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Rational torsion points on Jacobians of modular curves
by

HwAJONG Y00 (Pohang)

1. Introduction. Let N be a square-free integer. Consider the modular
curve Xo(N) and its Jacobian variety Jo(N) = Pic’(Xo(N)). Let T(N)
denote the group of rational torsion points on Jo(IN) and let C(IN) denote
the cuspidal group of Jy(N). By Manin and Drinfeld [2| 8], we have C(N) C
T(N) and they are both finite abelian groups.

When N is prime, Ogg conjectured that 7(N) = C(N) [B, Conjecture 2].
In his article [4], Mazur proved this conjecture by studying the Eisenstein
ideal of level N. Recently, Ohta [6] proved a generalization of the result of
Mazur. More precisely, he proved the following.

THEOREM 1.1 (Ohta). For a prime ¢ > 5, we have T (N )[(>°]=C(N)[¢*].
Moreover, if 3 does not divide N, then T (N)[3*] = C(N)[3*].

(For a finite abelian group A, A[¢*°] denotes its (-primary subgroup.)

We briefly sketch the proof of this theorem. Let T} (resp. U, and wy)
denote the rth Hecke operator (resp. the pth Hecke operator and the Atkin—
Lehner operator with respect to p) acting on Jo(NN) for a prime r not dividing
N (resp. a prime divisor p of N). Let T(NV) (resp. T(N)’) be the Z-subalgebra
of End(Jp(IV)) generated by the T}.’s and U),’s (resp. T}.’s and w),’s) for primes
r4+ N and p|N. Let

Zo:= (T, —r —1:r prime, r{ N)

be the (minimal) Eisenstein ideal of T(N) (or T(N)’). Then Zy annihilates
T(N) and C(N) by the Eichler—Shimura relation. Thus, 7 (N)[¢*°] is a mod-
ule over T(N)¢/Zy (or T(N)}/Zo), where T(N); := T(N) ®z Z¢. Note that
since wg =1, for a prime £ > 3 we have the decomposition

T(N)y/To= ][] T(N)/Zu,
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where Zys := (wp — 1, wq + 1,2y : p,q primes, p| M and ¢ | N/M). Thus, we
have

=P TW)E=)[Zy] and C(N =P ) zu).

Finally, he proved that T (N)[(*°]|[Zy] = C(N )[Boo][IM] by computing the
index of Zps (up to 2-primary parts).

In this paper, we discuss the case where N = pq for two distinct primes p
and ¢. In contrast to the discussion above, we use T(pq) instead of T(pq)’, and
hence the corresponding decomposition of T(pq)/Zy as above does not always
exist. (However, other computations are relatively easier than in the method
by Ohta.) When ¢ satisfies some conditions, we get a similar decomposition
of the quotient ring T(pq)/Zy and we can prove the following.

THEOREM 1.2 (Main Theorem). For a prime ¢ not dividing 2pq ged(p —

1, q—1), we have T (pq)[(>] = C(pq)[£>]. Moreover, T (pq)[p>] = C(pq)[p™]
if one of the following holds:

ith 1 d

1) p>5 and{ez er g # 1 (mod p) 0_7’1

¢=1 (mod p) and pla=1/? £ 1 (mod q).

ith 1 d9
2) p=3 and{ez erq#1 (mod 9) 0_7”1 )
g¢=1 (mod 9) and 3(¢=1/3 £ 1 (mod q).
Note that most cases above are special cases of Theorem The new

result is as follows:

THEOREM 1.3. Let p be a prime greater than 3. Assume that either p £ 1
(mod 9) or 3?P=D/3 £ 1 (mod p). Then

T(3p)[3%] = C(3p)[3*].

1.1. Notation. For z = a/b € QQ, we denote by num(z) the numerator
of z, i.e.,
num(z) := a/(a,b).

From now on, we denote by £ := (*(P:%:0) (resp. (7 := (PP:90) the exact
power of £ dividing

R () R (S TEE)

2. Eisenstein ideals of level pq. Throughout this section, we fix two
distinct primes p and ¢; and ¢ denotes a prime not dividing 2pg(q — 1). Let
T := T(pq) and Ty := T(pq) ®z Zy. We say that an ideal of T is Eisenstein
if it contains

Zo := (T, —r — 1:r prime, 7 { pq).
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DEFINITION 2.1. We define Eisenstein ideals as follows:
Il = (Up - 17 Uq - laIU)v
IQ = (Up—l,Uq—q,Zo), Ig = (Up—p,Uq—l,Io).
Moreover, we set m; := (¢,Z;). They are all possible Eisenstein maximal
ideals in Ty by the result in [9, §2]. For ease of notation, we set T; := Ty, =
lim, ,, T/m]".

Since Ty is a semi-local ring, we have

Te= J[ Ta

fem maximal
Using the above description of Eisenstein maximal ideals, we prove the
following.

THEOREM 2.2. The quotient Ty/Zy is isomorphic to Ty/Zo x Ty/Zs.

This theorem is crucial to deduce our Main Theorem. In general, the
author expects that Ty/Zy should be isomorphic to

{(z,y,2) € Ty/Ty xTy/ToxTy/I3 : x =y (mod p—1) and x = z (mod ¢—1)}.
To prove the theorem above, we need several lemmas.
LEMMA 2.3. We have (Up, — 1)(Up + 1) € ZyT,.

Proof. Since ¢ # 1 (mod ¢), no maximal ideal containing Zy can be p-old.
Therefore Ty/Zy ~ T "™ /Z. Since Ug =11in T7™", the result follows.

LEMMA 2.4. Suppose that my is maximal. Then
TQ/IO = TQ/IQ ~ TE/IQ.

If my is mazximal, then p = 1 (mod ¢) and hence my = mg; moreover,
Ty/Zy = T3/Zy ~ Ty/Zs. If p £ 1 (mod ¥), then my is not maximal and
Tg/I{) ~ Tg/Ig.

Proof. Since U, —1 € mp and £ is odd, U, +1 € my and hence it is a unit
in Ty. By the lemma above, (U,—1)(U,+1) € ZyT, and hence U,—1 € ZTs.
Similarly, U, — ¢ € Zy T3 because ¢ # 1 (mod ¢) and (U, —1)(U; —q) € ZoTs
by the next lemma. Thus, we have Ty/Zy = Ty/Z,. Since the index of Z,
in T is finite (cf. [7, Lemma 3.1]), we have mj C Z for large enough n.
Therefore T,/ (my, Zs) ~ Ty/Zs and hence Ta/Zy ~ Ty/Zs.

If m; is maximal, the index of Z; in T is divisible by ¢. By [9, Theorem
1.4], it is num((p — 1)(¢ — 1)/3) up to powers of 2 and hence p = 1 (mod ¢).

Assume that p = 1 (mod ¢). Let « be the number in Since ¢ does
not divide (p+1)(g — 1), £* divides (p — 1). Note that the index of Z3 in T,
is equal to £* (cf. [9, Theorem 1.4]) and hence Z3T, contains p — 1. Thus,
Up—1=(Up—p)+ (p—1) € Z3T,. In other words, Z; T, C Z3T,. Similarly,
I3T, C I, Ty. Therefore Z: Ty = Z3T,. By the same argument as above, ZyTg
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contains U, — 1 and (U, — 1)(U, — q). Since ¢ # 1 (mod /) and Uy, — 1 € mg,
we have U; — ¢ & m3 and hence T3/Zy = Ts/Z3. By the same argument as
above, we get Ts/Z3 ~ Ty/Zs.

If p#£ 1 (mod ¢), then mg is neither p-old nor g-old. If p # —1 (mod ¥¢),
then mg is not maximal. Thus, Ty;/Z3 = T3/Zy = 0. If p = —1 (mod ¢), then
the result follows by [8, Proposition 2.3|. =

LEMMA 2.5. Let I := (U, —1,To) C Ty. Then (U, — 1)(U, — q) € I.

Proof. We closely follow the argument in [4], §I1.5].

Let f(z) := >, (T, mod I')2™ be the Fourier expansion (at co) of a
cusp form of weight 2 and level pq over T;/I, where z = ¢2™*, (Here, we often
denote by T, (resp. Ty) the Hecke operator U, (resp. Uy).) Let E := E, p,

be an Eisenstein series of weight 2 and level pqg in [7, §2.3]. Note that
(f = BE)2) = (Uy - @) 3 ana™ (mod 1),

n>1
where a, = 1 and a, = 1+ r for all primes r # pg; and ag = Uy +q. If
U, — q € I, then by Ohta [6l Lemma 2.1.1], there is a cusp form g(z) =
Zn21 b,z™ of weight 2 and level p such that

(f — B)2) = Uy — 0) 3 ana™ = (U, — )g(g) (mod ).
n>1
Therefore p = 1 (mod ¢) and b, = 1+ r (mod I') for primes r # p, where
I' is the Eisenstein ideal of level p. Thus, we have (U; — ¢)(aq — by) =
Ug—q)(Ug—1) €l =

Proof of Theorem[2.4 1f p=1 (mod (), then m; = mg3. Otherwise m, is
not maximal. Therefore,

TZ/IO ~ TQ/IO X Tg/zo = ']FQ/IQ X Tg/Zg ~ Tg/IQ X Tg/l_g. |

3. Case where ¢ does not divide pg. From now on, let C := C(pq)
and T := T (pq) be the cuspidal group of Jy(pg) and the group of rational
torsion points on Jy(pgq), respectively. For a prime r and a finite abelian
group A, we denote by A[r*°] the r-primary subgroup of A. In this section,
we prove the following theorem.

THEOREM 3.1. For a prime £ not dividing 2pq(q — 1), we have T [(>°]
= C[¢>].

Before proving this theorem, we introduce some cuspidal divisors.

Let P, be the cusp of Xo(pg) corresponding to 1/n € PY(Q). Let C), :=
P, — P, and C, := P, — P, denote the cuspidal divisors in C. Let M), = {“ x x
and M, = (% x y as in (Thus, (¢,xy) = 1.) We define

D, :=zC, and D,:=yC,.
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Then (D,) (resp. (Dy)) is a free module of rank 1 over T;/Zy ~ Z/{“7Z (resp.
Ty/Z3 ~ 7./(PZ) (cf. [9, Theorem 1.4]).

Proof of Theorem[3.] By the Eichler-Shimura relation, 7 [(°°] is a mod-
ule over T;/Zy. Therefore T[¢*°] decomposes into T [¢>°][Za] x T [(>°][Zs]
by Theorem Hence it suffices to show that T [(*°][Zy] = (D,) and
TI®)Zs] = (Dy).

If « = 0, then Ty/Zy = 0 and hence T[{*°][Z5] = (Dp) = 0. Thus, we
may assume that o > 1. Note that

T L] ~ [[ 2/t 2,
=1

where 1 < a; < a because Ty/Iy ~ Z/{“Z (and T is finite). Since D, is
in 7[¢>°], we have (D,) C T[{*°][Zz] and hence t > 1; and T [¢*°]|[(,T] ~
(Z)eZ)®" C Jo(N)[msg]. By the same argument in [4, §II, Corollary 14.8]
(cf. 7, Theorem 4.2]), we have t = 1 and T [(*°][Z3] = (D,). By symmetry,
T[>®][Z3] = (Dg), and the result follows. =

4. Case where / = p or £ = q. Throughout this section, we set P :=p
if p>5,and P :=9if p = 3. Suppose that

(41) ’ q {either g # 1 (mod P) or
. =p an
b ¢=1 (mod P) and p?~Y/P £ 1 (mod q).

THEOREM 4.1. We have T [p™] = C[p*].

Proof. We divide the problem into three cases:

(1) Suppose that ¢ # 1 (mod P) and ¢ = 1 (mod p). This happens
when ¢ = p = 3. In this case, the indices of 71, Zo and Z3 are not divisible
by 3 (cf. [9, Theorem 1.4]). Therefore there are no Eisenstein maximal ideals
containing 3, and T, /Zy = 0. Thus, 7[3*°] = C[3*°] = 0.

(2) Suppose that ¢ = 1 (mod P) and pl¢=1/P £ 1 (mod ¢). Then m; = my
is not new by [8, Theorem 3.1]. Since U, = p = 0 (mod m3), m3 is not new.
Therefore T, /Zy ~ ’]I‘gld /Zp. Consider the exact sequence

0 = Joa(Q)[p™] = J(Q)[p™] = J*™(Q)[p™].

If J"%(Q)[p™>] # 0, then there is a new Eisenstein maximal ideal contain-
ing p, a contradiction. Therefore Joq4(Q)[p*>°] = J(Q)[p*>°]. Now, the result
follows from [I, Theorem 2] because p does not divide 2(p — 1,q — 1).

(3) Suppose that ¢ # 1 (mod p). First, assume that ¢ # —1 (mod P).
Then the indices of Z;, Zo and Z3 are not divisible by p, so there is no
Eisenstein maximal ideal. Thus, T,/Zy = 0 and T [p™] = C[p™] = 0.

Next, assume ¢ = —1 (mod P). For the same reason as above, m; and
mg3 are not maximal (but my is). Note that mg is neither p-old nor g-old
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by Mazur. Therefore we obtain Ty/Zg ~ Ty /Zy. Since (U, — 1)(Up + 1)

= (U; — 1)(Ug+ 1) = 0 in TV, we get Ty/Zy = To/Iy ~ Tp/Zs by [8,
Proposition 2.3]. As in the proof of Theorem we conclude that
Tp™] = TIp™][Z2] = C[p™][Z2] = C[p™]. =
REMARK 4.2. If p > ¢, then the assumption above holds and hence

T[p>] = C[p™]. Since C[p>™] = 0, there are no rational torsion points of
order p on Jy(pq).
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