = X1 +

(
b1(t)
x

+
b2(t)
x2

+ · · ·
)
Y1,

Y =
(
c1(t)
x

+
c2(t)
x2

+ · · ·
)
X1 + Y1,

and we expect to obtain the following separated system:

(4.39)
Ẋ1 =

(
λ(t)x+ λ0(t) +

λ1(t)
x

+ · · ·
)
X1,

Ẏ1 =
(
−λ(t)x+ µ0(t) +

µ1(t)
x

+ · · ·
)
Y1.

The resulting system of equations in bj , cj , λj and µj is easily solved. Using
the variable u = (t/(1− t))1/4 (see (4.8)) we get

b1 = −c1 =
−i

8(t(1− t))1/2
= −i1 + u4

8u2
,

b2 = c2 =
1− 2t

32t(1− t)
=

1− u8

32u4

and

λ0 = µ0 = −1
4

(
3
t
− 1

1− t

)
,

λ1 = −µ1 = − i

32(t(1− t))3/2
=
−i
32

(1 + u4)3

u6
,

λ2 = µ2 =
−1
128

1− 2t
t2(1− t)2

=
(u4 − 1)(1 + u4)4

128u8
.
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General solutions to the system (4.39) are of the form

(4.40)

X1 = K1 ·
eixS(t)

t3/4(1− t)1/4

× exp
{
−i
16x

(
u2 − 1

u2

)
− 1

512x2

(
u4 + 2 +

1
u4

)
+ · · ·

}
,

Y1 = K2 ·
e−ixS(t)

t3/4(1− t)1/4

× exp
{

i

16x

(
u2 − 1

u2

)
− 1

512x2

(
u4 + 2 +

1
u4

)
+ · · ·

}
,

with arbitrary constants K1,2 (which may depend on x). Substituting this
to (4.36) and then to g = 1

2λ(X−Y ) (see (4.35)) one finds a general solution
to (1.6) in the form

(4.41) g = K1g̃
+(t;x) +K2g̃

−(t;x),

where

(4.42) g̃±(t;x) =
(

1 +
5

256x2
+ · · ·

)
g±0 (t;x)

and g±0 are the testing WKB solutions (see Definition 4.1).

Remark 4.2. The solutions g̃± are also WKB solutions. They seem to
be more important than the testing WKB solutions g±0 , because they are rep-
resented by analytic functions in some sectorial domains (due to a theorem
of Birkhoff discussed below).

In fact the relation between g̃± and g±0 is of the form

g̃±(t;x) = C̃(x−2) · g±0 (t;x),

where C̃(x−2) is a formal series. This can be seen by a closer look at the
above reduction to the normal form, i.e. b2j+1 = −c2j+1, λ2j+1 = −µ2j+1

and b2j = c2j , λ2j = µ2j .

This and the coincidence of (4.42) with (4.28) above suggest that the
functions g̃± coincide with the principal WKB solutions g± from Defini-
tion 4.2. We do not know how to prove this. Anyway, we have the relation
g̃± = (C̃/C)g±.

Note also that the normal form system (4.39) is more natural than the
WKB solutions g̃±, because the latter involve the initial condition S(0) = 0.

The reduction (4.38) is divergent (as a power series in x−1) and the
WKB solutions g̃± are only formal solutions. G. Birkhoff [3] was the first to
prove that such a system can be diagonalized analytically in some sectorial
domains. Below we present a scheme of Birkhoff’s proof.
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In the first step we apply a change of variables

(4.43) X = X1 + U(t)Y1, Y = V (t)X1 + Y1

which should transform the system (4.20), i.e.(
Ẋ

Ẏ

)
=
(
A11 A12

A21 A22

)(
X

Y

)
,

to the diagonal form

(4.44) Ẋ1 = B1(t)X1, Ẏ1 = B2(t)Y1.

We get B1 = A11 − V A21, B2 = A21U + A22 and two independent Riccati
equations

U̇ = A11U − UA22 +A12 − UA21U,(4.45)
V̇ = A22V − V A11 +A21 − V A12V.(4.46)

The latter differential equations can be rewritten in the form of the integral
equations

U(t) =
�

Γ1(t)

eP (t)−P (τ){A12(τ)− U(τ)A21(τ)U(τ)} dτ,(4.47)

V (t) =
�

Γ2(t)

eP (τ)−P (t){A21(τ)− V (τ)A12(τ)V (τ)} dτ,(4.48)

where P (t) =
	t
0(A11(ι) − A22(ι)) dι = 2ixS(t) + · · · . Here Γ1(t) and Γ2(t)

are suitable paths in the τ -plane.
We shall consider two domains

(4.49)
Du = {ImxS(t) > −α, Imx(π − S(t)) > −α, |x| > 1/ε, t ∈ W},
Dd = {ImxS(t) < α, Imx(π − S(t)) < α, |x| > 1/ε, t ∈ W},

where α > 0 is a fixed constant and

W = {t = t1 + it2 : ε < t1 < 1− ε, |t2| < εt1(1− t1)}
is a small neighborhood of the segment (ε, 1 − ε) ⊂ R ⊂ C and ε > 0 is a
small constant.

If (t, x) ∈ Du (from “up”), then the contour Γ1(t) begins at τ = τ0 > 0
(where τ0 � ε) and ends at τ = t and is such that Imx(S(t) − S(τ)) > 0
along Γ1(t), and the path Γ2(t) begins at τ = 1 − τ0 and ends at τ = t
and has Imx(S(t) − S(τ)) < 0. In this case (4.47)–(4.48) can be solved by
using the contraction principle, because the factor exp(P (t)−P (τ)) in (4.4)
is uniformly bounded (respectively the factor exp(P (τ) − P (t)) in (4.48) is
uniformly bounded). Moreover, the solutions are analytic in the variables t
and x in the domain Du and satisfy U ∼ O(1/x) and V ∼ O(1/x). We refer
the reader to [13, 19] for details.
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Solving the diagonal system (4.44), substituting the solution to (4.43)
(with U and V just obtained) and then inserting X and Y into g =
(X − Y )/2λ we get the following analogue of (4.41):

(4.50) g = K1g
+
u (t;x) +K2g

−
u (t;x), (t, x) ∈ Du.

For (t, x) ∈ Dd (from “down”) the path Γ1(t) is the same as Γ2(t) defined
above, and Γ2(t) becomes the old Γ1(t). Here also (4.47)–(4.48) have unique
solutions which are analytic in Dd. We get the following analogue of (4.50):

(4.51) g = K1g
+
d (t;x) +K2g

−
d (t;x), (t, x) ∈ Dd.

We note the conjugation symmetry of the above construction:

(4.52) g+
u (t;x) = g−d (t̄; x̄), g−u (t;x) = g+

d (t̄; x̄).

Of course, the solutions g±u,d are defined modulo multiplication by func-
tions of x, i.e. the constants K1,2 above can be functions of x (analytic in
suitable domains). We normalize the solutions g±u,d by the condition

(4.53) ϕ1 =
1

2
√
π

(g+
u + g−u ) =

1
2
√
π

(g+
d + g−d ), x > 0, 0 < t < 1,

in agreement with Lemma 4.4 above (see (4.27)) and with Definition 4.2.
Let us summarize the results of this subsection in the following

Proposition 4.1. There exist analytic WKB solutions (g+
u , g

−
u ), ana-

lytic and continuous in Du, and (g+
d , g

−
d ), analytic and continuous in Dd,

whose formal expansions are the same as for the formal WKB solutions
(g+, g−) from Definition 4.2. They satisfy the relations (4.52) and (4.53).

Remark 4.3. One can choose another way to diagonalize the system
(4.37). One can first use the transformation X = X1 +U(t)Y, which leads to
the triangular system Ẋ1 = B1X1, Ẏ = B21X1+B2Y. This leads to the same
Riccati equation for U as (4.45), which is solved in the same way. Then one
applies the transformation Y = Y1 + V (t)X1 to diagonalize the triangular
system. But the equation for V is simpler than (4.46), it is a linear equation
with an explicit solution of the form V (t) =

	
Γ2(t) e

Q(τ)−Q(t)B21(τ) dτ (for
a suitable function Q). But it turns out that the composition of the latter
triangular changes of variable is different from (4.43). The difference is of
the same type as in the Stokes phenomenon. Moreover, this approach spoils
the conjugation symmetry (4.52).

The paths Γj(t) do not begin at τ = 0 or at τ = 1 due to the poles
of the functions Aij(t) at t = 0 and at t = 1. The different choices of τ0
also result in the Stokes phenomenon. Probably this can be avoided by some
regularization of the divergent integrals in (4.47)–(4.48).

Recall that Riccati equations are related to second order linear differential
equations. A natural question is which linear equation appears and how
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it relates to the original hypergeometric equation. But calculations show
that the coefficients of the linear equation are multivalued, expressed via√
t(1− t), and we do not see anything interesting here.

Remark 4.4. An analogue of analytic diagonalization in the domains Du
and Dd of the hypergeometric system (4.35) is the sectorial normalization
theorem for systems related to the Bessel type equation (1.12).

First one applies the ramified change of the “time” variable y = v2, which
leads to the equation

(4.54) ∂vv∂vG̃+ 4vG̃ = 0

(for G̃ = G ◦ v2), or to the system

d

dv
G1 = G2,

d

dv
G2 = −4G1 −

1
v
G2.

Using the variables X = 2G1 − iG2, Y = 2G1 + iG2 we get the system
dX

dv
= 2iX − 1

2v
(X − Y ),

dY

dv
= −2iY +

1
2v

(X − Y )

which should be diagonalized. The analytic diagonalization uses the trans-
formation (4.44) with the Riccati equations (4.45)–(4.46), equivalent to the
integral equations (4.47)–(4.48). However, in (4.47)–(4.48) the integration
paths Γ1 = Γ1(v) and Γ2 = Γ2(v) are different. They end up at τ = v, are
parallel to the real axis and, depending on the sector considered, they begin
either at τ = +∞ or at τ = −∞. The sectors about v =∞ are

(4.55) Sr = {−π + δ < arg v < π − δ}, Sl = {δ < arg v < 2π − δ}

for a small constant δ > 0. Therefore there exist two reductions to the normal
(diagonal) form, one analytic in the sector Sr (“right”) and one analytic in
the sector Sl (“left”).

Analogously the Bessel type equation (1.13) rewritten as a system with
new time w =

√
z, i.e.

(4.56) w∂ww
−1∂wH̃ + 4H̃ = 0,

is transformed to the diagonal form by means of two transformations which
are analytic in the sectors (4.55) about w =∞.

4.4. WKB solutions associated with t = 1. The testing WKB solu-
tions g±0 from Definition 4.1 have the exponential term e±ixS(t) which equals 1
for t = 0 (and e±ixπ for t = 1). Therefore introduction of the following func-
tions seems natural; they will be explored in the next section.

Definition 4.3. Together with the solutions g±0 (from Definition 4.1)
and g± (from Definition 4.2) we have the following WKB solutions (associ-



232 M. Zakrzewski and H. Żołądek

ated with the point s = 1− t = 0):

(4.57)
h±0 (s;x) = x±e

−ix±S(1)g±0 (1− s;x),

h±(s;x) = ±ixe∓ixπg±(1− s;x).

By Proposition 2.1 and Lemmas 4.4 and 4.5 we have

θ1(s;x) = −C(x−2)
2
√
π
{s∂sg+

0 (s;x) + s∂sg
−
0 (s;x)}

and a second solution can be taken in the form

θ̂2(s;x) = −s∂sϕ̂2(s;x)

∼ −
√
π

2i
{D+(x−1)s∂sg+

0 (s;x)−D−(x−1)s∂sg−0 (s;x)}.

Since ϕ̂2 = ϕ2 + const · ϕ1, also θ̂2 = θ2 + const · θ1, and hence (2.9) gives
θ̂2(0;x) = θ2(0;x) = −1.

We have

(4.58) s∂s[ex±S(s)ψ±(s;x)] =
{
x±

√
s

1− s
ψ± + s∂sψ

±
}
ex±S .

Using u = 4
√
t/(1− t) = 4

√
(1− s)/s and s∂s = −((1 + u4)/4u3)∂u, we

find that ψ±(s;x) = ux
−1/2
± + · · · is expanded into a series of ωn(1/u) =

(n − 2)un + (−1)n(n+1)/2nu2−n with coefficients depending on x. We have
((1 + u4)/4u3)∂uu = 1

4(u−3 + u) and

1 + u4

4u3
∂uωn(1/u)

=
n(n− 2)

4
(1 + u4)((−1)n(n+1)/2 + u2n−2)

u3
, n = 3, 5, . . . .

We see that the first term (with x1/2) in the expansion of the right hand
side of (4.59) equals x1/2

± /u (is proportional to 1/u) and the other terms
(with xj , j < 1/2) in x±

√
s/(1− s)ψ± and in s∂sψ

± do not contain the
monomial u−1.

Next,
S(s) = S(1)− S(t) = π − S2(t).

This, together with the above, implies the following important identity:

(4.59) s∂sg
±
0 (s;x) = xe±iπxg∓0 (t;x) = ∓ih∓0 (s;x), t = 1− s.

This, together with the results of the previous subsection, yields
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Lemma 4.6. We have

θ1(s;x) ∼ −x C

2
√
π
{eiπxg−0 (t;x) + e−iπxg+

0 (t;x)},

θ̂2(s;x) ∼ x
√
π

2i
{−D+e

iπxg−0 (t;x) +D−e
−iπxg+

0 (t;x)}.

This implies the formulas

ϕ1(t;x) = −D+e
iπx +D−e

−iπx

x(D+ +D−)
θ1(s;x)− 2C

D+ +D−

sinπx
πx

θ̂2(s;x),

ϕ̂2(t;x) =
πi

x

D2
+e

iπx −D2
−e
−iπx

C(D+ +D−)
θ1(s;x) +

D+e
iπx +D−e

−iπx

x(D+ +D−)
θ̂2(s;x).

This lemma, the equalities θ1(0;x) = 0 and θ̂2(0;x) = −1 and (4.34) (in
Lemma 4.5) imply

Corollary 4.1. We have f2(x) = −B(x) = sinπx/πx.

Remark 4.5. The above proof of the formula for the generating function
f2(x), although looking natural, is not of the sort which could be generalized
to other generating functions.

Moreover, it seems that the series g±0 (t;x), C(x−2) and D±(x−1) do not
correspond to concrete functions analytic in any domains. One should rather
use functions g±(t;x) (instead of g±0 ) and D±/C (instead of D±) which
correspond to functions analytic in the domains Du,d (see Proposition 4.1).
This point of view is assumed in the next section.

5. Stokes operators. Usually the Stokes phenomenon [12] is related to
normalization of a linear system ż = A(t)z in a neighborhood of an irregular
singular point, say at t = 0. The neighborhood of t = 0 is divided into sectors
Sj such that there exist transformations z = Bj(t)y holomorphic with respect
to t ∈ Sj which lead to a diagonal system ẏ = diag(d1(t), . . . , dn(t))y. But the
matrix-valued functions Hj are different in different sectors. The difference
between Bj and Bj+1 is measured via so-called Stokes matrices (see [19]).

In the context of WKB solutions, e.g. for t ∈ (0, 1) and x large, usually
the Stokes matrices are related to solutions near one of the endpoints of the
time interval, t = 0 or t = 1 (see [7]). One would like to define analogues of
the Stokes operators for the WKB solutions, but when the time t ∈ (0, 1)
is real and x varies in some sectors near x = ∞, i.e. in (C,∞). However, a
rather detailed analysis performed in [16] demonstrates that it is not possible
to do this in a uniform way with respect to t. Moreover, calculations of the
Stokes operators associated with the third order hypergeometric equation
(1.18) demonstrate that the Stokes operators at the two endpoints of the
interval (0, 1) are essentially different.
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When studying the Stokes phenomenon in [7] and [5] greater attention
is focused on analytic properties of the WKB solutions with respect to the
time t, while the parameter x ≈ +∞ is usually real. The so called Stokes
lines are drawn in the complex t-plane near the “turning points” t = 0 and
t = 1. In this section we focus our attention on the parameter x, which
will vary in whole sectors near infinity, and the time t will vary in a small
neighborhood of the interval (ε, 1− ε) ⊂ C (as in Subsection 4.3).

5.1. Stokes operators for Bessel type equations. We begin with
equation (1.12). It has (uniquely defined) formal WKB solutions G+(y) ∼
y−1/4e2i

√
y and G−(y) ∼ y−1/4e−2i

√
y near y = ∞ (see (4.14)). In order to

avoid the root in the exponents we use the following formal function:

(5.1) G̃±(v) =
1
±i
G±(v2) =

e2v±
√
v±

{
1− a1

v±
+
a2

v2
±
− · · ·

}
(where v± = ±iv and √v± = e±iπ/4

√
v for v > 0), which are solutions to the

Bessel type equation ∂vv∂vG̃+4vG̃ = 0, i.e. (4.54) considered in Remark 4.4.
By a sectorial normalization theorem (see [13, 19] and Remark 4.4) the

solutions G̃± represent asymptotic series for solutions which are analytic in
some sectors about v = ∞ (in the complex v-plane). In the present case
there are two such sectors: Sr (right) and Sl (left) with vertex at ∞ of angle
2π − 2δ (δ > 0 small) and with the rays arg v = 0 and arg v = π as their
bisectors (see (4.56)). The latter rays are called the rays of division. Then
the sectors Su = Sr ∩ Sl ∩ {Im v > 0} and Sd = Sr ∩ Sl ∩ {Im v < 0} have
angle π−2δ. The sectors Su and Sd are “transitional” sectors; their bisectors
are called the Stokes lines.

We denote by G̃±r and G̃±l the corresponding solutions in the sectors Sr
and Sl respectively obtained from the sectorial normalization theorem (see
Remark 4.4).

We note the following relations, where f ≺ h means that the function f
is much smaller than the function h:

(5.2) G̃+
r,l ≺ G̃

−
r,l in Su, G̃−r,l ≺ G̃

+
r,l in Sd.

The solutions G̃±r (respectively G̃±l ) are analytic in the adjacent sectors Su
(up) and Sd (down). Therefore they are expressed as linear combinations of
the corresponding solutions G̃±l (respectively G̃±r ). The corresponding ma-
trices Cu and Cd of transformations between the basic solutions are called
the Stokes matrices.

Each Stokes matrix is triangular with 1’s on the diagonal. We have

(5.3) Cu =
(

1 c12

0 1

)
, Cd =

(
1 0
c21 1

)
.
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This means that, after passing from the sector Sr to the sector Sl, the basic
solutions undergo the following changes:

(5.4)
G̃+
r = G̃+

l , G̃−r = G̃−l + c12G̃
+
l (in Su),

G̃−l = G̃−r , G̃+
l = G̃+

r + c21G̃
−
l (in Sd).

The rule is that to a given solution one can add a solution with smaller
asymptotics at infinity. We shall calculate the coefficients c12 and c21 using a
method from [7], where Stokes matrices associated with the Bessel equation
were computed (see also [19]).

We also note the following substitution property of the functions (5.1).
Due to the fact that √v± = e±iπ/4

√
v for v > 0, the independence of the

coefficients aj from the sign in (5.1), and the construction in Remark 4.4,
we can write
(5.5) G̃+

l (eiπv) = −G̃−r (v), G̃−l (eiπv) = G̃+
r (v), v > 0.

Let G̃+
r (v) on the ray arg v = 0 (in the sector Sr) be represented by the

following combination of the basic solutions Φ̃1(v) = Φ2 ◦ v2 = 1− vx2 + · · ·
and Φ̃2(v) = Φ2 ◦ v2 = Φ̃1(v) · ln v2 + Φ3 ◦ v2 + · · · :
(5.6) G̃+

r (v) = K1Φ̃1(v) +K2Φ̃2(v), v > 0,

for some coefficients K1 and K2. After passing to the ray arg v = π (in Sl)
and the substitution v 7→ −v (using (5.5) and the logarithmic singularity
of Φ̃2) we get
(5.7) − G̃−r (v) = (K1 + 2πiK2)Φ̃1(v) +K2Φ̃2(v), v > 0.

Analogously, after passing to the ray arg x = 2π and using an analogue of
the relations (5.5), we get
(5.8) −G̃+

r (v)− c21G̃
−
r (v) = (K1 + 4πiK2)Φ̃1(v) +K2Φ̃2(v), v > 0.

Equations (5.6)–(5.8) imply the representation (on arg v = 0)

Φ̃1(v) =
i

2πK2
(G̃+

r + G̃−r ), Φ̃2(v) =
(

1
K2
− iK1

2πK2
2

)
G̃+ − iK1

2πK2
2

G̃−,

and the fact that
c21 = 2.

Moreover, the asymptotic formula (3.12) implies that K2 = i/
√
π. Since the

solution Φ̃2 depends on its definition, i.e. modulo Φ̃1, we find that Φ̃2(v) =
−i
√
πG̃+(v) (mod Φ̃1) for v > 0.
In the same way one proves that c12 = −2 and obtains the representation

Φ̃1(v) =
1

2
√
π

(G̃−l − G̃
+
l ), arg v = π;

taking into account the square root of v in G̃±, this agrees with (3.12). We
summarize this in the following
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Proposition 5.1. We have c12 = −2 and c21 = 2 in (5.3). Moreover,

Φ̃1(v) =
1

2
√
π

(G̃+
r + G̃−r ), Φ̃2 = −i

√
π · G̃+

r (mod Φ̃1), arg v = 0;(5.9)

Φ̃1(v) =
1

2
√
π

(G̃−l − G̃
+
l ), Φ̃2 = −i

√
π · G̃+

l (mod Φ̃1), arg v = π.(5.10)

In (5.9)–(5.10) we give the representation of the function Φ̃(v) for v on
the two rays of division. But, in fact, these formulas hold true in the whole
sector Sr,l which contains the corresponding ray of division. The same remark
applies in other expansions which are given below.

Calculation of the Stokes matrices associated with the Bessel type equa-
tion (1.13) runs practically in the same way as in the proof of Proposi-
tion 5.1. One has the formal solution H±(z) ∼ z1/4e∓2i

√
z (see (4.15)). After

the transformation z = w2 we can define the following functions:

(5.11) H̃±(w) =
√
w±e

−2w±

{
1− b1

w±
+

b2
w2
±
− · · ·

}
.

They satisfy the Bessel type equation (4.56) with another pair of solutions

Θ̃1(w) = w − 1
2
w2 + · · · , Θ̃2(w) = Θ̃1(w) · lnw + Θ̃3(w)

(with analytic Θ̃1 and Θ̃3).
Now we have the same sectors Sr,l, with analytic solutions H̃±r,l, and

Su,d about w = ∞, but with domination relations different than in (5.2).
Therefore the corresponding Stokes matrices take the form

(5.12) Du =
(

1 0
d21 1

)
, Dd =

(
1 d12

0 1

)
.

Anyway (using also (3.15) and (3.16)) we arrive at the following result,
where (5.17) is a consequence of the factor √w± in the definition of H̃±

(H̃±l (e2πiw) = −H̃±l (w)).

Proposition 5.2. We have d12 = −2 and d21 = 2 in (5.12). Moreover,

Θ̃1(w) =
1

2i
√
π

(H̃−r − H̃+
r ),

Θ̃2(v) = −
√
π · H̃+

r (mod Θ̃1), argw = 0;
(5.13)

Θ̃1(w) =
−1

2i
√
π

(H̃−l + H̃+
l ),

Θ̃2(v) = −
√
π · H̃−l (mod Θ̃1), argw = π.

(5.14)
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In particular, we get

H̃+
r (w) = H̃−r (w) = (−1/

√
π) · Θ̃2 (mod Θ̃1), argw = 0;(5.15)

H̃+
l (w) = −H̃−l (w) = (1/

√
π) · Θ̃2 (mod Θ̃1), argw = π;(5.16)

H̃+
l (w) = −H̃−l (w) = (−1/

√
π) · Θ̃2 (mod Θ̃1), argw = −π.(5.17)

5.2. Stokes operators for the hypergeometric equation. This sub-
section is the core of the whole paper. Here we prove that the connection
coefficient B(x) from the equation ϕ1 = A(x)θ1+B(x)θ2 (see (1.9)), which is
related to the generating function f2(x), admits for large x a representation
via WKB type functions which are subject to the Stokes phenomenon which
is trivial.

Recall that the hypergeometric equation (1.6) is equivalent to the Bessel
type equation (1.12) near the point t = 0 and to the Bessel type equation
(1.13) near the point t = 1 (compare Proposition 3.1). Application of the
matrix H0 (which realizes the equivalence near t = 0) from the right to
the row vector (G̃+

r (x
√
t), G̃−r (x

√
t)) gives two row vectors of WKB solu-

tions

(M+
r (x)g+

u ,M
−
r (x)g−u +Mr(x)g+

u ),(5.18)

(N+
r (x)g+

d +Nr(x)g−d , N
−
r (x)g−d ).(5.19)

Here g±u,d are the WKB solutions from Proposition 4.1 and M(x), M+(x),
M−(x), N(x), N+(x), N−(x) are functions of x holomorphic in suitable do-
mains.

Formula (5.18) holds in the domain

(5.20) Du ∩ {x
√
t ∈ Sr} ∩ {|t| < γ},

where Du is defined in (4.49) (recall that in Du the parameter t is in W and
is close to the segment (0, 1)) and γ is a small constant, but γ > ε where ε
appears in the definition of W. Note that the domain (5.20) contains points
(t, x) with Imx ≥ 0 (which is clear) but also with Imx < 0 (although small);
this can be seen from the definitions of Du in (4.49) and of Sr in (4.55).

The functions Mr, M
±
r are analytic in the domain (5.20). But they

are functions of x only. So they are analytic in a rather large domain
{Imx > −α′, |x| > 1/ε} for some α′ > 0.

Analogously, (5.19) holds in the domain

(5.21) Dd ∩ {x
√
t ∈ Sr} ∩ {γ1 < |t| < γ2}

and the functions Nr, N
±
r are analytic in the domain {Imx < α′, |x| > 1/ε}.
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Application (from the right) of the matrix H0 to the vector (G̃+
l (x
√
t),

G̃−l (x
√
t)) gives the following analogue of (5.18)–(5.19):

(M+
l (x)g+

u ,M
−
l (x)g−u +Ml(x)g+

u ),(5.22)
(N+

l (x)g+
d +Nl(x)g−d , N

−
l (x)g−d ),(5.23)

which hold in respective domains analogous to the domains (5.20) and (5.21)
(where Sr is replaced with Sl). Here also the functionsMl, M

±
l are analytic in

the domain {Imx > −α′, |x| > 1/ε} and the functions Nr, N
±
r are analytic

in the domain {Imx < α′, |x| > 1/ε}.
The Stokes phenomenon for the solutions G̃±r,l means some relations be-

tween their images under H0. From Proposition 5.1 and equations (5.18)
and (5.22) we get M+

r g
+
u = M+

l g
+
u and M−r g−u +Mrg

+
u = M−l g

−
u +Mlg

+ −
2(M+

l g
+
u ), i.e.

(5.24) M+
r = M+

l , M−r = M−l , Mr = Ml − 2M+
l .

Similarly (5.19) and (5.23) give

(5.25) N+
r = N+

l , N−r = N−l , Nr = Nl − 2N−l .

Moreover, the matrix H0(t, x−1) is invariant with respect to conjugation (it
has real “coefficients”). Also the solutions G̃±r,l and g

±
u,d have some conjugation

symmetry properties. For instance, G̃+
r (v) = G̃−r (v̄) and analogous properties

for g±u,d are given in (4.52). This implies additionally to (5.24) and (5.25) the
relations

(5.26) M+
r (x) = N−r (x̄), M−r (x) = N−r (x̄), M(x) = N(x̄).

Finally, the normalization condition 2
√
πϕ1 = g+

u +g−u = g+
d +g−d for t, x > 0

(see (4.53)) means that

(5.27) M−r = 1, M+
r +Mr = 1, N+

r = 1, N−r +Nr = 1.

It follows that there remains only one “free” coefficient, which can be chosen
as M+

r (x).
Now we analogously calculate the relations between the WKB solutions

H̃±r,l = H̃±r,l(x
√
s) and

(5.28) h±u,d = ±ixe∓iπxg±u,d(1− s;x)

(compare (4.57) in Definition 4.3). Recall that h−u ≺ h+
u in Du and h+

d ≺ h
−
d

in Dd. The (right) action of the matrix H−1
1 from Proposition 3.1 on the

WKB solutions (5.28) is the following:
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(5.29)

h+
u 7→ m+

r (x)H̃+
r +mr(x)H̃−r = m+

l (x)H̃+
l +ml(x)H̃−l ,

h−u 7→ m−r (x)H̃−r = m−l H̃
−
l ,

h+
d 7→ n+

r (x)H̃+
r = n+

l (x)H̃+
l ,

h−d 7→ n−r (x)H̃−r + nr(x)H̃+
r = n−l H̃

−
l + nl(x)H̃+

l .

Here the coefficients are analytic in the corresponding domains {± Imx >
−α′, |x| > 1/ε} and satisfy the relations

(5.30)

m+
r = m+

l , m−r = m−l , ml = mr + 2m+
r ,

n+
r = n+

l , n−r = n−l , nl = nr + 2n−r ,

m+
r (x) = n−r (x̄), m−r (x) = n+(x̄), m(x) = n(x̄).

The latter relations mean that the coefficients are analytic and single-valued
functions in the whole neighborhood of x = ∞. But at this moment we
cannot claim normalization relations like those in (5.27).

But we can now express the solution ϕ1 = 2(g+
u + g−u )/

√
π = 2(g+

d +
g−d )/

√
π as B(x)θ1 (mod θ1). By Propositions 4.1 and 5.2 and (5.28)–(5.29)

we have

ϕ1 =
1

2
√
π

(g+
u + g−u ) =

1
2ix
√
π
{eiπxh+

u − e−iπxh−u }(5.31)

7→ 1
2ix
√
π
{eiπx(m+

r (x)H̃+
r +mr(x)H̃−r )− e−iπxm−r (x)H̃−r }

=
−1

2πix
{eiπx(m+

r (x) +mr(x))− e−iπxm−r (x)} · Θ̃2 (mod Θ̃1)

7→ −1
2πix

{eiπx(m+
r (x) +mr(x))− e−iπxm−r (x)} · θ2 (mod θ1),

where the first arrow denotes the map defined by H−1
1 and the second arrow

corresponds to the matrix H1. Analogously we find the following relations:

ϕ1 =
−1

2πix
{eiπx(−m+

l (x) +ml(x))− e−iπxm−l (x)} · θ2 (mod θ1),(5.32)

ϕ1 =
−1

2πix
{eiπxn+

r (x)− e−iπx(n−r (x) + nr(x))} · θ2 (mod θ1),(5.33)

ϕ1 =
−1

2πix
{eiπxn+

l (x)− e−iπx(−n−l (x) + nl(x))} · θ2 (mod θ1).(5.34)

Subtracting the right hand side of (5.32) from the right hand side of
(5.31) we get −1/2πix times

eiπx{m+
r (x) +m+

l (x) +mr(x)−ml(x)} − e−iπx(m−r (x)−m−l )

times θ2 (mod θ1); this is zero due to (5.30). The same argument shows that
the right hand sides of (5.33)–(5.34) coincide on the intersection of their
domains.
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The above implies that the connection coefficient B(x) is represented via
the WKB type functions

(5.35) F±(x) =
exp(±iπx)

x
· ω±(x−1)

which are subject to the trivial Stokes phenomenon in the sense that the
functions ω±(x−1) are analytic and single-valued near x−1 = 0. We regard
this as the fundamental result of the paper.

Theorem 5.1. The generating function (1.3) for multiple zeta values
ζ(2, . . . , 2) has a representation

f2(x) = F+(x) + F−(x), x→∞,
where F±(x) are single-valued functions of the form (5.35). This implies that
f2(s) = sinπx/πx.

Proof. The first statement of the theorem was proved above. To prove
the second statement we note that the function f2(x) vanishes at the points
x = ±1,±2, . . . . Since the function sinπx/x has simple zeroes at those
points, we find that the function

f2(x)/(sinπx/x)

is entire on C. By the first part of Theorem 5.1 it is bounded at infinity.
Therefore it is a constant function equal to 1/π, since f(0) = 1.

Remark 5.1. Potential importance of this theorem relies upon the fact
that in its proof we do not use Proposition 2.1 about the fundamental relation
between solutions near t = 0 and t = 1.

Moreover, the coefficients in the expansions of ω± from (5.35) in powers of
x−1 can be derived without knowing the function f2(x). Namely, first we use
the formal expansion of ϕ1 from Lemma 4.4 (via the testing WKB solutions
g±0 and the series C(x−2)), next we express the solutions g±0 via the WKB
solutions h±0 from Definition 4.3 and, finally, using the integral formulas for
θ1 and θ̂2 and the stationary phase formula we are able to rewrite h±0 in
terms of θ1, θ̂2. Also the triviality of the Stokes phenomenon can be deduced
at the formal level in this way.

We hope that the approach to the hypergeometric equation (1.6) devel-
oped in this paper is novel and can be applied to other hypergeometric type
equations of the form (1.5).

Remark 5.2. One could consider the second order differential equation
satisfied by the summands F+(x) and F−(x), i.e.

det

 f ∂xf ∂2
xf

F+ ∂xF
+ ∂2

xF
+

F− ∂xF
− ∂2

xF
−

 = 0.
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By definition it is an equation defined near x = ∞, with meromorphic and
irregular singularity at infinity. But when one assumes that it extends to a
Bessel type equation in C with regular singularity at x = 0, then one arrives
at the equation

∂2
xf + (2/x)∂xf + π2f = 0,

with the solutions sinπx/x and cosπx/x.
Unfortunately, it seems that this argument fails in the case of higher

order hypergeometric type equations, like (1.18).
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