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LOCAL CONVERGENCE FOR A FAMILY OF ITERATIVE

METHODS BASED ON DECOMPOSITION TECHNIQUES

Abstract. We present a local convergence analysis for a family of iterative
methods obtained by using decomposition techniques. The convergence of
these methods was shown before using hypotheses on up to the seventh
derivative although only the first derivative appears in these methods. In
the present study we expand the applicability of these methods by showing
convergence using only the first derivative. Moreover we present a radius of
convergence and computable error bounds based only on Lipschitz constants.
Numerical examples are also provided.

1. Introduction. In this paper the problem of approximating a locally
unique solution x∗ of the equation

(1.1) F (x) = 0

is analysed. Here F : D ⊆ X → Y is a Fréchet-differentiable operator,
X,Y are Banach spaces and D is a convex subset of X. Newton-like meth-
ods are widely used for finding solutions of (1.1), and their convergence is
usually studied using semi-local and local convergence analysis. The semi-
local convergence analysis is, based on the information around an initial
point, to give conditions ensuring the convergence of the iterative proce-
dure; while the local analysis is, based on the information around a solu-
tion, to find estimates of the radii of convergence balls [3, 4, 20–22, 24,
25].
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Third order methods such as Euler’s, Halley’s, super Halley’s and Cheby-
shev’s methods [1]–[33] require the evaluation of the second derivative F ′′

at each step, which in general is very expensive. That is why many authors
have used higher order multi-point methods [1]–[33]. In this paper, we in-
troduce the three-step iterative method defined for each n = 0, 1, 2, . . . by

(1.2)

yn = xn − αF ′(xn)−1F (xn),

zn = yn − βA−1n F (yn),

xn+1 = zn − γB−1n F (zn),

where x0 is an initial point, α, β, γ ∈ R, An =
∑p

i=1wiF
′(xn + θi(yn− xn)),

Bn =
∑p

i=1wiF
′(xn + θi(zn− xn)), θi ∈ [0, 1] for i = 1, . . . , p, p is a positive

integer and the weights wi ∈ S satisfy
∑p

i=1 ‖wi‖ = 1. Method (1.2) reduces
to earlier methods resulting from the Adomian decomposition [2], other
decompositions [1–3, 23–27], quadrature formulae and other methods in the
special case when X = Y = R.

Let us mention some special cases. Notice that xn, yn, wi, θi, i = 1, . . . , p,
and F ′ define An and Bn.

• Noor et al. [25–27] fourth order method: α = β = γ = 1, and

(1.3)

yn = xn − F ′(xn)−1F (xn),

zn = yn −A−1n F (yn),

xn+1 = zn −B−1n F (zn).

• Noor et al. [25–27] third order method: α = β = 1 and γ = 0, and

(1.4)
yn = xn − F ′(xn)−1F (xn),

xn+1 = yn −A−1n F (yn).

• Newton’s second order method: α = 1 and β = γ = 0, and

(1.5) xn+1 = xn − F ′(xn)−1F (xn)

with efficiency index 1.4142.

• Two step Newton’s third order method considered by Traub [5, 6]:
α = γ = p = w1 = θ1 = 1 and β = 0, and

(1.6)
yn = xn − F ′(xn)−1F (xn),

xn+1 = yn − F ′(xn)−1F (yn),

with efficiency index 1.4422.

• Midpoint two step Newton’s third order method [5, 6, 30, 32]: α = β =
p = w1 = 1, θ = 1/2 and γ = 0, and
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(1.7)

yn = xn − F ′(xn)−1F (xn),

xn+1 = yn − F ′
(
xn + yn

2

)−1
F (yn),

with efficiency index 1.3161.
• Third order method: α = β = 1, γ = 0, p = 2, w1 = 1/4, w2 = 3/4,

θ1 = 0 and θ2 = 2/3, and

(1.8)

yn = xn − F ′(xn)−1F (xn),

xn+1 = yn −
1

4

(
F ′(xn) + 3F ′

(
xn + 2yn

3

))−1
F (yn),

with efficiency index 1.3161.
• Fourth order method: α = β = γ = p = 1 and θ1 = 0, and

(1.9)

yn = xn − F ′(xn)−1F (xn),

zn = yn − F ′(xn)−1F (yn),

xn+1 = zn − F ′(xn)−1F (zn),

with efficiency index 1.4142.
Notice that methods (1.4)–(1.9) are special cases of method (1.3). Many

other choices are also possible [5, 6, 29]. Therefore it is important to study
these methods in a unified way. A problem with these methods is that they
require the existence of the fourth derivative of F . This limits the applica-
bility of these methods. As a motivational example, let us define a function
f on D = [−1/2, 5/2] by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0,

0, x = 0.

Choose x∗ = 1. We have

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2, f ′(1) = 3,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x,

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Then, obviously, f ′′′ is unbounded on D. In the present paper we only use
hypotheses on the first Fréchet derivative. This way we expand the applica-
bility of method (1.2).

The rest of the paper is organized as follows. The local convergence of
method (1.2) is analysed in Section 2, whereas the numerical examples are
given in the concluding Section 3.

2. Local convergence analysis. In this section we present the local
convergence analysis of method (1.2). Let L0, L > 0, M ≥ 1 and α, β, γ ∈ R
be given parameters. It is convenient for the local convergence analysis of
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method (1.2) to define some scalar functions and parameters. Define func-
tions g1, f2, hf2 on the interval [0, 1/L0) by

g1(t) =
1

2(1− L0t)
(Lt+ 2M |1− α|),

f2(t) = L0

p∑
i=1

‖wi‖((1− θi) + θig1(t))t,

hf2(t) = f2(t)− 1,

and parameters

r1 =
2(1−M |1− α|)

2L0 + L
, rA =

2

2L0 + L
.

Suppose that M |1 − α| < 1. Then g1(r1) = 1 and 0 ≤ g1(t) < 1 for each
t ∈ [0, r1) and r1 < rA < 1/L0. We have hf2(0) = −1 < 0 and hf2(t) → ∞
as t→ 1/L0

−. It follows from the Intermediate Value Theorem that hf2 has
zeros in (0, 1/L0). Denote by rf2 the smallest such zero. Define functions g2
and h2 on [0, rf2) by

g2(t) =

(
1 +

|β|M
1− f2(t)

)
g1(t), h2(t) = g2(t)− 1.

Suppose that (1+M |β|)M |1−α| < 1. Then h2(0) = (1+M |β|)M |1−α|−1
< 0 and h2(t) → ∞ as t → r−f2 . Denote by r2 the smallest zero of h2 in

(0, rf2). Moreover, define functions f3, h3 on [0, r2) by

f3(t) = L0

p∑
i=1

‖wi‖((1− θi) + θig2(t))t, g3(t) =

(
1 +

M |β|
1− f3(t)

)
g2(t)

and h3(t) = g3(t)− 1. Then again as above we have f3(0)− 1 = −1 < 0 and
f3(t)→∞ as t→ 1/L0

−. Hence f3(t)− 1 has a smallest zero denoted by r3
in (0, 1/L0).

Suppose that

(2.1) (1 + |β|M)(1 + |γ|M |)M |1− α| < 1.

Then

h3(0) = (1 +M |β|)(1 +M |γ|)M |1− α| − 1 < 0

and

h3(r2) =
M |γ|

1− f3(r2)
> 0,

since f3(r2) < 1. Denote by r3 the smallest zero of h3 in (0, r2). Define
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r = min{r1, r2, r3}. Then for each t ∈ [0, r),

0 ≤ g1(t) < 1,(2.2)

0 ≤ g2(t) < 1, 0 ≤ f2(t) < 1,(2.3)

0 ≤ g3(t) < 1, 0 ≤ f3(t) < 1.(2.4)

Denote by U(v, ρ), Ū(v, ρ) the open and closed balls in S with center v ∈ S
and of radius ρ > 0. Next, we present the local convergence analysis of
method (1.2) using the preceding notation.

Theorem 2.1. Let F : D ⊂ X → Y be a Fréchet differentiable operator.
Suppose that there exist x∗ ∈ D, L0, L > 0, M ≥ 1 and α, β, γ ∈ S such that
for each x, y ∈ D, (2.1) holds and

F (x∗) = 0, F ′(x∗)−1 ∈ L(Y,X),(2.5)

‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖,(2.6)

‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖,(2.7)

‖F ′(x∗)−1F ′(x)‖ ≤M,(2.8)

and

(2.9) Ū(x∗, r) ⊆ D,

where r is defined before Theorem 2.1. Then the sequence {xn} generated
for x0 ∈ U(x∗, r)−{x∗} by method (1.2) is well defined, remains in U(x∗, r)
for each n = 0, 1, 2, . . . and converges to x∗. Moreover,

‖yn − x∗‖ ≤ g1(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖ < r,(2.10)

‖zn − x∗‖ ≤ g2(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖,(2.11)

‖xn+1 − x∗‖ ≤ g3(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖,(2.12)

where the “g” functions are defined before Theorem 2.1. Furthermore, for
T ∈ [r, 2/L0), x

∗ is the only solution of the equation F (x) = 0 in Ū(x∗, T )
∩D.

Proof. We shall show (2.10) and (2.12) by induction. Using (2.6), the
definition of r and the hypothesis x0 ∈ U(x∗, r)− {x∗}, we obtain

(2.13) ‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1.

It follows from (2.13) and the Banach Lemma on invertible operators [3, 4,
26, 28] that F ′(x0)

−1 ∈ L(Y,X) and

(2.14) ‖F ′(x0)−1F ′(x∗)‖ ≤
1

1− L0‖x0 − x∗‖
.

Hence y0 is well defined by the first substep of method (1.2) for n = 0. By
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(2.5) we can write

(2.15) F (x0) = F (x0)− F (x∗) =

1�

0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗) dθ.

Notice that ‖x∗ + θ(x0 − x∗) − x∗‖ = θ‖x0 − x∗‖ ≤ ‖x0 − x∗‖ < r. Hence,
x∗ + θ(x0 − x∗) ∈ U(x∗, r). Then, by (2.8) and (2.15), we get

‖F ′(x∗)−1F (x0)‖ =
∥∥∥1�
0

F ′(x∗ + θ(x0 − x∗))(x0 − x∗) dθ
∥∥∥(2.16)

≤M‖x0 − x∗‖.

Then it follows from method (1.2) for n = 0, (2.2), (2.5), (2.7), (2.15), (2.16)
and the definition of r that

(2.17) ‖y0 − x∗‖ ≤ ‖x0 − x∗ − F ′(x0)−1F (x0‖+ |1− α| ‖F ′(x∗)−1F (x0)‖

≤ ‖F ′(x0)−1F ′(x∗)‖
∥∥∥ 1�

0

F ′(x∗)−1(F ′(x0 +θ(x0−x∗))−F ′(x0))(x0 − x∗) dθ
∥∥∥

+ |1− α| ‖F ′(x0)−1F ′(x∗)‖ ‖F ′(x∗)−1F (x0)‖

≤ L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)
+

M‖x0 − x∗‖
1− L0‖x0 − x∗‖

= g1(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.10) for n = 0 and y0 ∈ U(x∗, r). We have

‖x0 + θi(y0 − x0)− x∗‖ ≤ (1− θi)‖x0 − x∗‖+ θi‖y0 − x∗‖
< (1− θi)r + θir = r.

Hence, x0+θi(y0−x∗) ∈ U(x∗, r). We shall show that A−10 ∈ L(Y,X). Using
(2.2), (2.16), (2.17) and the definition of r, we obtain

(2.18) ‖F ′(x∗)−1(A0 − F ′(x∗))‖

≤
p∑

i=1

‖wi‖
∥∥F ′(x∗)−1(F ′(x0 + θi(y0 − x0))− F ′(x∗)

)∥∥
≤ L0

p∑
i=1

‖wi‖
(
(1− θi)‖x0 − x∗‖+ θi‖y0 − x∗‖

)
≤ L0

p∑
i=1

‖wi‖
(
1− θi + θig1(‖x0 − x∗‖)

)
‖x0 − x∗‖

= f2(‖x0 − x∗‖) < f2(r) < 1.
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It follows from (2.18) that A−10 ∈ L(Y,X) and

(2.19) ‖A−10 F ′(x∗)‖ ≤ 1

1− f2(‖x0 − x∗‖)
.

Hence, z0 is well defined by method (1.2) for n = 0. Then, using (2.2), (2.16)
(for y0 = x0), (2.17) and (2.19) we get

‖z0 − x∗‖ ≤ ‖y0 − x∗‖+
|β|M‖y0 − x∗‖

1− f2(‖x0 − x∗‖)
(2.20)

=

(
1 +

|β|M
1− f2(‖x0 − x∗‖)

)
(‖y0 − x∗‖)

≤
(

1 +
|β|M

1− f2(‖x0 − x∗‖)

)
g1(‖x0 − x∗‖)‖x0 − x∗‖

= g2(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.11) for n = 0 and z0 ∈ U(x∗, r).

Next we show that B−10 ∈ L(Y,X). Let z0 = y0, g1 = g2, and f2 = f3,
in (2.18). Then by (2.4) we obtain

(2.21) ‖F ′(x∗)−1(B0 − F ′(x∗))‖ ≤ f3(‖x0 − x∗‖) < f3(r) < 1.

It follows that B−10 ∈ L(Y,X) and

(2.22) ‖B−10 F ′(x∗)‖ ≤ 1

1− f3(‖x0 − x∗‖)
.

Hence, x1 is well defined by the third substep of method (1.2) for n = 0.
Then, using (2.4), (2.16) (for z0 = x0), (2.20) and (2.22), we get

‖x1 − x∗‖ ≤ ‖z0 − x∗‖+
|γ|M‖z0 − x∗‖

1− f3(‖x0 − x∗‖)
(2.23)

=

(
1 +

|γ|M
1− f3(‖x0 − x∗‖)

)
(‖z0 − x∗‖)

≤
(

1 +
|γ|M

1− f3(‖x0 − x∗‖)

)
g2(‖x0 − x∗‖)‖x0 − x∗‖

= g3(‖x0 − x∗‖)‖x0 − x∗‖ < ‖x0 − x∗‖ < r,

which shows (2.12) for n = 0 and x1 ∈ U(x∗, r). Hence by simply replac-
ing x0, y0, z0, x1 by xk, yk, zk, xk+1 in the preceding estimates we arrive at
estimates (2.10)–(2.12). Using the estimate |xk+1 − x∗| < |xk − x∗| < r, we
deduce that xk+1 ∈ U(x∗, r) and limk→∞ xk = x∗.

To prove the uniqueness part, let Q =
	1
0 F
′(y∗+ θ(x∗− y∗)) dθ for some

y∗ ∈ Ū(x∗, T ) with F (y∗) = 0. Using (2.6) we get
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|F ′(x∗)−1(Q− F ′(x∗))| ≤
1�

0

L0|y∗ + θ(x∗ − y∗)− x∗| dθ(2.24)

≤ L0

1�

0

(1− θ)|x∗ − y∗| dθ ≤ L0

2
T < 1.

It follows from (2.24) and the Banach Lemma on invertible functions that
Q is invertible. Finally, from the identity 0 = F (x∗)− F (y∗) = Q(x∗ − y∗),
we deduce that x∗ = y∗.

Remark 2.2. 1. In view of (2.6) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1(F ′(x)− F ′(x∗)) + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ 1 + L0‖x− x∗‖

condition (2.8) can be dropped and M can be replaced by

M(t) = 1 + L0t

or M(t) = M = 2, since t ∈ [0, 1/L0).
2. The results obtained here can be used for operators F satisfying au-

tonomous differential equations [3] of the form

F ′(x) = P (F (x))

where P is a continuous operator. Then, since F ′(x∗) = P (F (x∗)) = P (0),
we can apply the results without actually knowing x∗. For example, let
F (x) = ex − 1. Then we can choose P (x) = x+ 1.

3. The radius rA was shown to be the convergence radius of Newton’s
method [5, 6]

(2.25) xn+1 = xn − F ′(xn)−1F (xn) for n = 0, 1, 2, . . . ,

under the conditions (2.6) and (2.7). It follows from the definition of r that
the convergence radius r of method (1.2) cannot be larger than the con-
vergence radius rA of the second order Newton’s method (2.25). As already
noted in [5, 6], rA is at least as large as the convergence ball given by Rhein-
boldt [31]

(2.26) rR =
2

3L
.

In particular, for L0 < L we have

rR < r

and
rR
rA
→ 1

3
as

L0

L
→ 0.

That is, our convergence ball rA is at most three times larger than Rhein-
boldt’s. The same value for rR was given by Traub [32].
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4. It is worth noticing that method (1.2) does not change when we use
the conditions of Theorem 2.1 instead of the stronger conditions used in
[1, 2, 3, 25, 26, 27]. Moreover, we can compute the computational order of
convergence (COC) [15] defined by

ξ = ln

(
‖xn+1 − x∗‖
‖xn − x∗‖

)/
ln

(
‖xn − x∗‖
‖xn−1 − x∗‖

)
or the approximate computational order of convergence [15]:

ξ1 = ln

(
‖xn+1 − xn‖
‖xn − xn−1‖

)/
ln

(
‖xn − xn−1‖
‖xn−1 − xn−2‖

)
.

This way we obtain in practice the order of convergence in a way that avoids
the bounds involving estimates of higher Fréchet derivatives of F.

3. Numerical examples. In this section we present two numerical ex-
amples. In both, we have taken the parameters α, β, γ, wi, θi, p, i = 1, . . . , p,
as given in the introduction for method (1.6)–(1.8). We have taken w1 = θ1 =
p = 1 for methods (1.3)–(1.5) and p = w1 = 1 and θ1 = 0 for method (1.9).

Example 3.1. Let X = Y = R3, D = Ū(0, 1), x∗ = (0, 0, 0)T . Define a
function F on D for w = (x, y, z)T by

F (w) =

(
ex − 1,

e− 1

2
y2 + y, z

)T

.

Table 1. Parameters of methods (1.3)–(1.9): Example 3.1

parameters/
methods r = r3 r2 r1 r3 rf2 ξ

(1.3) 0.0667 0.1650 0.3249 0.1490 0.3828 0.993076

(1.4) 0.0667 0.1650 0.3249 0.1490 0.3828 3.655630

(1.5) 0.2962 0.3249 0.3249 0.3142 0.4079 3.655630

(1.6) 0.0667 0.1650 0.3249 0.1490 0.3828 1.753711

(1.7) 0.0636 0.1570 0.3249 0.3269 0.4079 1.994778

(1.8) 0.0291 0.3249 0.3249 0.3254 0.4079 2.004979

(1.9) 0.0667 0.1650 0.3249 0.1490 0.3828 3.639839

Then the Fréchet derivative is given by

F ′(v) =

e
x 0 0

0 (e− 1)y + 1 0

0 0 1

 .
We have L0 = e− 1, L = e,M = 2. The parameters are given in Table 1.
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Example 3.2. Returning to the motivational example in the introduc-
tion, we have L0 = L = 146.6629073, M = 2. The parameters are given in
Table 2.

Table 2. Parameters of methods (1.3)–(1.9): Example 3.2

parameters/
methods r = r3 r2 r1 r3 rf2 ξ

(1.3) 0.0011 0.0026 0.0045 0.0048 0.0050 1.002163

(1.4) 0.0011 0.0026 0.0045 0.0048 0.0050 0.993283

(1.5) 0.0036 0.0045 0.0045 0.0042 0.0052 0.991749

(1.6) 0.0011 0.0026 0.0045 0.0048 0.0050 0.992117

(1.7) 0.0011 0.0024 0.0045 0.0048 0.0052 0.998581

(1.8) 0.0003 0.0024 0.0045 0.0048 0.0052 0.992479

(1.9) 0.0011 0.0026 0.0045 0.0048 0.0050 0.992479
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