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Dimension of countable intersections of some sets arising
in expansions in non-integer bases

by

David Färm (Lund), Tomas Persson (Warszawa)
and Jörg Schmeling (Lund)

Abstract. We consider expansions of real numbers in non-integer bases. These ex-
pansions are generated by β-shifts. We prove that some sets arising in metric number
theory have the countable intersection property. This allows us to consider sets of reals
that have common properties in a countable number of different (non-integer) bases. Some
of the results are new even for integer bases.

1. Introduction. Metric number theory is a classical and important
field in mathematics. Nowadays its applications go far beyond the study
of diophantine equations and are central in KAM-theory or linearisation of
parabolic fixed points in complex dynamics.

We will address the question of the sizes of some sets defined by their
properties of digits in a given base. The main purpose is not to restrict to
integer bases but to allow real bases arising from β-shifts. The main difficulty
in this set-up is that unlike integer bases most real bases have languages that
do not have the specification property. In particular the associated symbolic
dynamics are not of finite type. Hence the natural net-measure defined by
cylinders will not satisfy the regularity conditions needed for the known
methods to check the large intersection properties. Our main method is to
use the (fast) approximation of a general β-shift by β-shifts of finite type and
not to verify the large intersection property directly in the general β-shift.

The first class of sets we are interested in are sets of points whose ω-limit
set under the associate dynamics avoids a given point. If one chooses the
avoided point to be the origin this set consists of the points which are worst
approximable by “rationals” of the form p/βi, i ∈ N. Such sets are known as
the sets of badly approximable numbers and play a central role in classical
diophantine approximation. For a fixed base β these sets were studied in
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detail by Nilsson [8], [9]. One of the authors, Färm, proved that these sets
have the large intersection property provided β gives rise to a subshift of
finite type (see [3]). Our purpose is to avoid this condition. More precisely
we prove that for a given sequence of bases (βn)n, the Hausdorff dimension
of the set of points whose orbit in any of the β-shifts fβn : [0, 1] → [0, 1),
fβn(x) = βnx (mod 1) avoids the given point (jointly for all bases) is 1. To
prove this we will use a modification of Schmidt’s (α, β)-game. (In this paper
we will call it the (α, γ)-game, since β will be used for β-shifts.) Another
related question is about sets having a given rate of approximation. This
question (for fixed β) was addressed in [11].

The second class of sets we are interested in are sets of reals having the
property that the frequencies of occurrence of digits or finite words do not
exist. This is a subset of the irregular set studied in [2]. Färm proved that
such sets have full dimension and are in Falconer’s intersection class provided
β gives rise to a subshift of finite type (see [4]). We will prove that for any
given β these sets are in Falconer’s intersection class and hence have the large
intersection property. This implies that for a given sequence βn the set of
reals having no converging frequencies of digits (words) in any of the bases βn
has full dimension. The sets in question are defined by “semi-regular” points,
i.e. points that have a given Bernoulli (Markov) measure as an accumulation
point of their empirical measures. In this weak sense it provides a contrast
to the well-known fact (Schmidt, Feldman and Smorodinsky, and others)
that for a given Bernoulli measure in (integer) base g1, a.e. point has equal
frequency of all digits in any logarithmically independent base g2.

We also want to mention that the main results of the paper are of a more
general nature than the applications require. Therefore the techniques might
be applied to other situations as well.

2. Notation and theory

2.1. β-shifts and β-expansions. Let [x] denote the integer part of
the real number x, and let bxc denote the largest integer strictly smaller
than x. Let β > 1. To any x ∈ [0, 1] we associate the sequence d(x, β) =
(dn(x, β))∞n=0 ∈ {0, 1, . . . , bβc}N defined by

dn(x, β) := [βfnβ (x)],

where fβ(x) = βx (mod 1). The closure of the set

{d(x, β) : x ∈ [0, 1)}
is denoted by Sβ and called the β-shift . We will denote the set of all allowed
finite words in Sβ by S∗β . The sets Sβ and S∗β are invariant under the left-
shift σ : (in)∞n=0 7→ (in+1)∞n=0 and the map d(·, β) : x 7→ d(x, β) satisfies the
equality σn(d(x, β)) = d(fnβ (x), β). If we order Sβ with the lexicographical
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ordering then the map d(·, β) is one-to-one and increasing. The subshift Sβ
satisfies

(2.1) Sβ = {(jk)∞k=0 : σn(jk)∞k=0 < d(1, β) ∀n}.
Parry proved in [10] that the map β 7→ d(1, β) is strictly increasing. For

a sequence (jk)∞k=0 there is a β > 1 such that (jk)∞k=0 = d(1, β) if and only
if σn((jk)) < (jk) for every n > 0. The number β is then the unique positive
solution of the equation

1 =
∞∑
k=0

dk(1, β)
xk+1

.

One observes that the fact that the map β 7→ d(1, β) is strictly increasing
together with (2.1) implies that Sβ1 ⊆ Sβ2 if and only if β1 ≤ β2.

If x ∈ [0, 1] then

x =
∞∑
k=0

dk(x, β)
βk+1

.

This formula can be seen as an expansion of x in the non-integer base β,
and thereby generalises the ordinary expansion in integer bases.

We let πβ : Sβ → [0, 1) be defined by

πβ : (ik)∞k=0 7→
∞∑
k=0

ik
βk+1

.

Hence, πβ(d(x, β)) = x for any x ∈ [0, 1) and β > 1.
A cylinder s is a subset of Sβ such that

s = {(jk)∞k=0 ∈ Sβ : ik = jk, 0 ≤ k < n}
for some n and some sequence (ik)∞k=0. We then say that s is an n-cylinder
or a cylinder of generation n and write

s = [i0 · · · in−1].

The set πβ(s) is a half-open interval. We will also call πβ(s) a cylinder, and
sometimes identify the cylinders s and πβ(s).

We emphasise that if s = [i0 · · · in−1] is a non-empty n-cylinder, then
there is a largest k ≥ 0 such that

s = [i0 · · · in−1 0 · · · 0︸ ︷︷ ︸
k zeros

].

The set
s0 = [i0 · · · in−1 0 · · · 0︸ ︷︷ ︸

k+1 zeros

]

then satisfies σn+k+1(s0) = Sβ , so πβ(s0) is just a scaling of [0, 1) by a factor
1/βn+k+1.
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In the forthcoming we will restrict to the case β ∈ (1, 2] in order to keep
the notations and proofs as simple as possible. The general case is just a
technical/notational adjustment and does not require any new ideas.

2.2. The (α, γ)-game. We will use a one-dimensional version of a set-
theoretic game that was introduced by W. Schmidt in [12]. In our case, the
game is played on the unit interval [0, 1] equipped with Euclidean metric.
There are two players, Black and White, and two fixed numbers α, γ ∈ (0, 1).
A set E ⊂ [0, 1] is given before the game starts. The game is then played
according to the following rules.

In the initial step Black chooses any closed interval B0, and then
White chooses a closed interval W0 ⊂ B0 such that |W0| = α|B0|.
Then the following step is repeated. At step k Black chooses a closed
interval Bk ⊂ Wk−1 such that |Bk| = γ|Wk−1|. Then White chooses
a closed interval Wk ⊂ Bk such that |Wk| = α|Bk|.

It is clear that the set
∞⋂
k=0

Wk =
∞⋂
k=0

Bk

will always consist of exactly one point. A set E is said to be (α, γ)-winning
if White can always achieve that

∞⋂
k=0

Wk ⊂ E.

A set E is said to be α-winning if it is (α, γ)-winning for all γ.
For us, the key property of α-winning sets proved by Schmidt [12] can

be summarised as follows.

Proposition 1. If the set E ⊂ [0, 1] is α-winning for some α > 0, then
dimH(E) = 1.

Proposition 2. Let α > 0 and let (Ei)∞i=1 be a sequence of α-winning
sets. Then the set

⋂∞
i=1Ei is also α-winning.

2.3. A modified (α, γ)-game. We will use the following modification
of the (α, γ)-game. Let α0, γ0 ∈ (0, 1) be fixed.

In the initial step Black chooses any closed interval B0, and then
White chooses an α ∈ [α0, 1] and a closed interval W0 ⊂ B0 such that
|W0| = α|B0|.
Then the following step is repeated. At step k Black chooses γ ∈ [γ0, 1]
and a closed interval Bk ⊂ Wk−1 such that |Bk| = γ|Wk−1|. Then
White chooses a new α ∈ [α0, 1] and a closed interval Wk ⊂ Bk such
that |Wk| = α|Bk|.



Dimension of countable intersections 161

We say that a set E is (α0, γ0)-winning if White can always achieve
∞⋂
k=0

Wk ⊂ E,

and α0-winning if this holds for all γ0. We start by noting the connection to
the original game.

Proposition 3. If the set E ⊂ [0, 1] is α0-winning in the modified game,
then E is also α0-winning in the original (α, γ)-game.

If the set E ⊂ [0, 1] is α0-winning in the modified game, then it is also
winning for all smaller α0.

Proof. Let us agree to sometimes call White she and Black he. We em-
phasise however that the gender of the players has no influence on the proof.

We prove the first statement. Assume E is α0-winning in the modified
game. So White always wins no matter what γk Black chooses. In particular
if Black plays as below White still wins. Assume that Black chooses his γ as
follows.

In the initial step Black chooses any closed interval B0, and then
White chooses an α(0) ∈ [α0, 1] and a closed interval W0 ⊂ B0 such
that |W0| = α(0)|B0|.
Then the following step is repeated. At step k Black chooses γ(k) =
γ0

α0
α(k−1) and a closed interval Bk⊂Wk−1 such that |Bk|=γ(k)|Wk−1|.

Then White chooses a new α(k) ∈ [α0, 1] and a closed interval Wk ⊂
Bk such that |Wk| = α(k)|Bk|.

Since γ(k) ≥ γ0α0 for all k, we know by assumption that White can make
sure that

⋂∞
k=0Wk ⊂ E for all γ0. Note that now we have |Bk+1| = α0γ0|Bk|

and |W (k)| ≥ α0|B(k)| for all k. We can interpret this as the original (α, γ)-
game where α = α0 and γ = γ0 in which White uses a strategy where she
sometimes does not use all her freedom given by α and lets Black use this
freedom instead. Thus, E is α0-winning in the original (α, γ)-game.

The second statement of the proposition is obviously true.

Corollary 1. If the set E ⊂ [0, 1] is α-winning in the modified game
for some α > 0, then dimH(E) = 1.

Proof. This follows immediately from Propositions 1 and 3.

From now on we will only use the modified game in the rest of the paper.
The proof of the following proposition is a slight modification of the proof

of Theorem 2 from [12].

Proposition 4. Let α0 > 0 and let (Ei)∞i=1 be a sequence of α0-winning
sets. Then the set

⋂∞
i=1Ei is also α0-winning.
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Proof. Let α0 > 0 and let (Ei)∞i=1 be a sequence of α0-winning sets. We
will produce a strategy for White that ensures that

⋂∞
k=0Wk ⊂

⋂∞
i=1Ei.

Given γ0, at the first, third, fifth, . . . turn, White plays according to a
strategy from the (α0, α0γ

2
0)-game which ensures that

⋂∞
k=0Wk ⊂ E1. This

strategy will be completely independent of what White does in the rest of
her turns.

At the second, sixth, tenth, . . . turn, White plays according to a strat-
egy from the (α0, (α0γ0)3γ0)-game which ensures that

⋂∞
k=0Wk ⊂ E2. This

strategy will be completely independent of what White does in the rest of
her turns.

In general, at play number k, where k = 2l−1 mod 2l, White plays as if
she was playing the (α0, (α0γ0)2l−1γ0)-game ensuring that

⋂∞
k=0Wk ⊂ El.

Thus, playing according to this strategy, White can make sure that⋂∞
k=0Wk ⊂

⋂∞
i=1Ei.

2.4. Falconer’s intersection classes. In [6] Falconer characterises a
family of classes Gs of sets with the property that any countable intersection
of sets in Gs is in Gs and the Hausdorff dimension of any set in Gs is at
least s. Below we give one of the many possible definitions (see also [5, 7]) of
the classes Gs and some results about them. We will only formulate this for
subsets of the unit interval, although the construction in [6] is done in Rn.

We denote by |A| the diameter of a set A and define

Ms
∞(F ) = inf

{∑
i

|Ui|s : F ⊂
⋃
i

Ui

}
.

where each Ui is of the form [a/2i, (a+ 1)/2i), a ∈ {0, 1, . . . , 2i − 1}. Note
that thatMs

∞(F ) ≤ |F |s for any set F . We say that a set E ⊂ [0, 1] is in the
class Gs if E is a Gδ set andMs

∞(E ∩ I) = |I|s for any interval I ⊂ [0, 1].
We will use the following properties of the classes Gs. For proofs, see [6].
Proposition 5. A Gδ set E is in the class Gs if and only if there is a

constant C > 0 such thatMs
∞(E ∩ I) > C|I|s for any interval I ⊂ [0, 1).

Proposition 6. If E is in Gs, then dimH(E) ≥ s. If Ek, k ∈ N, are sets
in Gs, then

⋂
k∈NEk is in Gs.

Proposition 7. Gs =
⋂
t<s Gt.

3. Results. The main results of this paper are the following two theo-
rems. The theorems aim towards the applications in Section 4, but can be
used for a wider set of purposes. Both theorems are approximation theorems
in the following sense. If we approximate a subset of Sβ by subsets of Sβn ,
where Sβn is of finite type, and prove that all approximations are either
α0-winning or in the class Gs, can we then conclude that the subset of Sβ is
either α0-winning or in the class Gs?
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Theorem 1. Let β ∈ (1, 2) and let (βn)∞n=1 be any sequence with βn ∈
(1, β) for all n such that βn → β as n→∞. Let also E ⊂ Sβ and α ∈ (0, 1).
If πβn(E∩Sβn) is α0-winning for α0 = α for all n, then πβ(E) is α0-winning
for any α0 ≤ min{1/16, α/4}.

Theorem 2. Let β ∈ (1.541, 2) and let (βn)∞n=1 be any sequence with
βn ∈ (1.541, β) for all n such that βn → β as n→∞. Assume that E ⊂ Sβ
and πβn(E ∩ Sβn) is in Gs for all n. If F is a Gδ set such that F ⊃ πβ(E),
then F is also in Gs.

Remark. The constant 1.541 is a technical condition for our proof of
Lemma 1. There seems to be no general reason why the statement should
fail for smaller β. The constant is the inverse of the transversality constant
appearing in [13].

4. Applications of Theorems 1 and 2

4.1. The (α, γ)-game and β-shifts. Consider the set

Gβ(x) :=
{
y ∈ [0, 1) : x /∈

∞⋃
n=0

fnβ (y)
}
,

which is the set of all points for which the forward orbit under the map fβ is
bounded away from some given point x ∈ [0, 1]. In Sβ this set is represented
by

Eβ(x) =
∞⋃
n=1

{(yi)∞i=0 ∈ Sβ : x0 . . . xn−1 6= yk . . . yk+n−1 ∀k ≥ 0},

where πβ((xi)∞i=0) = x.
Consider β such that the expansion of 1 terminates, i.e.

d(1, β) = j0 . . . jk−10∞.

The set of such β is dense in (1, 2). Thus, given β ∈ (1, 2) we can find
a sequence (βn)∞n=1 converging to β from below such that the expansion
of 1 terminates for each βn. Let x = πβ((xi)∞i=0), where (xi)∞i=0 ∈ Sβ . If
(xi)∞i=0 /∈ Sβn , we have

πβn(Eβ(x) ∩ Sβn) = [0, 1)

which is of course α-winning in [0, 1]. If instead (xi)∞i=0 ∈ Sβn , then

πβn(Eβ(x) ∩ Sβn) = Gβn(πβn((x)∞i=0)).

We obtain from [3, Theorem 1.5 and Remark 3.2] the following
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Theorem 3. Let β ∈ (1, 2) be such that the expansion of 1 terminates.
Then for any x ∈ [0, 1] the set

Gβ(x) =
{
y ∈ [0, 1) : x /∈

∞⋃
n=0

fn(y)
}
,

is α-winning in the modified (α, γ)-game in [0, 1] for any α ≤ 1/4.

Thus πβn(Eβ(x) ∩ Sβn) is α-winning for all n for any α ≤ 1/4. Since

Gβ(x) = πβ(Eβ(x)),
Theorems 1 and 3 imply

Theorem 4. For any β ∈ (1, 2) and x ∈ [0, 1] the set

Gβ(x) =
{
y ∈ [0, 1) : x /∈

∞⋃
n=1

fn(y)
}
,

is α-winning in the modified (α, γ)-game in [0, 1] for any α ≤ 1/16.

By Proposition 4, the intersection of α-winning sets is α-winning, and by
Corollary 1, α-winning sets have full dimension, so we get

Corollary 2. Let (βi)∞i=1 be a sequence in (1, 2) and let (xi)∞i=1 be a
sequence of points in [0, 1]. Then

dimH

( ∞⋂
i=1

Gβi(xi)
)

= 1.

Remark. If we choose (xi)∞i=1 = 0∞ we are in the case of badly approx-
imable numbers.

4.2. Falconer’s intersection classes and β-shifts. Let β ∈ (1.541, 2)
and let (wj)2m

j=1 be all words of length m in the alphabet {0, 1}. We define

τβwj (x, n) = #{i ∈ {0, . . . , n−m− 1} : xi, . . . , xi+m−1 = wj}.

For p̄ = (pwj )
2m
j=1, we define

Gβ,mp̄ =
{
x :

τβwj (x, n)
n−m

→ pwj as n→∞, j = 1, . . . , 2m
}

where 0 ≤ pwj ≤ 1 can be interpreted as the frequency of the word wj in
d(x, β). We also define

Gβ,mp̄ (n, ε) =
{
x ∈ [0, 1) : pwj − ε <

τβwj (x, n)
n−m

< pwj + ε, j = 1, . . . , 2m
}

and note that

Gβ,mp̄ ⊂
∞⋂
N=1

∞⋃
n=N

Gβ,mp̄ (n, ε)

for all ε > 0. In [4] the following was proved:
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Proposition 8. Let β ∈ (1, 2) be such that the expansion of 1 termi-
nates and m ∈ N. If p̄ is such that there is a word v 6= 0m with pv > 0 for
0 < ε < pv, the set

∞⋂
N=1

∞⋃
n=N

Gβ,mp̄ (n, ε)

is in the class Gs for each s ≤ dimH(Gβ,mp̄ ).

We will use Theorem 2 to prove the following.

Theorem 5. Let β ∈ (1.541, 2). Then for any word w ∈ S∗β of any length
m the set of numbers x ∈ [0, 1) for which τβw(x, n)/(n−m) does not converge
as n → ∞, in the expansion in base β, contains a set from the class Gs for
each s < 1.

Theorem 5 together with Proposition 6 leads to the following corollary.

Corollary 3. Let (βi)∞i=1 be any sequence in (1.541, 2). Then the set of
numbers for which τβiw (x, n)/(n−m) does not converge as n → ∞ for any
word w∈ S∗βi of any length m, in the expansion to any base βi, has Hausdorff
dimension 1.

Corollary 3 generalises Theorem 1.7 in [4], where the statement of the
corollary was proved in the case where all Sβi are of finite type. The condition
β > 1.541 was however not needed in [4].

Note that since there is an ergodic measure equivalent to Lebesgue mea-
sure, the set of points for which the frequencies converge for all βi has full
Lebesgue measure. It is however often the case that the exceptional points
have full Hausdorff dimension. For instance, it was proved in [2] for repellers
and subshifts of finite type that for finitely many Hölder continuous func-
tions, the set of points for which the ergodic averages of the functions do
not converge, has full dimension. By letting these functions be indicator
functions of cylinders corresponding to some words, this implies that the set
of points with no frequencies of these words has full dimension for a fixed
system. Our result is stronger in the sense that we consider all (countably
many) words, and countably many systems at the same time.

We will need the following lemma.

Lemma 1. Let β0 > 1.541 and β0 < β′ ≤ 2. Then for any constant
0 < c < 1, there is a constant d > 0 such that

|πβ1(I)| ≥ c|πβ(I ∩ Sβ)|
log β1
log β

for any β and β1 with β0 < β′− d < β ≤ β1 < β′, and any symbolic interval
I = [a, b] ⊂ Sβ1 .
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We postpone the proof of Lemma 1 to Section 6. With the use of Lemma 1
we can now prove the following lemma.

Lemma 2. Let β > 1.541 and let w be a word of length m. Let (βn)∞n=1

be an increasing sequence in (1.541, β) such that Sβn is of finite type and
βn → β. For any s < 1 there is an N ∈ N, a δ > 0 and probability vectors p̄
and q̄ such that |pw − qw| > δ while

dimH(Gβn,mp̄ ) ≥ s and dimH(Gβn,mq̄ ) ≥ s
for all n ≥ N .

Proof. Let s < 1 be given and take 0 < σ < 1 − s. Then we can choose
N so large that

log βn
log β

> 1− σ for all n ≥ N .

Let p̄ be a probability vector such that GβN ,mp̄ has full dimension. Now,
let δ > 0 be so small that there is a probability vector q̄ with |qw − pw| > δ

and dimH(GβN ,mq̄ ) ≥ s/(1 − σ). This can be done according to Theorems 5
and 13 in [1], since Sβn is a subshift of finite type. There it is claimed that
p̄ 7→ dimH(GβN ,mp̄ ) is real analytic (and obviously not constant), so it is clear
that such a q exists.

For n ≥ N , and a set A ⊂ SβN , let en(A) denote the embedding of A
into Sβn . Then, by choosing N sufficiently large, Lemma 1 implies that

dimH(en(A)) ≥ log βN
log βn

dimH(A) > (1− σ) dimH(A),

so we get

dimM (Gβn,mq̄ ) ≥ dimH(en(GβN ,mq̄ )) > (1− σ) dimH(GβN ,mq̄ ) > s

and

dimM (Gβn,mp̄ ) ≥ dimH(en(GβN ,mp̄ )) > (1− σ) dimH(GβN ,mp̄ ) = 1− σ > s

for all n ≥ N .

Proof of Theorem 5. Let β ∈ (1.541, 2), s < 1 and w ∈ S∗β be a word
of length m. Let (βn)∞n=1 be a sequence in (1.541, β) such that βn → β as
n → ∞ and Sβn is a subshift of finite type for each n. Indeed, that such a
sequence exists was noted already in Section 4.1.

According to Lemma 2 we can find δ > 0 and vectors p̄ and q̄ such that
|qw − pw| > 4δ while dimH(Gβn,mp̄ ) > s and dimH(Gβn,mq̄ ) > s for all n ≥ N
for some N ∈ N.

Let G1
k be the set of generation k cylinders in Sβ such that the frequency

of each word w of length m is δ-close to pw. Let G2
k be the set of generation k

cylinders in Sβ such that the frequency of each word w of length m is δ-close
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to qw. It is no restriction to assume that there are words u, v 6= 0m such that
qw > 0 and pu > 0. Indeed, if there were no such words, then we would not
have dimH(Gβn,mp̄ ) > s and dimH(Gβn,mq̄ ) > s.

By Proposition 8 the sets

πβn

( ∞⋂
M=1

∞⋃
k=M

G1
k ∩ Sβn

)
and πβn

( ∞⋂
M=1

∞⋃
k=M

G2
k ∩ Sβn

)
are in the class Gs for all n ≥ N , if δ is chosen small enough. Theorem 2 now
implies that the Gδ sets

πβ

( ∞⋂
M=1

∞⋃
k=M

G1
k

)
and πβ

( ∞⋂
M=1

∞⋃
k=M

G2
k

)
are in the class Gs.

To see that these sets are Gδ consider a point x ∈ [0, 1) that is on the
boundary of πβ(G1

k). Then τβw(x, n)/(n−m) → 0 as n → ∞ for all words
w 6= 0m, making it impossible for x to be in πβ(G1

j ) for large j. Thus, we
can just as well replace the sets πβ(G1

k) by their interiors.

5. Proof of Theorem 1

5.1. An auxiliary strategy. In this section we will prove the following
lemma.

Lemma 3. The set ⋃
β′<β

πβ(Sβ′)

is α0-winning for any α0 ≤ 1/16 in the modified (α, γ)-game.

In the proof we give a strategy for White to make sure that
⋂∞
k=0Wk ⊂⋃

β′<β πβ(Sβ′). We call this strategy an auxiliary strategy, since it will be
used in the next section to construct a winning strategy for the set πβ(E)
from Theorem 1.

Proof of Lemma 3. Let α0 = 1/16. Before giving a winning strategy,
let us introduce some notation. In the first step Black chooses B0,0. Then
White chooses W0,0 and so on until Black and White have chosen B0,k0 and
W0,k0 . Then Black chooses B1,0 and so on. This yields a sequence of natural
numbers (kj)∞j=0 and sets Bj,k and Wj,k for any j and k ≤ kj such that

Bj−1,kj−1
⊇Wj−1,kj−1

⊃ Bj,0 ⊇Wj,0 ⊃ · · · ⊃ Bj,k ⊇Wj,k ⊃ · · · ⊃ Bj,kj · · ·

We now give the strategy for White to choose the sets Wj,k. Assume
that Black has chosen Bj,0. There is a smallest nj such that Bj,0 contains a
cylinder Cnj of generation nj . (We identify Cnj with πβ(snj ), where snj is
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a cylinder in Sβ .) Let Dnj be the collection of all cylinders of generation nj
which have non-empty intersection with Bj,0.

Cnj

Bj,0︷ ︸︸ ︷
︸ ︷︷ ︸S

Dnj

We then iterate:

White chooses α ∈ [α0, 1) and Wj,k ⊂ Bj,k such that Wj,k is a union
of elements in Dnj (and the right endpoint, since Wj,k is closed while
the elements in Dnj are half-open). Black chooses Bj,k+1 ⊂Wj,k,

until White cannot choose Wj,k that is a union of elements in Dnj .
We now have two cases:

Case 1: Bj,k has non-empty intersection with more than one element
of Dnj .

Case 2: Bj,k is contained in one element of Dnj .

Observe that it can happen that the iteration above is not carried out,
in which case we are in Case 1. We will treat each of the cases separately.

Case 1: In this case Bj,k has non-empty intersection with more than one
element of Dnj . We observe that if D′nj ⊂ Dnj consists of the elements of
Dnj that are subsets of Bj,k, then |

⋃
D′nj | < α0Bj,k, since otherwise White

can chooseWj,k to be
⋃
D′nj . Moreover there are at least one element and at

most two elements of Dnj \D′nj that have non-empty intersection with Bj,k.
Let t0 be a cylinder such that |Bj,k ∩ t0| is maximal. Then |Bj,k ∩ t0| >
1−α0

2 |Bj,k| >
1
4 |Bj,k|. This means that by using a factor 1/4 of the total

α0 = 1/16, White has reduced the situation to Case 2.

Case 2: Let s = [i0 · · · inj+n−1] be the smallest cylinder in which Bj,k
is contained. Let k be the largest number such that [i0 · · · inj+n−10k] =
[i0 · · · inj+n−1]. Let s0k0 and s0k1 denote the cylinders [i0 · · · inj+n−10k0] and
[i0 · · · inj+n−10k1] respectively. We note that s0k0 and s0k1 are non-empty
and s = s0k0 ∪ s0k1.

If |s0k0 ∩ Bj,k| > 1
4 |Bj,k| then we let Wj,k = s0k0∩Bj,k. Otherwise

we have |s0k1 ∩ Bj,k| > 3
4 |Bj,k|. Let k

′ be the largest number such that
[i0 · · · inj+n−10k10k

′
] = [i0 · · · inj+n−10k1]. We denote [i0 · · · inj+n−10k10k

′
0]

by s0k10k
′
0, and we get |s0k10k

′
0 ∩ Bj,k| > 3

4β |Bj,k| >
1
4 |Bj,k|. Let Wj,k =

s0k10k
′
0 ∩Bj,k.
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This ends Case 2. Observe that in Case 2, White has only used at most
a factor 1/4 out of the total α0 = 1/16 that she is allowed to use, so in case
we arrived at Case 2 from Case 1, White has used at most a factor 1/16 as
allowed.

For j ≥ 1, let Cj+1 be the cylinder s0k0 or s0k10k
′
0 in which White was

able to place Wj,k. We note that σk+1(s0k0) = σk+1+k′+1(s0k10k
′
0) = Sβ .

This means Cj is just a scaled version of [0, 1). Let also C0 = [0, 1). We
define Bj,kj = Bj,k and Wj,kj = Wj,k, and let Black choose Bj+1,0.

We claim that there exists a number N depending only on α0, γ0, β and
|B0,0| such that the difference between the generations of the cylinders Cj+1

and Cj is always smaller than N .
Note first that |Bj+1,0| ≥ |Cj |min{|B0,0|, α0γ

2
0}. As already noted, each

Cj is a scaling of [0, 1) so for each α0, γ0, β and |B0,0| there are only finitely
many possible Dnj . Recall that Cj+1 was chosen as a subset of an element
of Dnj depending on how Black chose Bj,kj . If we let Ej+1 be the element of
Dnj chosen, then we have |Cj+1| ≥ |Wj,kj | ≥ α0|Bj,kj | ≥ α0γ0|Ej+1|. Since
there are finitely many possible Ej+1, there are finitely many possible Cj+1.
Thus, for a fixed j, the difference in generation between Cj+1 and Cj is
bounded. Since changing j only results in a scaling, this bound is independent
of j, so there is indeed a number N that bounds the difference between the
generations of the cylinders Cj+1 and Cj from above, for all j.

If White uses the strategy described above and if

{πβ((in)∞n=0)} =
∞⋂
j=0

Wj,0 =
∞⋂
j=0

Cj ,

then (in)∞n=0 cannot contain sequences of d(1, β) that are longer than N .
Hence (in)∞n=0 ∈ Sβ′ if β′ < β is such that dn(1, β′) = dn(1, β) for all n ≤ N .
This implies that the set ⋃

β′<β

πβ(Sβ′)

is (α0, γ0)-winning for α0 ≤ 1/16 and any γ0, i.e. it is α0-winning for
α0 ≤ 1/16.

5.2. A winning strategy in the (α, γ)-game. In this section we will
use the auxiliary strategy to prove Theorem 1. First we need some lemmata.
Given an interval I ⊂ [0, 1) and 1 < β′ < β < 2, let I(β,β′) ⊂ [0, 1) denote
the interval πβ′(π−1

β (I) ∩ Sβ′).
Lemma 4. Let β ∈ (1, 2). For any K ∈ (0, 1) and ε > 0, there is a β0 ∈

(1, β) such that for all intervals I ⊂ [0, 1) with |I| > K the corresponding
interval I(β,β′) satisfies

|I|(1− ε) < |I(β,β′)| < |I|(1 + ε)
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and
|I(β,β′)|(1− ε) < |I| < |I(β,β′)|(1 + ε)

for all β′ ∈ [β0, β).

Proof. This follows from the fact that the function

[0, 1) 3 x =
∞∑
k=0

dk(x, β′)
(β′)k+1

7→
∞∑
k=0

dk(x, β′)
βk+1

,

where β′ < β, converges uniformly to the identity as β′ → β.

Lemma 5. Let β ∈ (1, 2). For any K ∈ (0, 1) and ε > 0, there is a β0 ∈
(1, β) such that for all cylinders [i0 . . . in−10] in Sβ such that [i0 . . . in−10] 6=
[i0 . . . in−1] and all intervals I ⊂ [i0 . . . in−10] with |I| > K|[i0 . . . in−10]| and
such that all 1/4-parts of I contain points from πβ(Sβ0), the corresponding
interval I(β,β′) satisfies

1
2
|I|(1− ε) < |I(β,β′)|

β′n+1

βn+1
< |I|(1 + ε)

and

|I(β,β′)|(1− ε) < |I|
βn+1

β′n+1
< 2|I(β,β′)|(1 + ε)

for all β′ ∈ [β0, β).

Proof. Fix K and let I satisfy the assumptions. We have

I =
( ∞∑
i=0

ai
βi+1

,

∞∑
i=0

bi
βi+1

)
,

where (ai)∞i=0, (bi)
∞
i=0 ∈ Sβ . Let I ′ be the largest interval

I ′ =
( ∞∑
i=0

a′i
βi+1

,

∞∑
i=0

b′i
βi+1

)
⊂ I

such that (a′i)
∞
i=0, (b

′
i)
∞
i=0 ∈ Sβ′ . Note that this implies I ′(β,β′) = I(β,β′). By

the assumptions on I we also have |I ′| > 1
2 |I|. Moreover,

|I ′| =
∣∣∣∣ ∞∑
i=0

a′i − b′i
βi+1

∣∣∣∣ =
∣∣∣∣ ∞∑
i=n+1

a′i − b′i
βi+1

∣∣∣∣
= β−(n+1)

∣∣∣∣ ∞∑
i=0

a′i+n+1 − b′i+n+1

βi+1

∣∣∣∣ = β−(n+1)|J ′|,

where

J ′ =
( ∞∑
i=0

a′i+n+1

βi+1
,
∞∑
i=0

b′i+n+1

βi+1

)
⊂ [0, 1)

and |J ′| > K.
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By Lemma 4 we can choose β0 such that

|J ′|(1− ε) < |J ′(β,β′)| < |J
′|(1 + ε)

and
|J ′(β,β′)|(1− ε) < |J

′| < |J ′(β,β′)|(1 + ε)

for all β′ ∈ [β0, β). Since (a′i)
∞
i=0, (b′i)

∞
i=0 ∈ Sβ′ , we have

I ′(β,β′) =
( ∞∑
i=0

a′i
(β′)i+1

,
∞∑
i=0

b′i
(β′)i+1

)
and

J ′(β,β′) =
( ∞∑
i=0

a′i+n+1

(β′)i+1
,

∞∑
i=0

b′i+n+1

(β′)i+1

)
.

It follows that

|I ′(β,β′)| =
∣∣∣∣ ∞∑
i=0

a′i − b′i
(β′)i+1

∣∣∣∣ =
∣∣∣∣ ∞∑
i=n+1

a′i − b′i
(β′)i+1

∣∣∣∣
= β′−(n+1)

∣∣∣∣ ∞∑
i=0

a′i+n+1 − b′i+n+1

(β′)i+1

∣∣∣∣ = β′−(n+1)|J ′(β,β′)|.

This implies

|I ′|(1− ε) < |I ′(β,β′)|
β′n+1

βn+1
< |I ′|(1 + ε)

and

|I ′(β,β′)|(1− ε) < |I
′| β

n+1

β′n+1
< |I ′(β,β′)|(1 + ε).

Using |I ′| < |I| < 2|I ′| and |I ′(β,β′)| = |I(β,β′)| we get

1
2
|I|(1− ε) < |I(β,β′)|

β′n+1

βn+1
< |I|(1 + ε)

and

|I(β,β′)|(1− ε) < |I|
βn+1

β′n+1
< 2|I(β,β′)|(1 + ε).

We are now ready to prove Theorem 1.

Proof of Theorem 1. We will show that there is a strategy for White such
that for each γ0 > 0, |B0| > 0 and β ∈ (1, 2), there is a β∗ < β such that
White can make sure that in the (α0, γ0)-game we get

⋂∞
i=1Wi ⊂ πβ(Sβ∗∩E)

if α0 ≤ min{1/16, α/4}. First of all we note that it is sufficient to prove this
for small γ0, for example γ0 ≤ 1/4. Indeed, a winning strategy for White from
the (α0, γ0)-game works just as well in any (α0, γ1)-game where γ1 > γ0.

The game begins when Black chooses B0. The first task for White is to
make sure that the game stays in πβ(Sβ∗). By Lemma 3 we know that there
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is a strategy for White that enables her to do this for α ≤ 1/16. We let
White play Wi according to this strategy for all even turns i. That she does
not play each time can be interpreted as that γ0 is replaced by α0γ

2
0 , which

is no problem for White since she can handle any γ0 > 0. So, by Lemma 3,
White can make sure that

⋂∞
i=1Wi ⊂ πβ(Sβ∗) for some β∗ ∈ (1, β).

We know from the proof of Lemma 3 that the strategy White uses at the
even turns ensures that after playing the game a finite number of turns, we
have Wi1 ⊂ Ci1 , where Ci1 = πβ(si1) is a generation i1 cylinder in Sβ which
is a scaling of [0, 1) such that si1 is non-empty as a cylinder in Sβ∗ , and
|Wi1 | ≥ K|Ci1 | for some K > 0. After this is done, White starts over at the
next even turn and sooner or later achieves Wi2 ⊂ Ci2 , where Ci2 = πβ(s2)
again is a scaling of [0, 1) such that s2 is non-empty as a cylinder in Sβ∗

and |Wi2 | ≥ K|Ci2 |. It follows from the proof of Lemma 3 that i2 − i1 is
bounded. This implies that |Wi2 | ≥ L|Wi1 |, where L > 0 depends only on
α0, β, γ0 and |B0|.

Consider now the odd turn for White that takes place after White played
Wik ⊂ Cik and Black played Bi1+1. Obviously we have |Wik+1| ≤ |Wik |.
Compare this with the next time White is in the same situation. Then she
has to play Wik+1+1 ⊂ Bik+1+1. But |Bik+1+1| ≥ γ0|Wik+1

| ≥ γ0L|Wik | so if
White plays only at these special situations, then it appears to White as if
her opponent has played with γ0L instead of just γ0.

We will now use Lemma 5. White is given an interval Bik+1 which consti-
tutes at least a fraction α0γ

2
0 of a cylinder Cik = πβ(sik) that is a scaling of

[0, 1) and such that sik is non-empty as a cylinder in Sβ∗ . Regardless of how
White plays, the interval Wik+1 constitutes at least a fraction α2

0γ
2
0 of the

same cylinder. Since we have already made sure that
⋂∞
i=1Wi ⊂ πβ(Sβ∗),

it is clear that every 1/4 part of Bik+1 (as well as Bik+1+1) contains points
from πβ(Sβ∗). Letting A∗ denote A(β,β∗) for a set A, Lemma 5 then im-
plies

|B∗ik+1+1|
|W ∗ik+1|

>
1− ε

2(1 + ε)
|Bik+1+1|
|Wik+1|

≥ γ0L
1− ε

2(1 + ε)
.

Thus, if we consider the game in Sβ∗ , it is as if Black played with 2−1γ0L
1−ε
1+ε

instead of γ0. But this is no problem since the set E is winning for all γ0 > 0
as long as α0 ≤ α. We want to allow White to use her strategy from Sβ∗ to
choose a set W ∗ik+1 such that |W ∗ik+1| ≥ α|B∗ik+1|. In Sβ , this would give us
a set Wik+1 ⊂ Bik+1. Again by Lemma 5 we get

|Wik+1|
|Bik+1|

>
1− ε

2(1 + ε)
|W ∗ik+1|
|B∗ik+1|

≥ α

2
1− ε
1 + ε

.

Thus, if we use α0 ≤ min{1/16, α/4}, we can choose β0 such that White gets
α to play with in Sβ∗ . So, in Sβ∗ White plays an (α0, γ0)-game with α0 ≤ α
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and γ0 > 0. By assumption, there is a strategy White can use to make sure
that

⋂∞
k=1Wik+1 ⊂ πβ(E ∩ S∗β).

We can do this for any γ0 > 0 and any |B0|. Thus the set

πβ(E) ⊃
⋃
β′<β

πβ(E ∩ S′β)

is α0-winning in [0, 1] for all α0 ≤ min{1/16, α/4}.

6. Proof of Theorem 2. The proof of Theorem 2 will rely on the
following lemma by Solomyak. We refer to [13] for a proof.

Lemma 6. Let x0 < 0.649. There is a constant δ > 0 such that if x ∈
[0, x0] then the implication

g(x) ≤ δ ⇒ g′(x) < −δ
holds for any function g(x) of the form

g(x) = 1 +
∞∑
k=1

akx
k, ak ∈ {−1, 0, 1}.

Corollary 4. Let

g(β) = 1 +
∞∑
k=1

ak
βk
, ak ∈ {−1, 0, 1},

and β0 > 1.541. Then there is a constant δ such that if β > β0 then

g(β) < δ ⇒ g′(β) > δβ−2.

Proof. Let x0 = β−1
0 and take δ according to Lemma 6. Let i(x) = x−1

and

h(x) = 1 +
∞∑
k=1

an+kx
k.

Then g(β) = h ◦ i(β) and g′(β) = −h′(i(β))β−2.
If g(β) < δ then h(i(β)) < δ and by Lemma 6 we have h′(i(β)) < −δ

and so g′(β) > δβ−2.

We are now ready to prove Lemma 1, which was already stated in Sec-
tion 4.2. For convenience we restate it here.

Lemma 1. Let β0 > 1.541 and β0 < β′ ≤ 2. Then for any constant
0 < c < 1, there is a constant d > 0 such that

|πβ1(I)| ≥ c|πβ(I ∩ Sβ)|
log β1
log β ,

for any β and β1 with β0 < β′− d < β ≤ β1 < β′, and any symbolic interval
I = [a, b] ⊂ Sβ1 .
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Proof. Fix β0, β1 and pick 0 < δ < 1 according to Corollary 4. It is
sufficient to prove the lemma in the case when a, b ∈ Sβ and a < b.

Let

f(t) =
( ∞∑
k=0

bk − ak
tk+1

) log β1
log t

.

Then f(β1) = |πβ1(I)| and f(β) = |πβ(I ∩ Sβ)|
log β1
log β . We will show that

f(β1) > cf(β).
If n − 1 is the smallest number such that an−1 6= bn−1, then an−1 = 0,

bn−1 = 1 and

f(t) = β−n1

(
1 +

∞∑
k=0

bk+n − ak+n

tk+1

) log β1
log t

.

Let

g(t) = 1 +
∞∑
k=0

bk+n − ak+n

tk+1
.

Then g(β) > 0. We have f(β) = β−n1 g(β)
log β1
log β . This implies that

(6.1) f ′(β) = β−n1 g(β)
log β1
log β

(
− log β1

(log β)2

1
β

log g(β) +
log β1

log β
g′(β)
g(β)

)
.

By (6.1) and Corollary 4, we observe f ′(β) > 0 if g(β) < δ < 1, since
then both terms in the parentheses are positive. Hence if g(β) < δ then
f(β) < f(β1).

Otherwise, if g(β) ≥ δ, we first observe that

|g′(β)| ≤
∞∑
k=1

k

βk+1
=

1
(β − 1)2

<
1

(β0 − 1)2
.

Then by (6.1) we get

|f ′(β)| ≤ β−n1 g(β)
log β1
log β

(
− log β1

(log β)2

1
β

log δ +
log β1

log β
(β0 − 1)−2

δ

)
≤ f(β)

(
− log β1

(log β0)2

1
β0

log δ +
log β1

log β0

1
δ(β0 − 1)2

)
= Cf(β),

where C only depends on β0 and β′. Hence f(β1) > cf(β) for all β ≤ β1 < β′

provided that β′ − β < (log c)/C. Take 0 < d < (log c)/C.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Given an interval J ⊂ [0, 1), let J̃ ⊂ [0, 1) denote
the interval we get if we take πβn(π−1

β (J) ∩ Sβn).
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Let I be any interval in [0, 1) and let ε > 0 be so small that |I|ε ≥ 1/2.
Use Lemma 1 to find n0 such that

|J | ≥ 1
2
|J̃ |

log β
log βn

for all intervals J ⊂ [0, 1) and all n ≥ n0. Choose n1 > n0 so large that
(s− ε) log β

log βn
< s for all n ≥ n1. Choose n2 > n1 so large that |Ĩ|s > 1

2 |I|
s for

all n ≥ n2.
Let (Ui) be any cover of F ∩ I with Ui ⊂ [0, 1) for all i. Then (Ũi) is a

cover of
πβn(π−1

β (F ∩ I) ∩ Sβn) ⊃ πβn(E ∩ Sβn) ∩ Ĩ .
Since πβn(E ∩ Sβn) is in Gs for all n, we get∑

|Ui|s−ε >
∑ 1

2
|Ũi|(s−ε)

log β
log βn >

∑ 1
2
|Ũi|s

≥ 1
2
Ms
∞(πβn(E ∩ Sβn) ∩ Ĩ) ≥ 1

2
|Ĩ|s > 1

4
|I|s > 1

8
|I|s−ε

for all n ≥ n2. Since the cover (Ui) was arbitrary we get

Ms−ε
∞ (F ∩ I) ≥ 1

8
|I|s−ε.

Since the interval I ⊂ [0, 1) was arbitrary and F is a Gδ set, Proposition 5
implies that F is in the class Gs−ε. But we can do this for arbitrarily small
ε > 0, so F is in the class Gt for all t < s. Thus, by Proposition 7, F is in
the class Gs.
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