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On the Bergman distance on model domains in C”

GREGOR HERBORT (Wuppertal)

Abstract. Let P be areal-valued and weighted homogeneous plurisubharmonic poly-
nomial in C"~* and let D denote the “model domain” {z€C" | r(z) := Rez1+P(z’) < 0}.
We prove a lower estimate on the Bergman distance of D if P is assumed to be strongly
plurisubharmonic away from the coordinate axes.

1. Introduction. Let D C C" be a domain and H?(D) the Hilbert
space of all holomorphic functions on D that are square-integrable with
respect to the Lebesgue measure. We further suppose that the Bergman
kernel Kp : D x D — C has positive values on the diagonal of D x D.
Then log Kp(z, z) induces a Kéhler metric B, which is called the Bergman
metric. The underlying Riemann structure induces a Riemann distance which
is known as the Bergman distance dg on D.

There exists a comprehensive literature on the question of completeness of
the invariant distances of Bergman, Carathéodory, and Kobayashi on certain
classes of pseudoconvex domains; for a survey see |[JaP{].

The boundary behavior of the above-mentioned distance functions has
been described in [BaBo| on strongly pseudoconvex domains and in [Her4] on
pseudoconvex domains of finite type in dimension two; for a generalization
on “Levi corank one domains” see [Her5.

In this article we want to establish suitable lower bounds for the Bergman
distance on model domains, i.e. on domains of the special form

(M) D=Dp:={2€C"|r(z) =Rez + P(z) <0},
where P denotes a real-valued plurisubharmonic polynomial in the variables
2 = (29,...,2n), that is weighted homogeneous of degree one. We explain

this notion in
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2 G. Herbort

DEFINITION. We fix positive integers mao, ..., m,. Let P: C"~! — R be
plurisubharmonic (without pure terms). We call P weighted homogeneous of
degree d (with respect to (mag,...,my) if

(1.1) Pt/ Cm2) 5y gt/ Cma) )y — dp ()

for any t > 0. If d = 1, we will call P weighted homogeneous.
Throughout this paper we will suppose (as we did in [Herll, [Her2]) that

(1.2) P — cyo is plurisubharmonic

with some small ¢y > 0, where

(1.3) o) =Y 5.

This means that P is strictly plurisubharmonic away from the union of all
coordinate axes. For later purposes we introduce another notation:
(1.4) o(2) = |z1| + o(2).

In [Herl] the author had started to study the Bergman kernel and metric
of the domains Dp, where P satisfies , under nontangential approach
to the origin. Under an additional condition on the coupling terms occurring
in P he also obtained in [Her2|] precise estimates for the boundary behavior
of the Bergman kernel and the invariant differential metrics of Bergman,
Carathéodory, and Kobayashi on these domains.

The aim of this article is to give a good lower bound for the Bergman
distance dg of the model domain Dp. We will prove:

THEOREM 1.1. Let P denote a real-valued plurisubharmonic weighted
homogeneous polynomial that satisfies (1.1) and (1.2)). Let D = Dp denote
the model domain D = {r(z) = Rez1 + P(2') < 0}. For A,Q € D denote

|ha(Q Qe — Ayl
6(4,Q) = Z(4) +Zma

oP A’)

ha(Q) = Q1 — 4 +QZ (Qe — A),

with Z(A) = Y.p_, G(A) =Y/ Cm|r(A )|1/(2m‘~’) and my = 1. Further set
Z(A) :=1log(1+3(A)/|r(A)|). Then, with a universal constant Cy > 0, for
all A,Q) € D we have

where we define (see also below)
log(1+ S49) )

T 2(A)
QD(Av Q) = :
1+ loglog(e? + _éi(Q))) +log(1+ .Z(A))
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REMARKS. (i) If we keep @ fixed and let A tend to a boundary point (,
then the above theorem gives again an estimate of the form
log(1 + [r(4)|™")
™ loglog(e® + [r(A)[7")’
in analogy to the case of bounded pseudoconvex domains treated in [Blo2].
(ii) It would be desirable to replace Z(A) in the theorem with |r(A)].

dp(A Q) 2

The methods that we will use in the proof of the main theorem rely on
localization of the sublevel sets of the pluricomplex Green function ¥p (-, w)
with pole at w (see Section 3). The most difficult part here is the proof that
{9p,(-,w) < =T} lies (roughly speaking) in a collar of the form {|r(w)| <
Ir| < |r(w)|}. (Note that Dp is unbounded.) These results enable us to
give a sufficiently good lower estimate of the Bergman metric B,%P. Then we
modify methods from [DO. [Her4l Blo2] to get a lower bound on the Bergman
distance of Dp.

2. Preparatory estimates on polynomial functions
Notation. We define

n
Woa(¢'u) = D2 o) mefugl? + ()
(=2
and Wy := Wy 1. We set m := max{meg, ..., my}.
For any set M we denote by &, its characteristic function.
The Lebesgue measure in C* is denoted by d?*z.

We will need:

LEMMA 2.1. Let p : C*' — C denote a polynomial which is weighted
homogeneous of degree d > 1. Then, with an unimportant constant Cy , > 0,

PO 63 GO
az] = 82
for all 2, ¢’ G(C” L
Proof. We note that

< ClpWOd(C z _C>

is a sum of terms of the form
7= A ] & TT ¢S (e — 0™ (2o — &)
veES] LES2

with constants A (determined by the coefficients of p), disjoint index
sets S1,S52 such that Sy # () and S; U Se = {2,...,n}, and exponents
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by, v, ay, by, ay, and by with ay + by > 1 for any £ € Sy and ), (ay + by)
> 2. Moreover, they satisfy the homogeneity condition

b, + ¢, a4+ b +a’ + b

Z 1 Z ¢ T
2m,, 2my

leSs

vEST

This leads to
(2.5) 7] = Al T 161% T 160 12e = ¢l
veS, LESy

with exponents B,,Cy, and D, that satisfy Dy > 1 for all £ € S5 as well as
> ves, De > 2, and

(2.6) ZQB” +szd.

m 2m
veS, v JASD) ¢

In each case we have
[Cal < (V™) and |z — (ol < o2 = ()1
for any a € {2,...,n}.
We consider two cases:
(a) Let (2’ — (') > o(¢’). In this case, by (2.5]) and (2.6]),
IT| < |Alo(2' = ¢ < [AWoa((', 2" = ().
ow assume that o(z" — <o . In this case, again using first
b) N h = ¢’). In thi i ing fi

(2.5) and then (2.6)), we get

By Sy
7] < |Afo(¢))=ves st rese it TT Jz - il
LeSs
20 — G|\
<|Alo({ ZI;[ ( (c)i/ms) .
€

In the last product there exists £y € Sy with Dy, > 2, or there are (at least)
two 51,52 € Ss.

In the first case we estimate, using % <lforall¢e{2,...,n},

H < |ZE_C€| >DZ < < |ZZ0 _Cfo| >Dz0 < < |Z€0 _C€0| >2
ieg, \O(WEmD )T (o(¢) V) ) T (o (¢)) ) )
hence
|T| S |A|J(</)d_1/m£0|2€0 - C£0|2 S |A‘W0,d(clvz/ - (l)
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In the second case we estimate
H( |ZZ_CZ| )DZ<< |Zf1_C€1| )( |Zfz_€f2| )
s, N (@7 )= (g (¢ Veme) )\ (o(¢7)) e

< 1<|Z€1 — CZ1’2 ‘Zh — <€2|2>
=9 O_(C/)l/mgl O.(C/)l/’rmfg

and consequently
IT| < |A[(o ()0 20, = (o, P + (¢ V™2 |20, — Gool).
In each case |T| < [A[Wya(¢', 2 — (). =
COROLLARY 2.1. Ifp: C*" ! — R is weighted homogeneous with weight

(ma,...,my), then

"9
p(z) —p(C) - 2Re; 02(4’)(% —¢)| < CrpWo(' 2 =)

for all ', ¢ € C* 1,
We consider a special case of this corollary:
LEMMA 2.2. For an integer m > 2 we have
|27 = [¢P™ | < 4™ (ISP e = ¢+ |2 = ¢)P™)
for z, € C.
Proof. We note that

= S (M) (M)t - 02 e - o

Ap<m:A+p>1 H
and hence

e —igerl s 5 (3 (e e

AuSm 1 a
<A™ e = ¢l 12 = ¢ P,
The next lemma was observed by Range [Ran].

LEMMA 2.3. There exists a constant y1 > 0 such that for any 2 <0 <n
and x,y € C,

_ ax|2mg
Wl 4 ) < oy 2Re( 25y ) < o
1

%(IIIQ’”HIyI2 + [y[*m).

IN



6 G. Herbort

The following function will be important:
— IP(¢)

2.7 he(z) =21 —C +2 ——(2p —
(2.7) ¢(z) =2-0Q gaZe(z Ce)
for fixed ¢ € D.

We apply the above estimates to the defining function r = Re z1 + P(2')
of D and obtain

LEMMA 2.4.

(a) For B,x € C"™ we have

|r(x) — r(B) — Rehp(x)| < CoWy(B', 2" — B').

(b) Assume that 0 < o < min{1, m} Then r(z) < r(B)+1|r(B)|

whenever |hp(z)| < a|r(B)| and

. r(B m
|zy — Byl Samm{ 0-(;/)(1—)1’/7714’|T(B)‘1/(2 z)}

for2 <t <n.
Proof. (a) Indeed, we have

r(z) —r(B) — Rehpg(z) = P(z') — P(B') — 2Re Z P,,(B")(z¢ — By).
(=2

Then (a) follows by means of Corollary [2.1]
(b) follows from (a) and r(x) < r(B) + Rehp(x) + CoWy(B',2' — B’).

3. Sublevel sets of the Green function of D. For a domain D C C"
we denote by ¥p(-, w) the pluricomplex Green function with pole at w € D.
This function is defined as follows:

9p(z,w) := sup{u(z) | v plurisubharmonic, negative on D,
u —log | - —w| bounded above near w}.

Its basic properties were investigated in [Del [KIi]. For a bounded pseudocon-
vex domain {2 with smooth boundary it has been shown in [Blo2] that the
sublevel sets Ay, = {¥p(-,w) < —1} lie, roughly speaking, within the collar
{%(59(11)) (log &iw))*M <dp < C(Sg(w)(log m)M}, where C, M > 0 are
universal constants and dy denotes the boundary distance function on 2.

We want to carry over this result to the domain D = Dp. How this can
be done is by no means obvious, since D is unbounded.

We start with the construction of certain weight functions.

Notation. For a C?-smooth function u we denote its Levi form by %, (2, X),
when evaluated at a point z in direction X € C".
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Its directional derivative in direction X is denoted by (Ju(z), X).

LEMMA 3.1. Assume that P is a weighted homogeneous real-valued poly-
nomial that satisfies condition 1' with some cg > 0. For ( € D and cg > 0
define

(') = P() —2Re Y ggmm ) - P(O)
(=2

0 ame A|Cel*™ ome ) , M€
=g (= —ome( M e~ 60) ) + Yot~

and
QSC(Z) := Re hc(z) + W (Z/).
Then:
(a) With an unimportant constant Lo we have |¥er| < LoWo((',- — {').
(b) W is plurisubharmonic, and its Levi form satisfies

€071 €o
ggpc, 2 170092&0-(,74/) + E.i/ﬂo—

(c) Letr be deﬁned as in (M). Then
() = T (' =€) < Q) + Bc(2) < r(2) = Tacbor(s! = ¢).

Proof. (a) follows from Lemma [2.1]
(b) The Levi form of ¥ is given by

C
gyc,:c?p g + ;glgg(,,cr).

This together with ((1.2)) proves (b)
For the proof of (c) we write

r(2) = Q) + Re(e1 — &) + P() - P(C)
" oP
ZT(C)+RG<Z1—C1+2;;8Q(€)(Ze—@>
)= 2Re D 2 () et~ )~ PIC)
=2 Ot

=7(¢) +Pc(2) +T(¢,2")
with

n 8 ng
T((,2) = % Z<|Ze|2me - 2Re< |€;|Cz (20 — Ce)) - ’Cz’m)
=2
’7160 (Z/ o C/)

100
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By Lemma [2.3| with 2 := ¢’ and y := 2’ — ¢/ we find that

Y1€0 / / Y1€0 / N INco Y

which gives the right-hand side of the claimed estimate. The same lemma
yields T(¢',2") < &-Wy({', 2" — {’), hence the left-hand side of the esti-

— 10
mate. m

7(,#) >

A first lower bound on the (pluricomplex) Green function of D is provided
by
LEMMA 3.2. With a suitable constant C1 > 0, for any £ = 2,...,n and
any z, B € D,
1 ()]
¢ B> ——log|l1+Ci———= |.
Proof. We abbreviate

Vv AN - 2my a|C€|2mZ o o 2my
v(Z) = |zl 2Re o0 (ze = Co) ) — 1€l

/=2
and define

Ve(2) = c(2) = Ve () + Bo (s = O,

From Lemma a) we then get

Ve(z) < r(e) — T (2 - ),

hence

2vi e\ L/
Ve < - () e - gl

The upper regularization @, of
271 ¢ 1/my
ou(z) o= sup (—(=Ve(a) ™+ (T2 ) - )

is plurisubharmonic and negative on D. This implies that for any B € C"
the function

" 21 ¢ 1/(2my)
be(2) == Py(z) — < 7215 O) |20 — By|?

is also plurisubharmonic, and the negative function

—Py(2) )

(BL0) 1/ 2me) |2y — B2

oy o\ 1/ (2me) N
= 10g<< 7215 0) |20 — Belz) —log(—¢¢(2))

— log(l +
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is a candidate for the supremum that defines ¥p(z, B). Thus we get

Gp (2, B) > —% 1og<1 + () )

1/(2
(2721500) /( me)’Z€ _ BZ‘Q

Given z € D we choose ¢ := z — r(z)e;. This is a point in 9D with
Ver(z) = 0, U (2') = 0, and he(z) = r(z). Therefore Vi(2) = r(z) and
®y(z) > —|r(2)|/™. From this the desired estimate follows if we choose

25 ) 1/(2my) -
2v1¢0 )

Ci > max2§g§n(
LEMMA 3.3. On D there exists a zero-free holomorphic function Fy and
constants Ly, > 0 and N € N such that:
(i) —7m/8 < arg VF < 7/8,
(i) Ly'5(2) < |[Fo(2)| < Li5(2),
(iil) 3(Ly ()N < §1F(2)|'N < Re VFoo(2) < (Lo (2))'V,
where T 1s as in .

Proof. We argue as in [AGK| proof of Thm. 4.2]. Let II(2) := (21, 25?2,
..., 2h"), where p; :=mqg/mj for j =2,...,n and mg :=mgy--- - my,. Then
IT : 2 := II"Y(D) — D is a covering map. By [BeFol Thm. 4.1] one can
find a holomorphic zero-free function f., and constants L, > 0 and N € N
such that —7/(8vp) < arg V/fe < 7/(81p), where vy is the number of sheets
of I1, and

L71Go(w) < |foo(w)| < LyuGo(w) for w € £2,
where Go(w) := w1 | + Y )y |we|?*™. Then we let
Fo(z)= [  felw).
weNR: II(w)=z
This function is holomorphic on C™\ II(X), where X denotes the branching
locus of IT. From Gy = & o II we obtain (L;'5)" < |Fy| < (L«0)" on

D\ II(X), hence Fu is locally bounded at the points of I7(X) and can in
particular be extended holomorphically to all of D, by Riemann’s theorem

on removable singularities. Note also that —7/8 < arg \/ Frs < 7/8, and so
Fy = EFY" has the desired properties. =
Our first application of the function Fy, is

LEMMA 3.4. On the sublevel set {9p(-, B) < —1} we have 6 < C55(DB)
with an unimportant constant Cs > 0.
Proof. If g : D — D is holomorphic, then
z B
Ip(.B) 2 B(9(2), 9(B) = log | 2L

—9(B)g(2)|
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For z with ¢p(z, B) < —1 this means that ‘%} < e~ !. From this and

an elementary computation we get
1—e? 1—lg(B)P
- - (B < -9\

e = T

and hence
e +19(B)|

3.1 2)| L 0= ————.
(3.1) 9()] < 0= 1o

We apply this to g := (1 — ¥/ Fx)/(1 4+ ¥ Fw), where Fy is the function
from Lemma We obtain
()| < Lre - et (Lt VF(B) + 1= VFL(B))’
* l—po 1—et 4Re VFx(B)
e 14 [VEs(B)P
“l—e! ReVFo(B)
Let us consider two cases.
Case (1): 3(B) > 1. Then |VFx(B)| > L; V(BN > L7V I
conjunction with Re ¥/Fo(B) > 3|V/Fuo(B)| this yields

_1/NA l/N < ‘\/7 |

—1
381“ LYV Fu(B)| < 7Z_IL?/N3(B)”N,

which implies the conclusion with Cs := (8 1J_r€ ) L3.

CASE (2): 6(B) < 1. In this case we define the scaling map

560 = (5 s 57 )

a(B
and obtain ¥p(S(z),S(B)) = ¥p(z,B) < —1. But (S(B)) = 1, so the
result of Case (1) yields

5(S(2) < (81 + €1>L2

Since 0(S(z)) = o(z)/o(B), we obtain the desired estimate also in this
case. m

LEMMA 3.5. For § > 0 let @, denote the upper regularization of the
function

1/my
u(2) = sup (—(e(a) e (ZB0) )

¢edD
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(a) Then the function

Us := —log(1 —r/d) + 25_1/"”(15@
=2
18 plurisubharmonic on D.

Further there exist constants co, My > 0 such that the following holds:
(b) For B€ D and ¢ > 0 let

(3.2) =5+ Z YL/ @me) g1/ (me)

Z ’Z B@‘
SY/me

If 6 > |r(B)|, then also Us — CQWB’(S is plurisubharmonic on Sp s 1=
{Wgs <1}.

(c) Suppose that B € D and 6 > |r(B)|. Let x be a smooth increasing
function such that x(z) = x for x < 1/2 and x(x) = 3/4 for x > 1.
Then the function ¢1,Bs = %ng o Wpgs + M Us is also plurisub-
harmonic.

(d) In particular if B € D and § are as in (c), then 9p(-, B) > ¢1.B,s-

Wps(2) ==

Proof. (a) Clearly the function z — @(z) — (@%)Umqq — By|? is
plurisubharmonic for any B € C". We set

r7 - —1/my [ 271C0 Hme 2
Us(z) := —log(1 —r/d) + > & 1/™ o5 |2¢ — Be|”.
=2

We only need to prove (b) for Us instead of Us.
For z € D and X € C", we have

[(0r(2), X)? | N (2me0\ ™ | X
(- > .
Ly (% X) > Gt ; o ST/me

We consider two cases:
CaAsE (1): [(Ohp(z), X)| > 4|(OP(Z"), X')|. Then
(0r(2), X)| = 1[(0hp(2), X)),
and therefore

[(OhB(2), X)2 [ 271c0\ /™ |20 — B2
. > NPBAEH A1 )
(2 X) ) + ; o e

CASE (2): [(0hp(z), X)| < 4|(OP(Z"), X’)|. In this case we choose £, €
{2,...,n} such that o(2/)'"V/Cme)|X, | = maxgcpc, o(2/) 71/ M| X,

25,
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Then
(Ohp(2), X)| < 4AMyno (/)Y @me) | X, .
This gives
. S (2y1c0\ X 1 X, 2y1c0\ /™ | X2
"%U(S(Z’X) > Z_Z2< 25 ) S1/me Z 5 2 51/m42 +5 422 25 51/me
1 [(Ohp(2), X)> | 1, | X0)?
> —
= BRI e glme CQ%&VW

with ¢ff := min2§g§n(2~ylco/25)1/mf. To estimate the Levi form of (75 in terms
of Ay, ; we note that

!<8hB | X|?
L (2 ) = 1O0BE) AT Z oA

On the set Sp s we have

n
(33)  o(2) <a(B)+4™) |B*™ Mz — Byl + 470 (2 — B)
= 2

47712 1 1/( 277"%)51/(27"(8) +4mn5

< (2-4™n + 1)(0( ") +6),
hence
(3.4) o)V @me) s/ Cme) < (2. 4™ 4 1) (o(B') + )11/ @me) g1/ (mez)
< (2-4™n +1)%5(B).
Moreover (by Lemma [2.4)),
(3.5) §+r(2)| <6+ |r(B)| + |hp(2)| + CoWo(B', 2’ — B')

n

<26+ %5(B) + Cy Zo‘(B')l_l/m£51/me +nd
(=2
(since |r(B)| < 0)

< (34 (Ca+ 1)n)%5(B).
In Case (1) the outcome of this is £ (z; X) > Cy- Ly, 5 on Sp s with ¢y :=

mln{16(3+(02+1) )27‘32
In Case (2), from we obtain

' 1 [(OhB(2), X)[* | 1= (2me0)/™ | X,f?
Zu#X) 2 32M@n?o(z")2~1/me 51/7”‘2 e ; §i/me

> ngWB,a (Z; X)

/M. /11

with ¢

: 1 /! : :
:=min{ AR AT 2 }. This proves (b) with ¢z :=min{c}, ¢§
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(c) Let M, > 1 to be chosen later. Then it is enough to check the
plurisubharmonicity of @1 g5 := %logxo Wps+ MUs. On {Wps <1/2}U
{Wpg,s > 1} this is clear. On {1/2 < Wp s < 1} we have

Lo 55 2 5(X/X) W5 - OWps-OWp s+ M. Ly,

$1,B,6
> / / 1% . A M. P~
Z 1/12121);1 (X' /x) ()] B,§ Wg,s *L s

> (= 1N+ M. ).,% >0
_( 1/132&%1'()‘/’()” «C2 ) L 5 >

if M, is suitably chosen.
(d) This is now clear, since 1 p s belongs to the family whose supremum
is just ¥p(-,B). m

LEMMA 3.6. For suitable constants Cy,m9 > 0 we have, for any B € D
and 1 = 1o,
{9p (-, B) < —n} C {|hp| < C4a(B)e "} N{o(- — B") < C47(B)e "}.

Proof. We intend to apply Lemma (3.5 c) and (d). For this we need some
preparations. Let n > n9 > 0 with ng to be chosen later.

Now we choose § := Mg (B) in Lemma [3.5] For z € {¥p(-,B) < —n}
we find in conjunction with |@g(2)| < |r(2)|Y/™ and |r(z)| < Moo (z) < Cs6
that

—n0 > —1 > 9p(z,B) > p155(2) > §log x o Wps(2) + M.Us
> Llogx o Wgs(2) — (n+ 1)C5M,.
For ng > (log2)/2 + (n + 1)C5M, no z in the set {¥p(-, B) < —no} has
Wpg,s(2) > 1/2, hence we even obtain —n > 1 log yoWp 5(2)—(n+1)Cs M, =
2log W 5(2) — (n+ 1)C5M, for z in that set. This implies

|hp(z)| < eMTVGMng4(BY < Che™5(B), o2 — B') < C4e "5(B),
which proves the lemma. =

Now we intend to estimate the Green function ¥p(z, B) in terms of r(z)
and r(B). We will even need a slight generalization:

LEMMA 3.7. Let B € D and § > |r(B)|. Define

_ - r(B)|
a=a(0,B) = 51T Cy)%(B)
i oo )

with Zs(B) as in (3.2)), and the constant
1
2(2L)VN2L, (n + 1)47 M,

Cs :=
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If ¢ denotes one of the functions r or p := max{r,p'}, where p' =
—Re x=— F o then the function
Ms(B .
wp() = L max{ o) o1m.0(2)) i Waal2) 2 a,
¢1,8,6(2) if Wes(2) <a,

1s plurisubharmonic on D.

Proof. 1t suffices to show that

]!\S;[ig? p(2) S p1ps(z)  for z€ {Wps =a}.

From Lemma 2.4 we obtain |r(z) — r(B)| < |hp(2)| + CoWo(B', 2’ — B').
On the set {Wp s = a} this yields

[r(2) = r(B)| < a(1+ C2)%5(B) < 3|r(B)]
and
(3.6) 8r(B) < r(2) < 3r(B).
We further know from Lemma 2.2] that
5(2) < |hg(2)| + (1 4+ Mo(n + 1))5(B) + 4™ (2’ — B'),
which implies that
(3.7) 6(2) < aZs(B) + (1 + My(n +1))3(B) + 4™nad
<2(n+1)4™Myo(B)
on the set {Wp s = a}. Lemma [3.3[iii) yields

W()+1<1 1

p'(z) = —Re <-- <1 1
VFn(2) + 12 = 21+ ReVEn(e) = 21+ (Laa(2) /™

and likewise
1

/
> — .
&) 2 R NG ()N
This, combined with (3.7)), leads to

(38) )<< S
21+ (L,5(z))/N 2 1+ (2L«(n + 1)4™Mys (B))Y/N

1
~O T eny s < B

Together with (3.6) we obtain ¢ < Cgp(B). Now we estimate ¢ g5 on
{Wgs = a} from below:
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1 r(2)] ~ _Pu(2)
1.55(2) 2 5 loga — 10g<1 t— )t > 51/C2me)

=2
| 3r(B)\ < (3r(B)]\ Y

> 5logan - 108§<1 + 25) B ; (25)

> ;<1oga —3(n+ 1)> > —CeMs(B) = Ms(B) |9f((;))|

This proves that wp is well-defined; its plurisubharmonicity is clear. =
We are now ready to estimate ¢p in terms of r and p.
LEMMA 3.8. Let B € D and
2nMyo (B)

(n+ 1) + Cy
Ir(B)| '

z(B)::Célog<1+ ) with Cg::22 %
6

Then:
(a) For z € D with |r(z)| < 3|r(B)| we have

Gz B) > G (B) L
(b) Suppose that |p(z)| < Cs|lp(B)|. Then
Gp(z, B) > Z(B) 22

lp(B)|

Proof. (a) We choose § := Myo(B) in Lemma If @ is as in that
lemma, we see that Wp 5(z) > a once |r(z)| < 3|r(B)], by (3.6). Thus

Ms(B)
9p(z,B) > wp(z) > r(2).
r(B)]
This, combined with Ms(B) < E(B), gives the claim.

(b) In the same way we find Wp 5(2) > a whenever |p(z)| < Cs|p(B)|,
by (3.8)). As in (a) the claim follows from Lemma n

The pluricomplex Green function is not symmetric in general, but we can
compare ¥p(z, Q) and ¥p(Q, z) for certain points z, Q) € D. For this purpose
we need Lemma below that does the same service in our situation as
Lemma 4.1 of [Her3| did for bounded domains.

We fix a smooth function «y > 0 with compact support in the unit ball
B, such that {; a; d*"z = 1. Let ay(z) := t~2"ay(z/t) for t > 0. With a
constant C to be chosen later we set

(A @I N L 1
(3.9) €= <CW) , E:1= W,
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where p is as in Lemma [3.7] and define, for @ € D, the function
(3.10) pQ(x) = (1 —&)(loge + ¢1,04(x)) + &,

where we choose ¢ := Myo(Q).
The following estimates for ¢ will be useful: From

) 1 Y e
= R V@) = BT a@)
we obtain
5 10 ac
310 VESC315@ = era@ye
and
~o 1(Q)]
(3.12) <O 20
Further, we define on the set Dy := {dp > ¢} the function

(3.13) tro(@) = | 9oy, Qas(x —y)d™y.

ly—z|<t
Our crucial lemma is now

LEMMA 3.9. The constant C can be chosen idependently of Q in such
a way that the function

e?p(x) if plz) > —¢?,
max{¢yq(x) —e,e ?p(x)} if —& < p(a) < —€?,
max{yy q(z) —e,0q(x)}  if p(z) < —¢, v —Q| > ¢,
oo (z) if px) < —e, |z —Q| <t,
18 plurisubharmonic on D if we define
(3.14) t := Cexp(—3log?(1/e)).
Proof. There exists a constant C, > 0 such that for any x € D the ball

around z with radius % is contained in D, and consequently

v(x) =

[r(@)]
(315) W) 2 G 5(@)
This implies that
r(Q)| p(Q)] Ve
D2 Ene@) C anve@) - ¢

if C < 1.
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(A) Assume that |p(x)| > &3. Then

r ()] lp(z)| £
D) 2 A @) 2 Gl 1 5@) 2 C.(+5(@)

On the other hand,

3

1 oL Y/N
<

V(@) = 5(a) N

e® <|p'(x)| < Re

From both estimates we get

23 £3(N+1)

C.(1+2NLe3N) ~ Cu(e3N +2NL,)

(SD(Z‘) Z

But this last term is greater than ¢ if C is chosen sufficiently small.
So far we have shown that v ¢ is well-defined on {p < —&3}.
Clearly max{¢; o(x) — e, 2p(z)} = e 2p(x) whenever p(z) = —&3.
Next we show max{y; g(z) —¢,e 2p(z)} = Y1 g(x)—c forz € {p = —c}.
First we observe that |p(Q)| > (2/C)vE > (1/C)e, so that we can apply
Lemma For x € D with p(x) = —¢ we find that

Yrg(x) —e >9p(x,Q) —¢

4Q (1, D@ _
= T me= (1+IP(Q)I>> b

because by our choice of ¢,

4(Q) @1 (] 2nMos(Q) o
(1+5ar) <+ Satmae e 1+ i) <e o

with some unimportant constant C7 > 0. But € + 076 2 < 1 once we choose
C < 1. In particular, Yro(m) —e > —1/e = e 2p(x).

We will show that |z — Q| > t for x € {p = —¢}. Two cases have to be
considered:

Casg (I): z € {p = —¢} and p(z) = r(x). Then, if we assume that
|z — Q| < t, we would find

e=[r(@)| 2 Ir(Q)] — |hq(x)] — C2Wo(Q', 2" — Q)
2 r(@Q) = (1 +n(l+C2))(2+0(Q))
> % —4C(1+n(1+ Cg))i (by (B11) and (B.12)),

NG
which yields a contradiction if we choose C<1.

Case (II): z € {p = —¢} and p(x) = p'(x), but |x — Q| < t. Then it
would follow that
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e = (@) = 1+ Re Y/ Fx(x)
(1+Re N/ Fx(x))?+ (Im Y/ Foo(2))?
1+ Re {/Fx(x)

= (1+Re/Fx(x))?+ (Re Y/ Fxo(x))?
S 14+ Y/L.o(x)
T (14 V/Lo(2))? + (VLo (2)?
This gives L,o(x) > (4¢)~". On the other hand, at the same time we have
5(2) < (1+5(Q)(1+1) <4C/\/z.

For C < 1 again a contradiction arises.

Since
po(x) <e+(1—-¢2)loge < —1,
we find that 1y o () — e — do(z) > —1—e+ (1 —&)log(1/) > 0 for C < 1.
So far we have shown that v is well-defined at the “border” {p = —¢}.
It remains to show that 1 g(z) —e — ¢g(x) < 0 on the set {|z — Q| = t}.
Now we have |z —y — Q| < 2t < dp(Q), hence
[z —y— ¢ 2t
< log
p(Q) p(Q)

if |y| < t. This yields the estimate

(3.16) dro() = | 9plx—y,Qau(y)d"y

ly|<t

ot o2t
= S <10g5D(Q)>at(y)d y—long(Q)

ly|<t
< logt + log(2C,C) + log(1/e),
using (3.12) and (3.15)). This implies
B.17)  d(x) —Yro(@) +e > 2e 4+ (1 - &)p104(x)
+ log(1/t) — log(2C;) — 2 log(1/e).
We next estimate ¢y g 5(x). For this we observe that

Q)| + k()] + CaWo(Q', 2" — Q')
Q) + (1 +2(Mo + C2))%:(Q),

r(@)] < [r(
< I

and hence
ir(@)]/8 < dnMo(Ch + 1),
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This gives

—log < )+Z§1/W_

with Cg = 4n(n + 1)My(Cs + 1). From the choice of ¢ it follows that

Wos(z) > %\/g,
so that
p1.Q.5(x) > —log(1/t) — 2logn — 3 log(1/e) — Cs,
and, by ,
oo(x) — Y g(x) +e > Elog(l/t) — 2logn — 2log(1/e) — Cs > 0
because of our choice of t.

This completes the proof of Lemma 3.9. u

In the next step we want to compare ¥p(z, Q) with ¥p(Q, z) for points
z €{9p(-,Q) < =T} with a large positive T'. For this we prove

LEMMA 3.10. Let Q € D and € be defined as in (3.9) and t as in (3.14).
Let n > 0 be such that

(3.18) n22(ﬁ1+1)(log (1>+log<4+|;EQ))|>>.

If z € D and 9p(z,Q) < —1, then, after another shrinking of the constant
C from Lemma one of the following statements holds:

(i) For any (€ {2,...,n} one has |20— Q| < |r(Q)|"/?™), and |hg(2)|

< [r(Q)]-
(i) |9p(z, Q)| > (1 —¢€)|9p(2,Q)| —e—1 for all x € D with 9p(z, z)

= .
Proof. We first make some reduction steps.
(1) If |z — Q| < t, then
20 = QefP™ <2770 < (Co)™ < [r(Q)]
for any ¢ € {2,...,n}, and
ha(2)] < 2+0(@))t < [p(Q)] < Ir(@Q)];

so that (i) holds. Therefore we will assume that |z — Q| > t.
(2) If 9p(2,Q) < —1, then

p(z) < _E3a
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for otherwise we would have |p(z)| < & < Cg|p(Q)| (after shrinking 5),
hence, by Lemma [3.8]

, Moo (Q)\ &
(3.19) 19%%@)%%@(” Q)| >|p<c2>|

lp(Q)]* 1 A6 7 rd
= < CgC°My < 1
2+o@) ~ 7
if C is chosen small enough, a contradiction.
(3) From 9p(z,z) = —n it follows that dp(x) > t. We can argue as

follows: From (2) we know that |p(z)| > 3. In the case where |p(z)| < Cge?,
it would follow that |p(x)| < Cs|p(2)|, hence by means of Lemma [3.8| also

< CLC"

2nMoo
(3.20) n=19p(x,2)| < CsCflog (1 + W)
< cocptog 14 2MCTDY (1 o 13
< CeCy log<1 + W)
€

But n > (log(1/¢))®. After shrinking C we again obtain a contradiction.
Hence

2LI/N
* / 3
S @12 o) > G
and further
5p(z) > Cs Ce SNFD > ¢

Z it = C.2VL, 1 1)

if C is small enough (which can be arranged uniformly in Q).
Before we can start proving the lemma, we need the following sublemma:

SUBLEMMA. There exists a constant Cy9 > 0 (independent of @ and 6)
such that:

(a) If y € B(z,t) and there is an ¢4 € {2,...,n} such that |y, — Qp,|?
> 1(@)me, then

7(Q)
“p(y,Q §10g<1+09 >
ol Q) Q)
(b) Suppose that there is an €1 € {2,...,n} such that |z, — Qg |*™a

> |r(Q)|. Then

19D (y, Q)| < 10g<1 + Cg%) for any y € B(z,t).
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(©) If lhq(2)[ > [r(Q)], then
7(Q)
(@)
Assume that (i) of Lemma does not hold and the Sublemma is true.
Then we can make use of the function v from Lemma 8.9 and find that
9p(z,Q) < (@) = Yro(2) + Yrqz) —Yro(z)
v(z) + e+ Q) = iQ(2)
<(1-8)9(2Q) +e+ [Yioe) = Yie(2)l,

9p(y, Q)| < Cy + log<1 + Cy ) for any y € B(z,1).

hence

(2, Q)] = (1 =8)|9p(2, Q) — & — [¢rq(x) — Pro(2)].

We next estimate |9 g(x) — ¢¢,0(2)]. The Sublemma allows us to carry over
the methods from [Her3l Lemma 3.5]. We denote by M;(z, z) the symmetric
difference of the balls B(x,t) and B(z,t). Analogously to [Her3l p. 520] we
have, with some constant C7g > 0,

321 i) - vra(@) < Cor (2§ @by

yEB(z,t)
+ | 90 dQ”y)-
yEM¢(z,z)
Parts (b) and (c) of the sublemma apply, and we obtain |9p(y, Q)| < Cy +
log( + Cy o )

r(Q

Gy, Q)| d*" <n2”<c 1 <1 Ca(Q)>)
yeBS(m,t)’D(yQ)‘ y < eat™( Co+1log( 1+ Corrs

on B(xz,t) U B(z,t). In conjunction with

and

| 1900, Qld™y < ent® Mo — | <09 +log <1 0 ) >>
yEMy(x,z2) Ir(Q)]

where ¢, = n Vol(B(0,1)), we eventually obtain

(3:22)  |Yro(z) —ro(z)] < Cnclo‘m ; ’ (Cg + log( * Cg\ ((g))’>>
)

< CnC'10|x ; 2l (09 —i—log( + Co— >

By Lemma [3.6] (first for B = 2 and then for B = Q) we have
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n
|z — 2| < ]xl—le—Za (' — 2/)1/(@me)
(=2

< fhz(2)] + 2(2 +5(2)! VM) o (af — )1/ )
(=2
< (4n + 1)Cyo(z)e " M)
~ nC? =
< (4n +1)C25(Q)e (M) < 4 o7/ (2m),
€

Plugging this into (3.22]) we obtain statement (ii) of the lemma (after possibly
shrinking C' and hence € once more).

Proof of the Sublemma. (a) We use the estimate

i)
’ - Q€1’2 '

The right-hand side is less than or equal to 35 log(l +4C %) So we
[r(@] "4
must compare |r(y)| with |6(Q)].
First we note that, using first Lemma [2.3] and then Lemma [3.6] with the
pair (z,z) and then with the pair (z,Q), we get

(3.23) 9oy, Q)| < ;10g<1 Lo

n

(324)  G(y) <F(@) + |y1 — w1| + @m 4+ ") Yo Ty, —
(=2

< Cug(2)e™ O™ 4 (14 (4 + 41 )t + Ca(d4m + ;)G (2)e " M)
< CHL+ (M + 97 ))e M5 (Q) + (4 + 97 1)Ct < 25(Q).

In conjunction with |r(y)| < Myo(y) we get the claim.
(b) Assume that y € B(xz,t) and there is an ¢; € {2,...,n} such that
’241 - QZleel > ’T(Q)’ Then

e, — Qul > |20, — Quy | — 120, — ey | — |y, — ey |
> |r(Q)/Cm) — Cye™ 2T — ¢ > Lp(Q)|/ e,

Now we plug this and |r(y)| < Moo (y) < 2Mpo(Q) into (3.23)).
(c) Let y € B(z,t). From Lemmal[3.7] we know that (recall § := Myo(Q))

(3.25)  |9p(y, Q)| < le1,0.5(y)]

1 I (y)] [P
_—210gx(WQ,5(y))+10g<1+ 5 ) Zél/m’f

, , . l/mg
< =5 logx(Wa,s(y)) +10g<1 + | (5y > + Z <§J> '
—
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Further we have
lhq(y) — ho(2)] <t+2 )Lt/ Emoy

<2+ U(Q))t < Ct/e < Ce < §Ir(Q)|.
This implies
()] = [ho(2)] = lhq(y) — ha(2)] = 51r(Q),

and therefore W 5(y) > %. Since

5(y) < () + (2+5(2))t = (1 +8)(2) + 2 < 4C13(Q)
by Lemma [3.5] hence |r(y)| < 4C46, we find, in conjunction with (3.25]), that

9y, Q)| < Co + 10g<1 * C9|f<(g>)|>

with a suitable universal constant Cg > 0.
The sublemma is proved. m

We are now ready for the proof of the main lemma.

MAIN LEMMA 3.11. For a point QQ € D we define

Z(Q) = 10g<1 + KU(Q)) with K :=1+ 8(M5VL*)1/N+1’

7(Q)]
=0a(Q)|r(Q)| + ZE(Q)l_l/@m”!T(Q)\l/(zm‘f).
=2

Then there are constants T, Ch1 > 1 such that for all T > T and all
z,Q € D with ¥p(z,Q) < —T,

(3.26) |z — Qe < Cri2 Q)M NTT2p(Q) VM) 2 < <m

B2 o g tQ) < MO Cull+ 2@ Q)
329 lho(2)| < Cue 1+ 2(Q) (@)

Proof. Let .,S//”\(Q) = log(l + 4+6(Q)). It suffices to show

[p(Q)]
(329) |2 — Qo] < O Z(Q)M DT 2 (@) 2 <<,
1 1 o7 8n
(3.30) o m“‘(@)’ <|r(z)| £ Cu(1+2(Q))"|r(Q)],

whenever T > Tj.

Suppose we have shown (3.29)) and (3.30)). For x > 0 we define the scaling
map Sy (u) == (4, pyicrryRRRRE xl/z(‘;mn)) on D.If z,Q € D are as in the Main
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Lemma, then also ¥p(Sz(2), Sz(Q)) < =T, hence, by (3.29),

|20 = Qe = &/ P|(Su(2) — Sa(Q))d]
< CHX( (Q))4 n—1)rp—n/2,.1/( 2m4)|7“( (Q))|1/(2m4)
= CnZ(Se(Q) T2/, 2 <t <,
But if we choose z := K — 1, we get |p(S(Q))| = |[r(Sz(Q))| = $_1|T(Q)|,
and hence Z(5;(Q)) = Z(Q). This proves 1) In a similar manner we
obtain from .

In Lemma [3.10 we choose

n = 3( + )<log <1> +1°g<4+\pEQ))!>>'

If statement (i) of the lemma holds for z and @, there is nothing to be done.

Suppose now that it does not hold. Let D, := D N B(0,v). We exhaust
D by a sequence (D, ),>1 of bounded domains. From an inequality in [Blol]
(see also [Her3, p. 513]) we get, for z € D,,

V max{@p(-, =), —k(v — |2])}|" (dd (max{¥p, (-, 2), —n}))"

D,
< n!nnil S ’max{gDu(V 2)7 —77}‘ (ddc(max{gD('a Q)a —,1{5(1/ - ’Z‘)}))n
D,

B. Levi’s theorem, combined with results of Bedford-Taylor [BeT], allows
letting & — oo (see [Her3| proof of Lemma 3.3]), which leads to

V 19, 2)[" (dd* (max{%p, (-, 2), —n}))"

D,
<nlp" ' | Imax{@p, (-, 2), —n}(dd°Yp (- Q))"
D,
< nly"Hmax{¥p, (Q, 2), —n}| < n!n"'|%p,(Q, 2)|.
Now we can let v tend to infinity by a similar reasoning and get
V19 (, 2) " (dd°(max{Fp (-, 2), —n}))" < nln" 1 |9p(Q, 2).
D

All the measures (dd‘(max{¥p(-, z), —n}))™ have the same total mass (27)",
hence, by Hélder’s inequality, we obtain

(331) [ 19p(,2)|(dd* (max{%p (-, z), —n}))"

D
< (2m)" Vnln' V" p(Q, =)V,

Now, the measure (dd®(max{¥p(-, z), —n}))™ has support in {¥p(-, z) =—n},
hence by statement (ii) we see that
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V190 (-, 2)| (dd° (max{@p (-, 2), —n}))"
D
>(1-8)%p(2,Q) —e—1> Lp(z,Q)| —e — 1.

So we obtain
(3.32) T <|9n(2,Q)| <2(2m)" Vnln'V"%p(Q, )|/ + <+ 1).
In conjunction with Lemma [3.2] it follows that
1/my 1/n
T<2 <(27r)” Vnlnt=t/m (01W> +e+ 1) ,
20 — Qu

or equivalently

n/2
= Qi < VTG () (@m0

< O T2 r(Q) M/ Cmy(n1)/2

if T > 12, with some unimportant constant Cq7 > 0.
Next we prove the lower bound for |r(z)|. If we assume that |r(z)| <
Ir(Q)]/2-Z(Q), then again by Lemma 3.8 we obtain (recalling the definition

of £1(Q))

T <%p(2. Q)| < Z(Q) ||:<(§2)>|| : f;(g?))

which gives a contradiction if T > Ty > C§(1+ 2nMy). Hence we obtain the
desired lower estimate for |r(2)|/|r(Q)].

The claimed upper bound for |r(z)| is harder to prove. If we had |r(Q)| <
|r(2)|/n"™, it would follow, by Lemma that

/n
VMG (Q, ) < (2(@) 'T(Q)’)l !
FG1)

~ 1/n
< <Og(1 + 2nMQ)log(1 L 9@ >> !
r(Q)] nt/mn

< Cyg := C§(1 + 2nMy).
We plug this into and obtain
T < 2((2m)" V/n! Chz + 2).
For Ty > 2((27)™ ¥/n! C12+2) we get a contradiction whenever T > Tp. Thus

we must have
Ir(2)| < n"|r(Q)]

< C(1 4 2nMy),

for all z € {9p(-,Q) < —T}.
The estimates (3.29) and (3.30) now follow from the estimate

n < Cis(1+2(Q)™"

with some universal constant Ci3.
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We now turn to the estimate (3.28). We will make use of Lemma [3.5](c)
and (d) for B := Q and § := C11(1+.2(Q))®"|r(Q)|. This is allowed because

of (3.27)), and hence
~Tp > ~T > p1,g5 > glogx 0 Wos — (n+1)M..
For Ty > 2+ (n+1) M, we see that Wg 5(2) < 1/2 whenever ¥p(z,Q) < —T.

This shows Wg 5 < 2 FDMo=2T o {7 (., Q) < —T'}. In particular we find
(after a possible enlargement of Cy;) that

|hol < e DM eT25(Q) < Cri(1+ Z(Q)™#(Q)
on the sublevel set {¥p(-,Q) < —T}. n

4. Estimation of the Bergman distance on D. We want to prove
Theorem By symmetry it suffices to show dB (A4, Q) > C.op(4,Q), with
some unimportant constant C, > 0.

To begin with we clarify what to do.

The following lemma follows for instance from [Blo2, Prop. 2.3|:

LEMMA 4.1. Assume that 2 C C" is a domain for which the Bergman
kernel K has positive values on the diagonal of 2 x §2. For q € {2 set

My = Ko(-,q)/\/Ka(q,q). If p,q € 2 and f € H*(2) with f(q) = 0 and
f(p) = My(p), then the Bergman distance of p and q can be estimated by

1

VI

The second tool for the estimation of the Bergman distance is the follow-
ing version of [Blo2, Theorem 4.4] which does without the assumption that
the domain is bounded.

d5(p,q) >

LEMMA 4.2. Assume that {2 C C™ is a pseudoconvexr domain that admits
a negative strongly plurisubharmonic function V. Let T > 0. Then there is
a constant cop such that for p,q e 2 with {9o(-,p) <-T} N{Ya(-,q¢) < -T}
= () we have dg(p, q) > coo-

Proof. We exhaust {2 by an increasing sequence ({2;);~¢ of strongly pseu-
doconvex domains. Let ¢}, (-, p) and 4} (-, ¢) denote regularizations of % (-, p)
and 9o (-, q) on (2 that decrease to (-, p) and ¥n(-, q), respectively. Then
also {94(-,p) < =T} N{¥95(-,q) < =T} = 0. We choose ¢ > 0 so small that
44 (p, p) < —2T. Next we choose a smooth cut-off function y : (—o0,0) —
[0,1] such that x(z) = 1 for z < —2T and x(z) = 0 for x > —T. Then
v = Ox(95(-,p)) M, is a smooth O-closed (0, 1)-form.

For any plurisubharmonic function ¢ on 2 Hormander’s theory [Hoer]
gives on §2; a solution u; to the equation du; = v with SQ lug|2e =9 d?nz <

28% \U%E—,(WJF@@_W_"D d?"z. If we choose ¢ = 2n%,L(-,p) + 2n9,(-,q) +
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e?2(?) | we see that the length V|98 (1w Of v measured with respect to the
Kahler metric with potential t¥ 4 ¢ is dominated by

2 N2 ,(2+4n)T+tsupieg (. py<—13 |¥]
[ l6(w-+p) < max(X')"e o ’

hence (since —t¥ — ¢ > —2n94(-,p) — 1 and 94 (-,q) > —T on supp(v))

(4.1) S ‘ut|2e—2n%}2(~,p)—2n‘f}) q) 42, < 2 S —tW—p 12n
n 2

< 2e max(y)2e2HAMT P (wo(p <1y V]

2
[v] 00(W+¢)©

since M, is normalized. The function

fr = x(G5(,p)) Mg —
is holomorphic with L?-norm < ¢; := 14 2emax(x')2e@+4Tm(t, T), where
m(t,T) := et S <-1r 1 e apply the Alaoglu—Bourbaki theorem to
select a weakly*-convergent subsequence (uz, ) with a limit u € L?(£2) which
satisfies

S ‘u|2672n{49(-,p)72n€¢_0(-,q) d2n s < 2 max(x’)26(2+4")T.
Q
From this we obtain u(p) = u(q) = 0. Further, the function

[ =x%a(,p)M;—u

belongs to H2(£2) and satisfies f(p) = My(p), f(¢) = 0, and ||f]| < ¢ :=
1 + 2emax(x’)2e?*"7T . From Lemma the claim follows with ¢pg :=

1NV14% u

For @ € D and constants ¢, ¢ > 0 we let

S5_(Q) = {z €D ||r(2)|(1+ZL(2)* > 01’_:5%},
5:Q = {ze 0| I <ar 2@}

We introduce suitable “pseudoballs”, using the same notation as in the pre-
ceding sections:

(4.2)  BQ):={zeD||hg(z) <c '(1+2Q)=%Q),
|ze — Q| < 5*1/2’7»(Q)‘1/(2me)$(62)q1’ 2<0<n}
NS-(Q)NS+(Q)

with constants ¢, ¢ > 0 and integers ¢1, g2 > 0 to be chosen later. We abbre-
viate 7(Q) :={¥9p(-,Q) < =T} for T > 0 and prove

LEMMA 4.3. For suﬂicientﬁy small c,¢ and;suitably chosen qi,q2 and
T > Ty we have S7(Q) N S7(Q) = 0 whenever Q ¢ B(Q).
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Proof. Suppose first that Q ¢ S_(Q), but there exists zp € S7(Q) N
7r(Q). Then, if we recall , we get

1 |r(Q) =e7r@) 20€77(Q) ~ e~
Cn 1+.2(Q) < r(z0)] £ Cu(1+2(Q)*r(Q)

QiS Q) Ir(Q)|
)k

a contradiction if ¢ < C%.

The case of Q ¢ S1(Q) is treated in a similar manner.

So far we know that Q € S, (Q) N S_(Q) if S (Q) N 71(Q) # 0 and
T > Ty. Before we go on with the proof, we have to estimate .Z(Q) and
Z(Q) in terms of £(Q) and Z(Q).

For this we note that
3(Q) < 2™(3(20) +3(Q — 20)) < 4™ (3(Q ) +5(Q = 20) + 5(Q — 20))
<4™((1+ Cue™1)3(Q) + Cae T5(Q ) (by Lemma [3.6))
<2-475(Q) + 35(Q)
fT>Ty>2- 4™C,. Hence
3(Q) < C145(Q)

with some unimportant constant Ci4 > 0. In conjunction with ]r(@)\ <
11+ 2(Q))®H|r(Q)] this implies

2(Q) < Cis(1+ Z2(Q)*" ' 2(Q).

Next we estimate

2(Q) = log(l +

5(Q)
Ir(Q )I>
Ca(1 -I-.f(@))gnﬂg(@) - ~

BT e 0 ¢ 5-Q)
< (8n+1)log(1 +Z(Q)) + log(1 + Ci4/c) + L(Q).

We claim that .& (Q) < C15.2(Q) with some unimportant constant Cs.
If 2(Q) < 22(Q), this is clear. So assume that Z(Q) > 2.2(Q). Then

from the last estimate we obtain
Z(Q) < 2(8n+1)log(1 +.2(Q)) + log(1 + Ca/c),

hence Z(Q) < Ci¢ with a universal constant Cig, since we have £(Q) >
log(1 + M(;l); this again gives the claim.

< log <1+
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We are ready to continue the proof of the lemma. Let us assume that
0 € 51(Q) NS (Q) and [Qr — Qul < T 2|(Q) /MO £(Q)1, 2 < £ <,
but ]hQ(@)\ > ¢ 11+ 2(Q))2%(Q). We show again that no zy € .7(Q)N
#r(Q) can exist. Otherwise we could write

(43)  [ho(@)] < |ho(z0) — h 20+22 /(@) = Po (@) (00— Q)|

<oy ((1 L 2Q)RQ) + (1 + 2O 2(0)

a _ _
4 2TLM0$CZE§2/2 U(Ql)lfl/(2mk)*l/(2me)‘Qk _ Qk| ‘T(Q)|1/(2m[)>

k(=2
(by
<oy ((1 L 2Q)RQ) + (1 + 2O 2(0)

2nM
’C"l/QTn/Z

+ 1+g q1 ZO_ 1 1/(2mg)—1/(2my) |’l“( )’1/(2mk)+1/(2mg)).

k=2

The last term is at most (2nMZAC)(1 4+ .Z(Q))"T~2%(Q). This, com-
bined with (4.3]), gives

ho(Q)] < e "Cn ((1 +Z2(Q)"Z(Q) + (L +Z(Q)*"2(Q)

QTLMO @ —n/2
200 (14 2T %(@))
< L0+ 2QrAQ

if T' > Ty, which can be done uniformly in @, @,E. But the left-hand side is
supposed to be greater than ¢ ~1(1 + Z(Q))”2%Z(Q). For ¢o > q1 + 8n + 1
this yields a contradiction if ¢ < Cl_lg.

Finally, we show that no zp € .%p(Q)N.%(Q) can exist if there exists
an £, € {2,...,n} such that |Qp — Qp| > & V2r(Q)|V@ma) 2(Q)e.

Otherwise we would obtain

Qe — Quy| < 1Qey — 20,0, + |20, — Quy|
< CnTy " (@Y e 2(Q) ) + r (@) 2/(@)H )
< C|r(Q)[VCma) (2(Q)* Y + (1 + 2(Q))* (1 + 2(Q)) "~ V)
< CnCy[r(Q))C™) (14 2(Q)) ™"
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But the left-hand side is > &~ 1/2|r(Q)|"/?™) 2(Q)®. If we choose q; =
12n 4+ 1 and then ¢ < C1_12C1_52, this yields a contradiction. =

COROLLARY 4.1. Let Ty > 0 be as before and cop as in Lemmal[dd] Then
we have:

(a’) dg(@: Q) Z €00 Zf@ ¢ %(Q)y
(b) S (w) C B(w) for T > Ty,
(c) for the Bergman differential metric Bp of D,

Bp(w, X) = CL (w) ™ (Kah er 'ﬁi’QmJ

with some constant C' > 0.

Proof. (a) is clear. Observe that D admits a negative strongly plurisub-
harmonic function, namely

1/my
4 —Z’Yg‘ZAQ <—T+U)

for suitably chosen constants ~o,...,v, > 0.
(b) A point w ¢ A(w) cannot lie in .7 (w) N7 (w), hence not in .7 (w).

(¢) Since a strictly plurisubharmonic function ¥ is available on D, we get
in view of [DH]

BD(w,X) > C%OBSIJTO(U))('U},X)
> O G (w, X)

—go [{Ohaw( ),X | X
2 ey (1O )

by part (b), where FC®? stands for the Carathéodory differential metric. m

We further need to know how the quantities 7 (z), £ (2), and Z(z) vary
within B(w).

LEMMA 4.4. There exist constants K, K, > 1 such that for any pair
(z,w) € D x D with z € #(w) we have:
(a) Z(2) < Ko'(w),
() r(2)| < 11 + Ko Z(w))®" L r(w)|, where ¢ is as in the definition
of B(w),
(c) ZL(2) < K+Z(w)+kolog(l+ K..Z(w)) with ko := 8n+mqi +q2+1,
(d) 2(2) < K.(1+.Z(w) 70+ 2 (w).
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Proof. (a) We write
(44)  o(2) < o(w) + 4™ (Z o (w1 @) oy |+ o (2 — w’))
A=2
47% m . — m m
i3 (@)™ (3 o) Y () O o [r(w))

A=2

<o(w)+

< C17.%2 (w)™ 5 (w)

with some constant C17 > 0 (independent of z and w). In the same way,

(45)  Jo1 = wi] = [hu(2) - QZPZZ(M')(ZZ — wy)|

<|h |+Moz )M 2y —

L(W)PR(w) + My Y o(w) M|z — .
=2

< 1
= Z1/2
Combining this with (4.4) we get
5(2) < C13Z (w)" 1 T2 (w)

with some universal constant C1g > 1. From z € S_(w) we obtain

Pl < s 2

and therefore

(46)  Z(2) = 10g<1 * \iéj))\>

1og<1+018$( )mq1+q2c|;(( ))(1+.z( ) (1 +$(w))>

log(1+ Cig/c) + Z(w) + 8nlog(l + Z(z))
+ (mq1 + g2 + 1) log(1 + Z(w)).
If £(z) <2.%(w), part (a) is clear. If £ (w) < $.2(z), we get
Z(z) <2log(l+ Cig/c) + (8n+ mq1 + g2 + 1) log(1 + £ (z)).
This implies that

IA

AN

L(2) < Clg :=sup{y | y — (8n + mqy + g2 + 1) log(1 + y)
< 2log(1 + Cis/c)} < Cr9.Z(w)

with Chg 1= Cg/log(1+ My1). So we find that Z(2) < (2 + C19)L(w).
This proves (a).
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(b) We obtain, by definition of #(w),
r(2)] < (1 +2(2)™r(w)],

which, in conjunction with (a), gives the claimed estimate.

(c) follows from (a) and (4.6) if we let K :=log(1 + Cig/c).
(d) follows from the preceding parts and the definition of Z(z). =

In the next steps we adopt an idea from [Herdl, Sec. 6.
Let A,Q € D. Then there exists a smooth curve ¢ : [0,1] — D from A
to @ with

(4.7) L(c) < 2dB (A, Q).
We consider two cases:

Cask (I): Q € B(A). If ¢([0,1]) € AB(A), by the preceding lemma (with
T > 1) we have

1

(4.8)  2d3(A,Q) > L(c) = | Bp(c(t); &(t)) dt
0
|

L (Ol e el
2] (>>q2< *z;v(c(t))v/@w))dt

1 .
> O e <%(A) §)|<8hw(c(t)),c(t)>]dt
+ K 92 Z ’1/ 5me) ’Cg ‘ dt)

1
0
- 1 ha(Q \Qz A
q2
> o g +Z|r A7

5(4,Q)
(14 ZL(A))ko

Assume that there exists a smallest ¢y € (0,1) with c(to) ¢ #(A). Now
we have L(c) > dB(A, c(to)) > coo, and since Q € B(A), also

(A, Q) n n
m <=< ;O,CVL(C).

So from (4.7)) we obtain

dp(A,Q) > ¢ log <1 +

— OK %

6(A,Q) )
(1+ ZL(A))ko
in Case (I).
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Case (II): Q ¢ #(A). We introduce the nonempty set

S ={jeN|j>1 FHy=0<1t <---<tj <1such that

c([tv=1,t,)) C B(c(ty—1) and c(t,) € 0AB(c(tv-1),1 <v < j}.
By Corollary (a) we get 2dB (A, Q) > L(c) > cooj for any j € . So .7 is
finite and has a well-defined maximum m.. Let now (to = 0,t1,...,tmy,) be

a chain that corresponds to m.. We abbreviate A, := ¢(t,) for 0 < v < m,,
and set A, +1:= Q and ¢, +1 := 1. Since ¢([ty—1,t,)) C #(A,) we obtain,

in analogy to (4.8)),
my ty+1

(4.9) L(c) =Y | Bp(e(t);é(t)) dt
v=0 t,

h v Ay Ay
o | %((A w0l | S ‘I +1)‘/zl/ szl
ooy

2 1+ Z(A,)k
Ay Ay A, A,

N c % |+1(171)|+Z€ ) ‘\ +1)|£1/(2m2’)|

T 2MoK¥ ~ (1+.Z(A,))ko ’
because

1 |ha, (Avi1)| L [Aps11 — |Au+1e [Avi1,e — Ay

4.1 z >
(4.10) 2My  Z(A,) — 2My Z(A Z A,V @mo)

We have to estimate Z(A,) and ]r(A,,)| in terms of %’(A) and |r(A)[, re-
spectively. By Lemma [£.4] we find
%(Au) < K*(l + g(Au—l))kO%(Au—l)
and, inductively on v,
v—1
R(A) < KL (A) [[(1+ Z(4p)*
k=1
Likewise we have

[r(Ay)] < T H1+ L (A1) r(Av-))|

and, inductively on v,
v—1

‘T(Ay)| < c_V|r(A)| H(l + g(Ak))E;n'H_

k=1
By Lemma [1.4]c) we get
ZL(Ar) < K+ ZL(Ag-1) + kolog(1l + KL (Ar—1))
< K4 ZL(Ap_1) + kolog(1 + KF.2(A))
< K+ ZL(Ap_1) + ko(klog(1 + K.) + log(1 + Z(A)))
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and inductively

L(Ay) < k(K + kolog(1 + Z(A))) + kok(k; Y log(1 + K.) + £(A).
From this we find that, with some universal constant Cog > 1,
ZL(Ag) < Copm2Z(A)
for all k£ < m,. This implies
[r(A)] < (1/e)" (1 + K. Cagms3)" L (A)"r(A)]

< (FHEC) e (aym ),

C

and in an analogous way

R(A) < (Ko(1+ K.C))™m?>™ (14 Z(A))™ R (A)
for any v < m,. We plug this into (4.9)) and obtain, with universal constants
Ca1,Co2 > 1,

M \Au+11 Au1\ |[Ayy1,0—Ay ol
le 0 +Z£ 2 I ( A)|1/(2m£)

>
L(c) o 3m*+2k0(1+$(A))2m*+2ko

1 Q1 — A4 Qe — Ad )
2 + Y ey
Cyr Em*+2k°(1+$(A))2m*+2k0< Z#(A) Z < [r(A)|/Cme)
. 5(4,Q)
- C;'%*mzm*Jr%o(l +$(A))2m*+2ko

in analogy with (4.10). Let S > 1 to be chosen later. We next consider two
cases:

CaSE (I): m, < S. Then, in conjunction with dB(A,Q) > coom., we
have

dp(A,Q) = Caz f(m.)
with
(4, Q)

(C2252(1 4 Z(A)))kor
Since Q ¢ #(A) we have §(A4,Q) > 1. If now Ce5%(1 + L (A)) > e, we get
f(z) > f(xg), where xq is the only zero of f’, explicitly

_ logd(A,Q) + log log(Ca2S?(1 + Z(A)))

B ko log(C22S%(1 + .Z(A))) '

flz) =2+

This gives
log 6(A, Q)

B
dp(A,Q) > 023k010g(02232(1+$(A))).
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CASE (H): My > S. Then dg(A,Q) > ngm* > CQgS.
We now choose

S :=log (eg + m)

Then, since Q ¢ %(A), we can see that C5%(1 + Z(A)) > e.
This concludes the proof of the main theorem.
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