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Abstract. One way to generalize complete Erdős space Ec is to consider uncountable
products of zero-dimensional Gδ-subsets of the real line, intersected with an appropriate
Banach space. The resulting (nonseparable) complete Erdős spaces can be fully classified
by only two cardinal invariants, as done in an earlier paper of the authors together with
J. van Mill. As we think this is the correct way to generalize the concept of complete
Erdős space to a nonseparable setting, natural questions arise about analogies between
the behaviour of complete Erdős space and its generalizations. The discovery that Ec is
unstable, by which we mean that the space is not homeomorphic to its infinite power, by
Dijkstra, van Mill, and Steprāns, led to the solution of a series of problems in the literature.
In the present paper we prove by a different method that our nonseparable complete
Erdős spaces are also unstable. Another application of Ec is that it is homeomorphic
to the endpoint set of the universal separable R-tree. Our standard models can also be
represented as endpoint sets of more general R-trees, but some universality properties are
lost.

1. Introduction. Let λ, κ be arbitrary infinite cardinal numbers, and
let p ≥ 1. Recall the (possibly nonseparable) Banach space `pκ, given by

`pκ =
{
x = (xα)α∈κ ∈ Rκ :

∑
α∈κ
|xα|p <∞

}
,

equipped with the topology generated by the norm ‖x‖ = (
∑

α∈κ |xα|p)1/p.
For ω ≤ λ ≤ κ, let

Fα =
{ {0} ∪ {1/n : n ∈ N} if α ∈ λ,
{0, 1}, if α ∈ κ \ λ,

and define the nonseparable complete Erdős space by

Ec(λ, κ) = {x ∈ `1κ : ∀α ∈ κ, xα ∈ Fα}.
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For λ = κ = ω, this represents complete Erdős space, Ec, introduced by Paul
Erdős in 1940 [10]. He also introduced Erdős space,

E = {x ∈ `2ω : ∀n ∈ ω, xn ∈ Q}.
and proved that both E and Ec are one-dimensional, yet totally disconnected
and homeomorphic to their own squares. The spaces E, Ec and Eωc were char-
acterized by Dijkstra and van Mill [2, 5, 4] and Dijkstra [1]. Nonseparable
complete Erdős spaces have analogous properties, as shown by Dijkstra,
van Mill, and Valkenburg [7]. That paper concerns also more general spaces
defined by

Eµ = {x ∈ `pµ : ∀α ∈ µ, xα ∈ Eα},
where µ is another arbitrary infinite cardinal number and the Eα are arbi-
trary zero-dimensional subsets of R. Let w(X) denote the weight of a space
X and lw(X) the local weight, which is defined as min{w(U) : U ⊂ X
nonempty and open}. The values of these cardinal invariants can be easily
determined for the space Eµ whenever the sets Eα are given (see [7, Proposi-
tion 12]). The following two theorems are the main results in [7]; the symbol
XD denotes the set X equipped with the discrete topology.

Theorem 1. The space Eµ is homeomorphic to Ec(lw(Eµ), w(Eµ)) if and
only if every Eα is a Gδ-subset of R and ind Eµ > 0.

Theorem 2. The space Ec(λ, κ) is homeomorphic to Ec × (λD)ω × κD.

We claim that our definition of nonseparable complete Erdős spaces
forms the right concept that generalizes complete Erdős space to a (pos-
sibly) nonseparable setting. The aim of this paper is to further justify this,
by considering to what extent some applications of Ec can be generalized
to Ec(λ, κ). The first application is that Ec is unstable, that is, Ec 6≈ Eωc (see
Dijkstra, van Mill, and Steprāns [6] and Dijkstra [1]). This result produced
solutions to a series of problems in the literature (see [6, 3]). We prove in
§3 that Ec(λ, κ) is not homeomorphic to (Ec(λ, κ))ω. Another application is
that Ec is homeomorphic to the endpoint set of the unique universal separa-
ble R-tree, as shown first by Kawamura, Oversteegen, and Tymchatyn [11].
In §4 we find explicit constructions of R-trees with endpoint set homeo-
morphic to Ec(κ, κ) and consider some universality properties derived from
these constructions.

2. Preliminaries

Definition 3. A Hausdorff space (or a topology) is called zero-dimen-
sional if the small inductive dimension is at most 0, that is, if there is a
basis consisting of clopen sets. A Hausdorff space X is called almost zero-
dimensional if there exists a second topology W on X that witnesses the
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almost zero-dimensionality of X, which means that W is zero-dimensional
and weaker than the given topology and that every point of X has a neigh-
bourhood basis in X consisting of sets that are closed in (X,W). We say
that W is a witness topology on X. A Hausdorff space is called strongly
zero-dimensional if the large inductive dimension is at most 0.

Remark 4. The spaces Ec(λ, κ) and (Ec(λ, κ))ω are examples of almost
zero-dimensional spaces. The standard witness topology on Ec(λ, κ) is the
topology that is inherited from the product space Rκ. This follows immedi-
ately from the well-known fact that sets of the form {x ∈ `pκ : ‖x‖ ≤ r} are
closed subsets of Rκ and from the zero-dimensionality of the Fα. Since the
Fα are compact we also find that the standard witness topology on Ec(λ, κ)
is σ-compact.

Definition 5. A space is called cohesive if every point has a neighbour-
hood that does not contain nonempty clopen subsets of the space.

Remark 6. Erdős [10] proved that Ec = Ec(ω, ω) and E are not zero-
dimensional by showing that the spaces are cohesive. Note that the product
of a cohesive space with an arbitrary space is trivially also cohesive. Both
E and Ec are universal spaces for the class of separable metrizable almost
zero-dimensional spaces (see [5, Theorem 4.15]).

Definition 7. An arc is a space that is homeomorphic to the interval
[0, 1]. An R-tree T is a metric space that is arcwise connected such that
every arc is isometric to an interval in R.

Mayer and Oversteegen [14] proved that topologically the R-trees are
precisely the metric spaces that are uniquely arcwise connected and locally
arcwise connected.

Definition 8. Let X be a uniquely arcwise connected metric space.
If x, y ∈ X with x 6= y then [x, y] denotes the unique arc in X that has
x and y as endpoints; [x, x] denotes the singleton {x}. We will also use
(x, y) = [x, y] \ {x, y}. We define the set of interior points of X by iX =⋃
{(x, y) : x, y ∈ X}. The set of all endpoints of X is eX = X \ iX.

The valency of a point x ∈ X is the cardinality of the set of components
of X \ {x}. An R-tree is κ-universal if any R-tree with valency at most κ at
every point can be isometrically imbedded into it.

According to Mayer, Nikiel, and Oversteegen [13], the complete κ-univer-
sal R-tree with valency κ at every point is unique.

Definition 9. A function ϕ : X → R̂ = [−∞,∞] is called lower semi-
continuous (LSC ) if {x ∈ X : ϕ(x) > t} is open in X for every t ∈ R.



200 J. J. Dijkstra and K. I. S. Valkenburg

We let Tw denote the R-tree T equipped with the weak topology, that
is, the topology generated by the subbasis

S = {C : C is a component of T \ {x} for some x ∈ T}.

Note that this topology is not necessarily metric. However, analogously to
the proof of [5, Lemma 3.1] it can be shown that it is a regular topology
and that eTw, that is, the endpoint set eT seen as a subspace of Tw, is zero-
dimensional. The proof of the following lemma is then completely analogous
to that of [5, Lemma 3.2].

Lemma 10. Let (T, ρ) be an R-tree with a convex metric. Let p ∈ T
be a fixed point and let ϕ : Tw → R+ be defined by ϕ(x) = ρ(p, x). Then
ϕ is an LSC function such that the natural projection π from the graph
of ϕ to T is a homeomorphism. Consequently, eTw witnesses the almost
zero-dimensionality of eT.

Remark 11. We can now immediately draw the conclusion that ind eT
≤ 1 for an arbitrary R-tree T. A stronger result can be found in Mayer and
Oversteegen [14, Theorem 2.3], namely IndT ≤ 1 for every R-tree.

3. Nonseparable complete Erdős spaces are unstable. Dijkstra,
van Mill, and Steprāns [6] proved that Ec is unstable, that is, Eωc 6≈ Ec.
Their proof depends heavily on the separability of the space. Another proof
can be found in Dijkstra [1, Corollary 5.8] and we are able to generalize that
method to the nonseparable setting, due to our knowledge of the structure
of nonseparable complete Erdős spaces (see Theorem 2).

Lemma 12. Let Y be a separable, metrizable, almost zero-dimensional
space with some witness topology W and define Z = (Y,W). If X is an
arbitrary metrizable space, then every closed set in Y ×X is a Gδ-subset of
Z ×X.

Proof. We will show that every open set in Y × X is an Fσ-set with
respect to Z×X. Let O be an arbitrary open set in Y ×X. Since Y is a sep-
arable, metrizable, almost zero-dimensional space, we can find a countable
collection B = {B0, B1, . . .} of closed subsets of Z with the property that for
every x ∈ Y and for every neighbourhood U ⊂ Y of x there is some i ∈ ω
with x ∈ intY Bi ⊂ Bi ⊂ U . Since X is metrizable it has a basis C =

⋃
i∈ω Ci

such that each Ci is locally finite. We define, for i, j ∈ ω,

Uij = {C : C ∈ Cj , Bi × C ⊂ O}.

Note that Uij is a locally finite collection of closed sets, thus its union Cij
is closed in X. We clearly have O =

⋃
i,j∈ω Bi×Cij , thus O is an Fσ-subset

of Z ×X.
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A space is called σ-complete if it can be written as a countable union of
topologically complete spaces.

Proposition 13. If W is a topology on Eωc that witnesses the almost
zero-dimensionality of Eωc , then ∅ is the only open subset of Eωc that is
σ-complete as a subspace of (Eωc ,W).

Proof. Suppose that O⊂Eωc is nonempty and open and that O=
⋃∞
i=1Gi

for topologically complete subspaces Gi of (Eωc ,W). Put G0 = ∅. We con-
struct by recursion a strictly increasing sequence j0, j1, . . . ∈ ω and a se-
quence x0, x1, . . . ∈ Ec such that for every i ∈ ω we find

Ai = {(x0, . . . , xji)} ×
∞∏

k=ji+1

Ec ⊂ O \Gi.

Let a ∈ O; then there exists j0 ≥ 0 such that

{(a0, . . . , aj0)} ×
∞∏

k=j0+1

Ec ⊂ O = O \G0,

so we can put xi = ai for i ≤ j0.
Now assume that j0, . . . , ji, x0, . . . , xji , and Ai have been found. Since

Ai is closed in Eωc , it is a Gδ-subset of (Eωc ,W) by Lemma 12. We now see
that Gi+1∩Ai is a topologically complete subspace of (Eωc ,W), just as Gi+1.
Furthermore, Ai is known to be cohesive as a product of copies of Ec (see
Remark 6), thus there is an open cover U of Ai such that every element
of U fails to contain nonempty clopen sets of Ai. Since W is a witness
topology, we can refine U to a cover V consisting of W-closed sets such that
their interiors in Ai cover Ai. Since Ai is Lindelöf we may assume that V is
countable. Note that the elements of V have empty interiors with respect to
the zero-dimensional witness topology because otherwise they would contain
nonempty clopen subsets of Ai. Since V is a countable closed cover, we
conclude that (Ai,W) is a first category space. Since Gi+1∩Ai is a complete
space with respect to the topology W, it cannot be dense in (Ai,W). Thus
we can find an x′ ∈ Ai and an open subset U of (Ai,W) such that x′ ∈ U ⊂
Ai \Gi+1. By the properties of the product topology and the fact that U is
also open in Ai we can find a ji+1 > ji and xji+1, xji+2, . . . , xji+1 ∈ Ec such
that

Ai+1 = {(x0, . . . , xji+1)} ×
∞∏

k=ji+1+1

Ec ⊂ U ⊂ O \Gi+1.

This completes the recursion. Now

x = (x0, x1, . . .) ∈
∞⋂
i=0

Ai ⊂ O \
∞⋃
i=1

Gi.

Since the Gi cover O we have a contradiction.
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Theorem 14. Let X be a zero-dimensional, σ-complete, metrizable
space. Then Eωc cannot be imbedded as a closed subspace in Ec ×X.

Proof. Note that the standard witness topology on Ec, say W, is σ-
compact and metrizable; see Remark 4. Hence the witness space (Ec,W)×X
for Ec ×X is σ-complete. Now suppose there is some closed subspace A ⊂
Ec×X which is homeomorphic to Eωc . The subspace topology inherited by A
from (Ec,W)×X is then a witness to the almost zero-dimensionality of A; let
us denote this topology by W ′. The closed subspace A is a Gδ-subset of the
σ-complete space (Ec,W)×X, by Lemma 12. Hence (A,W ′) is σ-complete
as well. We now have a contradiction with Proposition 13.

Corollary 15. If X is a zero-dimensional, σ-complete, metrizable
space, then Ec ×X 6≈ Eωc ×X and Ec ×X 6≈ (Ec ×X)ω.

Proof. The space Eωc ×X contains a closed copy of Eωc , whereas Ec ×X
fails to contain such a copy, by Theorem 14.

Remark 16. Note that in [5, Proposition 9.1 and Corollary 9.5] Dijkstra
and van Mill prove that Ec ×Qω ≈ E ≈ Eωc ×Qω, from which we conclude
that σ-completeness in Theorem 14 and Corollary 15 is essential.

Theorem 17. Nonseparable complete Erdős spaces are unstable: if ω ≤
λ ≤ κ, then Ec(λ, κ) 6≈ (Ec(λ, κ))ω.

Proof. By Theorem 2 we have Ec(λ, κ) ≈ Ec × (λD)ω × κD, to which we
can apply Corollary 15.

The fact that the spaces Ec(λ, κ) are unstable, just like Ec, confirms us
in our belief that the spaces Ec(λ, κ) as introduced and studied in [7] are
correct generalizations of complete Erdős space to the nonseparable setting.

4. Endpoint sets of certain R-trees. In [11] Kawamura, Overstee-
gen, and Tymchatyn sketch a proof that the endpoint set of the universal
separable R-tree as constructed in [13] is homeomorphic to Ec. The result
is generalized by Dijkstra and van Mill in [4, Theorem 4.5]. However, it
cannot be generalized to the nonseparable case, since the generalizations
of the universal separable R-tree do not have any endpoints. We will show
some explicit R-trees that can be imbedded in this κ-universal R-tree with
endpoint sets that are dense in the tree and homeomorphic to Ec(κ, κ), the
nonseparable complete Erdős space of local weight and weight equal to κ.
Unfortunately, some universality properties of Ec regarding endpoint sets of
R-trees cannot be generalized; see Proposition 31.

In [8], Dyubina and Polterovich present an explicit construction of the
unique κ-universal R-tree described in §2, as follows.
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Definition 18. Let κ be an infinite cardinal number and let Ãκ be
the set of all functions f : [0, ρf ) → κD, where ρf ≥ 0, that are piecewise
constant from the right, that is, for each t ∈ [0, ρf ) there exist ε > 0 such
that f�[t, t+ ε] is constant. The distance between f, f̃ ∈ Ãκ is denoted by

d(f, f̃) = ρf + ρf̃ − 2sf,f̃ ,

where sf,f̃ is the separation moment between the functions f and f̃ :

sf,f̃ = sup{t : f(t′) = f̃(t′) ∀t′ < t}.

In particular, if ρf = 0 we consider the function f = ∅ ∈ Ãκ. We also assume
that 0 ∈ κ.

Remark 19. The weight and cardinality of Ãκ are κω and in particular
we have w(Ãκ) = c whenever κ ≤ c. Define

A = {f ∈ Ãκ : ρf = 2, f�[1, 2) ≡ 0,

∀n ∈ ω, f�[1− 2−n, 1− 2−n−1) is constant}
and note that |A| = κω. If f, g ∈ A and f 6= g, then f�[0, 1) 6= g�[0, 1), thus
d(f, g) > 2. We see that A is discrete and that w(Ãκ) ≥ κω. On the other
hand, note that if f ∈ Ãκ then the set Df of points in [0, ρf ) where f is
discontinuous is a wellordered and hence countable subset of [0,∞). Since f
is fully characterized by its restriction to {0} ∪Df and the value of ρf , we
have |Ãκ| ≤ |([0,∞) × κ)ω × [0,∞)| = κω. Since Ãκ is metric we find that
its weight is at most κω.

Note that Ãκ does not have any endpoints and is nonseparable, thus Ãω
is not the (unique) universal separable R-tree. However, the universal sepa-
rable R-tree can be isometrically imbedded in Ãω. It follows easily from the
Uniqueness Theorem [13, Theorem 2.5] that the subspace of Ãω consisting
of those functions that are only discontinuous at points in Q, with the extra
condition that for every t ∈ (0, ρf ) there exist δ > 0 with f�[t−δ, t) constant
as well, is the universal separable R-tree.

Definition 20. Let G ⊂ (0,∞) be an additive semigroup of R. Define
T(G, κ) to be the subspace of Ãκ consisting of all functions f that are
only discontinuous at points in G with the extra condition that for every
t ∈ (0, ρf ) there exist δ > 0 such that f�[t−δ, t) is constant. For convenience,
we write Tκ = T((0,∞), κ).

Remark 21. The space T(G, κ) defined above is an R-tree. Each func-
tion f ∈ iT(G, κ) corresponds to a strictly increasing sequence (yi)ni=0 ⊂ G
for some n with yn = ρf and a sequence (αi)ni=0 such that αi 6= αi+1, in
the sense that f is of the form f(x) = α0 if x ∈ [0, y0) and f(x) = αi if
x ∈ [yi−1, yi) for 1 ≤ i ≤ n.
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Furthermore, each f ∈ eT(G, κ) corresponds to a strictly increasing se-
quence (yi)i∈ω ⊂ G which converges to ρf and a sequence (αi)i∈ω such that
αi 6= αi+1, in the sense that f is of the form f(x) = α0 if x ∈ [0, y0) and
f(x) = αi if x ∈ [yi−1, yi) for i ∈ ω. Hence the endpoint set of an R-tree
T(G, κ) is dense in the tree.

Note that T(Q ∩ (0,∞), ω) is the universal separable R-tree and
that by Kawamura, Oversteegen, and Tymchatyn [11] its endpoint set
eT(Q ∩ (0,∞), ω) is homeomorphic to complete Erdős space Ec.

We put

Zκ = {α = (αi)i∈ω ∈ (κD)ω : αi 6= αi+1 for every i ∈ ω},
seen as a subspace of the strongly zero-dimensional product space (κD)ω.

Lemma 22. Zκ ≈ (κD)ω.

Proof. Note that Zκ is a Gδ-subspace of the completely metrizable
space (κD)ω. The space Zω is a completely metrizable separable space such
that every compact subset has an empty interior. According to the Aleksan-
drov–Urysohn Theorem (e.g. [12, Theorem 7.7]) this is precisely the case
when a space is homeomorphic to (ωD)ω. If κ > ω, then the space Zκ is
clearly a strongly zero-dimensional completely metrizable space of weight κ
such that w(U) = κ for all nonempty open subsets U . Hence by a theorem
of Stone [15], it is homeomorphic to (κD)ω.

Definition 23. Let G ⊂ R. We define the metric space (M(G), ρ) by

M(G) =
{
x = (xi)i∈ω ∈ (GD)ω :

∑
i∈ω
|xi| <∞

}
and

ρ(x, x̃) =
∑
i∈ω

2−iD(xi, x̃i) +
∑
i∈ω
|xi − x̃i|,

where x, x̃ ∈ M(G) and D denotes the discrete metric that only assumes
the values 0 and 1.

Observe that the topology on M(G) is generated by the product topology
on (GD)ω in combination with the 1-norm from the Banach space `1ω. The
space M(R) features in [7] where it is called M and shown to be homeo-
morphic to Ec(c, c). A completely analogous argument proves the following
result.

Proposition 24. If G is an infinite subset of R such that G = 2G then
M(G) ≈ Ec(|G|, |G|).

Proposition 25. If G ⊂ (0,∞) is an additive semigroup of R, then
eT(G, κ) ≈M(G)× Zκ.
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Proof. For (x, α) ∈ M(G) × Zκ we let h(x, α) be the function f :[
0,
∑

i∈ω xi
)
→ κD such that f(z) = αi whenever z ∈

[∑i−1
j=0 xj ,

∑i
j=0 xj

)
.

This assignment makes h : M(G) × Zκ → eT(G, κ) a bijection. We first
prove the continuity of h. Let (x, α) ∈ M(G) × Zκ and ε > 0 be arbi-
trary. Choose an m ∈ N such that

∑
i≥m xi < ε/3. Let O be the set of all

((x̃i)i∈ω, (α̃i)i∈ω) ∈M(G)×Zκ such that xi = x̃i and αi = α̃i for i < m and∑
i∈ω |xi − x̃i| < ε/3. Then for every (x̃, α̃) ∈ O we have

d(h(x, α), h(x̃, α̃)) ≤
∑
i≥m

xi +
∑
i≥m

x̃i < ε/3 +
∑
i≥m
|x̃i − xi|+

∑
i≥m

xi

< ε/3 + ε/3 + ε/3 = ε.

Now let us prove that h is open. Again let (x, α) ∈ M(G) × Zκ be
arbitrary. Consider an open neighbourhood U of this point. Without loss of
generality, we may assume that U is the set of all (x̃, α̃) for which the first m
coordinates of x̃ and α̃ coincide with those of x and α and

∑
i∈ω |xi−x̃i| < ε.

Let n be an integer for which
∑

i≥n xi < ε and n ≥ m and define δ =∑
i≥n xi > 0. Suppose that d(h(x, α), f̃) < δ, where f̃ = h(x̃, α̃). For some

k ∈ ω, we then have xi = x̃i for every i < k− 1 and αi = α̃i for every i < k,
and

d(h(x, α), f̃) ≤ |xk−1 − x̃k−1|+
∑
i≥k

xi +
∑
i≥k

x̃i < δ.

Hence k > n ≥ m and xi and x̃i as well as αi and α̃i coincide on at least
the first m coordinates. Moreover,∑
i∈ω
|xi − x̃i| =

∑
i≥k−1

|xi − x̃i| ≤ |xk−1 − x̃k−1|+
∑
i≥k

xi +
∑
i≥k

x̃i < δ < ε.

This implies that f̃ ∈ h(U), whence h(U) is open.

Theorem 26. The endpoint set of the R-tree Tκ is homeomorphic to
Ec(c + κ, c + κ) and dense in Tκ.

Proof. Put G = (0,∞). Using Propositions 25, 24, Lemma 22, and The-
orem 2 we find

eTκ ≈M(G)× Zκ ≈ Ec(c, c)× (κD)ω

≈ Ec × (cD)ω × (κD)ω ≈ Ec(c + κ, c + κ).

The same argument also proves the following result.

Proposition 27. Let κ ≤ c and let G be an additive semigroup in (0,∞)
such that G = 2G and κ = |G|. Then the endpoint set of the R-tree T(G, κ)
is homeomorphic to Ec(κ, κ).

In particular, if we choose G = Q ∩ (0,∞) then T(G,ω) is the univer-
sal separable R-tree and we have another proof of the known fact (due to
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Kawamura, Oversteegen, and Tymchatyn [11]) that the endpoint set of the
universal separable R-tree is homeomorphic to Ec.

Let T be an arbitrary R-tree, which we may assume to be a subtree of
some κ-universal R-tree Ãκ. Consider an extension T′ of T that is obtained
by adding for every point x ∈ T \ T an isometric copy of [0,∞) that lies
in Ãκ \ T and whose endpoint is x. It is easily verified that T′ is complete
and that eT′ = eT. Thus every endpoint set of an R-tree is an endpoint
set of some complete R-tree. It is shown in [7] that every space of the form
Eµ as described in the introduction can be imbedded in Ec(µ, µ), so with
Theorem 26 we have:

Proposition 28. Every space of the form Eµ is homeomorphic to the
endpoint set of some complete R-tree.

Consider the results stated below, which follow from [4, Proposition 4.7]
respectively [7, Corollary 34].

Proposition 29. If an R-tree T is separable and complete, then its
endpoint set can be imbedded in Ec as a closed subspace.

Proposition 30. A space of the form Eµ can be imbedded in Ec(µ, µ)
as a closed subspace if and only if it is topologically complete.

We would like to look for a possible generalization of Proposition 29 to
nonseparable R-trees and the spaces Ec(κ, κ). The endpoint set of a sep-
arable complete R-tree is topologically complete because the interior is a
countable union of arcs. By the above observations, it is clear that this is
not the case for nonseparable R-trees, so at a minimum we need to add
the requirement that the endpoint set is topologically complete. Consider
the space Eωc and note that it can be imbedded in Ec; see Remark 6. Since
Ec can be represented as an endpoint set of a separable R-tree, so can Eωc
(in fact, it can be arranged that every point has valency at most 3). With
Theorem 14 we find the following result.

Proposition 31. There exists a complete R-tree whose points have va-
lency at most 3 with a topologically complete endpoint set that does not
admit a closed imbedding in any Ec(κ, κ).

Since the trees Tκ have endpoints, they are not homeomorphic to the
unique R-trees that are complete and have valency κ at every point, that is,
to Ãκ. Yet, it might be possible that Tκ still contains a copy of every R-tree
with valency at most κ at every point. However, this is not to be expected,
because by Remark 19 we have w(Ãκ) = κω and by Theorems 1 and 26 we
have w(Tκ) ≤ c + κ. The proposition below shows that for any κ the tree
Tκ is not universal for R-trees with valency at most κ at every point.
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Proposition 32. There exists a complete R-tree of weight c, and va-
lency at most 3 at every point, that cannot be imbedded in any R-tree Tκ. In
particular, the R-tree Tκ is not universal for R-trees with valency at most κ
at every point.

Proof. The R-tree that cannot be imbedded in Tκ looks like a so-called
Cantor or Gehman dendrite, with a half-line attached to every endpoint.
For convenience, we consider it as a subspace of Ãω, as follows. Let 0 =
s0 < s1 < s2 < · · · < 1 be such that limn→∞ sn = 1. We define

D = {f ∈ Ãω : f�[1, ρf ) ≡ 0 and
f�[sn,min{ρf , sn+1}) ≡ 0 or 1 for n ∈ ω}.

It is clear that D is complete and has weight c. Assume the existence of an
imbedding H : D→ Tκ for a given κ. Recursively, we are going to construct
functions f0, f1, . . . ∈ D with ρfn = sn+1 such that for n ∈ N:

1. fn�[0, sn) = fn−1;
2. H(fn) is discontinuous at tn = ρH(fn−1).

Consider the root ∅ of D. The set D\{∅} has two components at most one of
which can have the property that some elements h of its image under H have
the property ρh < ρH(∅). Let C be a component such that ρH(h) > ρH(∅) for
every h ∈ C and let f0 be the (unique) element of C such that ρf0 = s1.
Observe that H�C is monotone in the sense that for h, h′ ∈ C we have h ⊂ h′
if and only if H(h) ⊂ H(h′).

Now suppose that fn−1 has been found. Consider for i = 0, 1 the func-
tions gi, defined by gi�[0, sn) = fn−1, gi�[sn, sn+1) ≡ i and ρgi = sn+1. If
H(g0)(tn) = H(g1)(tn), then there exists a δ > 0 with H(g0)�[0, tn + δ) =
H(g1)�[0, tn + δ). Then for i = 0, 1 there is an ri ∈ (sn, sn+1) such that
H(g0�[0, ri)) = H(gi)�[0, tn + δ). Since g0�[0, r0) 6= g1�[0, r1), we have a con-
tradiction with the injectivity of H. Thus we have H(g0)(tn) 6= H(g1)(tn)
and we may choose i such that H(gi) is discontinuous at tn. Putting fn = gi
we find that the induction hypotheses are satisfied.

We can now define f =
⋃
n∈ω fn ∈ D. Then H(f) is discontinuous at

infinitely many points, thus it must be an endpoint of Tκ by Remark 21.
This contradicts our assumption that H is an imbedding, because f is not
an endpoint in D.

As noted in Remark 11, the large inductive dimension of the endpoint
set of any R-tree never exceeds one. In the separable case, the following
result from [4, Theorem 4.5, Remark 4.6] provides a sufficient condition for
an R-tree to have a one-dimensional endpoint set.

Theorem 33. Let (T, ρ) be a nonempty separable R-tree such that for
each x ∈ T every component of T \ {x} is unbounded and every x ∈ eT has
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a neighbourhood in T that is complete. If eT is dense in T, then eT ≈ Ec,
thus ind eT > 0.

We present an example of an R-tree T that is a closed subset of Ãω for
which all premises of the above theorem hold, except for separability, and
which has a strongly zero-dimensional endpoint set.

Proposition 34. There exists a complete R-tree T ⊂ Ãω such that for
every x ∈ T every component of T \ {x} is unbounded, eT is dense in T,
and Ind eT = 0.

Proof. Since the weight of the metric space Ãω is c (see Remark 19),
there is a σ-discrete basis B = {Bα : α < c} for Ãω. We arrange that no Bα
is empty. Using transfinite recursion we find functions fα ∈ Ãω for α < c for
which the following conditions hold:

(i) fα ∈ Bα;
(ii) there are t ∈ (0, ρfα) and k ∈ ω such that fα�[t, ρfα) ≡ 2k;

(iii) fα 6⊂ fβ for every β < α;
(iv) if there exists an f ∈ Bα such that fβ 6⊂ f for every β < α, then

fβ 6⊂ fα for every β < α.

Since B0 is open, we can find an f0 ∈ B0 for which (ii) holds. Conditions
(iii) and (iv) are void in this case. For the recursion step, let α > 0 and
suppose that fβ is found for every β < α.

Case 1. Suppose there exists an f ∈ Bα such that fβ 6⊂ f for every
β < α. If it happens that f = ∅ then we replace f by f0�[0, s) for some
s ∈ (0, ρf0) that is small enough to keep the function in Bα. By hypothesis
(iii) we know that the new f still has the property fβ 6⊂ f for every β < α.
If necessary, shorten the domain of f slightly so that there is a δ ∈ (0, ρf )
with f�[ρf − δ, ρf ) ≡ n for some constant n ∈ ω. We may assume that δ is
such that {g ∈ Ãω : d(f, g) < 2δ} ⊂ Bα. Since |α| < c and every g ∈ Ãω has
only countably many discontinuities there exists a t ∈ (ρf − δ, ρf ) such that
no fβ for β < α is discontinuous at t. Let k ∈ ω be such that 2k 6= n and let
fα ∈ Bα be given by ρfα = t+ δ, f�[0, t) = fα�[0, t), and fα�[t, t+ δ) ≡ 2k.
So hypotheses (i) and (ii) are satisfied. Since fα is discontinuous at t, no fβ
for β < α can extend fα and (iii) is satisfied. If fβ ⊂ fα for some β < α
then for the same reason fβ ⊂ fα�[0, t) ⊂ f , which contradicts the choice
of f . We conclude that hypothesis (iv) is also satisfied.

Case 2. Suppose that we are not in Case 1, that is, for every f ∈ Bα
there is an fβ with β < α and fβ ⊂ f . Then by following exactly the same
procedure as in the first case, but starting with an arbitrary f ∈ Bα, we end
up with an fα that satisfies (i)–(iii). Condition (iv) is of course void in this
case.
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We now define

T = Ãω \
⋃
α<c

{f ∈ Ãω : fα  f}.

Note that ∅ ∈ T. Since every set of the form {f ∈ Ãω : fα  f} is open in
Ãω, the set T is closed in Ãω. Note that whenever g ∈ T, also f ∈ T for
every f ⊂ g, which means that [∅, g] ⊂ T. Thus T is a closed subtree of Ãω
and a complete R-tree.

We first show that eT = {fα : Bα ∈ B} ∩ T. For every α < c we have
{f : fα  f} ∩ T = ∅, hence fα /∈ iT and {fα : Bα ∈ B} ∩ T ⊂ eT. If
f /∈ {fα : Bα ∈ B}, f ∈ T, and k ∈ ω is odd, then for every t ≥ 0 we find
that the function gt defined by ρgt = ρf + t, f ⊂ gt, and gt�[ρf , ρf + t) ≡ k
is in the tree. For if there are t, α with fα  gt, then by (ii) we have fα ⊂ f ,
which contradicts the choice of f . Note that d(gs, gt) = |s− t| for all s, t ≥ 0.
Thus we have infinitely many isometric copies of [0,∞) emanating from f
and we conclude that f ∈ iT.

To show that eT is dense in T, we show that if Bα ∩ T 6= ∅, then Bα∩ eT
6= ∅. Indeed, by the result in the preceding paragraph we are done if fα ∈ T.
First note that by (iv) and the definition of T, Bα ∩ T 6= ∅ implies that
fβ 6⊂ fα for each β < α. Hypothesis (iii) gives that fβ 6⊂ fα for every β > α.
We conclude that fα ∈ T.

Since B is a σ-discrete collection in Ãω, we can write B =
⋃
n∈ω Bn, where

every collection Bn is discrete. We then find that {fα : Bα ∈ Bn} ∩ T is a
discrete and closed subspace of T for every n. Hence by [9, Theorem 2.2.7],
eT = {fα : Bα ∈ B} ∩ T is a strongly zero-dimensional subspace of T.

Finally, let f ∈ T be arbitrary and suppose that C is a component of
T \ {f}. Since C is open in T, we can select a g ∈ C ∩ iT. It is shown
above that infinitely many isometric copies of [0,∞) emanate from g in T,
and at most one of them can contain f . Thus all the other infinite rays are
contained in C and C is unbounded.
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