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Three-dimensional locally symmetric
almost Kenmotsu manifolds

Yaning Wang (Xinxiang)

Abstract. We prove that a three-dimensional almost Kenmotsu manifold is locally
symmetric if and only if it is locally isometric to either the hyperbolic space H3(−1) or
the Riemannian product H2(−4)× R.

1. Introduction. The studies of classification problems on locally sym-
metric contact metric manifolds started from M. Okumura’s work [13] in
1962, where he proved that a locally symmetric Sasakian manifold is of
constant sectional curvature 1. Later, the above result was generalized to
K-contact metric manifolds by S. Tanno [16] in 1967. In addition, locally
symmetric contact metric manifolds of dimension three and five were studied
by Blair and Sharma [2] and Blair and Sierra [3], respectively. It is also worth
mentioning that Pastore [15] improved the corresponding results of Blair
and Sierra [3]. Extending the results of Okumura, Ghosh and Sharma [9]
proved that a locally symmetric contact strongly pseudo-convex integrable
CR manifold of dimension 2n+1 (which is supposed to be greater than 3 and
not equal to 7) is locally isometric to either the unit sphere S2n+1(1) or the
Riemannian product Sn(4)×Rn+1. Finally, in 2006, Boeckx and Cho [4] com-
pleted the classification theorem in this framework, proving that a locally
symmetric contact metric manifold is locally isometric to either a Sasakian
manifold of constant sectional curvature 1 or the unit tangent sphere bundle
of a Euclidean space with its standard contact metric structure.

Since almost Kenmotsu manifolds and contact metric manifolds are both
special types of almost contact metric manifolds, it is interesting to consider
the classification problems on locally symmetric almost Kenmotsu mani-
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folds. In 1972, Kenmotsu [11] proved that a locally symmetric Kenmotsu
manifold is of constant sectional curvature −1. Recently, Dileo and Pastore
[6] classified locally symmetric almost Kenmotsu manifolds under a certain
reasonable geometric condition, namely R(X,Y )ξ = 0 for any vector fields
X and Y orthogonal to the characteristic vector field ξ. As an analogue
of the classification results for locally symmetric contact strongly pseudo-
convex integrable CR manifolds, the present author and Liu [17] proved
that a locally symmetric CR-integrable almost Kenmotsu manifold of di-
mension 2n + 1, n > 1, is locally isometric to either the hyperbolic space
H2n+1(−1) or the Riemannian product Hn+1(−4)×Rn. Moreover, a complete
classification theorem concerning Riemannian semisymmetric (k, µ)′-almost
Kenmotsu manifolds was obtained by Wang and Liu [18].

In this paper, we shall show that a three-dimensional locally symmetric
almost Kenmotsu manifold is locally isometric to either the hyperbolic space
H3(−1) or the Riemannian product H2(−4)×R. Some preliminaries required
in the proof of our main result are presented in the second section. In the
last section, we give a detailed proof of our main results and some immediate
corollaries.

2. Preliminaries. According to Blair [1], an almost contact structure
on a smooth differentiable manifold M2n+1 of dimension 2n+1 is a (φ, ξ, η)-
structure such that

φ2 = −id + η ⊗ ξ and η(ξ) = 1,

where φ is a (1, 1)-type tensor field, the vector field ξ is called the char-
acteristic or Reeb vector field and η is a 1-form. Let M2n+1 be a manifold
endowed with a (φ, ξ, η)-structure; if there exists a Riemannian metric g on
M2n+1 such that g(φX, φY ) = g(X,Y ) − η(X)η(Y ) for any vector fields
X,Y , then M2n+1 is said to be an almost contact metric manifold and the
metric g is said to be compatible with the almost contact structure.

According to Janssens and Vanhecke [10], an almost Kenmotsu manifold
is defined as an almost contact metric manifold (M2n+1, φ, ξ, η, g) such that
η is closed and dΦ = 2η ∧Φ, where the fundamental 2-form Φ of the almost
contact metric manifold M2n+1 is defined by Φ(X,Y ) = g(X,φY ) for any
vector fields X,Y on M2n+1. An almost contact metric manifold such that
dη = Φ is called a contact metric manifold (see Blair [1]).

Given an almost contact metric manifold (M2n+1, φ, ξ, η, g), one can de-
fine on M2n+1 × R an almost complex structure J by

J

(
X, f

d

dt

)
=

(
φX − fξ, η(X)

d

dt

)
,

where X denotes a vector field tangent to M2n+1, t is the coordinate of R
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and f is a C∞-function on M2n+1 × R. We denote by [φ, φ] the Nijenhuis
tensor of φ (see Blair [1]); if [φ, φ] = −2dη ⊗ ξ then the almost contact
metric structure is said to be normal. A normal almost Kenmotsu man-
ifold is said to be a Kenmotsu manifold (see [10, 11]). It is well-known
that an almost Kenmotsu manifold is a Kenmotsu manifold if and only if
(∇Xφ)Y = g(φX, Y )ξ − η(Y )φX for any vector fields X and Y . A contact
metric manifold with the characteristic vector field being Killing is called a
K-contact metric manifold. A normal contact metric manifold is said to be
a Sasakian manifold.

Now let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu manifold. We consider
three tensor fields l = R(·, ξ)ξ, h = 1

2Lξφ and h′ = h◦φ on M2n+1, where R
is the Riemannian curvature tensor of g and L is the Lie differentiation. By
Kim and Pak [12], the three (1, 1)-type tensor fields l, h′ and h are symmetric
and satisfy h′ξ = 0, hξ = 0, lξ = 0, tr(h) = 0, tr(h′) = 0 and hφ + φh = 0.
The following formulas were proved by Dileo and Pastore [6, 7]:

∇Xξ = X − η(X)ξ + h′X,(2.1)

φlφ− l = 2(h2 − φ2),(2.2)

∇ξh = −φ− 2h− φh2 − φl,(2.3)

tr(l) = S(ξ, ξ) = g(Qξ, ξ) = −2n− tr(h2),(2.4)

(2.5) R(X,Y )ξ = η(X)(Y +h′Y )−η(Y )(X+h′X)+(∇Xh′)Y − (∇Y h′)X,

for any X,Y ∈ X(M), where S, Q, ∇ and X(M) denote the Ricci curvature
tensor, the Ricci operator with respect to g, the Levi-Civita connection of g
and the Lie algebra of all differentiable vector fields on M2n+1, respectively.
Throughout this paper, we denote by D the distribution D = ker η which is
of dimension 2n.

3. Locally symmetric 3-dimensional almost Kenmotsu mani-
folds. In this section we shall prove our main results. First, we need the
following three lemmas.

Lemma 3.1 ([6, Proposition 6]). Let (M2n+1, φ, ξ, η, g) be a locally sym-
metric almost Kenmotsu manifold. Then ∇ξh = 0.

Lemma 3.2 ([8, Proposition 2.3]). Let (M2n+1, φ, ξ, η, g) be an almost
Kenmotsu manifold. Then the distribution D has Kählerian leaves if and
only if

(3.1) (∇Xφ)Y = g(φX + hX, Y )ξ − η(Y )(φX + hX)

for any X,Y ∈ X(M).
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Lemma 3.3 ([17]). Let (M3, φ, ξ, η, g) be a three-dimensional locally sym-
metric almost Kenmotsu manifold. Then the Ricci operator is given by

(3.2) Q = −4h′ + η ⊗Qξ − φQφ+ (η ◦Q)⊗ ξ − tr(l)η ⊗ ξ.
Proof. As M3 is of dimension three, the distribution D of M3 has

Kählerian leaves and hence M3 is CR-integrable. Proceeding as in the proof
of [17, Lemma 4.3] we deduce from [17, eq. (4.3)] that (3.2) is true.

Theorem 3.4. A three-dimensional locally symmetric almost Kenmotsu
manifold (M3, φ, ξ, η, g) is locally isometric to either the hyperbolic space
H3(−1) or the Riemannian product H2(−4)× R.

Proof. Let (M3, φ, ξ, η, g) be a locally symmetric almost Kenmotsu man-
ifold. Suppose that h = 0 identically on M3. Then from Dileo and Pastore [6,
Theorem 3], M3 is a Kenmotsu manifold of constant sectional curvature −1.
In what follows, we shall consider the case h 6= 0.

Firstly, by Lemma 3.1 we obtain ∇ξh = 0. Making use of this in (2.3)
we obtain φlφ = (h′)2 − 2h′ − φ2, and comparing this equation with (2.2)
yields

(3.3) R(X, ξ)ξ = −X + η(X)ξ − 2h′X − (h′)2X

for any X ∈ X(M). Since M3 is locally symmetric, it is also Ricci semisym-
metric, i.e., R(X,Y ) ·Q = 0 for any X,Y ∈ X(M). Thus,

(3.4) g(R(X,Y )Z,QW ) + g(R(X,Y )W,QZ) = 0

for any X,Y, Z,W ∈ X(M). Replacing Y = Z = W by ξ in (3.4) we get
g(R(X, ξ)ξ,Qξ) = 0. On the other hand, taking the inner product of (3.3)
with Qξ gives

g(R(X, ξ)ξ,Qξ) = g(X,−Qξ + S(ξ, ξ)ξ − 2h′Qξ − (h′)2Qξ).

Then it follows that

(3.5) Qξ − S(ξ, ξ)ξ + 2h′Qξ + (h′)2Qξ = 0.

Next, we suppose that h 6= 0 on a non-empty open subset U ⊆M3. Then
there exists a unit eigenvector field E of h′ with non-zero eigenvalue λ. It
is easy to check that φE is a unit eigenvector field of h′ with eigenvalue
−λ 6= 0. Then {ξ, E, φE} is a local orthonormal basis on U . Hence, the
spectrum of h′ on U is spec(h′) = {0, λ,−λ}, with the respective eigenvector
fields ξ, E and φE. From (2.4) we get S(ξ, ξ) = −2(λ2 + 1). We set

(3.6) Qξ = k1ξ + k2E + k3φE,

where k1, k2 and k3 are smooth functions on U . Taking the inner product of
(3.6) with ξ we obtain k1 = −2(λ2 + 1) 6= 0. Inserting (3.6) into (3.5) yields
k2(λ+ 1)2 = k3(λ− 1)2 = 0. Assume that λ2 6= 1 on an open subset O of U .
Then k2 = k3 = 0, and hence Qξ = −2(1 + λ2)ξ.
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It is well-known that the curvature tensor R of a three-dimensional Rie-
mannian manifold (M3, g) is given by

R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + g(QY,Z)X(3.7)

− g(QX,Z)Y − r

2

(
g(Y,Z)X − g(X,Z)Y

)
for any X,Y, Z ∈ X(M), where r denotes the scalar curvature of M3. Since ξ
is an eigenvector field of the Ricci operator, (3.7) implies that R(X,Y )ξ = 0
for any vector fields X,Y orthogonal to ξ. However, by [6, Theorem 5], the
spectrum of h′ is {0, 1,−1}, a contradiction.

The above analysis shows that λ2 = 1 identically on U , and hence (h′)2

= −φ2. In this case, (3.5) becomes

(3.8) h′Qξ = −Qξ − 4ξ.

We shall denote by [0]′, [1]′ and [−1]′ the eigenspaces of h′ with eigen-
values 0, 1 and −1, respectively. Considering a unit vector field e ∈ [1]′,
we see that φe ∈ [−1]′ is also a unit vector field, i.e., {ξ, e, φe} is a local
orthonormal basis on U . Taking the inner product of (3.8) with e we obtain
g(Qξ, e) = 0. Substituting ξ and e for Y = Z and X respectively in (3.7) we
obtain R(e, ξ)ξ = Qe − (4 + r/2)e. Comparing this with (3.3) and making
use of (h′)2 = −φ2 we obtain Qe = (r/2)e. By Lemma 3.3 and (2.4), the
Ricci operator is given by

(3.9) Qξ = −4ξ + ρφe, Qe =
r

2
e and Qφe =

(
4 +

r

2

)
φe+ ρξ,

where ρ is a smooth function on U .

A straightforward calculation gives g(∇ee, e) = 0 and g(∇ee, ξ) = −2.
Next, if we put g(∇ee, φe) = α, we may write ∇ee = −2ξ + αφe. Using this
and Lemma 3.2 we have ∇eφe = −αe. Since M3 is locally symmetric, it is
also Ricci symmetric, i.e., ∇Q = 0. Taking the covariant derivative of the
first and second terms of (3.9), both in direction e, and using ∇eξ = 2e and
(3.9), we obtain

−(8 + r + αρ)e+ e(ρ)φe = 0

and

(8 + r + αρ)ξ − 1
2e(r)e+ 2(2α− ρ)φe = 0,

respectively. Then it follows that

(3.10) r = −8− 1
2ρ

2, α = 1
2ρ and e(r) = e(ρ) = 0.

In view of g(∇ξe, ξ) = g(∇ξe, e) = 0, we may assume that ∇ξe = βφe,
and hence from ∇ξφ = 0 we get ∇ξφe = −βe, where β is a smooth func-
tion. Similarly, taking the covariant derivative of the first and second terms
of (3.9), both in direction ξ, and using (3.9), we obtain ξ(ρ)φe − βρe = 0
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and βρξ − 1
2ξ(r)e+ 4βφe = 0, respectively. This yields

(3.11) ξ(r) = ξ(ρ) = 0 and β = 0.

Next, using∇φeξ = 0 and taking into account g(∇φee, ξ) = g(∇φee, e) = 0
we may set ∇φee = θφe, and hence by (3.1) we have ∇φeφe = −θe, where θ
is a smooth function. Taking the covariant derivative of the first and second
terms of (3.9), both in direction φe, and using (3.9), we get φe(ρ)φe−θρe = 0
and θρξ − 1

2φe(r)e+ 4θφe = 0, respectively. It follows that

(3.12) φe(r) = φe(ρ) = 0 and θ = 0.

Obviously, it follows from (3.10)–(3.12) that ρ is a constant and β = θ = 0.
Therefore,

(3.13) R(e, φe)ξ = ∇e∇φeξ −∇φe∇eξ −∇[e,φe]ξ = ρe.

By a simple computation we see that the distribution [−1]′⊕ [0]′ is inte-
grable and totally geodesic. Thus, in view of∇ee = −2ξ+ 1

2ρφe, ρ a constant,
we deduce that M3 is locally isometric to a warped product N ×f C, where
N is a leaf of the distribution [−1]′ ⊕ [0]′ and C is a curve tangent to [1]′.

Applying O’Neill [14, Proposition 35] on the warped product N ×f C
and using ∇φee = 0 and ∇eφe = −1

2ρe shows that ρ = 0. Therefore, (3.13)
implies that R(e, φe)ξ = 0, and hence R(X,Y )ξ = 0 for any vector fields
X,Y orthogonal to ξ. Finally, the conclusion follows from Dileo and Pastore
[6, Theorem 6].

From (3.7) we see that local symmetry (∇R = 0) and Ricci symmetry
(∇S = 0) are equivalent on any three-dimensional Riemannian manifold.
Thus, the statement of Theorem 3.4 remains valid even if local symmetry is
replaced by Ricci symmetry.

Remark 3.5. From Theorem 3.4, we deduce that a three-dimensional
almost Kenmotsu manifold is locally symmetric if and only if it is locally
isometric to either the hyperbolic space H3(−1) or the Riemannian product
H2(−4)× R.

Remark 3.6. From Theorem 3.4, we see that the answer to the question
proposed by Dileo and Pastore [6, Introduction] is positive for dimension
three. However, in higher dimensions the problem is still open.

Remark 3.7. Chinea and Gonzalez [5, Examples] constructed a Ken-
motsu structure on the hyperbolic space H2n+1(−1). Note that a strictly
almost Kenmotsu structure on Hn+1(−4)× Rn was given by Dileo and Pa-
store [6, pp. 352–353].

Using Theorem 3.4 and [17, Theorem 1.2], we immediately obtain the
following result.



Almost Kenmotsu manifolds 85

Theorem 3.8. Let (M2n+1, φ, ξ, η, g) be a CR-integrable almost Ken-
motsu manifold of dimension ≥ 3. Then it is locally symmetric if and only
if it is locally isometric to either the hyperbolic space H2n+1(−1) or the Rie-
mannian product Hn+1(−4)× Rn.

By a (k, µ)′-almost Kenmotsu manifold (M2n+1, φ, ξ, η, g), we mean that
the characteristic vector field ξ belongs to the (k, µ)′-nullity distribution,
that is, R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )h′X − η(X)h′Y ) for any
vector fields X,Y on M2n+1, where both k and µ are constants. In addition,
an almost Kenmotsu manifold is said to be φ-recurrent if it satisfies

(3.14) φ2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z

for any vector fields X,Y, Z,W , where A denotes a 1-form on M2n+1. Obvi-
ously, the vanishing of A in (3.14) reduces to φ-symmetry (which is weaker
than local symmetry). The following result follows directly from Wang and
Liu [18, Theorems 1.1, 1.2] and [19, Theorem 1].

Remark 3.9. Let (M3, φ, ξ, η, g) be a (k, µ)′-almost Kenmotsu manifold
of dimension 3. Then the following statements are equivalent:

(1) M3 is locally symmetric, i.e., ∇R = 0;
(2) M3 is φ-recurrent, i.e., (3.14) holds;
(3) M3 is Riemannian semisymmetric, i.e., R ·R = 0;
(4) M3 is locally isometric to either the hyperbolic space H3(−1) or the

Riemannian product H2(−4)× R.
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