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Inverse limits of tentlike maps on trees

by

Stewart Baldwin (Auburn, AL)

Abstract. We investigate generalizations of Ingram’s Conjecture involving maps on
trees. We show that for a class of tentlike maps on the k-star with periodic critical orbit,
different maps in the class have distinct inverse limit spaces. We do this by showing
that such maps satisfy the conclusion of the Pseudo-isotopy Conjecture, i.e., if h is a
homeomorphism of the inverse limit space, then there is an integer N such that h and bσN
switch composants in the same way, where bσ is the standard shift map of the inverse limit
space.

1. Introduction. One topic which has attracted a great deal of atten-
tion in recent years is the problem of distinguishing the topology of the
inverse limits of different maps. Notable in this regard are the frequent at-
tempts to solve Ingram’s Conjecture and the numerous results which this
has generated.

Ingram’s Conjecture: For a parameter λ ∈ (1, 2], let fλ be the “tent”
map on the unit interval defined as follows:

fλ(x) =

{
λx, 0 ≤ x ≤ 1/2,
λ(1− x), 1/2 ≤ x ≤ 1.

Then it is conjectured that for λ 6= ν both in (1, 2], the inverse limit spaces
of fλ and fν are not homeomorphic (see [I]).

Early results included those of Barge and Martin, who showed that in
the cases where the critical point was periodic, the inverse limit space had
the same number of endpoints as the period, thus showing that different
periods led to different inverse limit spaces [BM]. Working in the case where
the turning point had finite orbit, Barge and Diamond showed that if Q(λ)
and Q(ν) were different algebraic extensions of the rational numbers, then
fλ and fν had nonhomeomorphic inverse limits. Using this, they showed that
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the three parameter values giving period 5 critical orbits all had distinct in-
verse limits [BaD]. Working in the case where the orbit of the turning point
was finite (but not necessarily periodic), Bruin showed that if log λ and log ν
were rationally independent, then fλ and fν had nonhomeomorphic inverse
limits. Kailhofer showed that Ingram’s Conjecture was true for all λ giving
a periodic critical point [K1, K2], the proof of which was simplified con-
siderably by a paper of Block, Jakimovik, Kailhofer, and Keesling [BJKK].
Štimac extended Ingram’s Conjecture to the case where the turning point
was preperiodic [S1, S2], and this was then further extended by Raines and
Štimac to the case where the turning point was nonrecurrent [RS]. The ref-
eree has informed me that a proof of Ingram’s Conjecture has recently been
announced by Marcy Barge, Henk Bruin, and Sonja Štimac [BBS].

The most detailed investigations in inverse limit spaces have been with
maps on the interval. In this paper, we examine the case of a periodic critical
point for certain maps on trees which come from a natural generalization of
the family of tent maps.
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Fig. 1. A function of the family φ5,3,λ

Definition 1.1. Define the families φ = φk,j,λ of maps on the k-star
Sk (k ≥ 2) as follows, 1 ≤ j ≤ k − 1, 2 < λk ≤ 2 + λj . Let I0, I1, . . . , Ik−1

be the intervals whose union forms the k-star, with center point c. Put a
taxicab metric on Sk by letting Im have length λm+1. The center point c
is a fixed point of φ. For 0 ≤ m ≤ k − 2, we let φ map Im linearly onto
Im+1 with expansion factor λ. Let Ik−1 = [c, v] and let t be the point of Ik−1

such that [c, t] has length 1, and let u be the point on Ik−1 between t and v
such that [t, u] has length 1. (The requirement that 2 < λk guarantees that
Ik−1 has such points.) We let φ(u) = c, and map each of the intervals [c, t]
and [t, u] linearly onto I0 with expansion factor λ. The interval [u, v] is then
mapped linearly with expansion factor λ into Ij , however far it reaches (the
condition λk ≤ 2 + λj guaranteeing that it will not reach too far).
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The maps φk,j,λ are a natural generalization of the tent maps fλ. In
fact, it is easily seen that the maps φ2,1,λ are just rescaled “cores” of the
corresponding tent maps fλ. For

√
2 < λ ≤ 2, the core of the map fλ is

defined to be fλ restricted to the interval [λ(1−λ/2), λ/2]. The core map is
locally eventually onto, and the inverse limit of the core is indecomposable
(see below for the definitions). The inverse limit of the full tent map on [0, 1]
is just the inverse limit of the core with an additional ray which limits on
the core.

The maps φk,j,λ cover more territory than what appears at first glance.
As will be shown below, any locally eventually onto continuous function on
a star having exactly one turning point which is not the branching point
is conjugate to one of the φk,j,λ’s, with j relatively prime to k. The main
result of this paper will be to show that the φk,j,λ’s have distinct inverse limit
spaces in the case where the turning point is periodic. The present paper
owes much to the recent paper of Block, Jakimovik, Kailhofer, and Keesling
[BJKK], and also to Kailhofer’s original papers [K1, K2]. However, there
are also some major differences between the arguments of those papers and
the arguments appearing here, which are heavily based on the composant
containing the fixed point of the inverse limit shift map. Unlike the case
where k = 2, this fixed point is topologically identifiable in the inverse limits
spaces of the φk,j,λ for k ≥ 3, and that leads to some significant differences
in the details. (Here, we are talking about the fixed point that comes from
the core, and not the fixed point of the limiting ray.)

In their simplification of the argument for the case of a periodic criti-
cal orbit, Block, Jakimovik, Kailhofer, and Keesling looked closely at how
composants of the inverse limit were mapped by an arbitrary homeomor-
phism, showing that composants were mapped in the same way as by some
iterate of the natural shift map [BJKK]. This led to the following related
conjecture.

The Pseudo-isotopy Conjecture. Let λ ∈ (
√

2, 2], and let f be the
core of the slope λ tent map on the interval. Let σ : X̂ → X̂ be the shift
map of the inverse limit space of f , and let h : X̂ → X̂ be another home-
omorphism of X̂. Then there is an integer N (which need not be positive)
such that for every composant C of X̂, h(C) = σN (C).

In [BJK], Block, Jakimovik, and Keesling proved that the Pseudo-isotopy
Conjecture implies Ingram’s Conjecture. In [BKRS], Block, Keesling, Raines,
and Štimac prove that if the turning point of the tent map f is not recur-
rent, then every homeomorphism of the inverse limit is isotopic to σN for
some N .

The proofs given here will follow a similar strategy to [BJKK], by first
proving that the maps in question satisfy the corresponding version of
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the Pseudo-isotopy Conjecture, and then showing that distinct maps have
enough differences in their periodic points in order to complete the proof.

In the remainder of this section, we give the basic definitions and ter-
minology. In Section 2, we cover some basics on itineraries and inverse
limits, including the representation of our inverse limit spaces as spaces
of biinfinite (two-sided) itineraries. In Section 3, we include a number of
miscellaneous results which will be needed for Section 4. In Section 4, we
have the main argument, showing that in the inverse limit spaces of inter-
est to us, every homeomorphism switches composants in the same way as
some σ̂n, where σ̂ is the inverse limit shift map. In Section 5 we investi-
gate the periodic points of the maps φk,j,λ in more detail, showing that if
λ1 < λ2, then φk,j,λ2 has “more” periodic points than φk,j,λ1 , in a way which
can be made precise. Section 6 discusses some conjectures and other loose
ends.

Definition 1.2. We let ω denote the set of nonnegative integers, let
Z denote the integers, and let Z− denote the set of negative integers. A
sequence will be called respectively infinite, biinfinite, reverse or finite if
its domain is respectively ω, Z, Z−, or {0, 1, . . . , n − 1} for some n ∈ ω.
Concatenation of sequences is indicated by juxtaposition in the obvious way
(so if α is a finite sequence, then αβ indicates the sequence α followed by
the sequence β). Finite repetitions of the same sequence are indicated by
exponents, and infinite repetitions are indicated by a bar, so for example,
10031 = 100001000100010001 . . . . If α is a biinfinite sequence, a “decimal
point” is used to mark the position between α−1 and α0, so for example
α = 0.1 has αn = 0 for n < 0 and αn = 1 for n ≥ 0. If α is a finite sequence,
α̂ represents the biinfinite sequence α.α.

Definition 1.3. An arc is a space homeomorphic to the closed unit
interval [0, 1]. When we refer to the “interior” of an arc we mean the arc
minus its endpoints, without necessarily implying that the “interior” is open
in the space containing the arc. A ray is any one-to-one continuous image of
the half-open interval [0, 1). A tree is a finite union of arcs which contains no
simple closed curve. A continuum is a compact connected metric space. A
dendrite is a locally-connected, uniquely arcwise-connected continuum. The
valence of a point x in a tree T is the number of components of T \ {x}.
An endpoint of T is a point of valence 1, and a branching point is a point
of valence 3 or more. A star is a tree with no more than one branching
point. An n-star consists of a center point with n arcs attached at their
endpoints. An arc is considered a degenerate 1-star and 2-star. A continuum
is decomposable if it can be written as the union of two proper subcontinua,
and indecomposable otherwise. If C is a continuum and c ∈ C, then the
composant of c is the union of all proper subcontinua containing c.
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Definition 1.4. If X is a topological space and f : X → X is con-
tinuous, then the inverse limit X̂ of X with respect to f is the set of all
reverse sequences x̂ = 〈. . . , x−3, x−2, x−1〉 from X such that f(xn−1) =
xn for all n ∈ Z−, with the topology inherited from the product topol-
ogy. The shift map f̂ : X̂ → X̂ is defined by f̂(〈. . . , x−3, x−2, x−1〉) =
〈. . . , f(x−3), f(x−2), f(x−1)〉 = 〈. . . , x−2, x−1, f(x−1)〉.

Definition 1.5. A continuous tree map f : T → T is said to be Markov
if there is a finite set P ⊆ T containing all branching points and endpoints
of T such that f(P ) ⊆ P and f is one-to-one on all components of T \ P .
Such a P is called a Markov set for f . If such a P exists, there is always a
unique minimal such P , called the minimal Markov set for f . A Markov map
f : T → T with minimal Markov set P is said to be expansive if for every
nonempty open set U there is a positive integer n such that fn(U)∩P 6= ∅.
A continuous function f on a topological space X is called locally eventually
onto if for every nonempty open subset U of X there is a positive integer n
such that X ⊆ fn(U). A locally eventually onto Markov map is easily seen to
be expansive. If P is a Markov set for f , the closure of a component of T \P
is called a P -basic interval. If I and J are P -basic intervals, then we say that
I f -covers J if J ⊆ f(I). The Markov graph of f with respect to P is the
directed graph having P -basic intervals as its vertices, with an “arrow” from
I to J if and only if I f -covers J (abbreviated I → J for convenience). A loop
of length n in the Markov graph is a sequence I0 → I1 → · · · → In = I0 in
the Markov graph. A loop is repetitive if it consists of a smaller loop repeated
an integer number of times. The incidence matrix of a Markov graph with
respect to an enumeration {I1, . . . , In} of the P -basic intervals is the 0-1
matrix B = (bij) where bij = 1 if and only if Ii → Ij .

Definition 1.6. Another directed graph related to the Markov graph
is also useful. If [a, b] is a P -basic interval, then we call [a, b) a P -basic ray
(with [a, b) and [b, a) considered as distinct P -basic rays). The ray graph of f
with respect to P will be the set of all P -basic rays, with an “arrow” from
[a, b) to [c, d) if and only if [a, b]→ [c, d] in the Markov graph and f(a) = c.
We note that for every P -basic ray [a, b) there is exactly one P -basic ray
[c, d) such that [a, b) → [c, d). Loops are defined the same way as for the
Markov graph. A P -basic ray is said to be essential if it is part of a loop in
the ray graph. The point of P to which an essential ray is attached must be
periodic, and for each periodic point x of P , the type of x is defined to be
the number of essential P -basic rays emanating from x. Note that points in
the same periodic orbit have the same type.

The following result is a minor variation of a well known result. (We
adopt the convention that the loop I0 → I1 → I2 → · · · → In = I0 and
I1 → I2 → · · · → In = I0 → I1 are considered the same loop.)
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Theorem 1.7. Let f : T → T be an expansive Markov tree map. Then
there is a natural one-to-one correspondence between nonrepetitive loops in
the Markov graph and periodic orbits. If the length of a nonrepetitive loop is
not the same as the period of its corresponding periodic orbit, then the loop
does not repeat any basic intervals (so there can be only finitely many such
loops).

2. Itineraries and inverse limits. In the main examples f : T → T of
interest to us in this paper, the unique turning point t of f is of valence two.
Thus, we can form a partition of T consisting of three pieces, the singleton
{t} and the two components of T \{t}. We label {t} as S∗, the component of
T \{t} containing f(t) is labelled S0, and the other component is labelled S1.
(The turning point t will not be a fixed point of f in cases of interest to us.)
The symbols 0, 1, ∗ correspond to the R,L,C which are often used for maps
of the interval. Using this partition, we can define “itineraries” of points
of T in the usual way:

Definition 2.1. Let S = {S0, S1, S∗} be the partition of T described
above. If x ∈ T , we say that ιf (x) is the itinerary of x with respect to f if
ιf (x) is a sequence α with domain ω such that fn(x) ∈ Sαn for all n ∈ ω.
The function f is said to have the unique itinerary property if x 6= y implies
ιf (x) 6= ιf (y). The kneading sequence of f is the sequence ιf (f(t)).

While the kneading sequence obviously depends on the function f , what
is not so clear is that the kneading sequence determines the conjugacy class
of f , if we add the reasonable hypotheses that f satisfies the unique itinerary
property, and that no subtree of T contains the orbit of f . This follows
from the theory of Hubbard Trees (see, e.g., [BS]), or from the classification
of dendrite maps with the unique itinerary property (see [Bal]). A brief
description of the latter follows. (We restrict the discussion to periodic τ .)

Definition 2.2. We topologize {0, 1, ∗} by the basis {{0}, {1}, {0, 1, ∗}},
and the itinerary topologies on {0, 1, ∗}ω and {0, 1, ∗}Z are the product
topologies thus generated. If a, b ∈ {0, 1, ∗}, then we say that a ≈ b if either
a = b or at least one of a and b is ∗. (That is, the symbol ∗ is thought of as a
“wild card” which can stand for either 0 or 1.) If α and β are functions with
the same domain D and values in {0, 1, ∗}, we say that α ≈ β if αn ≈ βn
for all n ∈ D. A periodic sequence τ = θ∗ (θ a finite sequence of 0’s and
1’s) is called acceptable if for all n ∈ ω, σn(τ) ≈ τ implies σn(τ) = τ . If τ is
acceptable, then a sequence α is called τ -consistent if for all n ∈ ω, αn = ∗
if and only if σn+1(α) = τ . A τ -consistent sequence α is called τ -admissible
if for all n ∈ ω, σn(α) ≈ τ implies σn(α) = τ . The set of all τ -admissible
sequences from {0, 1, ∗}ω is called Dτ , given the topology inherited from the
itinerary topology. Dτ is known to be a dendrite ([Bal, Theorem 2.27]). We
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define Tτ to be the smallest subtree of Dτ containing the orbit of τ (which
is finite in the case under consideration).
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Fig. 2. Diagram of Tτ , τ = 00111001∗

There are a number of advantages to regarding our tree to be a subset
of Dτ . One is that the kneading sequence gives us a more convenient way
of identifying examples than the parameters n, k, λ of φn,k,λ. Also, we will
want to also consider examples of tree maps where the tree is not a star,
and the kneading sequence τ gives us a way to describe such maps. Another
advantage is that in Dτ , points are identified by their itineraries, and thus
the points themselves tell us something of their dynamics. This leads to
another advantage: points in the inverse limit space can then be identified
as biinfinite sequences. This will be useful because points having a ∗ on some
coordinate will be points that we are interested in keeping track of.
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Fig. 3. Diagram of Tτ , τ = 0010001000∗

Figures 2, 3, and 4 show three examples of shift functions σ : Tτ → Tτ ,
showing their kneading sequences, the structure of the tree, and the way
the main periodic orbits and the branching points map to each other. (For
some examples which are not stars, see also Section 6.) Here, the turning
point is labelled τ0, its image (the point having itinerary τ) is labelled τ1,
and so forth up to τn−1, which maps back to τ0. The branching points are
identified by their itineraries.
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Fig. 4. Diagram of Tτ , τ = 0001100000001∗

Definition 2.3. If α is a biinfinite sequence, and n is an integer, then
πn(α) is defined to be the infinite sequence β with domain ω such that
βi = αn+i for all i ∈ ω. If τ is acceptable, D̂τ is defined to be the set of all
biinfinite sequences α such that πn(α) ∈ Dτ for all n ∈ Z, with the topology
inherited from the itinerary topology on {0, 1, ∗}Z. Let σ̂ be the shift map
on D̂τ . Similarly T̂τ is defined to be the subset of D̂τ consisting of all α
such that πn(α) ∈ Tτ for all n ∈ Z. If α is a biinfinite sequence, and n is an
integer, then $n(α) is defined to be the reverse sequence β with domain Z−
such that βi = αn+i for all i ∈ Z−.

Proposition 2.4 (cf. [BrD, Theorem 2.5]). D̂τ is homeomorphic to the
inverse limit of Dτ with bonding map σ, and σ̂ is conjugate to the corre-
sponding inverse limit shift map.

Proof. Let X̂ be the inverse limit of Dτ with bonding map σ, and
let f̂ be the corresponding shift map. Define h : D̂τ → X̂ by h(α) =
〈. . . , π−3(α), π−2(α), π−1(α)〉. Then, since the πn’s are clearly continuous,
h is easily seen to be a continuous bijection from D̂τ to X̂ such that h ◦ σ̂
= f̂ ◦ h. Thus, since D̂τ is a compact Hausdorff space, h is the desired
homeomorphism giving a conjugacy between σ̂ and f̂ .

Note that the maps πn : D̂τ → Dτ correspond to the natural projections
from X̂ to Dτ . This leads to the following easy proposition, a minor variation
of a well known result.

Proposition 2.5. πn ◦ σ̂ = σ ◦ πn = πn+1.

Proof. If α ∈ D̂τ , then πn(σ̂(α)) = σ(πn(α)) = πn+1(α) = 〈αn+1, αn+2,
αn+3, . . .〉.

In addition to the functions πn defined above, there are the projection
maps which take α to αn, thus mapping Dτ continuously onto the three-
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point connected space {0, 1, ∗}. Thus, if αn = 0 and βn = 1, then any
connected subset of Dτ containing both α and β must also contain a γ
such that γn = ∗ (since {0, 1} is not connected). This observation is the
motivation behind the following process.

Definition 2.6. Let τ ∈ K, and let α, β ∈ Dτ . We define µ = µτ (α, β) ∈
Dτ as follows. We let n be least such that αn 6≈ βn. (If no such n exists, then
α = β, and we let µ = α = β.) For m < n we let µ′m be whichever (or both)
of {αm, βm} is not ∗. We let µ′n = ∗, and µ′m = τm−1−n for m > n. Then
there is a unique µ ∈ Dτ with µ ≈ µ′. Then µτ (α, β) is in any connected
subset of Dτ containing α and β (see the proof of [Bal, Theorem 2.25]). If α
and β are biinfinite sequences such that there is an N such that αn ≈ βn for
all n < N , then µτ (α, β) can be defined similarly as a biinfinite sequence.

For example, if τ = 001∗, α = 10, and β = ∗τ = ∗001∗, then µ =
µ′ = 100∗τ . An example where µ 6= µ′ would be τ = 001∗, α = 10010,
β = 100110. This would give µ′ = 1001∗τ = 1τ , and the initial 1 would
then have to be changed to a ∗ to get µ = ∗τ in order to get a τ -admissible
element.

The µ function can be repeatedly applied to locate all points on the arc
from α to β which contain a ∗. Such iterations will be called the “µ-process”
below. Applications of this process to numerous examples provided useful
intuition in the initial stages of this research. This process was used in [Bal]
to prove that Dτ is arcwise-connected ([Bal, Theorem 2.25]).

Proposition 2.7. Let α, β ∈ Dτ be such that αn ≈ βn for all n ≤ N .
Let A be the arc in Dτ having α and β as endpoints. Then for every γ ∈ A
and every n ≤ N , αn ≈ γn ≈ βn. The same result is true if α, β in D̂τ are
such that αn ≈ βn for all n ≤ N .

Proof. This follows from the proof of [Bal, Theorem 2.25].

We end this section with a generalization of a theorem of Brucks and
Diamond characterizing the composants of the inverse limit space ([BrD,
Lemmas 2.8 & 2.9, Corollary 2.10]). If α is a function with range {0, 1, ∗},
then let us call any β with range {0, 1} such that α ≈ β a substitution of α.

Theorem 2.8. Let τ = θ∗ be acceptable, let τ̂ = θ̂∗, and let τ ′ be the
reverse sequence $0(τ̂). Then α and β are in the same composant of D̂τ if
and only if there is an n ∈ Z such that either $n(α) = $n(β) or $n(α) and
$n(β) are both either τ ′ or a substitution of τ ′.

Proof. If n is such that$n(α) = $n(β), then application of the µ-process
gives an arc between α and β. The same is true if one of $n(α) and $n(β)
is τ ′ and the other is a substitution of τ ′. This gives one direction of the
theorem.
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For the other direction, we first prove the following claim.

Claim. No arc of Dτ contains more than one member of the orbit of τ̂ .

Proof of Claim. By contradiction. If there is such an arc, then there is
an arc A in Dτ having endpoints γ and δ, both members of the orbit of τ̂ ,
but no other member of A is in the orbit of τ̂ . Let p be the period of τ . By
acceptability of τ , there is an n such that γn 6≈ δn, and thus γn−ip 6≈ δn−ip for
all i ∈ ω. Thus, there are ηi ∈ A such that ηin−ip = ∗. Then the ηi’s converge
to a member of the orbit of τ̂ distinct from γ and δ, a contradiction.

Now, suppose that α and β are members of Dτ such that for every n ∈ Z,
$n(α) 6= $n(β) and $n(α) and $n(β) are not both τ ′ or a substitution
of τ ′. Aiming for a contradiction, suppose that A is an arc containing both
α and β. Then there is a sequence 〈ni : i ∈ ω〉 of integers approaching −∞
such that αni 6≈ βni . By thinning to a subsequence if necessary, we may
assume that the ni’s are all in the same congruence class modulo p. Then
there are γi ∈ A such that γini = ∗, and γi converges to some γ in the
orbit of τ̂ . Repeating the argument with γ and either α or β gives the same
contradiction as in the claim.

If one compares the statement of this theorem with the similar theorem
in [BrD], one will notice that the present theorem has a phrase (“... or $n(α)
and $n(β) are both either τ ′ or a substitution of τ ′”) which seems to have
no analogue in the Brucks–Diamond paper. This is partly due to the more
general situation with the dendrite Dτ , and partly due to notation adopted
in [BrD] regarding the kneading sequence.

3. Miscellaneous results. In the families φk,j,λ defined above, we will
be primarily interested in values k and j < k such that j and k are relatively
prime. For, suppose that j and k are not relatively prime. Then let d be the
greatest common divisor of j and k, and it is not difficult to see that for
each m, 0 ≤ m ≤ d− 1, the set S′m =

⋃k/d
i=0 Sid+m is a proper subset of the

k-star Sk which is invariant under φk,j,λ, and that the inverse limit of Sk
with respect to φk,j,λ is thus decomposable. (In fact, in this case φdk,j,λ|S′m
is in fact conjugate to φk/d,j/d,λd .) The other reason we are interested in
relatively prime j and k is the following result.

Proposition 3.1. If k and j are relatively prime, then φ = φk,j,λ is
locally eventually onto.

Proof. Let U ⊆ Sk be a nonempty open set. We prove by several stages
that there is an n such that φn(U) is all of Sk. Let c be the branching point
of Sk, and let Ii, 0 ≤ i ≤ k−1, be the closures of the components of Sk \{c},
as in Definition 1.1. For convenience, think of Ii as being indexed by i ∈ Zk.
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Claim 1. There is a positive integer n such that c ∈ φn(U).

Proof of Claim 1. By contradiction. Suppose c /∈ φn(U) for all n ∈ ω.
By shrinking U if necessary, we may assume that U is an interval of length
a0 > 0. Let an be the length of the interval φn(U), and note that the an’s
are bounded. If t /∈ φn(U), then an+1 = λan, whereas if t ∈ φn(U), we only
know that an+1 ≥ 1

2λan. Note that since φ(t) ∈ I0 and φ(Ii) = Ii+1 for
0 ≤ i ≤ k − 2, t can be in at most every kth φn(U), i.e., if t ∈ φn(U), then
t /∈ φi(U) for n + 1 ≤ i ≤ n + k − 1. Thus, akn ≥ (λk/2)na0, which gets
arbitrarily large, contradicting that the an’s are bounded. This completes
the proof of Claim 1.

Claim 2. There is a positive integer m such that φm(U) contains Ii for
some i.

Proof of Claim 2. Starting with an n such that c ∈ φn(U), let J be a
nondegenerate subinterval of φn(U) with c as one endpoint. Then the length
of φi(J) increases by a factor of λ with each iteration until we get t ∈ φi(J),
which gives I0 ⊆ φi+1(J) ⊆ φn+i+1(U). This completes the proof of Claim 2.

Let m < k, and suppose that a positive integer nm has been found
such that φnm(U) contains m of the intervals Ii, say Z is a subset of Zk
of cardinality m such that Ii ⊆ φnm(U) for each i ∈ Z. Then since j and
k are relatively prime, there is a p ∈ Z such that p + j /∈ Z (where the
addition is in Zk). Then φnm+k−p(U) contains Ii+k−p for all i ∈ Z, plus it
contains a portion of Ij . Repeating the proof of Claim 2 then gives that for
some i > nm, φi(U) contains m+ 1 of the intervals Ii. By induction, we are
done.

Theorem 3.2. Let f : S → S be a continuous function on a star having
exactly one turning point which is not the branch point of the star, and
suppose that f is locally eventually onto. Then there exist k, j, and λ with
j and k relatively prime such that f is conjugate to φk,j,λ.

Proof. Since f being eventually locally onto implies that f is transitive,
a theorem of Parry implies that f is conjugate to a function g : S → S which
is piecewise linear with constant expansion factor equal to some λ > 1 (see
[P]). Let t ∈ S be the turning point of g.

Case 1: S has a branching point c (i.e., S is not an arc). Let k be the
valence of c. Then g(c) = c, since t is the only turning point of g. Since g is
onto, each endpoint has a g-preimage which can only be another endpoint or
the turning point. Thus, each endpoint must be in the orbit of the turning
point, or the locally eventually onto property would be violated. Therefore,
the endpoints can be enumerated as e0, e1, . . . , ek−1 such that gi(t) = ei−1,
1 ≤ i ≤ k. Let Ii = [c, ei], 1 ≤ i ≤ k. Then, since there are no turning points
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other than t, [c, t] is mapped one-to-one onto I0 with expansion factor λ.
Similarly, Ii−1 is mapped one-to-one onto Ii with expansion factor λ, 1 ≤ i ≤
k− 1. This leaves [t, ek−1] to be mapped one-to-one with expansion factor λ
onto some interval having e0 as an endpoint. Let a = g(ek−1). Then a cannot
be in I0, since then I0 would be invariant with respect to gk, contradicting
that g is locally eventually onto. Similarly, if a is in Ij where j and k are
not relatively prime, then let d be the greatest common divisor of j and k,
and we have

⋃k/d−1
i=0 Ii invariant with respect to gd, a contradiction. Thus,

we must have a ∈ Ij for some j which is relatively prime to k. From this it
follows that g is just a rescaled version of φk,j,λ.

Case 2: S is an arc. Pick x ∈ S which is not a endpoint, and use the “dog
chases rabbit” trick to find a fixed point of g, starting at x (vary x [the “dog”]
continuously in the direction of f(x) [the “rabbit”], a process that ends when
the “dog” catches the “rabbit” at a fixed point). Since any fixed endpoint
would be repelling (because λ > 1), this process gives us a fixed point c
which is not an endpoint of S. Now, viewing c as the center point of a star
with two endpoints, repeat the argument of Case 1, with k = 2 and j = 1.

Definition 3.3. Extend the definition of valence in the following way.
Let X be the inverse limit space of a Markov tree map. A point x of X is
said to have valence n if it is the center of some n-star but is not the center
of any n+1-star. Here, the arc is regarded as both a degenerate 1-star (with
an endpoint as the center) and as a degenerate 2-star (with a non-endpoint
as the center). A point of valence 1 will be called an endpoint, and a point
of valence 3 or more will be called a branching point.

Definition 3.4. Let f : X → X and let f̂ : X̂ → X̂ be the correspond-
ing inverse limit shift map. We say that a periodic point x̂ of f̂ with orbit
Â corresponds to a periodic point x of f with orbit A if πn(Â) = A for each
of the natural projections πn.

Lemma 3.5. Let f : T → T be a locally eventually onto Markov tree map
with minimal Markov set P , and suppose that 〈Cn : n ∈ Z−〉 is a reverse
sequence of subtrees of T , not all equal to T , such that for all n ∈ Z−,
Cn ∩ P 6= ∅ and f(Cn−1) = Cn. Then there is an integer N , and there is a
single periodic orbit from P , enumerated cyclically as 〈xn : n ∈ Z−〉, such
that xn ∈ Cn and f(xn−1) = xn for all n, and such that for all n ≤ N , Cn
is a subset of the union of the essential P -basic rays emanating from xn.

Proof. Since f is eventually locally onto, there is a positive integer m
such that fm(I) = T for all P -basic intervals I. Thus, there must be an inte-
ger N such that n ≤ N implies that Cn does not contain a P -basic interval,
for otherwise all Cn’s would be equal to T , contradicting the hypothesis.
Thus, for n ≤ N , Cn ∩ P is a singleton {xn}, and it is easy to see that if
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we define xn = fn−N (xN ) for all n > N , then we have f(xn−1) = xn for
all n. Fix n ≤ N , and let an ∈ Cn. Then for m < n there are am ∈ Cm such
that f(am−1) = am. Each am is clearly in a P -basic ray emanating from xm,
from which it is clear that an must be in an essential P -basic ray emanating
from xn.

Theorem 3.6. Let f : T → T be a locally eventually onto Markov tree
map with minimal Markov set P , and let f̂ : T̂ → T̂ be the corresponding
inverse limit shift map. Then every proper subcontinuum of T̂ is either a
star, an arc, or a point. No composant of T̂ contains more than one periodic
point of T̂ . All but finitely many points of T̂ have open neighborhoods which
are homeomorphic to a Cantor set cross R. Those points of T̂ which have no
such neighborhoods are periodic points of f̂ corresponding to periodic points
of f in the set P . If x̂ ∈ T̂ is such a point, corresponding to a point x ∈ P ,
then x̂ has valence n, where n is the type of x in the ray graph of f .

Proof. Several variations of this theorem are well known. We give the
main outline of the proof. Let C be a proper subcontinuum of T̂ . Let Cn =
πn(C). Then Cn is a subtree of T , and not all Cn’s are equal to T . Thus,
since f is locally eventually onto, the diameter of the Cn’s goes to zero as n
approaches −∞. Thus, there can be only one sequence 〈xn〉 consisting of a
single periodic orbit with f(xn−1) = xn for all n such that xn ∈ Cn for all
n, and therefore C has no more than one periodic point.

Case 1: There is an N such that Cn ∩P = ∅ for n ≤ N . Let UN be the
interior of the P -basic interval containing CN . Then CN ⊆ UN . For each
n ≤ N , let Un = f−(N−n)(UN ). Then for n ≤ N , Un is the disjoint union of
open intervals, each of which maps homeomorphically onto UN via fN−n.
Then π−1

n (UN ) contains C and is homeomorphic to the inverse limit of the
Un’s (n < N), which in turn is homeomorphic to a Cantor set cross R.

Case 2: Cn ∩ P 6= ∅ for all n. Then Lemma 3.5 applies, and there is
an integer N and a single periodic orbit from P , enumerated cyclically as
〈xn : n ∈ Z〉, such that xn ∈ Cn and f(xn−1) = xn for all n, and such
that for all n ≤ N , Cn is a subset of the union of the essential P -basic
rays emanating from xn. Let k be the type of the xn’s (which are all in the
same orbit and therefore have the same type). Then for n ≤ N , each Cn
is a j-star for some j ≤ k, and f maps Cn−1 homeomorphically onto Cn,
so C is homeomorphic to Cn. Thus, C is a j-star for some j. In the other
direction, it is easy to get an example where C is a k-star. Just let CN be
any k-star contained in the union of the essential P -basic rays emanating
from xN . Then define Cn for n ≤ N by backward induction on n by letting
Cn−1 be the component of f−1(Cn) containing xn. Then the Cn’s define a
k-star C ⊆ T̂ .
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Lemma 3.7. Let τ be an acceptable and periodic sequence from {0, 1, ∗}
such that Tτ is a k-star for some k ≥ 2. Let I, J ⊆ Tτ be arcs with interiors
not containing the fixed point 0 and let n be a positive integer such that
J ⊆ σn(I). Then there is a subarc I ′ of I such that σn|I ′ is a homeomorphism
from I ′ to J .

Proof. We prove the statement by induction on n. Suppose that n = 1.
Let I = [a, b]. If I does not contain the turning point in its interior, then σ|I
is one-to-one and the lemma is trivial, so assume that I contains the turning
point t in its interior. Then σ(I) is equal to one of σ([a, t]) and σ([t, b]), say
by symmetry that I = σ([a, t]). Then there is an I ′ ⊆ [a, t] such that σn|I ′
is a homeomorphism from I ′ to J .

Let n > 1 and suppose that the theorem is true when n is replaced
by some m < n. Let K = σn−1(I). If t /∈ K, then the induction hypothesis
applied successively to 1 and n−1 gives us the desired interval I ′, so suppose
that t ∈ K. Then K can be written as the union of finitely many intervals
K1, . . . ,Kj , each containing t as an endpoint. Since σ(Ki) contains the fixed
point for each i, it is easily seen that J ⊆ σ(Ki) for some i. Thus, by the
induction hypothesis, we are done.

J
J
J
J
J
J
J
J
JJ
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Fig. 5. Diagram of Tτ , τ = 0011000001000∗

Let τ be an acceptable and periodic sequence from {0, 1, ∗} such that Tτ
is a k-star for some k ≥ 2, and let P be the minimal Markov set for this
map. Suppose that the branch of the star containing τ contains at least two
elements of the orbit of τ , so that if E is the P -basic interval containing τ ,
then the endpoints of E are τ and some τ i = σi−1(τ) for some i. In most
cases there will be an integer m such that σm(τ) and σm(τ i) are in different
components of Tτ \ {0}, but this will not always be true (see Figure 5 for a
counterexample). In the general case, we can define an equivalence relation
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∼ on the orbit of τ by x ∼ y if and only if for every m ∈ ω, σm(x) and
σm(y) are in the same component of Tτ \ {0}, and the following proposition
is easily seen to hold.

Proposition 3.8. If τ has period n and r is the number of ∼-equivalence
classes, then r > k, n is divisible by r, and σi(τ) ∼ σj(τ) if and only if j− i
is divisible by r.

Proof. τ0 = ∗τ , τ , τ2 = σ(τ), . . . , τk = σk−1(τ) are easily seen to all
be in different equivalence classes, so r > k. Let J0, J1, . . . , Jk−1 be the
components of Tτ \{0}. Define a sequence α by αi=j if and only if σi(τ)∈Jj .
Then r is the least positive integer such that αi+r = αi for all i, from which
the rest easily follows.

Theorem 3.9. Let τ be an acceptable and periodic sequence from {0, 1, ∗}
with period n, such that σ : Tτ → Tτ is locally eventually onto and Tτ is a
k-star for some k ≥ 2. If P is the minimal Markov set of Tτ , and E is the
P -basic interval containing τ , then there are two intervals I, J ⊆ E, with I
and J intersecting in a single point c, and a positive integer m ≤ n− 1 such
that σm|I (respectively, σm|J) is a homeomorphism from I (respectively, J)
onto [0, τ ], with σm(c) = τ .

Proof. Let E = [τ, a]. Let τ0 = ∗τ and τ i = σi−1(τ), 1 ≤ i ≤ n − 1. By
Theorem 3.2, σ is conjugate to some φk,j,λ with k and j relatively prime. Let
I0, I1, . . . , Ik−1 be as in Definition 1.1. Note in particular that Ik−1 contains
the branching point 0, the turning point τ0, the point 10 (a preimage of the
branching point) and τk, in that order. Note also that the interval [0, 10]
maps via σ from 0 out to τ and then back to 0, so that it is sufficient to find
an interval I ⊆ E and an m ≤ n − 2 such that σm|I is a homeomorphism
onto [0, 10]. By Lemma 3.7, it suffices to find an m ≤ n−2 such that σm(E)
contains both 0 and 10.

Claim. If x, y ∈ Tτ \ {0} are such that x and y are in different Ij’s, but
σ(x) and σ(y) are in the same Ij, then one of x and y is in [10, τk].

Proof of Claim. Outside of [10, τk], points of Ij map to Ij+1 (where j+1
is modulo k).

Case 1: a is the branching point 0. Then E maps via σk−1 one-to-one
onto [0, τk] ⊇ [0, 10], and k − 1 ≤ n− 2.

Case 2: a = τ i for some i, and a � τ . Then there is an m < n such
that σm(τ) and σm(τ i) are in different Ij ’s. Fix the largest such m. Since
σn(τ) = τ and σn(τ i) = τ i are both in I0, σn−1(τ) = τ0 and σn−1(τ i) = τ i−1

must both be in Ik−1 (the only Ij having points which map to I0), and thus
m ≤ n− 2. Since σm(τ) and σm(τ i) are in different Ij ’s, 0 ∈ σm(E). By the
claim, one of σm(τ) and σm(τ i) is in [10, τk], so 10 ∈ σm(E).
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Case 3: a = τ i for some i, and a ∼ τ . Let r be the number of ∼-
equivalence classes, and let s = n/r.

Subcase 3a: 0 ∈ σn−r(E). Then since 0 is a fixed point, 0 ∈ σm(E) for
all m ≥ n − r. Let m = n − r + k − 1. Then since r > k, m ≤ n − 2. Now,
τk ∈ [10, τk], so since τn−r+k ∼ τk, σm(τ) = τn−r+k ∈ [10, τk], and thus
10 ∈ σm(E).

Subcase 3b: 0 /∈ σn−r(E). Then for each u, 1 ≤ u ≤ n − r = (s − 1)r,
there is a P -basic interval contained in σu(E) which is not contained in
any σv(E), 0 ≤ v ≤ u − 1, for otherwise σ would map

⋃n−r
u=0 σ

u(E) into
itself, contradicting that σ is locally eventually onto. Thus

⋃s−1
u=0 σ

ur(E)
must contain at least s distinct P -basic intervals (thus containing at least
s+1 distinct points), and therefore contains a point which is not∼-equivalent
to τ . Thus, there is a u, 1 ≤ u ≤ s − 1, such that σur(E) contains a point
τw not ∼-equivalent to τ (and therefore not ∼-equivalent to τur+1). There
must be a v, 0 ≤ v ≤ r− 1, such that τur+1+v and τw+v are in different Ij ’s
but such that τur+2+v and τw+v+1 are in the same Ij . Let m = ur+v. Then
since τw and τur+1 are both in I0, τw+r and τur+1+r are both in I0, and
therefore τw+r−1 and τur+r are both in Ik−1. Thus v ≤ r−2 and m ≤ n−2.
The rest of the argument is as in Case 2.

Definition 3.10. Suppose that σ : T → T is a Markov tree map with
Markov set P . Let I be the set of P -basic intervals, let I ′ be a set of
symbols, two for each P -basic interval I, one symbol for I and another for
I−1 (representing the same interval in the opposite orientation), and let I∗
be the set of all words in symbols from the symbols in I ′. Note that we do not
allow “cancellation” between I and I−1 here, so I0I1I−1

1 and I0 are distinct
words. We define the inverse w−1 of a word w by the obvious recursive
rules (a−1)−1 = a and (ab)−1 = b−1a−1. A function F ∗ with domain I with
values in I∗ will be called a substitution. A substitution F ∗ is extended
to a function (also called F ∗) from I∗ into itself in the obvious way by
the recursive formulas F ∗(a−1) = (F ∗(a))−1 and F ∗(ab) = F ∗(a)F ∗(b), a, b
∈ I∗. Given a Markov tree map σ with Markov set P and P -basic intervals
{I0, I1, . . . , Im−1}, each of which has been assigned an orientation, define a
substitution B∗, the substitution induced by σ (and by the orientation), by
letting B∗(Ij) = Ie0i0 I

e1
i1
· · · Ien−1

in−1
, where Ii0 , Ii1 , . . . , Iin−1 are (in order) the

P -basic intervals which are σ-covered by Ij , and e0, e1, . . . , en−1 are either
1 or −1 to indicate whether the orientation of each covering is positive or
negative.

Repeated substitutions give a simple way of calculating the image under
σn of any basic interval. If I is a P -basic interval, then (B∗)n(I) is a word
giving the image of I, showing exactly how the interval is covered, and what
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the repetitions are if σn|I is not one-to-one. Thus, substitutions give a useful
way of calculating the exact value of m in Theorem 3.9. Starting with the
word w0 = E, where E is a P -basic interval containing τ , one forms wm =
(B∗)mE for each positive integer m of interest, to see if a subword appears
indicating a path from 0 to τ and back to 0. For example, in the example
given in Figure 3, let the P -basic intervals be oriented outward from the
branching point 0, with Ij having “finishing” point τj . (So, for example, I1
goes from τ5 to τ1, and I8 goes from 0 to τ8). Then, starting with w0 = I1, we
get, in successive substitutions, w1 = I2, w2 = I3, w3 = I4, w4 = I5, w5 = I6,
w6 = I7, w7 = I−1

1 I−1
5 I−1

9 I8, w8 = I−1
2 I−1

6 I−1
10 I9, w9 = I−1

3 I−1
7 I−1

0 I−1
4 I−1

8 I10,
and w10 = I−1

4 I−1
8 I9I5I1I

−1
1 I−1

5 I−1
9 I8I4I0. In the last of these words, we see

the subword I9I5I1I−1
1 I−1

5 I−1
9 , indicating a path from 0 to τ and back to 0.

Since the period in this case is 11, this is one of numerous examples in
which the number of applications of the substitution B∗ needed to get the
desired subword is one less than the period. Thus, we have shown that the
m ≤ n − 1 of the theorem cannot be improved. Using this method, we can
also show that the theorem cannot be extended from stars to general trees
(for example, the map shown by Figure 9).

We now want to single out the class of functions on which the main
argument in Section 4 will be carried out. While our main interest will be
the maps φk,j,λ, we wish to also include other tree maps for which the main
argument also applies.

Definition 3.11. We say that τ is in class K if:

(1) τ is acceptable, with the range of τ equal to {0, 1, ∗}.
(2) τ is periodic with period n0.
(3) σ : Tτ → Tτ is eventually locally onto.
(4) τ begins with at least k− 1 ≥ 2 zeros. Equivalently, 0 is a branching

point of valence k ≥ 3.
(5) Branching points of Tτ other than 0, if any, are periodic with valence

different from k.
(6) τk+1 = σk(τ) is in a different component of Tτ \ {0} than τ .
(7) If P is the minimal Markov set of σ : Tτ → Tτ , and E is the P -basic

interval containing τ , then there are two intervals I, J ⊆ E, with I
and J intersecting in a point c, such that for some m ≤ n0, σm|I
(respectively, σm|J) is a homeomorphism from I (respectively, J)
onto [0, τ ], with σm(c) = τ .

The restriction that the range of τ is equal to {0, 1, ∗} guarantees that the
turning point of σ|Tτ is not a branching point. In this paper, we only consider
the case where the turning point is periodic, which is equivalent to τ being
periodic. The condition that σ : Tτ → Tτ is an eventually locally onto tree
map guarantees that the inverse limit space is indecomposable. Condition
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(4) guarantees that the point in the inverse limit corresponding to 0 has
valence at least 3. While we are mainly interested in the case when Tτ is a
k-star with k ≥ 3, conditions (5) through (7) isolate properties which are
true in the star case, but will be enough for the main argument to go through.
Condition (5) is a simple way of guaranteeing that any homeomorphism of
the inverse limit space will have to fix 0. Condition (6) guarantees that 10,
the other preimage of the fixed point 0, is between τ0 and τk. It is used
below in Lemma 4.17 and Proposition 4.19. Condition (7), which is slightly
weaker than what was proved for stars in Theorem 3.9 (with n − 1 being
replaced by n here), is used below in Lemma 4.35.

Proposition 3.12. Let φ = φk,j,λ for some relatively prime j and k ≥ 3,
and assume that the turning point has a periodic orbit. Then there is a τ ∈ K
such that φ is conjugate to σ : Tτ → Tτ .

Proof. Let S be the domain of φ and let t be the turning point. Let
S∗ = {t} and let S0 and S1 be the components of S \{t}, with S0 containing
the branching point of S. Let τ be the kneading sequence (i.e., the itinerary
of φ(t)) with respect to the partition {S∗, S0, S1}. Then (1), (2), (4), and
(5) in the definition of K are immediate, (3) follows from Theorem 3.1, (6)
follows from Theorem 3.2, and (7) follows from Lemma 3.9.

4. The main argument

Definition 4.1. Throughout this section, the following items will be
fixed. We let τ = θ∗ ∈ K, with P the minimal Markov set for σ : Tτ → Tτ ,
and we abbreviate T = Tτ . Let n0 be the period of τ , let k ≥ 3 be such
that τ begins with 0k−11, and let O be the orbit of τ with respect to σ,
with τ j abbreviating σj−1(τ) = σj(∗τ) (so that τ0 is the turning point,
and τ1 = τ). Let I = {I0, I1, . . . , In1−1} be a fixed enumeration of the
P -basic intervals (where n1 ≥ n0 is the number of such intervals), and we
assume that each member of I has been assigned an orientation. Let B be
the incidence matrix of the Markov graph with respect to this enumeration
of I. Let I ′ = I ∪ {I−1 : I ∈ I} be a set of symbols for the basic intervals
and their “inverses”, and let I∗ be the set of all words in symbols from I ′.
Let B∗ be the substitution corresponding to σ and the fixed orientation
of P -basic intervals, where for each P -basic interval I, B∗(I) is the word
(including orientation) describing the image of I under σ.

We let σ̂ : T̂ → T̂ be the corresponding inverse limit map, with τ̂ = θ̂∗
and τ̂ j = σ̂j−1(τ̂). Let P̂ consist of all σ̂-periodic members of T̂ correspond-
ing to members of P . In particular, {τ̂ j : 0 ≤ j ≤ n0 − 1} ∪ {0̂} ⊆ P̂ (with
equality in the case where T is a star). Let C(x̂) be the composant of T̂
containing x̂ and let {Ri : i ∈ Zk} be the maximal rays of C(0̂) starting
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at 0̂, enumerated in such a way that σ̂(Ri) = Ri+1 (with addition in Zk),
and R0 contains the point 0∗.τ .

For p ∈ Z, let Φp = π−1
p (P ), let Ψp = π−1

p (O), let Ψp,i = π−1
p (τ i), and

let Ψ∗ =
⋃
p∈Z Ψp. For x̂ ∈ Ψ∗, we let C(x̂) be the least integer n such that

xn = ∗, with C(τ̂ j) = −∞. For x̂ ∈ Ψp, the p-level of x̂, denoted Lp(x̂), is
given by Lp(x̂) = p− C(x̂), with Lp(τ̂ j) =∞.

In our view of the elements of T̂ as biinfinite itineraries, Lp(x̂) is the
number of coordinates prior to the pth coordinate where the first ∗ appears.
A couple of differences between this definition and the treatment of [K1],
[K2], and [BJKK] should be noted. Φp is defined here for all integers, and
not just multiples of n0. Also, we are allowing the possibility that Lp(x̂) is
negative. For example, if τ = 001000∗, then 0.0∗τ ∈Ψ0, and L0(0.0∗τ) = −1.

Proposition 4.2. The following simple relationships hold between the
Φp’s and the Ψp’s:

(1) Ψp ⊆ Φp.
(2) Φp ⊆ Φp+1.
(3) σ̂(Φp+1) = Φp.
(4) Ψp ⊆ Ψp+1.
(5) σ̂(Ψp+1) = Ψp.

Proof. Since O ⊆ P , (1) is trivial. To see (2), note that if x̂ ∈ Φp, then
πp(x̂) ∈ P , and therefore πp+1(x̂) = σ(πp(x̂)) ∈ P , so x̂ ∈ Φp+1.

For (3), note that x̂ ∈ σ̂(Φp+1) iff σ̂−1(x̂) ∈ Φp+1 iff πp+1(σ̂−1(x̂)) ∈ P
iff πp(x̂) ∈ P iff x̂ ∈ Φp.

(4) is similar to (2), and (5) is similar to (3).

Proposition 4.3. Let A ⊆ T̂ be an arc, and let p ∈ Z. Then πp|A is
one-to-one if and only if for every x̂ ∈ A∩Ψ∗ which is not an endpoint of A,
C(x̂) ≥ p.

Proof. (⇒) We prove the contrapositive. Suppose that x̂ ∈ A ∩ Ψ∗ is a
non-endpoint of A such that C(x̂) = q < p. Then πq+1(x̂) = τ , which is an
endpoint of T . Thus, πq+1|A (and therefore πp|A) is not one-to-one at x̂.

(⇐) We prove the contrapositive. Suppose that πp|A is not one-to-one,
and let x̂, ŷ ∈ A be distinct such that πp(x̂) = πp(ŷ). Then there is a q < p
such that {xq, yq} = {0, 1}, and thus there is a ẑ between x̂ and ŷ such that
zq = ∗.

Corollary 4.4. Let A = [x̂, ŷ] ⊆ T̂ be an arc, let p ∈ Z, and let
L = max{Lp(ẑ) : ẑ ∈ (x̂, ŷ) ∩ Ψp}. Then πp−L|A is one-to-one.

Proposition 4.5. Let 1 ≤ j ≤ n0 − 1 be such that πp(x̂) = τ j is an
endpoint of T . Then Lp(x̂) ≥ j.
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Proof. Note that every endpoint of T is of the form τ i for some i with
1 ≤ i ≤ n0 − 1. Since τ j is an endpoint of T , it has only one preimage with
respect to σ, namely τ j−1, so we must have πp−1(x̂) = τ j−1. Similarly, if
j − 1 > 0, then τ j−1 is also an endpoint of T , and thus πp−2(x̂) = τ j−2.
Proceeding by induction, we get πp−j(x̂) = τ0 = ∗τ , and thus Lp(x̂) ≥ j.

Definition 4.6. Let A ⊆ T̂ be an arc. We say that A is a p-arc if it has
endpoints in Φp and does not contain any branching point of T̂ in its “inte-
rior”. Note that if q ≥ p, then every p-arc is also a q-arc. A p-arc is oriented
if it has one of its endpoints distinguished as the “starting” point and the
other as the “finishing” point. Unless otherwise stated, we will assume that
p-arcs in the composant C(0̂) are oriented in the direction of the rays Ri.
An arc in T̂ with endpoints x̂ and ŷ will be denoted [x̂, ŷ] (or [ŷ, x̂]), and an
oriented arc with initial point x̂ and final point ŷ will be denoted

−−→
[x̂, ŷ].

For each oriented p-arc A we define the p-shape of A, denoted Sp(A), to
be a word from I∗, by induction on the number of elements of A ∩ Φp. If
A ∩ Φp has two elements, then πp(A) will be a P -basic interval I, and we
define Sp(A) to be either I or I−1, depending on whether πp|A is orienta-
tion preserving or orientation reversing according to the fixed orientation of
P -basic intervals mentioned above. If A ∩ Φp has j > 2 points, and Sp(A′)
has already been defined for all oriented p-arcs such that A′ ∩ Φp has fewer
than j points, then write A = C ∪ D for oriented p-basic arcs C and D
intersecting at a point, with A and C having the same initial point, and A
and D having the same final point. We then let Sp(A) be the concatenation
Sp(C)Sp(D), which is clearly independent of how A was divided. Roughly,
as x̂ proceeds across the arc A (in the direction of orientation), Sp(A) de-
scribes the path taken by πp(x̂), telling which P -basic intervals are covered,
and in which order and direction.

For each p-arc A (oriented or unoriented), we define the p-weight of A,
denoted Wp(A), to be a integer-valued vector with n1 coordinates, defined
by induction on the number of elements of A∩Φp. If A∩Φp has two elements,
and πp(A) = In, then Wp(A) has a 1 in the nth coordinate and a 0 elsewhere.
If A∩Φp has j > 2 points, and Sp(A′) has already been defined for all p-basic
arcs such that A′∩Φp has fewer than j points, then write A = C∪D for p-arcs
C and D intersecting at a point in Φp, and let Wp(A) = Wp(C) + Wp(D).
Roughly, Wp(A) tells how many times πp|A covers each P -basic interval.

Clearly, Wp(A) is easily recoverable from Sp(A): the nth coordinate of
Wp(A) is just the number of times In appears in Sp(A) plus the number of
times I−1

n appears in Sp(A).
A p-arc [x̂, ŷ] is said to be p-symmetric if there is a point v̂ ∈ [x̂, ŷ] ∩ Φp

such that
−−→
[v̂, x̂] and

−−→
[v̂, ŷ] have the same p-shape. In that case, v̂ is said to

be the center of the arc [x̂, ŷ].
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We note that our p-symmetric arcs are roughly the same as what were
called p-pseudosymmetric arcs in [K1], [K2], and [BJKK].

Proposition 4.7. The following are equivalent for two oriented arcs A
and C.

(1) A and C have the same p-shape.
(2) There exists an orientation preserving homeomorphism f : A → C

such that for every x̂ ∈ A, πp(x̂) = πp(f(x̂)).
(3) There is a bijection f : A∩Φp → C∩Φp which is order preserving with

respect to the orientations of A and C such that for every x̂ ∈ A∩Φp,
πp(x̂) = πp(f(x̂)).

Proof. Suppose that (3) holds. Let A ∩ Φp = {â0, â1, . . . , ân} and let
Ai = [âi−1, âi] for 1 ≤ i ≤ n. Similarly, let C ∩ Φp = {ĉ0, ĉ1, . . . , ĉn} and let
Ai = [ĉi−1, ĉi] for 1 ≤ i ≤ n. Then (3) clearly implies that πp(âi) = πp(ĉi)
for 0 ≤ i ≤ n and πp(Ai) = πp(Ci) for 1 ≤ i ≤ n. Define f : Ai → Ci by
f(x̂) = (πp|Ci)−1(πp(x̂)) for x̂ ∈ Ai. Then f is well defined on all of A (with
f(âi) = ĉi), and satisfies (2). Thus, (3) implies (2). (2)⇒(3) and (1)⇔(3)
are trivial.

Proposition 4.8. Let A =
−−→
[x̂, ŷ] be an oriented p-arc, and let A′ =

−−→
[ŷ, x̂]

be the same arc oriented in the opposite orientation. Then the following are
equivalent.

(1) A is p-symmetric.
(2) There is a w ∈ I∗ such that Sp(A) = w−1w.
(3) Sp(A) = Sp(A′).
(4) If A∩ Ψp is enumerated as {x̂0, x̂1, . . . , x̂n} (in order along A), then

n is even, and for all i, 0 ≤ i ≤ n, we have πp(x̂i) = πp(x̂n−i).
(5) There is an orientation reversing homeomorphism h of A such that

πp(h(â)) = πp(â) for all â ∈ A.
(6) There are a point v̂ ∈ A and homeomorphisms f : [0, 1]→ [v̂, x̂] and

g : [0, 1] → [v̂, ŷ] with f(0) = g(0) = v̂ such that for all t ∈ [0, 1],
πp(f(t)) = πp(g(t)).

Proof. (1)⇒(2) Suppose thatA is p-symmetric. Then there is a v̂∈A∩Φp
such that

−−→
[v̂, x̂] and

−−→
[v̂, ŷ] have the same p-shape w. Then Sp(A) = w−1w.

(2)⇒(3) Let w be as in (2). Then Sp(A) = w−1w = (w−1w)−1 = Sp(A′).
(3)⇒(4) If A ∩ Ψp is enumerated as {x̂0, x̂1, . . . , x̂n} (in order along A),

then A′∩Ψp is enumerated in the order {x̂n, . . . , x̂1, x̂0} along A′, so since A
and A′ have the same shape, πp(x̂i) = πp(x̂n−i) by Proposition 4.7. If n were
odd, then we would have πp(x̂i) = πp(x̂i+1), where i is the integer part of
n/2, contradicting that πp(x̂i) and πp(x̂i+1) are the endpoints of a P -basic
interval. Thus, n must be even.



232 S. Baldwin

(4)⇒(5) Follows immediately from Proposition 4.7 (3)⇒(2).
(5)⇒(6) If h is as in (5), let v̂ be the fixed point of h, let f : [0, 1]→ [v̂, x̂]

be a homeomorphism, and let g = h ◦ f .
(6)⇒(1) Trivial.

Proposition 4.9. Every p-arc A is also a p + 1-arc, and Wp+1(A) =
Wp(σ̂(A)) = BTWp(A).

Proof. Since Φp ⊆ Φp+1, every p-arc is also a p + 1-arc. Suppose that
πp(A) is the P -basic interval In. Then Wp(A) has a 1 in the nth coordinate
and a 0 in the other coordinates, and therefore BTWp(A) is the nth column
of BT , i.e., BTWp(A) has a 1 in the ith coordinate if Ii ⊆ σ(In) and a 0
otherwise. Thus, since πp+1(A) = πp(σ̂(A)) = σ(πp(A)) = σ(In), since πp+1

is one-to-one on A, and since πp is one-to-one on σ̂(A), we have Wp+1(A) =
Wp(σ̂(A)) = BTWp(A). Since the result holds for arcs mapping to a basic
interval, the additive nature of Wp guarantees that it holds for other arcs as
well.

Lemma 4.10. If A is a p-arc, then there is an integer n such that for all
m ≥ n, Wp(σm+1(A)) > Wp(σm(A)).

Proof. Let w̄ = Wp(A). Since σ|T is locally eventually onto, there is
a positive integer j so that Bj has all entries positive, so by the Perron–
Frobenius Theorem, the spectral radius λ > 1 of BT is a geometrically simple
eigenvalue of BT with a corresponding eigenvector v̄ with ‖v̄‖ = 1 having
all entries positive, and all other eigenvalues of BT have absolute value less
than λ. Since (BT )nw̄/‖(BT )nw̄‖ converges to v̄, and BT v̄ = λv̄ > v̄, there
is an n such that m ≥ n implies that

BT (BT )mw̄
‖(BT )mw̄‖

>
(BT )mw̄
‖(BT )mw̄‖

.

By Proposition 4.9, we have Wp(σm+1(A)) > Wp(σm(A)) for m ≥ n.

Proposition 4.11. If A is a p-arc, then Sp+1(A)=Sp(σ̂(A))=B∗(Sp(A)).

Proof. Similar to the proof of Proposition 4.9. It is easily seen to hold if
πp(A) is a P -basic interval, from which the full result routinely follows.

This proposition is especially useful when the endpoint of A is a periodic
element of T̂ . For example, if 0̂ is an endpoint of A, then we know that
Sp(A) starts with one of the P -basic intervals containing 0 (or its inverse).
Say Sp(A) starts with Ij . Then Sp(σk(A)) will start with B∗k(Ij). But A
is a proper subarc of, and shares the endpoint 0̂ with, σk(A), so one of
Sp(A) and B∗k(Ij) is an initial subword of the other. The latter of these is
easily calculated for specific cases, and such calculations were a useful tool
in experiments made at the beginning of this research.
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Corollary 4.12. If A is p-symmetric, then σ(A) is p-symmetric.

Corollary 4.13. If A is p-symmetric, then A is also q-symmetric for
all q ≥ p.

If A is p-symmetric, then it is not necessarily the case that A is p − 1-
symmetric, and we would like to see in detail how the p − 1-symmetry of
A might fail. If A = [x̂, ŷ] is p-symmetric with center ẑ, then there are
bijections f : [0, 1] → [ẑ, x̂] and g : [0, 1] → [ẑ, ŷ] with f(0) = g(0) = ẑ such
that for all t ∈ [0, 1], πp(f(t)) = πp(g(t)). Let a ∈ [0, 1] be maximal such
that for all t ∈ [0, a], πp−1(f(t)) = πp−1(g(t)). Then there are three cases:

Case 1: a = 1 and πp−1(f(1)) ∈ P . Then A is also p− 1-symmetric.

Case 2: a = 1 and πp−1(f(1)) /∈ P . Then A is not p − 1-symmetric,
because its endpoints are not in Φp−1, but A can be extended (on both sides)
to an arc A′ which is p−1-symmetric (and therefore also p-symmetric) with
center ẑ.

Case 3: a < 1. This is the most interesting case. Then since πp(ŵ) =
σ(πp−1(ŵ)) for all ŵ ∈ T̂ , and τ0 is the only point of T̂ at which σ is not
locally one-to-one, πp−1(f(a)) = πp−1(g(a)) = τ0. We claim that πp−1 ◦ f
and πp−1◦g are both one-to-one on [a, 1]. To see this, pick b ∈ [a, 1] maximal
such that πp−1 ◦ f and πp−1 ◦ g are both one-to-one on [a, b], and suppose
that b < 1. By symmetry, suppose that πp−1 ◦ f is not one-to-one on any
neighborhood of b. Then πp−1(f(b)) ∈ O. Since πp−1(f(t)) 6= πp−1(g(t)) for
t ∈ (a, b], πp−1(g(b)) /∈ O. Thus πp ◦ f is not one-to-one on a neighborhood
of b, but πp ◦ g is one-to-one on a neighborhood of b, contradicting that A is
p-symmetric, and establishing the claim. Since it follows that πp−1(f(1)) 6=
πp−1(g(1)), we see that πp−1(f(1)) and πp−1(g(1)) cannot both be in O.
The following proposition isolates one important fact from what we have
just shown.

Proposition 4.14. If A = [x̂, ŷ] is p-symmetric but not p−1 symmetric,
then πp−1(x̂) and πp−1(ŷ) are not both in O.

Proof. As noted above, the hypothesis implies that Case 2 or Case 3
held.

Proposition 4.15. If A is a p-symmetric arc with center ẑ, then z ∈ Ψp,
and Lp(z) ≥ 1.

Proof. Let A′ be a subarc of A with ẑ in its interior, and containing no
point of Ψp except ẑ. Then πp|A′ is not one-to-one, so by Proposition 4.3,
there is a ẑ′ ∈ A′ such that C(ẑ′) ≤ p − 1, which clearly implies z′ ∈ Ψp.
Clearly ẑ′ = ẑ is the only possibility.
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Lemma 4.16. Let A = [x̂, ŷ] be a p-symmetric arc with center ẑ, and
suppose that x̂, ŷ ∈ Ψp. Then Lp(ẑ) > min{Lp(x̂), Lp(ŷ)}.

Proof. Let q ≤ p be least such that A is q-symmetric. Then by Proposi-
tion 4.14, πq−1(x̂) and πq−1(ŷ) are not both in O. Thus, min{Lq(x̂), Lq(ŷ)}
≤ 0. On the other hand, Lq(ẑ) ≥ 1. Using the fact that Lp(û) = Lq(û) +
(p− q) for û = x̂, ŷ, ẑ gives the result.

One fact that was very useful in the proofs in [K1], [K2], and [BJKK]
for the tent maps on the arc was that there were many symmetric arcs,
one of whose endpoints was one of the endpoints of the inverse limit space.
This is not the case for the more general tree maps covered here. Even in
the simpler cases, there are no obvious symmetric arcs having the τ̂n’s as
endpoints on which to base the argument. Fortunately, for the stars (and
many other trees) we have a suitable alternative by looking at arcs whose
endpoints are the branching point 0̂.

Lemma 4.17. Let x̂ = 01.0. Then x̂ is a point of T̂ . Let A be the arc in
T̂τ between 0̂ and x̂. Then for every n, p ∈ Z such that −n ≤ p, σn(A) is
p-symmetric with center σn(0∗.τ).

Proof. Let X be the smallest subtree of T containing {τ0, τ1, . . . , τk−1},
and let Y be the smallest subtree of T containing {τ1, τ2, . . . , τk}. Then
X ⊆ Y and σ maps X one-to-one onto Y . Thus, if x is any point of Y that
is not an endpoint of Y , then 0x is a point of X which is not an endpoint
of X. Thus, since all points of X other than τ0 start with a 0, if x is any
point of Y which is not an endpoint of Y , then 0nx ∈ X for all positive
integers n. Since (6) of Definition 3.11 implies that 10 is in Y (and it is not
an endpoint of Y ), 0n10 ∈ T for all n. Thus, 01.0 is a point of T̂ .

Clearly, it is enough to show that A is 0-symmetric. Note that µ(0̂, x̂) =
0∗.τ . Continuing with the µ-process, we have µ(0̂, 0∗.τ) = 0.0k−1 ∗ τ and
µ(x̂, 0∗.τ) = 01.0k−1 ∗ τ . It is easy to see that all further applications of the
µ-process are symmetric with respect to 0∗.τ .

Definition 4.18. Let A be the arc [0̂, 01.0] from the previous lemma.
For the remainder of this section, fix Ap,i = σ−p+i(A), p ∈ Z, i ∈ ω. The
Ap,i’s will be called the p-standard arcs. Note that Ap,i = Aq,j if and only if
−p+ i = −q + j.

Proposition 4.19.
(1) Ap,i is a subset of R−p+i.
(2) Ap,i+k contains Ap,i, and also contains another arc C disjoint from

Ap,i and of the same p-shape as Ap,i. Also, C and Ap,i+k share an
endpoint.

(3) Let {v̂n : n ∈ ω} be the centers of the p-standard arcs on Ri, enu-
merated in order along Ri. Then Lp(v̂n+1) = Lp(v̂n) + k.
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Proof. (1) is immediate from the definitions of Ap,i and Rj . (3) is imme-
diate from the fact that v̂n+1 = σk(v̂n). Let u, v, w ∈ I∗ respectively indicate
paths in T from 0 to τ , 0 to τk, and 0 to τk+1. Since [0, τ ] maps one-to-one
onto [0, τk] via σk−1, we have (B∗)k−1(u) = v. Similarly, since [0, τ0] maps
via σ to [0, τ ] and [τ0, τk] maps via σ to [τ, τk+1] (which contains 0 by part
(6) of Definition 3.11), B∗(v) = uu−1w. Now, S0(A0,0) = uu−1, and thus
S0(A0,k) = (B∗)k(S0(A0,0)) = uu−1ww−1uu−1. Thus, (2) holds for A0,k

and A0,0. All other instances of (2) follow easily from this case.

Proposition 4.20. Let {v̂n : n ∈ ω} be the centers of the p-standard
arcs on Ri, enumerated in order along Ri. Let ŵ ∈ (v̂n, v̂n+1) ∩ Ψp. Then
Lp(ŵ) < Lp(v̂n).

Proof. Every v̂n is equal to σi(0.∗τ) for some i. For example, if v̂n =
0.0k∗τ , then v̂n+1 = σk(v̂n) = 0.∗τ . Since τ starts with k− 1 0’s, v̂ni ≈ v̂

n+1
i

for all i ≤ k. Let ŵ be in the open arc from v̂n to v̂n+1. Then, by Proposition
2.7, v̂ni ≈ ŵi ≈ v̂n+1

i for all i ≤ k, which implies that ŵ ≈ 0.0k1∗. Then ŵi
cannot be ∗ for i ≤ −1, since that would give ŵi+k = 1, where i+ k < k, a
contradiction. Also ŵi 6= ∗ for 1 ≤ i ≤ k − 1, since that would give ŵk = 0,
also a contradiction. ŵ0 = ∗ and ŵk = ∗ are ruled out because ŵ is neither
v̂n+1 nor v̂n. Thus, if ŵ ∈ Ψp, then Lp(ŵ) < k = Lp(v̂n). All other cases
of the proposition are the same as the example given, shifted by a certain
number of coordinates.

Lemma 4.21. Let A be a p-standard arc with center ŵ. Let C be another
arc in T̂ with center v̂ and the same p-shape as A. Then Lp(v̂) ≥ Lp(ŵ).

Proof. We prove for A = Ap,n by induction on n. If A = Ap,j for 0 ≤ j ≤
k− 1, then Lp(ŵ) = j + 1, and πp(ŵ) = πp(v̂) = τ j+1, which is an endpoint
of T , so by Proposition 4.5, Lp(v̂) ≥ j+1. Let A = Ap,n for some n ≥ k, and
suppose that the lemma is true for Ap,n−k. Then Ap,n−k ⊆ A, and A contains
another arc A′ (with which it shares an endpoint) disjoint from Ap,n−k and
with the same shape as Ap,n−k. Since C has the same shape as A, C contains
two disjoint arcs D and E (sharing an endpoint with each) having the same
shape as Ap,n−k. Thus, if x̂ and ŷ are the centers of D and E respectively,
then the induction hypothesis gives Lp(x̂) ≥ Lp(ẑ) and Lp(ŷ) ≥ Lp(ẑ),
where ẑ is the center of Ap,n−k. Since v̂ is the center of the p-symmetric
arc [x̂, ŷ], Lp(v̂) > min{Lp(x̂), Lp(ŷ)}, so Lp(v̂) > Lp(ẑ) = n − k + 1. Since
πp(ŵ) = πp(v̂), Lp(ŵ) and Lp(v̂) are in the same congruence class modulo
n0, so since k < n0, Lp(v̂) ≥ Lp(ŵ) = n+ 1.

Theorem 4.22. Every p-symmetric arc in C(0̂) having 0̂ as an endpoint
is one of the p-standard arcs Ap,i.

Proof. By contradiction. Suppose that there is a p-symmetric arc C hav-
ing endpoints 0̂ and ẑ and center ŵ which is not a p-standard arc. Then by
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Proposition 4.20, there is a v̂ between 0̂ and ŵ which is the center of a
p-standard arc A ⊆ B with endpoint 0̂, such that Lp(v̂) > Lp(ŵ). Then by
p-symmetry of C, there is an arc D having ẑ as one of its endpoints and cen-
ter x̂ which has the same shape as A. Thus, by Lemma 4.21, Lp(x̂) ≥ Lp(v̂).
But this contradicts that Lp(ŵ) > min{Lp(x̂), Lp(v̂)} (Lemma 4.16).

Definition 4.23. Define the open covers Ln of T and Lm,n of T̂ as
follows. For each n ∈ ω, let Pn = σ−n(P ). For each x ∈ Pn, define lxn to be the
largest connected open subset of T which contains x but contains no element
of Pn other than x. Let `xm,n = π−1

m (lxn), m ∈ Z. Let Ln = {lxn : x ∈ Pn}, and
let Lm,n = {`xm,n : x ∈ Pn}.

It is easy to check that the Ln’s and Lm,n’s are tree chainings, i.e., if
U and V are distinct elements of Lm,n (resp. Ln), then there is a unique
sequence U0, U1, . . . , Ur of distinct elements of Lm,n (resp. Ln) such that Ui
intersects Uj if and only if |i − j| ≤ 1, U0 = U , and Un = V . Also, these
covers can be made arbitrarily fine. In particular, the diameter of elements
of Ln approaches 0 as n approaches ∞, and the diameter of elements of
Lm,n approaches 0 as both −m and n+m approach +∞.

For the remainder of this section, let h : T̂ → T̂ be a fixed homeo-
morphism of T̂ . We observe that it follows from (5) of Definition 3.11 that
h(0̂) = 0̂ and that h permutes the τ̂ j ’s in some manner, 0 ≤ j ≤ n0 − 1. Let
d ∈ ω be large enough that if x and y are distinct elements of P , lxd ∩ l

y
d = ∅.

Let p,m be such that Lp,m is a refinement of h(L0,d) (equivalently, h−1(Lp,m)
is a refinement of L0,d). Let q, r be such that h(Lq,r) is a refinement of Lp,m.
Note that this necessarily means that Lq,r is a refinement of L0,d, so q ≤ 0
(q < 0 in all but unlikely circumstances) and r ≥ d + q. The numbers
d, p,m, q, r are also now fixed for the remainder of this section.

Definition 4.24. We define a function h̃ : Φq → Φp as follows. If x̂ ∈ Φq,
then πq(x̂) ∈ P and there is a ŷ ∈ P̂ such that πq(x̂) = πq(ŷ) = y. Then x̂

and ŷ are both in `yq,r. Let z = πp(h(ŷ)) ∈ P (since h(P̂ ) = P̂ ). Then `zp,m
is the only element of Lp,m containing h(ŷ), so since h(Lq,r) refines Lp,m,
we have h(`yq,r) ⊆ `zp,m. We define h̃(x̂) to be the element of Φp which is in
the same component of `zp,m as h(x̂). The function h̃′ : Φp → Φ0 is defined
similarly, using the function h−1 and the fact that Lp,m is a refinement of
h(L0,d). If A =

−−→
[x̂, ŷ] is an oriented q-arc, then h̃(A) is defined to be the

oriented p-arc
−−−−−−−→
[h̃(x̂), h̃(ŷ)] (and similarly for unoriented arcs), and h̃′(A′) is

defined similarly for p-arcs A′.

Proposition 4.25. For every x̂ ∈ Φq, h̃′(h̃(x̂)) = x̂, and for every q-arc
A (oriented or not), h̃′(h̃(A)) = A.
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Proof. Since h̃(x̂) and h(x̂) are in the same component of the relevant
`zp,m, x̂ = h−1(h(x̂)) and h−1(h̃(x̂)) are in the same component of the relevant
`y0,d.

Definition 4.26. Define a substitution H∗ : I → I∗ as follows. For each
basic interval Ij ∈ I, pick an oriented q-arc Aj such that Sq(Aj) = Ij and
then define H∗(Ij) = Sp(h̃(Aj)). Define another substitution J∗ : I → I∗

similarly using h̃′: if Sp(A′j) = Ij , let J∗(Ij) = S0(h̃′(A′j)).

Proposition 4.27 (cf. [K1, Proposition 65]). H∗ and J∗ are indepen-
dent of the choices of the oriented arcs Aj and A′j.

Proof. Suppose that A and C are oriented q-arcs such that Sq(A) =
Sq(C) = Ij . By Proposition 4.7, there exists an orientation preserving home-
omorphism f : A→ C such that for every x̂ ∈ A, πp(x̂) = πp(f(x̂)). Define
χ : h̃(A)∩Φp → h̃(C)∩Φp as follows. Fix ŷ ∈ h̃(A)∩Φp, and let x̂ = h−1(ŷ)
and y = πp(ŷ). Then x̂ and f(x̂) are both elements of some `uq,r such that
h(`uq,r) ⊆ `yp,m, so let χ(ŷ) be the element of Φp that is in the same com-
ponent of `yp,m as h(f(x̂)). Define χ′ : h̃(C) ∩ Φp → h̃(A) ∩ Φp symmetri-
cally. Then it is easy to check that χ′ = χ−1, and thus by Proposition 4.7,
Sp(h̃(A)) = Sp(h̃(C)). This completes the proof for H∗. The proof for J∗ is
virtually identical.

Corollary 4.28. For any oriented q-arc A, Sp(h̃(A)) = H∗(Sq(A)),
and for any oriented p-arc A′, S0(h̃′(A′)) = J∗(Sp(A′))

Proof. Let A be an oriented q-arc. If πq(A) is a P -basic interval, then
the corollary is immediate from Definition 4.26 and Proposition 4.27. If A =−−→
[x̂, ŷ] is such that πq(A) is not a P -basic interval, then there is a v̂ ∈ A∩Φq
which is distinct from x̂ and ŷ, and letting X =

−−→
[x̂, v̂] and Y =

−−→
[v̂, ŷ], we

have, by induction on the length of Sq(A), Sp(h̃(A)) = Sp(h̃(X))Sp(h̃(Y )) =
H∗(Sq(X))H∗(Sq(Y )) = H∗(Sq(X)Sq(Y )) = H∗(Sq(A)). The proof of the
second part for an oriented p-arc is virtually identical.

Corollary 4.29 (cf. [K1, Proposition 65]).

(1) If A and C are q-arcs with the same q-shape, then h̃(A) and h̃(C)
have the same p-shape.

(2) If A′ and C ′ are p-arcs with the same p-shape, then h̃(A′) and h̃(C ′)
have the same 0-shape.

Proof. Immediate from Corollary 4.28.

Corollary 4.30. If A is a q-symmetric arc, then h̃(A) is p-symmetric.
Furthermore, if x̂ is the center of the q-symmetric arc A, then h̃(x̂) is the
center of h̃(A). The same result applies to h̃′.
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Proof. Immediate from Corollary 4.28.

Definition 4.31. Define the matrices H and J as follows. The i, j-entry
of H is the number of times that Ij appears in H∗(Ii) plus the number of
times that I−1

j appears in H∗(Ii). J is defined similarly from J∗.

Corollary 4.32. Let A be a q-arc. Then Wp(h̃(A)) = HTWq(A). Let
A′ be a p-arc. Then W0(h̃′(A′)) = JTWp(A).

Theorem 4.33. For every q-standard arc A, h̃(A) is a p-standard arc,
and for every p-standard arc A′, h̃′(A′) is a 0-standard arc. More precisely,
there are t, s ∈ ω, with t + s = −q, such that h̃(Aq,i) = Ap,t+i (i ≥ 0), and
h̃′(Ap,j) = A0,s+j (j ≥ t).

Proof. Since the p-standard arcs are the only p-symmetric arcs having 0̂
as an endpoint, and h̃(0̂) = 0̂ (and similarly for 0-standard arcs and h̃′), the
first sentence of the theorem is clear. It is clear that h̃(Aq,0) = Ap,t for some
t ∈ ω. Then by Proposition 4.25, h̃′(Ap,t) must be Aq,0 = A0,−q = A0,t+s.
Since Aq,0 ⊆ Aq,k, h̃(Aq,0) ⊆ h̃(Aq,k), and thus h̃(Aq,k) must be Ap,t+nk
for some integer n. But since h̃′(Ap,t+nk) = Aq,k = A0,−q+k and there is
no 0-standard arc A strictly between A0,−q and A0,−q+k (in the sense of
proper containment), we must have n = 1, for otherwise there would be
no reasonable value for h̃′(Ap,n+k). Thus, arguing similarly by induction,
h̃(Aq,nk) = Ap,t+nk for all n ∈ ω, and h̃′(Ap,t+nk) = Aq,nk = A0,t+s+nk.
Of course, this argument can also be given for the other congruence classes
modulo k, but that runs into the problem that it is not obvious that distinct
congruence classes modulo k will give the same values of t and s.

Here, Lemma 4.10 comes to our aid by telling us that for some positive
integer M , n ≥M implies that Wq(Aq,n) < Wq(Aq,n+1). Corollary 4.32 then
gives Wp(h̃(Aq,n)) < Wp(h̃(Aq,n+1)) for all n ≥ M . Since we have already
shown that h̃(Aq,nk) = Ap,t+nk for all n ∈ ω, this gives h̃(Aq,i) = Ap,t+i for
all i ≥ M , which in turn guarantees distinct congruence classes modulo k
will indeed give the same values of t and s in the above argument.

Note that for i ≥ −q+p−t, h̃(Aq,i) = Ap,t+i = Aq,q−p+t+i = σq−p+t(Aq,i),
and that h̃′(Ap,j) = A0,s+j = Ap,p+s+j = σp+s(Ap,j) for sufficiently large j.
Thus, for q-standard arcs, the behavior of the homeomorphism h is close to
that of σq−p+t, and for p standard arcs, h−1 behaves similarly to σp+s. For
this reason, for the remainder of this section we fix the integer (which can
be either positive or negative) N = q − p+ t = −p− s. Our goal is to show
that h and σN map composants in the same way. Using the theorem just
proved, it is now easy to show that h and σN behave in the same way on
the orbit of τ̂ .
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Corollary 4.34. For all j, 0 ≤ j ≤ k − 1, h(τ̂ j) = σN (τ̂ j).

Proof. Since the τ̂ j ’s are the only endpoints of T̂ , h(τ̂ j) = τ̂ i for some i,
and thus h(`πq(bτ j)

q,r ) ⊆ `
πp(bτ i)
p,m . If x̂a is the center of Aq,a, then πq(x̂a) cycles

through the members of O as a cycles through the nonnegative integers,
so there is an a with x̂a ∈ `

πq(bτ j)
q,r . Then h(x̂a) ∈ `

πp(bτ i)
p,m , so h̃(x̂a), which is

the center of h̃(Aq,a) = Ap,a+t = Aq,q−p+t+a = σN (Aq,a) (and therefore also

equal to σN (x̂a)), is also in `
πp(bτ i)
p,m . Thus, τ̂ i = σN (τ̂ j).

Lemma 4.35. Suppose that u, v ∈ Z are such that u ≤ v − n0 − 1, and
that ẑ ∈ Ψu,0 is not an endpoint of T̂ . Then there is a v-symmetric v-arc A
with center ẑ having two disjoint proper subarcs C and D, which are mirror
images of each other with respect to ẑ, such that both C and D have the
same v-shape as Av,i for some i ≥ v − u− n0 − 1.

Proof. Keep in mind that u and v will most likely both be negative when
we use this lemma. Let E be the P -basic interval of T containing τ as one
endpoint, and let a be the other endpoint of E. Without loss of generality,
assume that E is oriented from a to τ . Using part (7) of Definition 3.11, there
are two intervals I, J ⊆ E with I ∩ J = {b} and a positive integer m ≤ n0

such that σm(b) = τ and σm|I and σm|J are both homeomorphisms onto
[0, τ ]. Since πu(ẑ) = τ0, πu+1(ẑ) = τ , and since ẑ is not an endpoint of T̂ , the
composant of ẑ contains two points x̂, ŷ ∈ Φu+1 such that the arc A = [x̂, ŷ]
contains exactly three points of Φu+1, namely x̂, ẑ, ŷ. Since τ is an endpoint
of T , clearly πu+1(x̂) = πu+1(ŷ) = a. Thus Su+1(A) = EE−1, and A is u+1-
symmetric. Let C = [x̂, ẑ] ∩ π−1

u+1(I ∪ J), and let D = [ŷ, ẑ] ∩ π−1
u+1(I ∪ J).

Then C and D are mirror images of each other with respect to ẑ, and C and
D are u + 1 + m-symmetric with the same u + 1 + m-shape as Au+1+m,0.
Then v ≥ u+ 1 +m, and C and D are v-symmetric with the same v-shape
as Av,v−u−1−m, where v − u− 1−m ≥ v − u− n0 − 1.

Lemma 4.36. For all j ≥ n0 + 1, h̃(Ψq−j,0) ⊆ Ψp−t−j,0.

Proof. Let j ≥ n0 + 1. Suppose that ẑ ∈ Ψq−j,0. If ẑ were an endpoint
of T̂ , then ẑ would be in the orbit of τ̂ , and we would be done by Corollary
4.34, so without loss of generality assume that ẑ is not an endpoint of T̂ .
Then the hypotheses of Lemma 4.35 are satisfied for u = q− j, v = q. Thus,
there is a q-symmetric q-arc A with center ẑ having two disjoint proper
subarcs C and D, which are mirror images of each other with respect to ẑ,
such that both C and D have the same q-shape as Aq,i for some i ≥ j−n0−1.
Thus, h̃(A) has center ŵ = h̃(ẑ), and contains two disjoint proper subarcs
C ′ and D′, which are mirror images of each other with respect to h̃(ẑ),
such that both C ′ and D′ have the same p-shape as Ap,t+i = h̃(Aq,i) for
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some i ≥ j − n0 − 1. Let x̂ and ŷ be the centers of C ′ and D′ respectively.
Then, by Lemma 4.21, Lp(x̂), Lp(ŷ) ≥ t + i + 1. Thus, by Lemma 4.16,
Lp(ŵ) > min{Lp(x̂), Lp(ŷ)}, so Lp(ŵ) > t + i + 1 ≥ t + j − n0. Now, since
(q− j)− (p− t− j) = N , Cp(ŵ) ≡ 0 (mod n0), i.e., Lp(ŵ) ≡ t+ j (mod n0).
Thus ŵ ∈ Ψp−t−j,0.

Lemma 4.37. For all j ≥ n0 + t+ 1, h̃′(Ψp−j,0) ⊆ Ψ−s−j,0.

Proof. Same as the proof of Lemma 4.36.

Theorem 4.38. There exists an e ∈ ω such that h̃(Ψe,0) = σN (Ψe,0).

Proof. For example, let e = q − n0 − 1. Then by Lemma 4.36 (with
j = n0 + 1), we get h̃(Ψq−n0−1,0) ⊆ Ψp−t−n0−1,0. Then using Lemma 4.37
(with j = t + n0 + 1), we get h̃′(Ψp−t−n0−1,0) ⊆ Ψ−s−t−n0−1,0 = Ψq−n0−1,0.
Thus, h̃(Ψq−n0−1,0) = Ψp−t−n0−1,0 = Ψq−n0−N−1,0 = σN (Ψq−n0−1,0).

Definition 4.39. Let d be a taxicab metric on T such that if x, y ∈ T
are in the same component of T \ {τ0}, then d(σ(x), σ(y)) = λd(x, y). If x̂
and ŷ are in the same composant of T̂ , define d̄(x̂, ŷ) as follows. Let A ⊆ T̂ be
the arc with endpoints x̂ and ŷ, pick n such that πn|A is one-to-one, and let
d̄(x̂, ŷ)=λ−nd(πn(x̂), πn(ŷ). Since d(πn(x̂), πn(ŷ)=d(σ(πn−1(x̂)), σ(πn−1(ŷ))
= λd(πn−1(x̂), πn−1(ŷ) for such n, the definition is independent of the choice
of n, and d̄(σ̂(x̂), σ̂(ŷ)) = λd̄(x̂, ŷ).

Lemma 4.40. For each n ∈ ω, there is a positive real number Mn such
that every arc in T̂ of d̄-length greater than Mn intersects Ψn,0.

Proof. Since σ maps T locally eventually onto T , there is a positive
integer j such that for any two P -basic intervals I and J in the Markov
graph, there is a path of length exactly j from I to J in the Markov graph.
Note that if A and C are two n−j-arcs of T̂ such that A∩Φn−j and B∩Φn−j
each contain two elements, and such that πn−j(A) = πn−j(B), then A and
B have the same d̄-length. Since πn−j(A) is a P -basic interval in such a
case, there is a positive number Mn such that if A ⊆ T̂ is a p-arc such that
A ∩ Φn−j has only two elements, then A has d̄-length less than 1

2Mn. Fix
such an Mn. Then any arc A of d̄-length greater than Mn contains an arc C
such that πn−j(C) is a P -basic interval. Then σj(πn−j(C)) is all of T , and
thus πn(A) = T , from which it is obvious that A intersects Ψn,0.

Corollary 4.41. There exists a positive integer M such that for all
x̂ ∈ C(0̂), d̄(h(x̂), σN (x̂)) < M .

Proof. Let e = q−n0−1. Then h̃(Ψe,0) = σN (Ψe,0), from which it follows
that for each x̂ ∈ Ψe,0 ∩ C(0̂), h̃(x̂) = σN (x̂) (since both h̃ and σN map Ri
to the appropriate Rj in an order preserving way). Now, for x̂ ∈ Ψe,0, h̃(x̂)
is sufficiently close to h(x̂) that h̃(x̂) is the only element of Ψe,0 in the arc
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from h̃(x̂) to h(x̂). Thus, because of the order-preserving nature of both h
and σN on the Ri’s, there cannot be three elements of Ψe,0 between h(ŷ)
and σN (ŷ) for any ŷ ∈ C(0̂). Thus M = 3Me suffices, where Me is as in
Lemma 4.40.

Theorem 4.42 (cf. [BJKK, Theorem 4.3]). For all x̂ ∈ T̂ , h(x̂) and
σN (x̂) are in the same composant of T̂ .

Proof. Since C(0̂) is dense in T̂ , there are x̂n∈C(0̂) such that limn x̂n= x̂.
Then for all n ∈ ω, we have d̄(h(x̂n), σN (x̂n)) < M . For each n ∈ ω, let An
be the arc from h(x̂n) to σN (x̂n). Then there is a subsequence 〈Aan〉 of the
An’s which converges in the Hausdorff metric to a continuum A. Since A
clearly contains both h(x̂) = limn h(x̂n) and σN (x̂) = limn σ

N (x̂n), we are
done if we can show that A is a proper subcontinuum of T̂ .

Let j < 0 be such that λjM is less than one half of the diameter of T ,
so that for each n, the diameter of πj(An) is less than one half of the di-
ameter of T . Then it follows that πj(A) is not all of T . Thus, A is a proper
subcontinuum of T̂ .

Definition 4.43. Let Z be a set and let f : Z → Z. The period spectrum
of f , denoted PSf , is the function whose domain is the set of all positive
integers, such that if a is a positive integer, then PSf (a) is the cardinality
of the set {Y : Y is a periodic orbit of f of period a}. We say that PSf ≤
PSg if for every positive integer a, PSf (a) ≤ PSg(a). PSf < PSg means
PSf ≤ PSg and PSf 6= PSg.

If f is a homeomorphism of T̂ , and C is the set of all composants of T̂ ,
we let f# : C → C be given by f#(C) = f(C).

Corollary 4.44. PSh# = PSσ|N|.

Proof. Theorem 4.42 is equivalent to saying that h# = (σ̂N )#, and it
is well known that there is a natural one-to-one correspondence between
periodic points of σ̂ and periodic points and σ (via the natural projection π0),
which in turn gives a natural one-to-one correspondence between periodic
points of σ̂N and periodic points and σN for N > 0.

Case 1: N > 0. We need to show that for every positive integer a, every
composant fixed by σa has exactly one fixed point. Let C be a composant
fixed by σa. If C has an endpoint or branching point x̂, then σa(x̂) = x̂,
and for any other ŷ ∈ C, d̄(σa(x̂), σa(ŷ)) = λad̄(x̂, ŷ), so σa(ŷ) 6= ŷ, and x̂
is the only fixed point of C. Otherwise, C can be written as the one-to-one
continuous image of R. Let f : R → C be a continuous bijection such that
for all v, w ∈ R, d̄(f(v), f(w)) = |w − v|. Then f−1 ◦ σa ◦ f : R → R is an
expansive homeomorphism of R which has exactly one fixed point u, and
f(u) will be the unique fixed point of σa on C.
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Case 2: N=0. Then h# fixes all composants, and σ0 fixes all points of T .

Case 3: N < 0. Then since σ̂ is a homeomorphism, σ̂N and σ̂|N | have
the same periodic points and periods.

5. Periodic points in the families φk,j,λ. In this section we want
to examine the period spectra of various φk,j,λ as k, j, and λ vary. Since
Section 4 has ended, the variables (T , p, q, etc.) which were fixed at some
point during that section are released from service, and are now available
for other uses.

One advantage of our identification of points with itineraries is that peri-
odic points are easy to identify. They are the points with periodic itineraries,
and their period is the same as the period of the itinerary. If we single out
such an itinerary, then it is typically the case that some φn,k,λ have a point
with that itinerary and some do not. If we can gain information about the
sets {(k, j, λ) : φk,j,λ has a point with itinerary α} for various periodic
itineraries α, we can learn more about how the period spectra of the φk,j,λ’s
are related to each other.

If α is a periodic sequence from {0, 1}, then it may or may not be the
case that α ∈ Tτ . It is easy to decide whether or not α ∈ Dτ : α ∈ Dτ if
and only if α is not a substitution of τ . This is a routine consequence of the
definition of τ -admissibility. It is more complicated to decide if α ∈ Tτ , but
there is still a method for doing so. If Tτ is an arc, it is simply a matter of
using the “parity lexicographical ordering” (see, e.g., [BrD], [K1], [BJKK]).
If Tτ is not an arc, then the algorithm is more complicated (see, e.g. [Bal,
Definition 3.18 and Theorem 3.19], [BS]).

In proving some of the following results about the functions φk,j,λ, it will
be convenient to have a more explicitly defined formula for the functions.
Thus, let us identify the star Sk with the union of the arcs [0, λi+1] × {i},
0 ≤ i ≤ k−1, with the understanding that the points (0, i), 0 ≤ i ≤ k−1, are
all identified as the same point. The function values are defined as follows:

φk,j,λ(x, i) = (λx, i+ 1), 0 ≤ i ≤ k − 2,

φk,j,λ(x, k − 1) =


(λx, 0), 0 ≤ x ≤ 1,
(λ(2− x), 0), 1 ≤ x ≤ 2,
(λ(x− 2), j), 2 ≤ x ≤ λk.

With this definition of φ = φk,j,λ, we can view φn locally as being a func-
tion from an interval I to an interval J , both contained in some [0, λi+1]×{i}
(not necessarily the same one). This is especially useful in the neighborhood
of a periodic point of φn. We note that for fixed k, j, if λn converges to λ,
and xn in the domain of φk,j,λn converges to x, then x is in the domain of
φk,j,λ and φk,j,λn(xn) converges to φk,j,λ(x).
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Theorem 5.1. Let α be a periodic sequence from {0, 1}. If φk,j,λ0 has a
point with itinerary α, then there is a neighborhood U = (λ1, λ2) of λ0 such
that for all λ ∈ U , φk,j,λ has a point with itinerary α.

Proof. Let φ = φk,j,λ0 , and let x be the point having itinerary α for φ.
Let p be the period of α. Then near x, φp graphs as a line whose slope
has absolute value greater than 1, and is crossing the diagonal at x. Small
perturbations of λ give a line crossing the diagonal at some point near x,
giving a periodic point with the same itinerary as x.

Lemma 5.2. If k ≥ 2 and λ ≥ 21/k, then (λ− 1)kλk−1 > λk − 2.

Proof. Fix k ≥ 2, and let f(λ) = (k− 1)λk − kλk−1 + 2. Then f(21/k) =
k(2 − 2(k−1)/k) > 0. Also f ′(λ) = k(k − 1)λk−1 − k(k − 1)λk−2 > 0 for
λ ≥ 21/k, so f is increasing for λ ≥ 21/k, and thus f(λ) > 0 for λ ≥ 21/k.
Therefore kλk − kλk−1 > λk − 2 for λ ≥ 21/k.

Lemma 5.3. If k ≥ 2 and λ ≥ 21/k, then (λ− 1)kλk−1 > 1.

Proof. Let f(x) = 2 − 2(x−1)/x − 1/x. Then limx→∞ f(x) = 0. Since
f ′(x) = (−2(x−1)/x(log 2) + 1) 1

x2 < 0 for x ≥ 2, f is decreasing for x ≥ 2,
and thus f(x) > 0 for x ≥ 2. Thus, the formula λk−1(λ− 1)− 1/k > 0 holds
for k ≥ 2 and λ = 21/k, from which it is easily seen to hold for larger λ. The
result follows by easy algebra.

In the next two results, we want to examine how the orbit of the turning
point (1, k− 1) changes as λ varies within the family φλ = φk,j,λ for fixed k
and j. It is easily seen that φiλ(1, k− 1) = (λi, i− 1) for 1 ≤ i ≤ k, and that
φk+1
λ (1, k − 1) = (λk(λ − 2), j). For larger values of i, φiλ(1, k − 1) depends

heavily on the values of k, j, λ. If we ignore the second coordinate and let
xi be the first coordinate of φiλ(1, k − 1), we can see that we get one of the
three recursive formulas xi+1 = λxi, xi+1 = λ(2− xi), or xi+1 = λ(xi − 2),
where the first of these expressions is used for the first k steps and the third
expression is used at step k + 1.

If n > 0 is least such that φnλ0
(1, k − 1) = (1, k − 1), then there is a

neighborhood (λ1, λ2) of λ0 such that the same recursive formulas can be
used to calculate xi for λ ∈ (λ1, λ2) and 0 ≤ i ≤ n. We are interested in
seeing how xi (and in particular xn) change as λ is perturbed.

Lemma 5.4. |dxi| ≥ kλk−1|dλ| for λ ∈ (λ1, λ2) and k ≤ i ≤ n.

Proof. By induction on i, k ≤ i ≤ n. Since xk = λk, dxk = kλk−1dλ.
Suppose that |dxi| ≥ kλk−1|dλ|. Then dxi+1 = aidλ± λdxi, where ai is one
of xi, 2− xi, or xi − 2. Note that ai ≤ max{1, λk − 2}. Then

|dxi+1| ≥ λ|dxi| − |ai| |dλ| ≥ λ(kλk−1)|dλ| −max{1, λk − 2}|dλ|
= kλk−1|dλ|+ ((λ− 1)kλk−1 −max{1, λk − 2})|dλ| ≥ kλk−1|dλ|.
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Lemma 5.5. Let X be an interval of reals, and suppose that f : X → X
is continuous. Let a ∈ X be a fixed point of f and let b be a nonzero real
number such that a + 2b ∈ X. Let A ⊆ X be the interval having endpoints
a and a + b, and let B ⊆ X be the interval having endpoints a + b and
a+ 2b. Suppose that f is linear with slope s > 2 on A and linear with slope
−s on B. Then there are disjoint intervals I0 ⊆ A and I1 ⊆ B such that
f(I0) = f(I1) = A∪B, and for every α ∈ {0, 1}ω there is a point xα ∈ I0∪I1
such that fn(xα) ∈ Iαn for all n ∈ ω.

Proof. The existence of the intervals I0 and I1 is an easy consequence
of the fact that s > 2. The rest is well known and uses the usual argument,
outlined very briefly here: for finite sequences β of 0’s and 1’s, define, by
induction on the length of the sequence, intervals Iβ such that y ∈ Iβ implies
that fn(y) ∈ Iβn for all n in the domain of β. Then given α, let xα be the
unique element of

⋂
n∈ω Iα|n.

Theorem 5.6. Suppose that k, j, λ0 are such that φk,j,λ0 has a point with
periodic itinerary τ = θ∗, where θ is a sequence of 0’s and 1’s of length n−1.
Let α be the result of substituting all occurrences of ∗ in τ with 0, and let
β be the result of substituting all occurrences of ∗ in τ with 1. Then there
is a neighborhood (λ1, λ2) of λ0 such that if λ ∈ (λ1, λ0), then φk,j,λ has no
point with any of the itineraries τ, α, β, or any other substitution of τ , and
if λ ∈ (λ0, λ2), then φk,j,λ has points of period n with the itineraries α and β
(but no point with itinerary τ), as well as points of all itineraries of 0’s and
1’s which are substitutions of τ .

Proof. Any point with an itinerary containing the symbol ∗ must have
the turning point (1, k − 1) in its orbit, so (1, k − 1) has itinerary ∗τ in the
function φk,j,λ0 . Note that if t < 1 is close to 1, then the itinerary of (t, k−1)
starts with 0θ, while if t > 1 is close to 1, the itinerary of (t, k−1) starts with
1θ. Let (λ1, λ2) be a neighborhood of λ0 and let (b, c) be a neighborhood of 1
such that if λ ∈ (λ1, λ2), then the itinerary of (t, k− 1) for φk,j,λ starts with
0θ for t ∈ (b, 1), and with 1θ for t ∈ (1, c). Let x0 = 1, x1 = λ, x2, · · · , xn be
functions of λ as above. Let p be the number of times the recursive formula
xi+1 = λ(2 − xi) is used to get xi+1, k + 1 ≤ i ≤ n − 1. Since xi = λi for
1 ≤ i ≤ k, dxi = iλi−1dλ for those i, and thus the sign of dxi is the same
as the sign of dλ. If i ≥ k, then dxi+1 = aidλ ± λdxi, where ai is one of
xi, 2 − xi, or xi − 2. Thus, by Lemma 5.4, the parity of the sign of dxi+1

depends only on the parity of the ±λdxi term. Thus, dxi+1 has the same
sign as dxi if xi+1 is either λxi or λ(xi− 2), and dxi+1 has the opposite sign
from dxi if xi+1 is λ(2− xi).

Case 1: p is even. Then dxn has the same sign as dλ, so xn < 1 if
λ < λ0 and xn > 1 if λ > λ0. In a neighborhood of (1, k − 1), we can
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Fig. 8. λ > λ0

view φn = φnk,j,λ as a map from an interval to an interval. For λ = λ0, we
have 1 (i.e., (1, k − 1)) as a fixed point of φn. To the left of 1, φn has slope
λn0 > 1 (p changes of the sign of the slope as φ is applied n times). However,
to the right of 1, φn has slope −λn < −1 (one change of sign on the first
application of φ and then p more changes of sign). Thus, for λ = λ0, the
graph of φn in the neighborhood of (1, k − 1) looks like Figure 6 (with the
graph superimposed on the diagonal). For λ ∈ (λ1, λ0), xn < 1, and we get a
picture like Figure 7, with the graph in the neighborhood of (1, k− 1) lying
below the diagonal. Here, for any point (t, k−1) whose itinerary starts with
0θ or 1θ, we have φ(t, k − 1) = (t′, k − 1) for some t′ < t, and it follows
that for some i, the itinerary of φni(t, k − 1) does not start with 0θ or 1θ,
so that no point has an itinerary which is a substitution of τ . Finally, if
λ ∈ (λ0, λ2), then xn > 1, and we have a situation like Figure 8. Here, there
are two values near (1, k − 1) where the graph of φn crosses the diagonal,
giving two periodic points of period n in distinct orbits, one with itinerary
0α, and the other with itinerary 1β. In fact, since λn > λk > 2, Lemma 5.5
applies to φn, giving points of all itineraries which can be formed by infinite
concatenations of 0θ and 1θ, thus giving points whose itineraries are any
substitutions of τ .

Case 2: p is odd. The argument is virtually identical to Case 1. In this
case, Figures 6, 7, and 8 need to be rotated by 180 degrees.

Definition 5.7. Let λk,j be the unique positive root of the polynomial
λk−λj−2. For each periodic sequence α from {0, 1, ∗}, let S(k, j, α) = {λ ∈
(21/k, λk,j ] : φk,j,λ has a point with itinerary α}.

Theorem 5.8. If α is a periodic sequence of 0’s and 1’s, then S(k, j, α)
is an interval which, if nonempty, contains λk,j.

Proof. By Theorem 5.1, S(k, j, α) is an open subset of (21/k, λk,j ]. Sup-
pose that S(k, j, α) is nonempty, and let λ be the supremum of some non-
empty subset Λ of S(k, j, α). We need to show that λ ∈ S(k, j, α). There is
an increasing sequence λn from Λ converging to λ and points xn converging
to a point x such that xn has itinerary α in the function φk,j,λn . Aiming
for a contradiction, suppose that x does not have itinerary α. This can only
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happen if some member of the orbit of x is (1, k−1), so that the itinerary of
x is some periodic sequence τ containing the symbol ∗. This in turn means
that α is a substitution of τ . By moving to elsewhere in the orbit of x, we
may assume without loss of generality that τ is of the form θ∗. But accord-
ing to Theorem 5.6, itineraries which are substitutions of τ are not possible
for λ′ < λ close to λ. This is a contradiction. Thus, S(k, j, α) is an interval,
and λk,j ∈ S(k, j, α).

Corollary 5.9. If τ = θ∗ is periodic and acceptable, then S(k, j, τ)
is either a singleton or the empty set. If S(k, j, τ) = {λ0}, and α is any
substitution of τ , then S(k, j, α) = (λ0, λk,j ].

Theorem 5.10. Fix k and j. Then {λ ∈ (21/k, λk,j ] : φk,j,λ has a periodic
kneading sequence} is dense in (21/k, λk,j ].

Proof. It is well known that the topological entropy of φk,j,λ is log λ.
If λ1 < λ2, then φk,j,λ1 and φk,j,λ2 have different topological entropy, and
therefore are not conjugate and have different kneading sequences. If their
kneading sequences differ on the nth coordinate, then varying λ continu-
ously between λ1 and λ2 produces a kneading sequence with a ∗ in the nth
coordinate, i.e., a periodic kneading sequence.

Lemma 5.11. Let k, j ∈ Z, with k ≥ 2, 1 ≤ j ≤ k − 1, and k and j
relatively prime, and let λ ∈ (21/k, λk,j ]. Let 0 be the central fixed point of
φ = φk,j,λ. Then φ has a point z 6= 0 of period p for some p such that
p ≡ (k − j) (mod k). Fix the least such p. If x 6= 0 is a point of period n
for φ, where n is not a multiple of k, then p ≤ n.

Proof. Let I0, I1, . . . , Ik−1 be as in the definition of φk,j,λ, and for con-
venience assume that Ii is indexed by i ∈ Zk. Let J be the subinterval of Ij
that has preimages in Ik−1, and let K be the subinterval of Ik−1 extending
from the branching point 0 to the turning point. Define points yi by induc-
tion on i. Let y0 be the endpoint of Ik−1 other than 0. Suppose that yi has
been defined.

Case 1: yi ∈ J . Then pick yi+1 ∈ Ik−1 such that φ(yi+1) = yi, and the
induction stops at this point.

Case 2: yi ∈ I0. Then pick yi+1 ∈ K such that φ(yi+1) = yi.

Case 3: Neither Case 1 nor Case 2 holds. If yi ∈ Im, pick the unique
yi+1 ∈ Im−1 such that φ(yi+1) = yi.

Since φ is locally eventually onto, there is an i such that φi(J) containsK,
and φi+k(J) contains Ik−1. Thus, it is clear that the induction eventually
ends with Case 1 holding. Let yp be the last point picked when the induction
stops. Then it is easy to see that p ≡ (k − j) (mod k). The point yp will
either be y0 or a point closer to 0 than y0. If yp = y0, we have found our
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point of period p and we are done. If yp 6= y0, then use the “dog chases
rabbit” trick to move y continuously toward φp(y), starting at y = yp. This
leads to a point z such that φp(z) = z. Because 0 is a fixed point and clearly
φp(y) 6= 0 throughout this process, we also have φi(y) 6= 0 throughout this
process for all i ≤ p, and therefore f i(z) and yp−i are in the same Im. Thus,
z has period p.

Now, let n > 1 be such that n is not a multiple of k, and suppose that
there is a point x of period n for φ. To avoid trivial cases, assume p > 1. If
x ∈ Im, then fk−1−m(x) ∈ Ik−1, so at least one member of the orbit of x
is in Ik−1. Let y0 be the member of the orbit of x in Ik−1 which is furthest
from 0. For i > 0 define yi by induction on i so that yi+1 is the preimage of
yi in the orbit of x. Then since n is not a multiple of k, there must be a least
r > 0 such that yr−1 ∈ Im but yr /∈ Im−1. Then yr ∈ Ik−1 and applying the
“dog chases rabbit” trick as above with yr and φr gives a point of period
r ≡ (k − j) (mod k), with r ≤ n.

Theorem 5.12. For fixed k, PSφk,j1,λ1
= PSφk,j2,λ2

if and only if j1 = j2
and λ1 = λ2.

Proof. To see the nontrivial (⇒) direction, suppose that either j1 6= j2
or λ1 6= λ2.

Case 1: j1 = j2. By symmetry, we may assume that λ1 < λ2. Let τ
be the kneading sequence of φk,j1,λ1 . If τ is periodic, then by Theorems
5.6 and 5.8, φk,j2,λ2 has two periodic points with the same period as τ
whose itineraries are substitutions of τ (along with many points of higher
period whose itineraries are also substitutions of τ). If α is a sequence of
0’s and 1’s and φk,j1,λ1 has a point with itinerary α, then so does φk,j2,λ2 ,
by Theorem 5.8. Also, there are infinitely many λ ∈ (λ1, λ2) with period
kneading sequences, and φk,j2,λ2 possesses periodic points whose itineraries
are substitutions of those sequences, itineraries not realized by φk,j1,λ1 . Thus,
the period spectrum of φk,j1,λ1 is strictly less than the period spectrum of
φk,j2,λ2 .

Case 2: j1 6= j2. For each i ∈ {1, 2}, let pi be least such that pi ≡ (k−ji)
(mod k) and φk,ji,λi has a point of period pi which is different from the
central fixed point. Then clearly, p1 6= p2, so by symmetry assume that
p1 < p2. Then, by Lemma 5.11, either φk,j2,λ2 has no point of period p1, or
(in the rare case p1 = 1) φk,j2,λ2 has only one fixed point while φk,j1,λ1 has
two.

Note that if we know what PSf is, then we can also determine PSfn for
each n, independent of the function f . That is because we know, for example,
without knowing what f is, that each period three orbit for f leads to three
period 1 orbits for f3, that each period 5 orbit for f leads to a single period
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5 orbit for f3, that each period 12 orbit leads to three period 4 orbits for f3,
and so forth. However, the reverse is not true: PSf can be determined from
PSfn only in occasional trivial cases. This leads to the following definition.

Definition 5.13. Let P1 and P2 be functions from the set of positive
integers into the class of cardinals. We say that P1 is more primitive than
P2, written P1 C P2, if there is a function f : Z → Z for some set Z such
that PSf = P1 and PSfn = P2 for some n > 1. Clearly, the C relation
depends only on the combinatorics of the functions P1 and P2. If P1(n) = 0
for all n, then clearly P1 C P2 (similarly if P1(n) = κ for all n for any infinite
cardinal κ), but as we see from the following results, such examples are not
possible in the cases that interest us.

Proposition 5.14. Let P1 C P2 be such that P1(n) is finite for all n,
and P1(n) > 0 for all but finitely many n. Then P1 6= P2, and if n is least
such that P1(n) 6= P2(n), then P1(n) < P2(n).

Proof. Let k > 1 and f be such that PSf = P1 and PSfk = P2. Then
there is a prime number p > k such that P1(kp) > 0. Then P2(p) = P1(p) +
kP1(kp) > P1(p). Let n be least such that P1(n) 6= P2(n). Then it is easy to
see by induction on m < n that a point has period m for f if and only if it
has period m for fk, and that every point that has period n for f also has
period n for fk. Thus P1(n) ≤ P2(n).

Corollary 5.15. Let P1, P2 be such that P1(n) is finite for all n, and
P1(n)>0 for all but finitely many n. Then it is not the case that P1 CP2 CP1.

Theorem 5.16. φk1,j1,λ1 and φk2,j2,λ2 have homeomorphic inverse limit
spaces if and only if (k1, j1, λ1) = (k2, j2, λ2).

Proof. The “if” direction is trivial. For the other direction, suppose that
φk1,j1,λ1 : T1 → T1 and φk2,j2,λ2 : T2 → T2 have homeomorphic inverse limit
spaces T̂1 and T̂2 with shift maps σ̂1 and σ̂2. Then, by Theorem 3.6, the
largest n such that T̂i contains an n-star is ki, i = 1, 2, so k1 = k2. Let Zi =
{PSh# : h is a homeomorphism of T̂i}, i ∈ {1, 2}. Then by Theorem 4.42
Zi = {PS(bσmi )# : m ∈ ω} (noting that PS(bσ−mi )# = PS(bσmi )#). By Corollary
5.15, there is a unique Pi ∈ Zi such that Pi C P for all P ∈ Si such that
P 6= Pi and P (1) is not infinite. Then PSφk1,j1,λ1

= P1 = P2 = PSφk2,j2,λ2
.

6. Problems and questions. It is natural to ask what happens if we
try to generalize these results to a larger class of spaces. In particular, Hub-
bard Tree maps on trees other than stars are natural maps to investigate,
and offer a wide variety of more general tree maps for which some of the
same results might hold. Expansive Hubbard Tree maps are all conjugate
to σ : Tτ → Tτ for some acceptable τ (see [Bal]). In discussing possible gen-
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eralizations, we should note that a generalized Pseudo-isotopy Conjecture
does not necessarily imply a generalized Ingram’s Conjecture, for there is
also the problem of getting results analogous to those in Section 5. Also,
a generalized Pseudo-isotopy Conjecture concerns a property of individual
spaces, and can therefore be formulized in a more straightforward way than
a generalized Ingram’s Conjecture, which is a statement about a class of
spaces. Four examples of more general Hubbard Trees, for the kneading se-
quences 001001∗ and 00101∗, 0011001100110001∗, and 0101∗, are shown in
Figures 9 through 12.
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Fig. 9. Diagram of Tτ , τ = 001001∗

The map for τ = 001001∗ (Figure 9) is an example which shows that the
hypothesis that Tτ is a k-star cannot be removed from Theorem 3.9. Thus,
some other proof would have to be found for the corresponding version of
Lemma 4.35, or an alternative way of proving the results depending on that
lemma would have to be found. There are other problems with this example
which would hinder any attempt to follow the proof given here too closely.
One problem is that the inverse limit space has four branching points, 0̂,
0̂01, 0̂10, and 1̂00, all of valence 3, and there does not seem to be any obvious
way to guarantee that 0̂ would be a fixed point of any homeomorphism of
the inverse limit space, something that would have to be true if the Pseudo-
isotopy Conjecture is to be true for this map. Another problem is the lack
of the p-standard symmetric arcs in the composant containing 0̂. Tτ has no
point with itinerary 00010, so that the inverse limit space does not contain
the point 01.0 needed for the proof of Lemma 4.17. This last problem might
be solved by altering the proof in the manner described below for the case
τ = 0101∗. Although it can be verified in this specific case that no other
σν : Tν → Tν has a homeomorphic inverse limit by checking each of the
finitely many possibilities of period 7 in Theorem 3.6, there is an infinite
family of examples with larger periods whose inverse limits have the same
four branching points 0̂, 0̂01, 0̂10, and 1̂00 (routinely found from the Markov
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graph of Tτ ), some of which have the same periods whose inverse limits are
not easily distinguished from each other.
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Fig. 10. Diagram of Tτ , τ = 00101∗

The map for τ = 00101∗ (Figure 10) offers different problems. Here, 010
and 10 are only preperiodic, so that the six endpoints corresponding to the
shifts of 0̂0101∗ and the branching point 0̂ are the only points of the inverse
limit space which are easily distinguished from the others. This leads to the
problem that there is no clear definition for the set P̂ such that πn : P̂ → P is
a bijection for all n. Thus, a different definition of Φp might be required, and
we have not carefully investigated how that would change the arguments.
This example generates an infinite family of examples whose inverse limits
have only one branching point, of valence 3, and do not obviously have
different inverse limits from various examples from the families φ3,j,λ.
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1100 1001

Fig. 11. Diagram of Tτ , τ = 0011001100110001∗

However, there are kneading sequences leading to trees which are not
stars for which the arguments of Section 4 go through routinely. One example
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is τ = 0011001100110001∗ ∈ K (Figure 11). T̂τ has four points of “va-
lence” 4, namely 0̂011, 0̂110, 1̂100, and 1̂001, but these points are permuted
by any homeomorphism of Tτ , and do not cause any problem. Many other
such examples could be constructed, but closely related examples fail to
go through. For example, in the simpler example with kneading sequence
τ = 001100110011∗ (a diagram of which can be obtained from Figure 11 by
erasing the points τ13, τ14, τ15, and τ16, and mapping τ12 to τ0 instead),
the corresponding version of Theorem 3.9 fails. Although the Pseudo-isotopy
Conjecture holds for the example of Figure 11, it is not clear whether or not
this leads to an infinite family on which a generalization of Ingram’s Con-
jecture holds.
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Fig. 12. Diagram of Tτ , τ = 0101∗

One promising modification of the argument of Section 4 can be seen in a
family of Hubbard Tree maps, the simplest of which occurs with the knead-
ing sequence τ = 0101∗ (Figure 12). Here, the fixed point 0 has valence 2,
making the corresponding point 0̂ in the inverse limit space not very useful,
but instead we have the period two points 01 and 10, corresponding to the
two points 0̂1 and 1̂0 in the inverse limit space, which must be either fixed
or interchanged in any homeomorphism of Tτ . The p-standard arcs can then
be defined in the composants containing 0̂1 and 1̂0, having one of those two
points as endpoints. (The arc A between 0̂1 and 0100.01 is one p-standard
arc.)

We close this paper by offering some questions and problems for further
research. Here, the statement of an unsolved problem as a “conjecture”
simply means that the statement is not now known to be false, and does
not necessarily imply any strong arguments in favor of the conjecture.

Conjecture 6.1. If τ and ν are two acceptable periodic kneading se-
quences with range {0, 1, ∗} such that τ0 = ν0 = 0, then Tτ and Tν are
homeomorphic if and only if τ = ν.

The reason for the hypothesis τ0 = ν0 = 0 is that examples which just
interchange all the 0’s and 1’s are clearly conjugate. Examples showing that
the hypothesis that the sequences have range {0, 1, ∗} cannot be removed
are στ : Tτ → Tτ for the kneading sequences τ = 01 and τ = 012. σ01

is conjugate to the slope 2 tent map whose inverse limit is homeomorphic
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to the Knaster Continuum. T012 is a simple triod with branching point x0

and endpoints x1, x2, x3, with σ(xi) = xi+1 for i = 0, 1, 2 and σ(x3)=x3.
Let ∼ be the smallest equivalence relation on T012 such that s ∼ t when-
ever s ∈ [x0, x2], t ∈ [x0, x3] and σ(s) = σ(t). Then the resulting quotient
space is conjugate to σ01, and the corresponding semiconjugacy induces a
homeomorphism between T̂01 and T̂012.

In the arguments in this paper, showing that the period spectrum of two
maps was different was an important step in proving that the inverse limit
spaces were different. That this is often not the case in more general settings
is easily seen, for f and f2 have homeomorphic inverse limit spaces, yet f
and f2 have the same period spectrum only in rare cases.

In the other direction, examples with the same period spectrum and dif-
ferent inverse limit spaces can be constructed using the observation that the
maps στ : Tτ → Tτ have the same Markov graph for τ = 0110 and τ = 001.
Since there is a natural one-to-one correspondence between nonrepetitive
loops in the Markov graph for στ and periodic orbits for στ , with the period
of an orbit being possibly different from the length of the loop only for the
finitely many loops coming from the ray graph, a routine modification gives
the following example.

Example 6.2. Let f1 = σ0110 : T1 → T1 and let f2 = σ001 : T2 → T2.
Then f1 and f2 have almost identical period spectra. The Markov graph
for f1 has a nonrepetitive loop of length 4 which corresponds to an orbit of
period 2, and the Markov graph for f1 has a nonrepetitive loop of length 3
which corresponds to a fixed point. Thus, f1 has one extra orbit of each of
periods 2 and 3 that f2 does not have, while f2 has one extra orbit of each
of periods 1 and 4 that f1 does not have. Take a periodic point x ∈ T1 such
that f1(x) 6= x and attach five arcs [a, x], [b, x], [c, y], [d, y], and [e, y] to T1

at x, letting f1(a) = b, f1(b) = c, f1(c) = d, f1(d) = a, and f1(e) = e, letting
the orbits of all other new points eventually leave the new arcs. Similarly,
take a periodic point x ∈ T1 such that f2(x) 6= x and attach five arcs [a, x],
[b, x], [c, y], [d, y], and [e, y] to T2 at x, letting f2(a) = b, f2(b) = c, f2(c) = a,
f2(d) = e, and f2(e) = d, letting the orbits of all other new points eventually
leave the new arcs. Then it is routine to check that the expanded f1 and f2

are Markov tree maps having identical period spectra, but different inverse
limit spaces.

Question 6.3. What additional hypotheses are needed to get the result
that f and g have the same inverse limit if and only if they have the same
period spectrum?

Two continuous functions f : X → X and g : Y → Y are said to
be shift-conjugate if their corresponding inverse limit shift maps f̂ and ĝ
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are conjugate. Obviously, shift-conjugate maps have homeomorphic inverse
limits. Also, it is well known that f and fn have homeomorphic inverse
limits. However, we are unaware of any counterexample to the following
conjecture.

Conjecture 6.4. If f and g are expansive Markov tree maps, then f
and g have homeomorphic inverse limits if and only if there are positive
integers m and n such that fm and gn are shift-conjugate.

The “if” direction is clearly true for this conjecture. The word “expan-
sive” certainly cannot be removed. Counterexamples would be the maps on
[0, 1] given by f(x) = x and g(x) = x2.

It is easy to see that the core of the slope λ tent map on the interval is
conjugate to the function φ2,1,λ of Definition 1.1. Thus, a natural general-
ization of the Pseudo-isotopy Conjecture is the following.

Conjecture 6.5. Let σ : Ŝk → Ŝk be the shift map of the inverse limit
space of φk,j,λ : Sk → Sk, and let h : X̂ → X̂ be another homeomorphism of
Ŝk. Then there is an integer N (which need not be positive) such that for
every composant C of Ŝk, h(C) = σN (C).

Of course, we know from the results proven above that this conjecture is
true for all φk,j,λ having a periodic turning point. If this conjecture is true,
it is likely that it would also extend to many trees which are not stars. On
the other hand, the conjecture would not extend to functions f : X → X
for which there exists a continuous g : X → X such that f = g2.

Definition 6.6. Let X be an indecomposable continuum, and let C(X)
be the set of all composants of X. For each homeomorphism h of X with
itself, define h# : C(X)→ C(X) by h#(C) = h(C). Let G(X) = {h# : h is a
homeomorphism of X}.

Proposition 6.7. (G(X), ◦) is a group.

Proof. If g and h are homeomorphisms of X, then g# ◦ h# = (g ◦ h)#,
so (G(X), ◦) is in fact a homomorphic image of the group of all homeomor-
phisms.

Theorem 6.8. Suppose that φk,j,λ has a periodic turning point, and let
σ : Ŝk → Ŝk be the inverse limit shift map of φk,j,λ. Then G(X) is a cyclic
group with generator σ#.

Proof. This is an immediate corollary of Theorem 4.42.

Conjecture 6.9. Let f : T → T be an expansive Markov tree map,
and let σ : T̂ → T̂ be the corresponding inverse limit shift map. Then G(X)
is a cyclic group.
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