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Locally compact perfectly normal spaces
may all be paracompact

by

Paul B. Larson (Oxford, OH) and Franklin D. Tall (Toronto)

Abstract. We work towards establishing that if it is consistent that there is a super-
compact cardinal then it is consistent that every locally compact perfectly normal space
is paracompact. At a crucial step we use some still unpublished results announced by
Todorcevic. Modulo this and the large cardinal, this answers a question of S. Watson.
Modulo these same unpublished results, we also show that if it is consistent that there is
a supercompact cardinal, it is consistent that every locally compact space with a heredi-
tarily normal square is metrizable. We also solve a problem raised by the second author,
proving it consistent with ZFC that every first countable hereditarily normal countable
chain condition space is hereditarily separable.

0. Introduction. Only a few of the implications concerning basic prop-
erties in general topology have remained open. One raised by Watson [40–42]
is particularly interesting and is characterized in [42] as his favorite problem:

Is it consistent that every locally compact perfectly normal space is
paracompact?

If this implication holds, then locally compact, perfectly normal spaces
have a very simple structure; they are simply the topological sum of σ-com-
pact, perfectly normal—hence hereditarily Lindelöf and first countable—
spaces. In fact, as we shall see, these pieces may be taken to be hereditarily
separable as well.

Continuing the theme of “niceness”, let us note that many of the notori-
ous counterexamples of set-theoretic topology are ruled out: every perfectly
normal manifold is metrizable, every locally compact normal Moore space
is metrizable, there are no Ostaszewski spaces and so forth. Watson [41] re-
marks, (. . . ) a consistent theorem would be amazing. (. . .) It looks impossible
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to me. The reason for this hyperbole is that, at the time, no known model
could embody the required combinatorics. In fact, a tantalizing aspect of the
problem is that a positive solution follows from the conjunction of two state-
ments known to follow from well-known but mutually inconsistent axioms.
Specifically,

(1) V = L implies locally compact perfectly normal spaces are collection-
wise Hausdorff.

(2) MA + ∼CH implies locally compact perfectly normal collectionwise
Hausdorff spaces are paracompact.

We shall show that, assuming the existence of large cardinals, there is
a model in which both conclusions hold, answering Watson’s question. Pre-
cisely,

Theorem 1. If it is consistent that there is a supercompact cardinal, it is
consistent that every locally compact perfectly normal space is paracompact.

The key to establishing Theorem 1 is to employ a model in which well-
known topological consequences both of PFA and of V = L hold. From the
conjunction of such consequences, many new interesting topological results
easily follow. Before stating such consequences and our new results, we need
to set out some context.

Our set-theoretic notation is standard, as in [17]. All ω1-trees are pre-
sumed to be normal, in the terminology of [14]. If S is a tree and α is an
ordinal, we let S(α) denote the αth level of S. Topological notation is from
Engelking [8]. Since we mainly deal with locally compact spaces, it is conve-
nient to assume all spaces are Hausdorff unless otherwise stated. However,
note that the various results quoted about normality implying collectionwise
Hausdorffness do not in fact require the assumption of Hausdorffness.

The context we shall consider is in the same family as that used to
prove the consistency of the positive solution to Katětov’s problem [21].
This approach will surely find increasing use in set-theoretic topology since
it produces strong “Suslin-type” [18] consequences of MA + ∼CH, e.g.
all Aronszajn trees are special, compact spaces are hereditarily Lindelöf
if and only if they are hereditarily separable, as well as—in the model
we produce here—the important consequence of V = L that all normal
first countable spaces are collectionwise Hausdorff. These models are all ob-
tained by starting with a model in which there is a coherent Suslin tree.
This is a Suslin tree S ⊆ ω<ω1 , closed under finite modifications, such that
{α ∈ dom(s)∩dom(t) : s(α) 6= t(α)} is finite for all s, t ∈ S. The existence of
such a tree follows from ♦ [19, 31] and holds after adding one Cohen real [36].
Once one has such an S, one then forces the maximal amount of some forcing
axiom such as MAω1 or PFA compatible with the existence of S. Then one
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forces with S. The details of how to do the penultimate forcing can be found
in [19, 24, 25]. Here we only need to know that these are iterations like those
to establish MAω1 or PFA, but that certain posets are omitted. For various
propositions φ, the proof that MAω1 or PFA implies φ can be modified to
prove that the weaker version of MAω1 or PFA implies S cannot force φ
to fail. The φ in our case will comprise several propositions that together
imply locally compact perfectly normal collectionwise Hausdorff spaces are
paracompact. In addition, we either start from L (if we do not require large
cardinals so as to obtain as much of PFA as possible) or else a certain Easton
model, and observe that the iteration plus the Suslin forcing will not destroy
the fact that normal first countable ℵ1-collectionwise Hausdorff spaces are
collectionwise Hausdorff. The final step is to show that forcing with S es-
tablishes that normal first countable spaces are ℵ1-collectionwise Hausdorff.
Consider then the following axioms:

MAω1(S): There exists a coherent Suslin tree S, and if P is a partial
order satisfying the countable chain condition which does not force an un-
countable antichain in S, andDξ (ξ < ω1) is a sequence of dense open subsets
of P , then there is a filter G⊆P such that G ∩Dξ 6=∅ for each ξ<ω1.

PFA(S): There exists a coherent Suslin tree S, and if P is a proper
partial order which does not force an uncountable antichain in S, and Dξ

(ξ < ω1) is a sequence of dense open subsets of P , then there is a filter
G ⊆ P such that G ∩Dξ 6= ∅ for each ξ < ω1.

The consistency of MAω1(S) is established explicitly in [19], though very
similar constructions had been studied earlier (in [9], for instance). The
consistency of PFA(S) (minus the coherence requirement, which presents
no additional difficulties), was established in [24].

We now introduce “PFA(S)[S] implies φ” as an abbreviation for “φ holds
whenever we force with S over a model of PFS(S)”. We will say “there is
a model of PFA(S)[S] in which φ holds” as an abbreviation for “there is a
particular model of PFA(S) such that when we force with S, φ holds”. We
use analogous notation with MAω1 in place of PFA.

Our key result is

Theorem 2. There is a model of MAω1(S)[S] and, if there is a su-
percompact cardinal, a model of PFA(S)[S], in which every normal first
countable space is collectionwise Hausdorff.

We then get:

Theorem 3.

I. MAω1(S)[S] implies:
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(1) First countable hereditarily normal countable chain condition
spaces are hereditarily separable.

II. PFS(S)[S] implies:

(2) Locally compact perfectly normal spaces of cardinality ≤ ℵ1 are
metrizable.

III. Both models of Theorem 2 satisfy:

(3) All Whitehead groups are free.

IV. The PFA(S)[S] model of Theorem 2 satisfies:

(4) Locally compact perfectly normal spaces are paracompact.
(5) Every locally compact space with a hereditarily normal square is

metrizable.
(6) Locally compact, locally hereditarily Lindelöf hereditarily nor-

mal spaces are paracompact if and only if they do not contain a
perfect preimage of ω1.

(7) Hereditarily normal vector bundles are metrizable.

Recall that a space X is countably tight if whenever y ∈ Y ⊆ X, there
is a countable Z ⊆ Y such that y ∈ Z. A subspace Y of a space X is
locally countable if for each y ∈ Y there is an open Uy about y containing
only countably many members of Y . Furthermore, Y is σ-discrete if it is the
union of countably many discrete subspaces.

In addition to Theorem 2 our PFA(S)[S] results depend on the following
unpublished theorem of Todorcevic:

Theorem 4 ([37]). PFA(S)[S] implies that in a compact countably tight
space, locally countable subspaces of size ℵ1 are σ-discrete.

We shall also need:

Lemma 5 ([21]). MAω1(S)[S] implies first countable hereditarily Lin-
delöf spaces are hereditarily separable.

Let us also mention for the benefit of the reader two other important
unpublished applications of PFA(S)[S] due to Todorcevic.

Theorem 6 ([39]). PFA(S)[S] implies that hereditarily separable sub-
spaces of compact countably tight spaces are hereditarily Lindelöf.

Theorem 7 ([39]). PFA(S)[S] implies every compact countably tight
space is sequential.

We will not directly use these here. Theorem 6 is in fact an easy conse-
quence of Theorem 4, while Theorem 7 is a crucial step toward establishing
Theorem 4.
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In Section 1, we shall prove Theorem 2. In Section 2, we shall prove The-
orem 1 and other topological consequences of Theorems 2 and 3. Section 3
provides an alternative, more direct, path to Theorem 1 for the reader—
perhaps a set theorist—who is not interested in more general results such
as Theorem 3.IV.6 and does not want to wade through or depend on [1]. In
Section 4, we shall apply Theorem 2 to Whitehead groups. In Section 5, we
shall talk about Theorem 4 and its current status.

1. Collectionwise Hausdorff. Let us recall some standard facts about
“normality versus collectionwise normality” [33].

Definition. Let κ be an infinite cardinal. A topological space is κ-col-
lectionwise Hausdorff (<κ-collectionwise Hausdorff ) if each closed discrete
subspace D of size ≤ κ (< κ) can be separated, i.e., there exist disjoint open
sets {Ud}d∈D such that d ∈ Ud. A space is collectionwise Hausdorff if it is
κ-collectionwise Hausdorff for every κ.

Definition ([11]). Let λ be a regular uncountable cardinal. Then A =
{Af : f ∈ λλ} is a stationary system for λ if each Af is a stationary subset
of λ, and whenever α ∈ λ and f, g ∈λλ, if f |α = g|α then

Af ∩ (α+ 1) = Ag ∩ (α+ 1).

♦ for stationary systems (at λ) is the assertion that for each stationary
system A for λ, there is a sequence {fα}α<λ such that fα ∈ αα and for each
f ∈ λλ there is a stationary S ⊆ Af such that β ∈ S implies f |β = fβ.

Fleissner [11] proved:

Lemma 8. Suppose κ is a regular uncountable cardinal, GCH holds at κ
and above, and ♦ for stationary systems holds for all regular λ ≥ κ. Then
if X is a normal first countable <κ-collectionwise Hausdorff space, then X
is collectionwise Hausdorff.

He also probably noticed the following results, but the only reference for
them we know of is [34].

Lemma 9. Suppose λ is a regular uncountable cardinal. Adjoin λ+ Cohen
subsets of λ. Then ♦ for stationary systems holds at λ.

Lemma 10. Suppose ♦ for stationary systems holds at the regular un-
countable cardinal λ. Force with a λ-chain condition partial order of size
≤ λ. Then ♦ for stationary systems still holds at λ.

Using these lemmas, it is not difficult to deduce that normal first count-
able spaces which are ℵ1-collectionwise Hausdorff will be collectionwise
Hausdorff in the model obtained by forcing with S over a model of PFA(S),
provided we start with an appropriate model over which to do the PFA(S)
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iteration. In particular, start with a model in which there is a supercom-
pact cardinal κ. To simplify matters, we could establish GCH below κ by a
“mild” forcing [15] keeping κ supercompact. We then make κ indestructible
under κ-directed-closed forcing [22] and then Easton-force to add λ+ Cohen
subsets of λ for every regular cardinal λ ≥ κ [5]. This will establish ♦ for sta-
tionary systems for regular λ ≥ κ, while keeping κ supercompact. We then
force to create a coherent Suslin tree S, then force PFA(S) and lastly force
with S. The iteration of these three forcings has the κ-chain condition and
is of size κ, so we have established that normal first countable spaces that
are <κ-collectionwise Hausdorff are collectionwise Hausdorff. It is clear that
the straightforward iteration to produce PFA(S)—if it works at all—will
produce a model in which κ = ℵ2, but in fact Farah [9] proves PFA(S) im-
plies OCA, while PFA(S) implies MA(σ-centred) because σ-centred forcing
does not add uncountable chains to Suslin trees [18] (see also [19]). It follows
(see [3]) that

Lemma 11. PFA(S) implies that 2ℵ0 = ℵ2 and therefore so does
PFA(S)[S].

The second part of Lemma 11 follows from the fact that forcing with
a Suslin tree preserves cardinals and does not add reals. This gives the
following lemma.

Lemma 12. Let κ be a supercompact cardinal, and assume that ♦ for sta-
tionary systems holds for every regular cardinal λ ≥ κ. In the model obtained
by first forcing PFA(S) by a κ-c.c. forcing of size κ and then forcing with S,
normal first countable ℵ1-collectionwise Hausdorff spaces are collectionwise
Hausdorff.

A simplified version of the above remarks and Lemma 12 applies to
MAω1(S)[S]. We can start with the Easton forcing, or simply with V = L.
In either case ♦ for stationary systems holds at regular cardinals and there is
a coherent Suslin tree S. We then force with c.c.c. partial orders preserving S
to establish MAω1(S) and 2ℵ0 = ℵ2, and then force with S. As before, in this
model of MAω1(S)[S], normal first countable ℵ1-collectionwise Hausdorff
spaces are collectionwise Hausdorff.

It remains to prove normal first countable spaces are ℵ1-collectionwise
Hausdorff in these models. In order to do that, we prove a purely set-
theoretic combinatorial lemma:

Lemma 13. After forcing with a Suslin tree, the following holds. Suppose
that {N(α, i) : i < ω, α < ω1} are sets such that for all α, i, N(α, i + 1) ⊆
N(α, i). Suppose further that for all A ⊆ ω1, there is an f : ω1 → ω such
that ⋃

{N(α, f(α)) : α ∈ A} ∩
⋃
{N(β, f(β)) : β ∈ ω1 \A} = ∅.
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Then there is a g : ω1 → ω and a closed unbounded C ⊆ ω1 such that

whenever α < β and C ∩ (α, β] 6= ∅, then N(α, g(α)) ∩N(β, g(β)) = ∅.
Corollary 14. In any model obtained by forcing with a Suslin tree, in

particular, in any model of MAω1(S)[S] or PFA(S)[S], normal first count-
able spaces are ℵ1-collectionwise Hausdorff.

Proof. Without loss of generality we may assume that the topology is on
a member of V ; let the N(α, i)’s be a descending neighborhood base at α,
where we have labeled the points of a discrete closed subspace of the space X
with the countable ordinals. Let g and C be as in the statement of Lemma 13.
Define c : ω1 → ω1 by letting c(α) = sup((C − {0}) ∩ (α + 1)), and let
α ∼ β if c(α) = c(β). The ∼-classes are countable and normality implies ℵ0-
collectionwise Hausdorffness, so there is a q : ω1 → ω such that c(α) = c(β)
implies N(α, q(α)) ∩ N(β, q(β)) = ∅. Let r(α) = max(g(α), q(α)). Then
{N(α, r(α))}α<ω1 is the required separation.

Proof of Lemma 13. Let S be a Suslin tree. Let {Ṅ(α, i) : i < ω, α < ω1,
α < ω1} be S-names for subsets of X as in the hypothesis. For s ∈ S, let `(s)
be the length of s. Since S has countable levels and its corresponding forcing
poset is ω-distributive, we can construct an increasing function h : ω1 → ω1

such that

for all α < ω1 and all s ∈ S with `(s) = h(α), s decides all statements
of the form “Ṅ(β, j) ∩ Ṅ(α, i) = ∅”, for all i, j < ω and β < α.

Let Ȧ be an S-name for a subset of ω1 such that for no α < ω1 does
any s ∈ S with `(s) = h(α) decide whether α ∈ A. To define such an Ȧ, for
each α < ω1 divide the immediate successors of each s ∈ S with `(s) = h(α)
into two non-empty sets: let the members of one set force α ∈ Ȧ and let the
members of the other set force α /∈ Ȧ.

Let ḟ be an S-name for a function f : ω1 → ω as in the hypothesis of
the lemma, with respect to A. Let C be a closed unbounded subset of ω1 in
V such that for each s ∈ S with `(s) ∈ C, s decides f |`(s) and A|`(s), and
such that for all α < β < ω1, if β ∈ C then h(α) < β. We will define an
S-name ġ for a function from ω1 to ω such that whenever α < β < ω1,

if (α, β] ∩ C 6= ∅, then N(α, g(α)) ∩N(β, g(β)) = ∅.
Let c : ω1 → ω1 be defined by c(β) = sup(C ∩ (β + 1)). Then for all

β < α < ω1, c(α) = c(β) if and only if C∩(β, α] = ∅. Fix β < ω1. Each s ∈ S
with `(s) = h(β) decides f |c(β) and A|c(β) and “Ṅ(α, f(α))∩ Ṅ(β, i) = ∅”
for all i < ω, α < c(β), but not whether β ∈ A. Fix s ∈ S with `(s) = h(β).
Since s does not decide whether β ∈ A, we claim that there is an i0 < ω
such that

for all α < c(β) such that s 
 α ∈ Ȧ, s 
 Ṅ(α, ḟ(α)) ∩ Ṅ(β, i0) = ∅.
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To see this, extend s to t ∈ S forcing that β 6∈ A and deciding f(β). Let
i0 be the value of f(β) as decided by t. Then for each α < c(β) such that
s 
 α ∈ Ȧ, t forces that N(α, f(α)) ∩ N(β, i0) = ∅, but these facts were
already decided by s. Similarly, there is an i1 < ω such that

for all α < c(β) such that s 
 α 6∈ Ȧ, s 
 Ṅ(α, ḟ(α)) ∩ Ṅ(β, i̇1) = ∅.
Since s decides A|c(β), letting i = max{i0, i1},

for all α < c(β), s 
 Ṅ(α, ḟ(α)) ∩ Ṅ(β, i) = ∅.
We have such an is for each s in the h(β)th level of the tree, so we can
construct a name ġ such that

s 
 ġ(β) = max{is, ḟ(β)}

for each s ∈ S with `(s) = h(β). Then ġ is as required.

2. Topological applications. The compatibility of “locally countable
subspaces of size ℵ1 in a compact countably tight space are σ-discrete” with
“normal first countable spaces are collectionwise Hausdorff” enables us to
strengthen a variety of results of Balogh [1] and other authors, in particular
proving Theorem 1, which we shall soon establish.

Let us first prove (1) of Theorem 3. We know that normal first countable
spaces are ℵ1-collectionwise Hausdorff and that first countably hereditarily
Lindelöf spaces are hereditarily separable. Let X be a hereditarily normal
first countable countable chain condition space. Let Y ⊆ X. Since X is
hereditarily collectionwise Hausdorff, Y cannot have an uncountable discrete
subspace. It is standard that Y must therefore have a dense hereditarily
Lindelöf subspace. For recursively define xα such that xα 6∈ {xβ : β < α},
until for some λ, {xα : α < λ} is dense. We claim {xα : α < λ} is hereditarily
Lindelöf. For if not, there would exist {xαγ : γ < ω1} such that {xαγ : γ < δ}
is open in {xαγ : γ < ω1}, for each δ < ω1. But then {xαγ : γ < ω1} is
discrete. Thus, since {xα : α < λ} is dense and hereditarily Lindelöf, by
Lemma 5, Y is separable.

Next, we will need some facts due to Balogh.

Definition. f : X → Y is perfect if it is continuous, closed, and inverse
images of points are compact.

The same argument that proves that the set of limit ordinals in ω1 is not
a Gδ extends to show that:

Lemma 15 ([1]). A perfectly normal space does not include a perfect
preimage of ω1.

We also have:
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Lemma 16 ([1]). If X is locally compact and countably tight, then the
one-point compactification of X is countably tight if and only if X does not
include a perfect preimage of ω1.

Balogh [1] proved under MA + ∼CH that connected, locally compact,
locally hereditarily Lindelöf, hereditarily normal collectionwise Hausdorff
spaces are paracompact if and only if they do not include a perfect preimage
of ω1. We drop two of these conditions and get:

Theorem 17. In the PFA(S)[S] model of Theorem 2, locally compact,
locally hereditarily Lindelöf, hereditarily normal spaces are paracompact if
and only if they do not include a perfect preimage of ω1.

Theorem 1 follows easily. Theorem 17 answers a question Balogh asked
for manifolds in [1]. Theorem 17 will follow immediately from the following
lemma, which is essentially due to Balogh [1] (see the proof of his Theo-
rem 3.3).

Lemma 18. Suppose locally countable subspaces of size ℵ1 of a compact
countably tight space are σ-discrete. If X is locally hereditarily Lindelöf,
locally hereditarily separable, hereditarily collectionwise Hausdorff, and can
be embedded into a countably tight compact space, then X is paracompact.

Proof of Theorem 17. Let X satisfy the conditions of Theorem 17. We
claim it is paracompact. We know that the one-point compactification of X
is countably tight, that X is first countable, and hence that X is hereditarily
collectionwise Hausdorff. By Lemma 5, X is locally hereditarily separable,
so Lemma 18 applies. On the other hand, if X is paracompact, it cannot
include a closed perfect preimage of ω1, but such preimages are closed in
first countable spaces.

Theorem 19. PFA(S)[S] implies every locally compact perfectly normal
space of cardinality ℵ1 is metrizable.

Proof. We first note that a space such as in the theorem has a count-
able neighborhood around each point. This follows from Lemma 11 and
the fact that compact first countable spaces have cardinality either ℵ0 or
2ℵ0 . But countable compact spaces are metrizable and paracompact locally
metrizable spaces are metrizable, so we need only establish that the space
is paracompact. Due to the size restriction, ℵ1-collectionwise Hausdorffness
will suffice.

As a corollary of Theorem 17, we will get a metrization theorem which
answers a question in [2]:

Definition. X has a Gδ-diagonal if {〈x, y〉 : x = y} is a Gδ in X ×X.
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Lemma 20 ([4]). A countably compact space with a Gδ-diagonal is metriz-
able (and hence compact).

Theorem 21. In the PFA(S)[S] model of Theorem 2, every locally com-
pact hereditarily normal space with a Gδ-diagonal is metrizable.

Proof. It suffices to show X is paracompact, since it is locally metriz-
able. It follows from Lemma 20 that X does not include a perfect preimage
of ω1. Clearly X is first countable, locally hereditarily Lindelöf, and locally
hereditarily separable. But then Lemma 18 applies.

It was shown in [21] that in the extension produced by forcing with the
Suslin tree S over a model of MAω1(S), every compact space with hereditarily
normal square is metrizable. We shall extend this to locally compact spaces
by using the PFA(S)[S] model considered in this paper, thus obtaining (5)
of Theorem 3.

Again, we suspect that the supercompact cardinal is not necessary,
though we think it unlikely that the locally compact result can be obtained
from the compact case for the following reason. Katětov [16] proved that
every compact space with hereditarily normal cube is metrizable. There is
no such ZFC result for locally compact spaces—it is routine to show:

Theorem 22. MAω1 implies there is a locally compact non-metrizable
space X with Xn hereditarily normal for all n ∈ ω.

Proof. This is standard. X will be any subset of the real line of size ℵ1

with the following topology. Let D be countable dense in X in the real line
subspace topology. We make each point of D isolated. For each x ∈ X −D,
we fix a sequence from D converging to x, and let a neighborhood of x be
{x} together with a tail of the sequence. Then X is locally compact and
non-metrizable, as is Xn for each n ∈ ω. Now, Xn has a weaker separable
metrizable topology, as a subspace of Rn. Each point of Xn has a neighbor-
hood base consisting of sets which are compact in that weaker topology. By
the following lemma, MAω1 will imply Xn is hereditarily normal.

Lemma 23 ([43, Section 7.1]). Assume MA(σ-centred)+ ∼CH. Suppose
ρ and τ are two topologies on a set X such that

(i) ρ ⊆ τ ,
(ii) 〈X, ρ〉 is Hausdorff and second countable,

(iii) there is a closed neighborhood base for τ consisting of sets compact
in 〈X, ρ〉.

Then for all H,K ∈ [X]<2ℵ0 such that H∩K = H∩K = ∅ in the τ topology,
we have disjoint open UH and UK in τ including H and K respectively.



Locally compact perfectly normal spaces 295

Now to prove (5) of Theorem 3, we will need a lemma of Katětov [16]:

Lemma 24. If Y is countably compact and Y 2 is hereditarily normal,
then Y is perfectly normal.

Now suppose that X is locally compact and X2 is hereditarily normal.
By [21] it follows that X is locally metrizable and hence locally hereditarily
Lindelöf. X is homeomorphic to a subspace of X2, so it too is hereditarily
normal. Since X is locally metrizable, to show it is metrizable it suffices to
show it is paracompact. This will follow from Theorem 17 if we can show
X includes no perfect preimage of ω1. Suppose it had such a preimage Y .
Then Y would be countably compact and, by Katětov’s lemma, perfectly
normal. But that is impossible by Lemma 15.

Another consequence of the approach taken in this paper is the following
result.

Theorem 25. In the PFA(S)[S] model of Theorem 2, every hereditarily
normal vector bundle is metrizable.

Compare this with Nyikos’ MAω1 implies every hereditarily collection-
wise Hausdorff vector bundle is metrizable [26]. More on vector bundles,
including their definition, can be found in [32, pp. 245–257].

Following Nyikos [27], we have:

Definition. A space X is of Type I if X =
⋃
α<ω1

Uα, where the Uα’s
are open, Uβ ⊆ Uα whenever β < α, Uα =

⋃
β<α Uβ for limit α, and each

Uα is Lindelöf.

Proof of Theorem 25. Vector bundles are connected manifolds, so by
Theorem 17, it suffices to show that hereditarily normal ones do not in-
clude perfect preimages of ω1. Nyikos [26] proved that vector bundles of
Type I cannot include a perfect preimage of ω1, so it suffices to show that
hereditarily normal vector bundles are of Type I.

Manifolds are first countable, so our vector bundle V is hereditarily
collectionwise Hausdorff. Hereditarily collectionwise Hausdorff connected
manifolds have Lindelöf degree ≤ ℵ1 by [1, Lemma 3.2]. It follows that
V =

⋃
α<ω1

Uα, where each Uα is hereditarily Lindelöf. Let Vα =
⋃
β<α Uβ.

Then V will be Type I if each V α is Lindelöf. Since Vα has no uncount-
able discrete subspace, and V α is hereditarily collectionwise Hausdorff, V α

as well as its one-point compactification V
∗
α also do not have uncountable

discrete subspaces. Then V ∗α is countably tight, so by Theorem 4, any right-
separated subspace of size ℵ1 would be σ-discrete. Thus V ∗α, and hence V α,
is hereditarily Lindelöf.

A more interesting question concerns the metrizability of hereditarily
normal manifolds of dimension greater than 1. Nyikos has written several
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papers on the subject, proving for example from the consistency of a super-
compact cardinal that such manifolds are metrizable if in addition they are
hereditarily collectionwise Hausdorff [28]. We make the following conjecture:

Conjecture. If it is consistent that there is a supercompact cardinal,
then it is consistent that every hereditarily normal manifold of dimension
greater than 1 is metrizable.

Furthermore, we expect that there is a proof of this conjecture using
the approach taken in this paper. In unpublished work, the second author
has shown that the conjecture could be established if one could prove that
PFA(S)[S] implies every first countable perfect preimage of ω1 includes a
copy of ω1. The conclusion is a consequence of PFA.

3. A different path to Theorem 1. We defined Type I spaces toward
the end of the previous section. It is easy to see that if the Uα’s have empty
boundaries closed unboundedly often, the space will be paracompact. As-
sume then that for a Type I perfectly normal space X, the boundaries of
the Uα’s are non-empty for α in some stationary S. Pick xα ∈ Uα \ Uα for
α ∈ S. Then {xα : α ∈ S} will be locally countable and hence σ-discrete
by Lemmas 15, 16 and Theorem 4, since compact perfectly normal spaces
are first countable. Since perfectly normal spaces are hereditarily normal,
X will be hereditarily collectionwise Hausdorff. But then, pressing down on
a stationary S′ ⊆ S such that {xα : α ∈ S′} is discrete, we get an uncount-
able disjoint collection of open sets in some Uα, contradicting its hereditary
Lindelöfness.

We have proved Theorem 1 for Type I spaces; to prove it in general, it
suffices to prove the following lemma, which is a slight variation of [1, 3.2].

Lemma 26. Suppose X is locally hereditarily Lindelöf, locally heredi-
tarily separable, and hereditarily collectionwise Hausdorff. Then X is the
topological sum of clopen subspaces, each of Lindelöf degree ≤ ℵ1.

For then, by the argument at the end of the proof of Theorem 25 above,
X will be the sum of Type I spaces, and hence will be paracompact.

Proof of Lemma 26. Let U0 be a maximal disjoint collection of basic open
sets in X. Suppose Uβ, β < α, have been defined to be unions of countably
many disjoint collections of basic open sets. Let

Fα = X −
⋃
β<α

⋃
Uβ.

Let Vα be a collection of basic open sets such that {Fα ∩ V : V ∈ Vα} is
a maximal disjoint collection of relatively open subsets of Fα. Fix a dense
countable subset DV in each Fα ∩V . Any selection of points, one from each
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DV , yields a discrete subset of
⋃
Vα, which may therefore be separated by

basic open sets. We may therefore cover
⋃
{DV : V ∈ Vα} by a collection Uα

of basic open sets such that Uα is the union of countably many collections
of disjoint basic open sets. We claim that

X =
⋃
α<ω1

⋃
Uα.

Indeed, suppose that this is false. Let W be a basic open neighborhood of
x ∈

⋂
α<ω1

Fα. Since the Fα’s are descending and W is hereditarily Lindelöf,
there is an α < ω1 such that Fα ∩W = Fα+1 ∩W . Then

⋃
Uα+1 ∩W is

empty, so W ∩Fα+1 = ∅. But that is a contradiction, as x ∈W ∩
⋂
α<ω1

Fα.
Now

⋃
α<ω1

Uα is the union of ℵ1 collections of disjoint open sets. Each
member of

⋃
α<ω1

Uα meets only countably many elements of each such
collection. Therefore X is the sum of clopen subspaces, each composed of
the union of ℵ1 basic open sets.

4. Whitehead groups. Just as the question of when normality implies
collectionwise normality led to many advances in set-theoretic topology, the
question of when Whitehead groups are free has been similarly influential
in set-theoretic algebra. For a short, accessible introduction to the subject,
see [6]. For a comprehensive presentation, see [7]. All terms not defined here
can be found in both references. Here we only want to point out:

Theorem 27. In the MAω1(S)[S] and PFA(S)[S] models discussed here,
in which normal first countable spaces are collectionwise Hausdorff, all
Whitehead groups are free.

Proof. We assume the reader is somewhat familiar with the proof that
Whitehead groups are free in L. That proof proceeds by induction on the
cardinality of the groups. It is true for countable ones, and for singular car-
dinals it is true if it is true for smaller cardinals, by a Singular Compactness
Theorem.

At regular cardinals κ, for S a stationary subset of κ, ♦(S) is sufficient to
carry on with the induction. ♦ for stationary systems is a stronger principle,
so the case of κ = ℵ1 is the only one needing consideration.

Shelah showed that there is a non-free Whitehead group of size ℵ1 if
and only if there is a ladder system on some stationary subset of ω1 which
has the 2-uniformization property. But such a ladder system determines in
a natural way a first countable, normal, non-collectionwise Hausdorff space
of size ℵ1.

It remains to be seen whether there are MAω1 or PFA consequences
holding in these models which would, in conjunction with “all Whitehead
groups are free”, produce results of algebraic interest.
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5. Remarks. According to Todorcevic (personal communication) the
supercompact can probably be eliminated in the work of his on which The-
orem 1 depends.

Most of this paper was written in 2003; it was submitted in 2009. The
reason for the delay was that the authors had not seen the still unpublished
proofs of Theorems 4 and 7.

At the 2006 Prague Topological Symposium, Todorcevic announced The-
orem 4. He sketched the proof of Theorem 7 at the conference on Advances
in Set-Theoretic Topology, in Honor of T. Nogura in Erice, Italy in 2008
[38].

Finite powers of compact countably tight spaces are countably tight [23].
Thus, in addition to Theorem 7, one needs:

Theorem 28 ([37]). PFA(S)[S] implies that if K is a compact space
with finite powers sequential, then every locally countable subset of K of size
ℵ1 is σ-discrete.

At Todorcevic’s suggestion, the details of Theorem 28 are supposed to
appear in [10]. The proofs of Theorems 6 and 7 are supposed to appear
in [39].

Acknowledgments. The authors acknowledge support from NSERC
grant A-7354. The first author also acknowledges support from NSF-DMS-
0801009.

In conclusion, we thank the referee for many useful suggestions.
Note added in proof (October 8, 2010). We now can prove our conclusions from

results of Todorcevic that do have accessible proofs. This is accomplished in the union of
two preprints, one by each author, which prove a weaker version of Theorem 4, namely
that the locally countable subspace is σ-discrete on a closed unbounded set.
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