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Homotopy types of one-dimensional Peano continua
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Katsuya Eda (Tokyo)

Abstract. Let X and Y be one-dimensional Peano continua. If the fundamental
groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homo-
morphism from the fundamental group of X to that of Y is a composition of a homomor-
phism induced from a continuous map and a base point change isomorphism.

1. Introduction and definitions. In this paper we prove:

Theorem 1.1. Let X and Y be one-dimensional Peano continua. If the
fundamental groups of X and Y are isomorphic, then X and Y are homotopy
equivalent.

Theorem 1.2. Let X be a one-dimensional Peano continuum, Y a one-
dimensional metric space and x ∈ X and y ∈ Y . For each homomorphism
h : π1(X,x)→ π1(Y, y) there exists a continuous map f : X → Y and a path
q from f(x) to y such that h = ϕq ◦ f∗, where ϕq is the base point change
isomorphism.

Corollary 1.3. Let X and Y be one-dimensional Peano continua and
f : X → Y a continuous map. If f induces an isomorphism between the
fundamental groups of X and Y , then f is a homotopy equivalence between
X and Y .

It seems that the first theorem was conjectured in the middle 1990’s; the
author heard of it from G. Conner. If the spaces X and Y are locally simply
connected in addition to the conditions in Theorems 1.1 and 1.2, then X and
Y are homotopy equivalent to finite graphs and their fundamental groups
are free groups and consequently the conclusions of Theorems 1.1 and 1.2
are obvious. But in general they are rather nontrivial. On the other hand, if
X and Y are not locally simply connected at any point, the isomorphism h
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between the fundamental groups of X and Y induces a homeomorphism h̃
between X and Y [8], which is not so trivial. Hearing Theorem 1.1 U. Kari-
mov asked the author whether Corollary 1.3 holds and this is an affirmative
answer to his question. Since our proofs extend those in [8] some of whose
notions are uncommon, we restate a few definitions.

For a ≤ b, a continuous map f : [a, b]→ X is called a path from f(a) to
f(b). The points f(a) and f(b) are called the initial point and the terminal
point of f respectively. When a = b, the path f is said to be degenerate. A
loop f is a path with f(a) = f(b). For a path f : [a, b] → X, f− denotes
a path such that f−(s) = f(a + b − s) for a ≤ s ≤ b. Two paths f :
[a, b] → X, g : [c, d] → X are equivalent, denoted by f ∼= g, if there exists
a homeomorphism ϕ : [a, b] → [c, d] such that ϕ(a) = c, ϕ(b) = d and
f = g ◦ ϕ. Two paths f : [a, b] → X and g : [c, d] → X are homotopic,
denoted by f ∼ g, if there exists a continuous map H whose domain is the
quadrangle in the plane with the vertices (a, 0), (b, 0), (c, 1) and (d, 1) such
that 

H(s, 0) = f(s) for a ≤ s ≤ b,
H(s, 1) = g(s) for c ≤ s ≤ d,
H((1− t)a+ tc, t) = f(a) = g(c) for 0 ≤ t ≤ 1,
H((1− t)b+ td, t) = f(b) = g(d) for 0 ≤ t ≤ 1.

The homotopy class containing a path f is denoted by [f ]. The homotopy
defined above is usually called a “homotopy relative to end points”. We drop
the phrase “relative to end points” for simplicity.

A path f : [a, b] → X is reduced if no subloop of f is null-homotopic,
that is, for each pair u < v with f(u) = f(v), f�[u, v] is not null-homotopic.
Note that a constant map is reduced if and only if it is degenerate. For
paths f : [a, b] → X and g : [c, d] → X with f(b) = g(c), fg denotes the
concatenation of f and g, that is, a path from [a, b+ d− c] to X such that
fg(s) = f(s) for a ≤ s ≤ b and fg(s) = g(s − b + c) for b ≤ s ≤ b + d − c.
A loop f is cyclically reduced if ff is reduced. An arc is a subspace of X
which is homeomorphic to the unit interval [0, 1]. The Hawaiian earring is
the plane continuum H =

⋃∞
n=1{(x, y) : (x − 1/n)2 + y2 = 1/n2} and o

denotes the origin (0, 0). Each simple closed curve of the Hawaiian earring
is parametrized as follows:

en(t) = ((1 + cos(π + 2πt))/n, sin(π + 2πt)/n) for 1 ≤ n < ω, 0 ≤ t ≤ 1.

Let OX consist of all elements x ∈ X such that X is locally simply
connected at x. If X is locally path-connected, then OX is an open subset
of X. We define Xw = X \ OX . For a homomorphism h : π1(X,x) → G,
let Xw

h be the set of all points x0 ∈ X such that, for each neighborhood
U of x0, there exists a loop f in U such that h(ϕg([f ])) 6= e for some path
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g from x0 to x. Let OXh = X \ Xw
h . We remark that in this definition the

choice of a path g does not affect anything. When h is injective, we have
Xw
h = Xw. We also remark that Xw

h is closed and OXh is open for a locally
path-connected space X.

2. Reduction of one-dimensional Peano continua. A subset A of
a space X is called an open arc if A is open in X and is homeomorphic to
the open interval (0, 1). An open arc in a Peano continuum has at least one
and at most two end points; we denote them by A0 and A1. We remark that
A0 = A1 may happen.

The next theorem has been proved in the master thesis of M. Meilstrup
[15]. Since our proof will be modified to prove Theorem 1.2, we prove this
precisely.

Theorem 2.1 (M. Meilstrup [15]). Every one-dimensional Peano con-
tinuum is homotopy equivalent to a one-dimensional Peano continuum X
such that X is a finite connected graph or OX is an at most countable union
of open arcs the end points of which belong to Xw.

Our proof is a modification of the proof of [8, Theorem 1.2], particularly
that of the implication (3)⇒(2), and hence we recommend the reader to
review [8, Section 4] before proceeding.

A metric space (X, ρ) is uniformly locally connected if, for every ε > 0,
there exists δ > 0 such that if ρ(x, y) < δ then x and y are contained
in a connected open set of diameter less than ε. We refer the reader to
[14, Section 2.1.1] for the notion of brick partiton and facts around it. An
important fact is: if O is a uniformly locally connected, connected open set
in a Peano continuum, then O is also a Peano continuum.

A partition P of a space is a pairwise disjoint family of finitely many
connected open sets such that

⋃
P is dense. A partition P is of order 2

if P1 ∩ P2 ∩ P3 = ∅ for distinct P1, P2, P3 ∈ P. A partition P is a brick
partition if P consists of regular open sets and int(P ∪ Q) is uniformly
locally connected for each P,Q ∈ P. Consequently, each element of P is
uniformly locally connected.

For a subset S of X, the diameter of S is denoted by diam(S), i.e.
diam(S) = sup{ρ(x, y) : x, y ∈ S} and Mesh(P) = max{diam(P ) : P ∈ P}.
Since our construction is based on the proof of [14, Theorem 2.9], we state
that result in a form suitable for our case.

Proposition 2.2 ([14, Theorem 2.9]). LetX be a one-dimensional Peano
continuum, K a 0-dimensional closed subset of X and x0, x1, . . . , xn ∈ X.
Then, for every ε > 0, there exists a brick partition P of X of order 2 such
that
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(1) K ⊆
⋃
P;

(2) if xi 6= xj, then there are distinct Pi, Pj ∈ P such that xi ∈ Pi and
xj ∈ Pj ;

(3) Mesh(P) < ε;
(4) the boundary of each member of P is 0-dimensional.

Proof of Theorem 2.1. Let X be a one-dimensional Peano continuum. If
Xw = ∅, then the argument below shows that X is homotopy equivalent to
a finite connected graph. We therefore assume that Xw 6= ∅.

Our first goal is to construct dendrites Dn and open arcs Ai so that

• Dn is a dendrite such that Dn ∩ Xw = {xn}, Dn \ {xn} ⊆ OX and
∂Dn ⊆

⋃
i ∂Ai ∪ {xn};

• Ai ⊆ OX ;
• Dm ∩Dn ⊆ Xw for m 6= n and Ai ∩Aj = ∅ for i 6= j;
• Xw ∪

⋃
nDn ∪

⋃
iAi is a strong deformation retract of X;

• limn→∞ diam(Dn) = 0 and limi→∞ diam(Ai) = 0.

For this we construct brick partitions Pm, open arcs Ai, parts of dendrites
Dmn, and points ymn by induction.

In the 0th step we let P0 = {X}, but we do not define Ai and so on.
After the mth step, we have finitely many points ymn on the boundary of⋃
{P : P ∈ Pm, P ∩Xw 6= ∅}. First we work in each P for P ∈ Pm. Applying

Proposition 2.2 to the 0-dimensional closed set ∂P and points ymn in ∂P ,
we have a brick partition PP of P satisfying

• PP is of order 2 and Mesh(PP ) < 1/(m+ 1);
• if Q ∩Xw = ∅ for Q ∈ PP , then Q is simply connected;
• if Q∩Xw = ∅ for Q ∈ PP , then Q∩Q′ is at most one point for Q′ ∈ PP

with Q′ 6= Q.
• If ymn ∈ P , then there exists Q ∈ PP such that ymn ∈ Q and Q ∩Xw

= ∅.

Next let Pm+1 be the family

{Q \ ∂P |Q ∈ PP , P ∈ Pm, P ∩Xw 6= ∅}.

Since ∂P does not separate any nonempty connected open set in P [14,
Proposition 2.5], Pm+1 is a partition of

⋃
{P : P ∈ Pm, P ∩Xw 6= ∅} and

also a brick partition of it. Since ∂P ⊆
⋃
PP , Pm+1 is of order 2. Hence

Pm+1 is a brick partition of
⋃
{P : P ∈ Pm, P ∩ Xw 6= ∅} which satisfies

the following:

(1) Pm+1 is of order 2 and Mesh(Pm+1) < 1/(m+ 1);
(2) Pm+1 refines the restriction of Pm to

⋃
{P : P ∈ Pm, P ∩Xw 6= ∅};

(3) if Q ∩Xw = ∅ for Q ∈ Pm+1, then Q is simply connected;
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(4) if Q ∩Xw = ∅ for Q ∈ Pm+1, then Q ∩ Q′ is at most one point for
Q′ ∈ Pm+1 with Q′ 6= Q.

(5) If ymn ∈ P for P ∈ Pm with P ∩Xw 6= ∅, then there exists Q ∈ Pm+1

such that Q ⊆ P , ymn ∈ Q and Q ∩Xw = ∅.

For each Q ∈ Pm+1 with Q ∩ Xw = ∅, ∂Q is finite and so we connect
these points by arcs and have a finite tree TQ which is a strong deformation
retract of Q in Q, since Q is a uniquely arcwise connected Peano continuum.
Then

⋃
{TQ : Q ∈ Pm+1, Q ∩ Xw = ∅} = Gm+1 is a finite graph, where

we consider branching points in TQ and points in ∂Q as vertices. Then
Gm+1 ∩

⋃
{Q : Q ∈ Pm+1, Q ∩Xw 6= ∅} is a finite set, which we enumerate

without repetition as ym+1n.
For yml we have a unique P ∈ Pm such that yml ∈ P and P ∩Xw 6= ∅.

According to (5) in the construction of Pm+1, every point yml is connected
to at least one point ym+1n by an arc A so that ym+1n ∈ Q for Q ∈ Pm+1

with Q ⊆ P and Q ∩ Xw 6= ∅, and A \ {yml} ⊆ P . By working in each
P we have a tree TPn ⊆ Gm+1 so that yml are connected to ym+1n by TPn .
Accordingly, if ym+1n is connected to some yml , then ym+1n belongs to a
unique P ∈ Pm. Therefore, there exists at most one P such that a tree TPn is
connected to each ym+1n; we then let Tn be TPn . When no TPn is connected
to ym+1n we let Tn be the singleton of ym+1n. In such a case ym+1n may
belong to P ∩P ′ for distinct P, P ′ ∈ Pm. But there exists a unique P ∈ Pm
such that ym+1n ∈ Q for Q ∈ Pm+1 with Q ⊆ P and Q∩Xw 6= ∅. We work
in the unique P ∈ Pm for such Tn in the following procedure. We remark
that the Tns are pairwise disjoint.

Vertices in Gm+1 which are in P may not belong to any Tn. Next we
expand Tns in Gm+1 so that every vertex of Gm+1 belongs to one of the
extensions of the trees Tn. We want to control the sizes of the expanded
trees and so we work in each P . By induction on n we construct a max-
imal tree T ∗n in Gm+1 ∩ P or Gm+1 ∩ (P0 ∪ P1) such that Tn ⊆ T ∗n , but
T ∗n ∩

⋃
k<n T

∗
k = ∅ and T ∗n ∩

⋃
k>n Tk = ∅. Inductively, we assume that if

Dml has been defined for yml then Dml is connected to a unique T ∗n and
we connect all such Dml to T ∗n , thus forming Dm+1n. We remark that any
Dml may not be connected to some T ∗n and that T ∗n may be even a sin-
gleton of ym+1n. Then we add all open edges of Gm+1 \

⋃
n T
∗
n to the list

of Ai. We remark that the size of Ai added in the (m+ 1)st step is less than
1/(m+ 1).

Continuing, we have Dmk which are contained in a unique Dm+1 k′ . Since
we pick ymk in each separated small area, a sequence consisting of ymks
converges to one point in Xw. We enumerate these points as xn and let the
increasing union of Dmk for which ymk converges to xn, together with the
singleton {xn}, be Dn, which is a dendrite by construction. For each m, there
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are only finitely many Dn which contain ymk for some k, and if Dn does not
contain ymk for any k, then Dn is contained in some P0∪P1 for P0, P1 ∈ Pm
and hence diam(Dn) ≤ 2/m. For each P ∈ Pm with P ∩Xw = ∅, we have a
strong deformation retraction from P to TP . Since limn→∞Mesh(Pn) = 0,
we can take a union of strong deformation retractions of P to TP as a strong
deformation retraction of X to Xw ∪

⋃
nDn ∪

⋃
iAi. Now we have achieved

the first goal.
Let X0 = Xw ∪

⋃
nDn ∪

⋃
iAi. Since xm = xn may happen for m 6= n,

we form a union of Dns when xm = xn. It is still a dendrite. Hence we
suppose that Dm ∩ Dn = ∅ for m 6= n. Let Z be the quotient space of X0

obtained by regarding each Dn as one point. Since limn→∞ diam(Dn) = 0,
Z is a compact metrizable space (see [5, Propositions I.2.2 and I.2.3]). Since
Z is a countable sum of one-dimensional closed sets Xw and Ais, Z is one-
dimensional by [12, Theorem 7.2.1] and hence Z is a one-dimensional Peano
continuum. The remaining task is to show that X0 is homotopy equivalent
to Z.

Let f : X0 → Z be the quotient map. To define g : Z → X0, we take
strong contractions rn : Dn × [0, 1] → Dn such that rn(xn, t) = xn and
rn(u, 1) = xn for each u ∈ Dn, and we take continuous maps ai : [0, 1]→ Ai
so that ai(0) = A0

i and ai(1) = A1
i and a1�(0, 1) is a homeomorphism.

We define g(u) = u for u ∈ Xw and so it suffices to define g(u) for u in
each Ai. There exists a unique n0 such that A0

i ∈ Dn0 and also a unique n1

such that A1
i ∈ Dn1 . Define g on Ai by

g(u) =


rn0(A0

i , 1− 3s) if u = ai(s) for 0 ≤ s ≤ 1/3,
ai(3s− 1) if u = ai(s) for 1/3 < s < 2/3,
rn1(A1

i , 3s− 2) if u = ai(s) for 2/3 ≤ s ≤ 1.

The continuity of g on
⋃
iAi is obvious and so we consider the continuity

at x ∈ Xw. For an open neighborhood U of g(x) = x in X0, choose a
neighborhood U0 of x in X0 so that U0 ⊆ U . Let I0 = {i : A0

i ∈ Dn or
A1
i ∈ Dn, xn ∈ U0}. There exist at most finitely many xn ∈ U0 for which

the set Dn∪
⋃
{Ai : A0

i ∈ Dn or A1
i ∈ Dn} is not contained in U . For such an

xn ∈ U0, consider the connected component Cn of U∩(Dn∪
⋃
{Ai : A0

i ∈ Dn

or A1
i ∈ Dn}) containing xn. Then there exist at most finitely many Ai such

that A0
i ∈ Dn or A1

i ∈ Dn and Ai 6⊆ Cn. Collecting these we have an at
most finite subset I1 of I0 such that g(Ai) ⊆ U for all i ∈ I0 \ I1.

Since (U0 ∩ Xw) ∪
⋃
i∈I0 Ai is an open neighborhood of x in Z, just

shrinking on Ai for i ∈ I1 we have the desired neighborhood V0 of x such
that g(V0) ⊆ U , i.e. g is continuous at x. Since it is comparatively easy to
prove f ◦ g is homotopic to idZ , we only prove that g ◦ f is homotopic to
idX0 .
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Define H : X0 × [0, 1]→ X0 by

H(x, 0) = x for x ∈ X0,

H(x, t) = x for x ∈ Xw,

H(x, t) = rn(x, t) for x ∈ Dn,

and

H(ai(s), t)

=



rni0(A0
i , t− s− 2st) if 0 ≤ s ≤ 1/3 and s+ 2st− t < 0,

ai(s+ 2st− t) if 0 ≤ s ≤ 1/3 and s+ 2st− t ≥ 0,
ai(s+ 2st− t) if 1/3 ≤ s ≤ 2/3,
ai(s+ 2st− t) if 2/3 ≤ s ≤ 1 and s+ 2st− t ≤ 1,
rni1(A1

i , s+ 2st− t− 1) if 2/3 ≤ s ≤ 1 and s+ 2st− t > 1.
Then H(x, 1) = g◦f(x) for x ∈ X0. The continuity of H at (x, t) for x ∈ Xw

is shown by similar considerations to those for g.

Remark 2.3. We remark a difference between the proof of [8, Theorem
1.2] and the above one. In the former case Dmks and Ais converge to one
point automatically and the care for the sizes of connecting paths between
yml and ym+1n is not necessary. But in the above case, if we do not take
care, we might not be able to find the end point of Dn in Xw. So, we connect
them in each P for P ∈ Pm separately.

3. Lemmas for paths. First we recall some material from [8].

Lemma 3.1 ([8, Lemma 5.1]). Let X be a first countable space and Y be
a one-dimensional metric space and h : π1(X,x)→ π1(Y, y) be a homomor-
phism. Then for x0 ∈ Xw

h there exists a unique point y0 ∈ Y which satisfies
the following condition:

for a path p : [0, 1] → X with p(0) = x0 and p(1) = x, there exists a
unique path q : [0, 1]→ Y from y0 = q(0) to y = q(1) up to homotopy
which satisfies the following:
for each continuous map f : (H, o)→ (X,x0) there exists a continu-
ous map g : (H, o)→ (Y, y0) such that h ◦ ϕp ◦ f∗ = ϕq ◦ g∗.

Using this lemma we defined h̃ : Xw
h → Y in [8, p. 497]. We want to

extend h̃ to X. For this purpose we recall the setting from [8, Section 6].
Here we generalize it a little.

For a one-dimensional space X, a point x ∈ X and a subset S of X,

• P (X) is the set of all paths in X,
• Px(X) is the set of all paths which terminate at x,
• PS(X) is the set of all paths which connect points in S,



34 K. Eda

• PS,x(X) is the set of all paths which start from points in S and ter-
minate at x,
• P h(X) is the set of all homotopy classes of paths in X,
• RP (X) is the set of all reduced paths in X,
• RPx(X) is the set of all reduced paths in X which terminate at x,
• P hx (X) is the homotopy classes that are represented by the paths in
Px(X).

Since any path is homotopic to a reduced path (see [4]), there is a one-to-one
correspondence between P h(X) (or P hx (X)) and the quotient of RP (X) (or
RPx(X)) modulo equivalence. According to our definition of homotopies
between paths, homotopies are relative to end points, the initial point and
the terminal point of the class [p] are well-defined for a homotopy class
[p] ∈ P h(X). If pq is a path for two paths p and q, then [p][q] is defined as
[pq]. An element of P h(X) is degenerate if it is the equivalence class of a
degenerate path.

For an open set U containing the initial point of [p], let O(U, [p]) = {[f ] :
f is homotopic to gp for some g with Im(g) ⊆ U}. The tail-limit topology
is the topology on P hx (X) which has the collection of all O(U, [p])’s as a
neighborhood base for [p]. Let σ : P hx (X)→ X be the map which sends [p]
to the initial point of p.

Lemma 3.2 ([8, Lemma 6.6]). Let X be a one-dimensional metric space
and F : [0, 1] → P hx (X) be a path such that F (0) is degenerate. If f ∈
RPx(X) represents F (1), then σ ◦ F and f− are homotopic.

We remark that this statement was wrongly stated as “σ ◦ F and f are
homotopic” in [8].

For a homomorphism h : π1(X,x)→ π1(Y, y), we define ψ : PXw
h ,x

(X)→
RPy(Y ) and ξ : PXw

h
(X) → RP (Y ) as follows. For a path p from x0 ∈ Xw

h

to x, we have a reduced path q from h̃(x0) to y according to Lemma 3.1
such that the properties there hold. We define ψ(p) = q. For a path p0 from
x1 ∈ Xw

h to x0 ∈ Xw
h in X, p0p is a path from x1 to x. We define ξ(p0)

to be a reduced path homotopic to ψ(p0p)ψ(p)−. We remark that in case
x = x0, ψ(p0) and ξ(p0) are defined, but may be distinct. In particular, for
the constant loop cx at x, ξ(cx) is a degenerate path, but ψ(cx) may not be.

Lemma 3.3. Let p and p′ be paths from x0 ∈ Xw
h to x. Then h([p−p′]) =

[ψ(p)−ψ(p′)]. Consequently, for a loop l with base point x0, h ◦ ϕp([l ]) =
ϕψ(p)([ξ(l)]).

Proof. Let q = ψ(p) and q′ = ψ(p′). Then, as in Lemma 3.1, for each con-
tinuous f : (H, o) → (X,x0) there is a continuous map g : (H, o) → (Y, y0)
such that h ◦ ϕpp−p′ ◦ f∗ = h ◦ ϕp′ ◦ f∗ = ϕq′ ◦ g∗. Since h ◦ ϕpp−p′(f∗([u])) =
h([(p−p′)−])h([p−(f ◦ u)p])h([p−p′]) for a loop u : [0, 1] → H with u(0) =
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u(1) = o, we have

h([p−p′])[q′−][g ◦ u][q′]h([p−p′])−1 = h([p−p′])ϕq′(g∗([u]))h([p−p′])−1

= h([p−p′])h ◦ ϕpp−p′ ◦ f∗([u])h([p−p′]−1)

= h([p−(f ◦ u)p])

= ϕq(g∗([u])) = [q−][g ◦ u][q].

Since q is unique up to homotopy, we have h([p−p′])[q′−] = [q−] and hence
h([p−p′]) = [q−q′] = [ψ(p)−ψ(p′)].

Next let p′ = lp. Then we have

h ◦ ϕp([l ]) = h([p−p′]) = [ψ(p)−ψ(lp)] = [ψ(p)−ψ(lp)ψ(p)−ψ(p)]
= ϕψ(p)([ξ(l)]).

Lemma 3.4. The definition of ξ(p0) does not depend on p. More precisely
ξ(p0) is defined by the homotopy class [p0] of p0 and h uniquely up to the
equivalence.

Proof. To see this let p′ be another path from x0 to x. By Lemma 3.3,
h([p−p′]) = [ψ(p)−ψ(p′)] and h([(p0p

′)−(p0p)]) = [ψ(p0p
′)−ψ(p0p)]. Thus

[ψ(p0p
′)−ψ(p0p)] = h([(p0p

′)−(p0p)]) = h([p′−p]) = [ψ(p′)−ψ(p)]

and hence [ψ(p0p
′)−ψ(p0p)ψ(p)−ψ(p′)] = e, which implies that

ξ(p0) ∼ ψ(p0p)ψ(p)− ∼ ψ(p0p
′)ψ(p′)−.

Lemma 3.5. Let x0, x1, x2 ∈ Xw
h and p0 be a path from x1 to x0 and p1 be

a path from x2 to x1 and p be a path from x0 to x. Then ψ(p0p) ∼ ξ(p0)ψ(p)
and ξ(p1p0) ∼ ξ(p1)ξ(p0).

Proof. Since ξ(p0) ∼ ψ(p0p)ψ(p)−, we have ψ(p0p) ∼ ξ(p0)ψ(p). Now
ξ(p1p0) ∼ ψ(p1p0p)ψ(p)− and ξ(p1) ∼ ψ(p1p0p)ψ(p0p)− by Lemma 3.4.
Hence

ξ(p1p0) ∼ ξ(p1)ψ(p0p)ψ(p)− ∼ ξ(p1)ξ(p0).

Lemma 3.6. Let X, Y and Z be one-dimensional metric spaces and g :
π1(X,x) → π1(Y, y) and h : π1(Y, y) → π1(Z, z) be homomorphisms. Let
ψ0 : PXw

g , x(X) → RPy(Y ), ξ0 : PXw
g

(X) → RP (Y ), ψ1 : PY w
h , y(Y ) →

RPz(Z), ξ1 : PY w
h

(Y ) → RP (Z) and ψ2 : PXw
h◦g , x

(X) → RPz(Z), ξ2 :
PXw

h◦g
(X) → RP (Z) be the maps induced from g, h and h ◦ g respectively.

Then ψ1(ψ0(p)) ∼ ψ2(p) for p ∈ PXw
g , x(X), and ξ1(ξ0(p0)) ∼ ξ2(p0) for

p0 ∈ PXw
h◦g

(X).

Proof. We remark that Xw
h◦g ⊆ Xw

g and g̃(x0) ∈ Y w
h for x0 ∈ Xw

h◦g.
Since ψ0(p) is determined by a continuous map f : (H, o)→ (X,x0) such

that Im(f∗) is infinitely generated instead of a continuous map from (H, o)
to (Y, y0), we easily get ψ1(ψ0(p)) ∼ ψ2(p) for p ∈ PXw

g , x.
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Now we have ψ1(ψ0(p0p)) ∼ ψ2(p0p) and hence

ξ1(ξ0(p0))ψ1(ψ0(p)) ∼ ψ1(ξ0(p0)ψ0(p)) ∼ ψ1(ψ0(p0p)) ∼ ξ2(p0)ψ2(p)

by Lemma 3.5. It follows that ξ1(ξ0(p0)) ∼ ξ2(p0).

The next lemma strengthens the continuity of h̃ on Xw
h [8, Lemma 5.3]

and hence its proof is a modification of that of [8, Lemma 5.3].

Lemma 3.7. Let X and Y be one-dimensional metric spaces, X be locally
path-connected and h : π1(X,x) → π1(Y, y) be a homomorphism. Let xn ∈
Xw
h and pn be a path from xn to x∞ for each n < ω such that Im(pn)

converges to x∞ ∈ Xw
h . Then Im(ξ(pn)) converges to h̃(x∞).

Proof. Aiming for a contradiction, suppose that there is a neighbor-
hood U of h̃(x∞) such that Im(ξ(pn)) 6⊆ U for all n. Let p be a path from
x∞ to x. According to [8, Lemma 6.1] we have an arbitrary small loop ln
with base point xn such that h ◦ ϕpnp([ln]) is represented as a reduced loop
ψ(pnp)−l ′nψ(pnp) for a cyclically reduced loop l ′n. Hence we have a continu-
ous map f : (H, o)→ (X,x∞) such that f ◦en = p−n lnpn. Lemma 3.1 implies
that we have a path q from h̃(x∞) to y such that h ◦ ϕp ◦ f∗ = ϕq ◦ g∗ for a
continuous map g : (H, o) → (Y, h̃(x∞)). For a sufficiently large n, we have
Im(g ◦ en) ⊆ U . On the other hand,

ϕq ◦ g∗([en]) = h ◦ ϕp ◦ f∗([en]) = h ◦ ϕp([p−n lnpn]) = h ◦ ϕpnp([ln])

= [ψ(pnp)−l ′nψ(pnp)] = [ψ(p)−ξ(pn)−l ′nξ(pn)ψ(p)]

= ϕq([ξ(pn)−l ′nξ(pn)])

and hence [g ◦ en] = [ξ(pn)−l ′nξ(pn)]. Since ξ(pn) is a reduced path and l ′ is
cyclically reduced, one of ξ(pn)−l ′ and l ′ξ(pn) is reduced. Hence the image
of the reduced loop of ξ(pn)−l ′nξ(pn) is not contained in U by [8, Lemma
2.6]. Now ξ(pn)−l ′nξ(pn) is not homotopic to a loop in U (see the first three
lines of Section 4) and we have a contradiction.

Lemma 3.8. Let X and Y be one-dimensional metric spaces and X be
locally path-connected and path-connected, and h : π1(X,x)→ π1(Y, y) be a
homomorphism. Let xn, yn ∈ Xw

h and pn be a path from yn to xn for each
n < ω such that Im(pn) converges to x∞ ∈ Xw

h . Then Im(ξ(pn)) converges
to h̃(x∞).

Proof. By the path-connectivity and local path-connectivity, we have a
path fn from xn to x∞ for each n such that Im(fn) converges to x∞. As in
the proof of Lemma 3.7, suppose there is a neighborhood U of h̃(x∞) such
that Im(ξ(pn)) 6⊆ U for all n. Since ξ(pn) ∼ ξ(pnfnf−n ) ∼ ξ(pnfn)ξ(fn)−, we
have Im(ξ(fn)) 6⊆ U or Im(ξ(pnfn)) 6⊆ U . We choose xn if Im(fn) 6⊆ U , and
yn otherwise. Then we have paths contradicting Lemma 3.7.
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Let X be a locally path-connected, path-connected, one-dimensional
metric space, Y a one-dimensional metric space and suppose that for a ho-
momorphism h : π1(X,x)→ π1(Y, y), X = Xw

h ∪
⋃
i∈I Ai, where Ais are open

arcs and A0
i , A

1
i ∈ Xw

h . Note that limi→∞ diam(Ai) = 0. Then h̃ : Xw
h → Y

is a continuous map by [8, Lemma 5.3]. We extend h̃ on X as follows. For
each Ai, we choose a continuous map ai : [0, 1] → Ai with ai(0) = A0

i and
ai(1) = A1

i so that the restriction of ai to (0, 1) is injective. (That is, ai is a
homeomorphism if A0

i 6= A1
i .) Then define h̃(x) = ξ(ai)(a−1

i (x)) for x ∈ Ai.
Then the continuity of h̃ on

⋃
i∈I Ai is obvious and that at each point

in Xw
h follows from Lemma 3.8, since limn→∞ diam(An) = 0. We use this

extended h̃ in Lemmas 3.9 and 3.10 and also in the proofs of Theorems 1.1
and 1.2. In Lemma 3.10 we suppose that Y also has the additional properties
which X has.

Lemma 3.9. Let h : π1(X,x)→ π1(Y, y) be a homomorphism and r be a
reduced path from x1 ∈ Xw

h to x0 ∈ Xw
h . Then ξ(r) is homotopic to h̃ ◦ r.

Proof. Let pt be the restriction of r to [1 − t, 1] for 0 ≤ t ≤ 1, e.g.
p1 = r and p0 is the degenerate path at x0. Define F : [0, 1] → P h

h̃(x0)
(Y )

as follows. Let F (t) = [ξ(pt)] if σ([pt]) ∈ Xw
h . Otherwise, we have i ∈ I

and 0 ≤ t0 < t1 ≤ 1 such that t0 < t < t1, σ([pt0 ]), σ([pt1 ]) ∈ Xw and
r�[1− t1, 1− t0] ∼ ai or r�[1− t1, 1− t0] ∼ a−i . Let

F (t) =
{

[ξ(ai�[(t1 − t)/(t1 − t0), 1])ξ(pt0)] if r�[1− t1, 1− t0] ∼ ai,
[ξ(a−i �[(t1 − t)/(t1 − t0), 1])ξ(pt0)] if r�[1− t1, 1− t0] ∼ a−i .

If σ([pt]) /∈ Xw
h , the continuity of F at t is obvious. Otherwise, the continuity

of F at t follows from Lemma 3.8. Since F (1) = [ξ(r)] and h̃(r(1 − t)) =
σ ◦ F (t), the conclusion follows from Lemma 3.2.

Lemma 3.10. Let h0 : π1(X,x)→ π1(Y, y) be an isomorphism and h1 be
its inverse. Let p be a path between points in Xw. Then p is homotopic to
h̃1 ◦ h̃0 ◦ p. In particular h̃1 ◦ h̃0(x0) = x0 for x0 ∈ Xw.

Proof. Since every path is homotopic to a reduced path, it suffices to
show this lemma for a reduced path p. Let ξ0 : PXw(X) → RP (Y ) and
ξ1 : PY w(Y )→ RP (X) be the maps induced from h0 and h1 respectively. We
remark that Xw

h0
= Xw and Y w

h1
= Y w. Then [ξ1(ξ0(p))] = [p] by Lemma 3.6.

The conclusion follows from Lemma 3.9.

4. Proofs of Theorems 1.1 and 1.2. The following lemma is well-
known and can be proved if we notice that any path is homotopic to a
reduced path in its image [4] and the reduced path is unique up to equiva-
lence.
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Lemma 4.1 (Folklore). Let X be a one-dimensional space. Then two
homotopic paths in X are homotopic in the union of their ranges.

Proof of Theorem 1.1. By Theorem 2.1 we may assume that X = Xw ∪⋃
i∈I Ai and Y = Y w ∪

⋃
j∈J Bj , where I and J are at most countable,

Ai and Bj are open arcs. Let h0 : π1(X,x) → π1(Y, y) be an isomorphism
and h1 : π1(Y, y) → π1(X,x) be its inverse. We assume that h̃0 and h̃1

are extensions on X and Y respectively according to the description before
Lemma 3.9. By Lemma 3.10, ai and h̃1 ◦ h̃0 ◦ ai are homotopic for each i.
By Lemma 4.1 we have a homotopy Hi : [0, 1]× [0, 1]→ X such that

Hi(s, 0) = ai(s), Hi(s, 1) = h̃1 ◦ h̃0 ◦ ai(s),
Hi(0, t) = ai(0), Hi(1, t) = ai(1)

and Im(Hi) ⊂ Im(ai) ∪ Im(h̃1 ◦ h̃0 ◦ ai). Since limi→∞ diam(Ai) = 0, we
have limi→∞ diam(Im(Hi)) = 0. Define H i : Ai × [0, 1] → X by H i(x, t) =
Hi(a−1

i (x), t). Then

H i(x, 0) = ai(a−1
i (x)) = x, H i(A0

i , t) = ai(0) = A0
i ,

H i(A1
i , t) = ai(1) = A1

i , H i(x, 1) = h̃1 ◦ h̃0 ◦ ai(a−1
i (x)) = h̃1 ◦ h̃0(x).

Define H : X × [0, 1] → X by H(x, t) = x for x ∈ Xw and 0 ≤ t ≤ 1
and H(x, t) = H i(x, t) for x ∈ Ai and 0 ≤ t ≤ 1. Then the continuity of
H follows from that of all H i and the fact that limi→∞ diam(Im(H i)) = 0.
Hence h̃1 ◦ h̃0 is homotopic to the identity map on X and similarly h̃0 ◦ h̃1

is homotopic to the identity map on Y .

For our proof of Theorem 1.2 one more notion is necessary. Let h :
π1(x, x) → G be a homomorphism. We call a subset S of X h-simply con-
nected if for every point x0 in S, every loop l in S with base point x0 and
every path q from x0 to x, h(ϕq([l ])) is trivial. We remark that if h(ϕq([l ]))
is trivial, then h(ϕq′([l ])) is also trivial for every path q′ from x0 to x.

Proof of Theorem 1.2. If Xw
h is empty, then OXh = X and we have a

brick partition P such that

• P is of order 2;
• P is h-simply connected for P ∈ P;
• if P ∩Q 6= ∅, then P ∪Q is h-simply connected for P,Q ∈ P.

Hence this is the case when our procedure stops at the first step and we can
easily get the conclusion from the following arguments. Hence we proceed
to the case when Xw

h 6= ∅. We construct a retract K ∪Xw
h of X, where K is

locally homeomorphic to finite graphs in OXh . This is a modification of the
proof of Theorem 2.1 in Section 2.

Starting from the 0th step we let P0 = {X}, but do not define Ais and
so on as before. We trace the previous proof, but we set buffers around
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{P : P ∈ Pm, P ∩Xw

h 6= ∅} (= Rm). We call P ∈ Pm a buffer element if
P ∩Rm 6= ∅ but P ∩Rm = ∅.

After the mth step, we have at most finitely many points ymn on the
boundary of

⋃
{P : P ∈ Pm, P ∩ Rm 6= ∅}. Applying Proposition 2.2, we

take a brick partition Pm+1 of Rm which satisfies the following:

• Pm+1 is of order 2 and Mesh(Pm+1) < 1/(m+ 1);
• Pm+1 refines the restriction of Pm to Rm;
• if P ∈ Pm is a buffer element, then P ∩Rm is a disjoint union of sets

of the form P ∩Q with Q ∈ Pm+1 and Q ∩Rm+1 = ∅;
• if Q ∩ Q′ 6= ∅, Q ∩Xw

h = ∅ and Q′ ∩Xw
h = ∅ for Q,Q′ ∈ Pm+1, then

Q ∪Q′ is h-simply connected;
• if Q ∩ P 6= ∅ and Q ∩ Xw

h = ∅ for Q ∈ Pm+1 and a buffer element
P ∈ Pm, then Q ∪ P is h-simply connected.

We successively construct a finite tree TP for each buffer element P ∈ Pm
such that end points of TP are chosen from ∂P as follows. First we choose
one point from each nonempty P ∩ P ′ for P ′ ∈ Pm with P ′ /∈ Rm and
P ′ 6= P , making sure this point is among the points ymn whenever pos-
sible and making sure that our choice is consistent with whichever point
from ∂P ′ might have already been chosen. Then we choose one point from
each nonempty P ∩ Q with Q ∈ Pm+1. Since P is connected, we have
a tree TP ⊆ P such that TP ∩ P is connected and the end points of
TP are the elements chosen from ∂P . Now each end point of TP corre-
sponds to some P ∩ P ′ or to some P ∩ Q. Since TP is an absolute ex-
tensor, we have a retraction rP : P → TP so that rP (P ∩ P ′) = {v} or
rP (P ∩Q) = {v} for each end point v ∈ TP with v ∈ P ∩ P ′ or v ∈ P ∩Q
respectively. Next we define trees TQ and retractions rQ : Q → TQ for
Q ∈ Pm+1 with Q ∩ Rm+1 = ∅ just as for P ∈ Pm. We define neither
TQ nor rQ for buffer elements Q ∈ Pm+1 in this step. But, on a part
of ∂Q for a buffer element Q retractions rP or rQ′ have been defined.
We enumerate the retracted points of those parts of boundaries as ym+1n

(n ∈ Im+1). More exactly, ym+1n (n ∈ Im+1) is the one-to-one enumeration
of the points in TP ∩ Q for buffer elements P ∈ Pm and buffer elements
Q ∈ Pm+1 or in TQ ∩ Q′ for nonbuffer elements Q ∈ Pm+1 and buffer ele-
ments Q′ ∈ Pm+1.

For each yml ∈ P where P ∈ Pm is a buffer element, we have some
P ′ ∈ Pm such that P ∩P ′ 6= ∅ and P ′ ∩Xw 6= ∅. Then we have some ym+1n

in P ′, since P ′∩Xw 6= ∅. We can connect yml and ym+1n by an arc in TP and
TQs for Q ⊆ P ′. Using these arcs we construct Dmn and Ai similarly to the
proof of Theorem 2.1 and have Dn, Ai and the desired K =

⋃
nDn ∪

⋃
iAi.

Let X0 = Xw
h ∪

⋃
nDn ∪

⋃
iAi and r : X → X0 be the retraction obtained

as the union of rP and the identity on Xw
h .
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First we assume x ∈ Xw
h . We remark r(x) = x. To trace our previous

proof, we show h([l ]) = h([r ◦ l ]) for any loop l with base point x. By
[10, Theorem 1], π1(Y, y) is a subgroup of an inverse limit of free groups.
It suffices to show that g ◦ h([l−(r ◦ l)]) = e for every homomorphism g
from π1(Y, y) to a free group. By [9, Theorem 1.3] (cf. [3]), we have ε > 0
such that any open connected subset of X of diameter less than ε is g ◦ h-
simply connected. Since limm→∞Mesh(Pm) = 0, we may choose Pm so that
Mesh(Pm) < ε/2. We have a brick partition P of X such that P consists of
P ∈ Pm with P ∩Rm 6= ∅ and P ∈ Pi with P ∩Ri = ∅.

For a given loop l with base point x, we have 0 = u0 < u1 < · · · < uk = 1
such that l([ui, ui+1]) ⊆ P ∪ P ′ for P, P ′ ∈ P. If P ∩ P ′ 6= ∅ for P ∈ P ∩ Pi
with i < m and P ′ ∈ P, then P ∪ P ′ is h-simply connected according to
the effect of buffers. On the other hand, if P ∩ P ′ 6= ∅ for P, P ′ ∈ P ∩ Pm,
then diam(P ∪ P ′) < ε and hence P ∪ P ′ is g ◦ h-simply connected. Since
each P ∈ P is path-connected, working from k to 0 we see that l−(r ◦ l) is
homotopic to a concatenation of loops lk · · · l1 such that g ◦ h([li]) = e. Now
we have proved that g ◦ h([l−(r ◦ l)]) = e and hence h([r ◦ l ]) = h([l ]). Let
i : X0 ↪→ X be the inclusion map. Then for each loop l in X0 with base
point x we have h ◦ i∗([l ]) = h([l ]) and Xw

h ⊆ (X0)wh◦i∗ ⊆ X
w
0 ⊆ Xw

h .
The space Z obtained from this X0 as in the proof in Section 2 is a

one-dimensional Peano continuum which is homotopy equivalent to X0. Let
g0 : X0 → Z and g1 : Z → X0 be the homotopy equivalence. According to
our construction we have Xw

h ⊆ Z, and g0 and g1 are the identity on Xw
h .

Hence Zwh◦i∗◦g1∗ = (X0)wh◦i∗ = Xw
h . Let h0 = h ◦ i∗ ◦ g1∗ and Z = Zwh0

∪
⋃
iAi

where Ais are open arcs. We use h̃0 for the extension on Z defined just before
Lemma 3.9. Let cx be the constant path x and q = ψ(cx), where ψ and ξ
are defined for h0. For a loop l with base point x in X, using Lemma 3.3 we
have

h([l ]) = h ◦ i∗([r ◦ l ]) = h ◦ i∗ ◦ g1∗([g0 ◦ r ◦ l ]) = ϕq([ξ(g0 ◦ r ◦ l)])

= ϕq(h̃0∗([g0 ◦ r ◦ l ])) = ϕq ◦ (h̃0 ◦ g0 ◦ r)∗([l ]).

Now h̃0 ◦ g0 ◦ r is the desired continuous map.
When x /∈ Xw

h , we choose a path p from x0 ∈ Xw
h to x. Then we have

h ◦ ϕp : π1(X,x0) → π1(Y, y). By the preceding we have a continuous map
f : X → Y and a path q from f(x0) to y such that h ◦ ϕp = ϕq ◦ f∗. Let l
be a loop with base point x. Then

h([l ]) = h ◦ ϕp ◦ ϕp−([l ]) = h ◦ ϕp([plp−])

= ϕq ◦ f∗([plp−]) = ϕq([(f ◦ p)f ◦ l(f ◦ p)−])
= ϕq ◦ ϕ(f◦p)− ◦ f∗([l ]) = ϕ(f◦p)−q ◦ f∗([l ]),

which completes our proof.
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Proof of Corollary 1.3. By Theorem 2.1 we may assume X = Xw∪
⋃
iAi

where each Ai is an open arc. IfXw = ∅, then we obtain the conclusion easily.
We suppose that x0 ∈ Xw. Since f∗ is injective, we have Xw = Xw

f∗
and

we can define (f∗)̃ on X according to the definition just before Lemma 3.9.
For x ∈ Xw

f∗
, (f∗)̃ (x) is the unique point determined by Lemma 3.1 and

hence (f∗)̃ (x) = f(x). Let ψ : PXw
f∗ ,x0(X) → RPy(Y ) and ξ : PXw

f∗
(X) →

RP (Y ) be defined as before Lemma 3.3. For x ∈ Ai, we have (f∗)̃ (x) =
ξ(ai)(a−1

i (x)). Let p be a path from A1
i to x0. Then ξ(ai) ∼ ψ(aip)ψ(p)−.

By the uniqueness of [ψ(p)] according to Lemma 3.1, we have [ψ(p)] = [f ◦p]
and [ψ(aip)] = [f ◦ (aip)] by the same argument. Now,

ξ(ai) ∼ ψ(aip)ψ(p)− ∼ (f ◦ ai)(f ◦ p)(f ◦ p)− ∼ f ◦ ai
and so (f∗)̃ = ξ(ai) ◦ a−1

i and the restriction of f to Ai are homotopic. By
Lemma 4.1, f and (f∗)̃ are homotopic as in the proof of Theorem 1.1. Now
Lemma 3.10 implies the conclusion.

Remark 4.2. (1) Theorem 1.2 can most probably be proved in the case
where Y is a planar continuum using a method of C. Kent [13].

(2) For topologists who are not familiar with wild topology, it seems
to be difficult to understand what ideas work in the proofs of this paper.
Theorem 2.1 reduces Peano continua to simple ones. The idea of its proof is
standard in continuum theory going back to [1]. More unfamiliar parts seem
to be in Section 3, which extend [8]. In [8] we show that many things about
wild algebraic topology can be reduced to the Hawaiian earring and how the
homomorphic image of the fundamental group of the Hawaiian earring can
detect a point in the space in question due to the noncommutative Specker
phenomenon. This phenomenon goes back to G. Higman and is explained
in [8, Remark 3.16(4)]. The Higman theorem is related to the fundamen-
tal group and the shape group of the Hawaiian earring. An application to
topology of this theorem appeared in [6], which was used in [11]. A more ap-
parent topological use can be seen in [7, Corollary 2.11], where it is shown
that every endomorphism of the fundamental group of the Hawaiian ear-
ring is conjugate to the homomorphism induced from a continuous map.
This is a prototype of Lemma 3.1, by which we define h̃ on Xw

h for a ho-
momorphism h between the fundamental groups of one-dimensional Peano
continua. In the present paper we have extended the domain of h̃ to the
whole space X using Theorem 2.1 and strengthening results in [8] according
to the ideas there. In other published papers topological use of the noncom-
mutative Specker phenomenon can be seen in [2] and [16], though it is used
implicitly there.
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