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On Bourgain’s bound for short exponential sums
and squarefree numbers

by

RAMON M. NUNES (Orsay)

1. Introduction. As usual, let
e(z) == e*™  for z e R.

In a recent paper, Bourgain [2] proved a non-trivial bound for exponential

sums such as
( - >
Z 6 ?
q

n<N

(n,q)=1
where ¢ > 1 is an integer and n denotes the multiplicative inverse of n
(mod ¢). His result holds in the range N > ¢¢ for an arbitrarily small, but
fixed, € > 0. In his paper, Bourgain was interested in an application related
to the size of fundamental solutions ep > 1 to the Pell equation

t2 — Du® =1.

He followed the lead of Fouvry [3], who suggested that such an upper bound
could help improve the lower bounds for the counting function

Sf(x,a) :=#{(ep,D); 2 < D <z, D is not a square, and ep < D1/2+°‘}

for small values of «. In this article, we are interested in a different application
of Bourgain’s result (see Propositionbelow) related to squarefree numbers
in arithmetic progressions.

Let X > 1. Let a and ¢ be coprime integers such that ¢ > 2 and let

—1
L) EXge)i= Y um)?-— <1—12> X

n<X plg 1 1
n=a (mod q)
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For fixed ¢, the last term is known to be asymptotically equivalent to

. > un)?

vla) =
(n,g)=1
as X — 00. So E(X;q,a) can be seen as an error term of the distribution of

squarefree numbers in arithmetic progressions. One naturally has the trivial
bound

(1.2) |E(X,q,a)| < X/q+1.
In a previous article, the author [5] proved

THEOREM 1.1. There exists an absolute constant C > 0, such that, for
every € > 0, we have

(1.3) > E(X,qa)~CJJ+2p7") X2
a (mod q) plg
(a,9)=1

for X — oo, uniformly for integers q satisfying X341+ < g < X1-¢,

This theorem gives the asymptotic variance of the above mentioned dis-
tribution.

Inspired by an equivalent problem considered by Fouvry et al. [4, Theo-
rem 1.5.], we study how E(X, ¢, a) correlates with E(X, q,~(a)) for suitable
choices of v : Z/qZ — Z/qZ. 1t is natural to choose 7 to be an affine linear
map, i.e.

(1.4) Yrs(a) =ra+s,
where r,s € Z, r # 0 are fixed. Thus our object of study is the correlation
sum
(1.5) Clysl(X,q) = Y. E(X,q,0)E(X,q,75(a))
a (mod q)
a70,77.: (0)
for ¢ prime. In [5], we already considered the case s = 0, and we found that

the correlation always existed for any non-zero value of r. In particular, there
exists Cy # 0 such that for X — oo and X31/41+¢ < ¢ < X1=¢ one has

(1.6 Chral(xa)~ . ¥ BXaa?).

a (mod q)

(a,q)=1
Our main result is the following theorem which exhibits a certain indepen-
dence between the functions a — E(X,q,a) and a — E(X,q,vs(a)) con-
sidered as random variables on Z/qZ, which agrees with our intuition that
E(X,q,a) and E(X,q,v(a)) should be asymptotically independent random
variables when + is not a homothety.
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THEOREM 1.2. There exists an absolute § > 0 such that for every e > 0
and every integer v # 0, there exists Ce, such that

X5/3+e€ X 2
(L.7) \cm,sux,qﬂsce,r<q1+f+X1/2q1/2<logq>—6+ : +(q)>

uniformly for X > 2, integers s and prime numbers ¢ < X such that q 1 rs.
A consequence of Theorems [I.1] and [I.2]is the following

COROLLARY 1.3. For every ¢ > 0 and r # 0, there exists a function
P, : RY — RT, tending to zero at infinity, such that for every X > 2, every
integer s and every prime q such that q 1 rs and XT/9%e < g < X17¢ one
has

(18) Chr el < 2, X B(Xa0?).
a (mod q)
(a,9)=1
Inequality shows a behavior different from corresponding to
the case where ¢| s. Here, as in [5], we give results that are true for a general
r # 0, but in order to simplify the presentation, we give proofs that are
only complete when r is squarefree (the case where p(r) = 0 implies a more

difficult definition of the x function in (4.10))).

2. Notation. We define the Bernoulli polynomials By (x) for k > 1, on
[0,1), in the following recursive way:

1

Bi(z) =z —1/2, %BM@:) = By(z), |Bi(z)dz=0.
0

We can extend these functions to periodic functions defined on the whole
real line by setting

By(z) := Br({z}).
We further notice that Bj(x) satisfies the relation
(2.1) || =2 —1/2 — By(x),

and Bs(x) satisfies

172 x

1
(2.2) By(x) =5 — 5+ 15 for0<z<1

In the course of the proof of Theorem we will make repeated use of
the multiplicative function

(2.3) h(d) = p(d)? [J1 - 202"

pld
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We also define the closely related product

(2.4) Cy = H(l — p22>

P

We denote, as usual, by d(n) and ds(n) the classical binary and ternary
divisor functions, respectively.

We write w(n) for the number of primes dividing n.

We write n ~ N as an alternative to N < n < 2N.

If S is a finite set, #S denotes its cardinality. If I C R is an interval,
|I| denotes its length.

We use indistinguishably the notation f = O(g) and f < g when there
is an absolute constant C' such that |f| < Cg, on a certain domain of the
variables which will be clear from the context, and the same for the symbols
Oc, Oy, O¢, and <¢, <, <, but with constants that may depend on the
subscripted variables.

3. Initial steps. Let X > 2. Let v = v, 5 be given by (1.4]) and let ¢ be
a prime number < X such that ¢ { rs.

We start by completing the sum defining C[y](X, q) (see (1.5))), and we
bound trivially the additional terms. By (1.2, we see that

(1) ChI(X.q) = gmx, 0.0)E(X, ¢, (a)) + 0((X))

q

In what follows, for simplification, we shall write

(3.2) Clg)= > (1 - q12> N

As we develop the sum on the right-hand side of (3.1]), we obtain
X X2 X2
33 CRIX.0) = ShI(X.0) - 20(0)5 3 utnf+ 0P +0( 25 ),
q n<X q q>
where S[y](X, q) is defined by the double sum
(3.4) SHX. )= D > p(na)u(ng)®.

n1,m2<X
n2=y(n1) (mod q)

We point out that S[y](X, q) is the only difficult term appearing in equa-
tion (3.3)), since we have the well-known formula

(3.5) > pP(n —X+O(\ﬁ) C(q )X+O( +f)

n<X
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uniformly for 1 < ¢ < X. An asymptotic expansion of S[y](X,q) will be
given in Proposition [5.1]

4. Useful lemmata. We start with a lemma concerning the multiplica-

tive function h(d) which follows easily from [0, Lemma 5.2]:

LEMMA 4.1. Let h(d) be as in (2.3) and let 5 be the multiplicative func-
tion defined by

mn=d
Then
(4.1) > 5 )« M- 172,
m>M
(4.2) > Bm) < M,
m<M

uniformly for every M > 1.

Proof. By [B, Lemma 5.2|, 3(m) is supported on cubefree numbers, and
if we write m = ab? with a, b squarefree and relatively prime, then

B(m) < d(a)/a>.
In particular, 5(m) < 1, and it is sufficient to prove (4.2)). In order to prove

(4.1), we notice that
5 —1 2 1/2
3 8 ) s d) e
m>M ab2>M a>1

The next proposition is the main result of [2], and it is crucial to our
proof.

PROPOSITION 4.2 (see [2, Proposition 4]). There exist constants ¢,C,C’
such that for every N,q > 2 and 1/log2N < < 1/10, there exists a subset
Enx C{1,...,N} (independent of q) satisfying

C
(4.3) |Ex| < C'B <log;> N
and such that, uniformly for (a,q) =1,
72 log N c
(4.4) Z e<an> ‘ < C'(log 2N)CN (5 1oggq)
q

n<N
ngEN: (nvq):]‘

In fact we need the following corollary.
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COROLLARY 4.3. There exists an absolute 5 > 0 such that, for every

€ > 0, we have
=2

> e(az> < N(logq)~°,

n<N
(n7Q):1

uniformly for N,q > 2 and N > ¢°.

REMARK 4.4. More generally, we may consider the sum

S(Ig= ) e (‘"_ﬁ)

nel 1
(n,q)=1
where I is a general interval of length N (mod q). It is well-known that
(4.5) 2(I,q) < q"*logq

for prime numbers ¢. Hence, (.5) is non-trivial as soon as N > ¢'/2*¢ (for
any € > 0). Obviously, Bourgain’s result is much stronger than (4.5)), but it
only applies, roughly speaking, to intervals starting at 1.

Proof of Corollaryl4.3 We use Propositionand choose B = (log N)~%,
where 61 = min(%, % . We add (4.3)) and (4.4]) to obtain

an? (loglog N)¢ (log N)¢
— | K N—"—-—F—F—+N .
2 ( g >< (ogN) 5 " exp(ee®(log N)1/2)

n<N, (n,q)z
The corollary now follows by taking, for example, § = 6;/2. =

REMARK 4.5. Corollary will be essential to the proof of Proposition
in which we use it for values of N which are roughly of size \/X/q. Since
we want to take ¢ as large as X'7¢, it is important that Bourgain’s result
holds for N as small as ¢°.

The next lemma is similar in essence to many others to be found in
the literature: see for example [7, Theorem 1|, [I, Proposition 1.4] or [6]
Theorem 3|. The proof, for instance, follows the lines of [I Proposition 1.4].

LEMMA 4.6. Let X > 1 and let £, r be integers such that r is squarefree.
Let

(4.6) I(X,tr):={ueR;u,ru+ e (0,X)},
(4.7) S(r):= > pn)’ulrn+0)>%.
nel(X,4,r)

Then, for every r > 0,
(4.8)  S(tr) = F(t,m)I(X,4,r)] + O, (ds(€) X/ (log 2X) /%)
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uniformly for X > 2 and integers £, where

o e G e

plr 2|£

where K is the multiplicative function deﬁned by

p’—p—1 fo—1
—n o Ya=1,
p—1

(4.10) k(p*) =9 p*—p
21 if a =2,
0 ifa> 3.

We recall that Cy is defined in (2.4).
Proof. We start by defining

ZIIn n # 0,
P?n
and
(4.11) &(n) =o(n)o(rn+1).

Notice that the right-hand side of (4.11]) actually depends on ¢ and r, but
since these numbers will be held fixed in the following calculations, we omit
this dependence. Since £(n) is an integer > 1 and

pn2ulrn+ 02 =1 & ¢(n) =1
we deduce that
(412> S(&T) = Z Z Z:U'(d)Nd(e?T)a
nel(X,4,r) dlE(n) d>1
where
Na(l,7) = #{n € I(X,£,r); {(n) =0 (mod d)}.

Notice that, for fixed ¢ and r, the condition p|&(n) only depends on the
congruence class of n modulo p?. We let

(4.13) up(€,r) := #{0 < v < p* —1; £(v) =0 (mod p)},
Ua(l,r) Hup (,r)
pld

By the Chinese remainder theorem, we have
(X, ¢,r)]

(4.14) Na(t,r) = Ua(l, 1) =

+ O(Ua(L, 7))
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for every positive squarefree integer d. We also notice that if (p,7) = 1 then
lup(£,7)] < 2, and |uy(f, )| < p? in general. Therefore
Ug(l, 1) <y 24D,

Let 2 <y < X be a parameter which will be chosen later to be a power
of X. We multiply (4.14) by p(d) and sum over d < y to obtain

(4.15) Y u(dNa(t,r) =Y u(@d), w (ZZ“)

d<y d<y d<y
By completing the first sum on the right-hand side of (4.15)), we get
(4.16)
0. X1
> u(d)Ng(t,r) = H(l -l T))\I(Xje,rn + OT< et +ylogy>.
i<y p p Yy

For large d, formula (4.14) is useless. Instead, we will estimate by different
means the sum

Nsy(l,r) = ZM YNg(l,r),
d>y

from which we will deduce the result.

We notice that d | &(n) if and only if there exist j,k > 1 such that d = jk,
32| n and k% | rn+£. Moreover, since n,7n+£ < X we have j, k < v/X. From
this observation we deduce

(4.17) | Nsy(£,r)]
_ ‘ S° w(d)l{n € I(X,£,7); &(n) = 0 (mod d)}\‘

y<d<X

< Z HnEZ;0<n,rn—|—€<Xandj2\n, k:2|rn+£}|

3 k<VX

Jjk>y

= Y NGk,

Jk<VX
Jjk>y

say. We shall divide the possible values of j and k into sets of the form
B(J,K) = {(j,k) € Z* j~ J k ~ K}.

We can use at most O((log X)?) such sets since we are summing over j, k <
X172 For every J, K > 1, let

(418)  N(LK):= > N(k)

jrod, kK
= #{(,k,u,v); j~J, k~K,0< j%u, k*v < X and k*v = rj%u + £}.
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By dyadic decomposition we can find 1 < J, K < X'/2 such that JK > y/4,
and we have the upper bound

(4.19) Noy(l,7) < N(J, K)(log X)?.
Finally, we estimate

K<) Y > 1.

koK u<XJ—2 Jr~dJ
j2ru=—¢ (mod k?)

For j, k relevant to the sum above, we write f = (4, k). From the congruence
condition in the inner sum, we have f2|¢. So we write

jo=3lf, ko=k/f, lo=10/f>
The congruence then becomes
jéru = —Ly (mod k3).
Now, for g = (k2,7) as above we have g |fy. We write
ki =k2/g, s=r/lg, t=1I]g.
That transforms the congruence into
jesu= —t (mod ky).

Finally, let h = (ki,t). From the considerations above, we must have h | u.
We write
K =ki/h, t=t/h, u =u/h.

So the congruence becomes

jesu' = —t' (mod k'),
and since (#, k') = 1, it has at most 2-2¢(*") < 2d(kg) solutions in jo (mod &’).
Therefore

NuBEYY Y Y >

glr f2hl€ ko~K/f w/ <X J~2h~1 Jo~J/ f
gh|k3 jésu'=—t' (mod k3 /gh)

<23y > XJZhl{‘J]C’];ZH}d(kO)

glr f2hle ko~K/f

< Y Y XJ { k2+1}d(k0)

f2h|l ko~K/ f
<> XJ { }KlogK
f2hle f

o J
< d3(0)XJ 2{}(2 - 1}K10gX.
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Hence
N K) <, ds(O){Xy '+ XJ 2K} log X.

A similar inequality with the roles of J and K interchanged on the right-hand
side can be obtained in an analogous way. Combining the two formulas, we
deduce

(4.20) N(J,K) <, ds(O){ Xy~ + X(JK) Y} log X
< ds(0) Xy 2 1og X.

Replacing (4.20]) in (4.19) and adding the result to (4.16]) gives

s =]] (1 - “ié”) [I(X,¢,7)| + Or(ylogy + d3(0) Xy ~"/*(log X)?).
P
We make the choice y = X?/3(log X)*3, obtaining

(4.21) S, r) = H<1 - “pif; ”) 11(X, £,7)] + O, (ds(£) X2/ (log X)7/3).

p

We finish by a study of u,(¢,r). We distinguish five cases (recall that
is squarefree):

If p|r and p?| £ then u,(¢,7) = p.

If p|7 and p| € but p?{ £ then u,(¢,r) = p + 1.
If p|r and p{ ¢ then u,(¢,r) = 1.

If pfr and p?| £ then u,(¢,7) = 1.

If pfr and p? { £ then u,(¢,r) = 2.

The lemma is now a consequence of (4.21) and of the different values of
up(,r). m

4.1. Sums involving the By function. In the following we study cer-
tain sums involving the Bernoulli polynomials Ba(x). In the next lemma, we
deal with the simplest case

(4.22) AY;qa)= ) {BQ (1;22 + “ZQ> — By <“22> }

n>1
(n,q)=1

where Y is a positive real number and a, ¢ are coprime integers. The sum
above will serve as an archetype for more complicated sums appearing in
the proof of Proposition [£.10} which in turn will be central to estimating
Ch](X, q).

One elementary bound for A(Y’;q,a) can be given by noticing that we
have both
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Y2 2 =2
(4.23) By < n CLZ) — By (C”;> <1,

since Bs is bounded, and

2 2 =2
2 9 2 Y?/n*4an?/q v2
(4.24) BQ( + a”) BQ(an > = | Biwdv<
q q e n

since Bj is also a bounded function. Gathering (4.23) and -, we obtain
(4.25) A(Y;q,a <<21+Z—<<Y
n<Y n>Y

In the following lemma we give a non-trivial bound for the sum above by
means of Bourgain’s bound, via Corollary What we obtain is better
than trivial by just a small power of logg, but it is sufficient to obtain
Theorem .2

LEMMA 4.7. There exists § > 0 such that for every e > 0,
(4.26) A(Y;q,0) <, Y (loggq) ™

uniformly for integers a and q such that ¢ > 2, (a,q) = 1 and for real
numbers Y > q°.

Proof. By Corollary there exists d; > 0 such that

(4.27) 3 e(“f) <. Y(logg)~"

n<Y
(n,g)=1
uniformly for (a,q) =1 and Y > ¢“/10. For simplification, we write

2 2 —2
(4.28) Ay (n;q,a) = Bz<y+aZ) Bz(aZ )

The sum in (4.27) appears naturally once we use the Fourier series develop-
ment

(4.29) By@) =Y —e(ha)

s 42 h?
in formula . Let
(4.30) 6(q) = (logq)"/>.
By (4.23)) and (4.29), we have
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(4.31) Z Ay (n;q,a) = Z Ay (n;q,a) +O(Y0(q)™")
n<Y0(q) Y0(q) "' <n<Y0(q)
(n,q)=1 (n,q)=1

1 hY? ahn? -1
h#0 Y6(q)~1<n<Y6(q)
(n,q)=1

1 hy? ahi? .
-y % <e<n2>—1>e< q >+0<Y0<q> ).
1<|r|<6(g)3 Y6(q) "1 <n<Y0(q)
(n,q)=1

Summing by parts, we see that the inner sum on the right-hand side is
|n|Y? ahn? ahn?
D >R = I SR | P SR Cal
Y0(q)~ ' <m<Y0(q) Y0(q)~'<n<m Y0(q) ' <n<Y(q)
(n,q)=1 (n,q)=1

Now, if ¢ is prime and sufficiently large, then any integer h satisfying 1 <
|h| < 6(q)? is coprime to g. Then, by (4.27)), the above expression is

h|Y?
(432) < > |T|n2(10g Q)" +Y0(q) "t < |hYe(g)
Y0(q)~ ' <m<Y0(q)
If we insert this upper bound in (4.31]), we obtain

(4.33) Z Ay (n;q,a) < Y60(q) 'loglogq < Y (log q)_51/4.
n<Y0(q)
(n7Q):1
For the remainder terms we use the trivial upper bound (4.24]) to deduce
(4.34) Z Ay (n;q,a) < Z 7 < YO(q)~.
n>Y0(q) n>Y6(q)
(n,q)=1

Combining (4.33]) and (4.34), we obtain
Y Ay(nig,a) < Y(logg) /!

n>1
(nv(I):l

uniformly for (a,q) =1 and Y > ¢°. The proof of Lemma is now com-
plete. =

REMARK 4.8. Among the hypotheses of Lemma [£.7] it is essential that
(a,q) = 1. In the case where ¢ |a, one cannot improve on (4.25). Indeed, it
is possible to show that (see [5, Lemma 4.3])

AlYi,0)= _(’D(qq) C(;/TQ)Y +0(d(Y*?) (¥ > 1).
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4.2. A consequence of Lemma In order to evaluate S[y](X,q)
(see (3.4)), it is important to consider the sum below.

DEFINITION 4.9. For integers ¢, r, s such that ¢ > 1 and ¢ 1 rs, let
6[’}’7«75]()(, Q) = Z f(ea T)|I(X7£7T)‘
{=s (mod q)

Note that this sum is actually finite since whenever |¢| > 2|r|X, we have
I(X,¢,r)=0.
The purpose of this subsection is to prove the following.

PROPOSITION 4.10. There exists 6 > 0 such that for every e > 0 and
every r # 0 such that r is squarefree, one has

6\ 2 1 -1
4. rsl (X q) = | = I+ 55— X2
43 el = (5) (1+ gy ) X
+ Oe,r (q1+€ + X1/2q1/2(log q)—é)
uniformly for X > 2, for integers s and prime numbers q such that q{r.

The special case r = 1 simplifies many of the calculations in the proof
below. For instance, the sums over p, o and 7 disappear. This simpler result
is, however, equally deep, and it might be helpful on a first reading to think
of r = 1, in order to see more clearly the connection between the upper
bound and the error term in (4.35)).

Proof of Proposition |.10, We start by recalling (4.9):

s = (155 ) (T 5y et

plr P2l
pir
where C3 is as in (2.4). We notice that the term
2
pe—1
C
2 H p2 -2

plr

is independent of £. We consider the sum

2 -1
130 hnleca = (15 =5) ehnlxa

p?—2
plr
P -1 2
= 2 )T 5= ) s,
{=s (mod q) p2|e p
pir

We expand the last product as follows:
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2
p°—1 h(d)
H p2 —92 = Z a2’
Pt 22|
pir (d,r)=1

from which we deduce

437)  ShndX) =Y klp) S XL S héj)

p|r2 {=s (mod q) d?|e
(Z’TQ)ZP (d;r)=1
h(d
= Yosonle) Y (Xt Y MY
po|r2 Lo=pos (mod q) d?|4o
(d,r)=1
h(d
= Yokoue) X MY S (K ped )
polr? (dygr)=1 l1=(pod?)s (mod q)

where in the second line we used the Md&bius inversion formula for detecting
the condition (£,72) = p, and we noticed that the congruence satisfied by £g
implies (d, q) = 1.

We write the inner sum as an integral:

(4.38) Z |[(X, pod®ly,r)|

£1=(pod?)s (mod q)

X
= S Z 1o, x)(ru + pod?ly) du,
0

t1=(pod?)s (mod q)

where 1(g x is the characteristic function of the interval (0, X). Hence the
inner sum above equals

{X—ru (padz)sJ{—ru (padQ)sJ

pod?q B q pod?q a q
X X —ru od?)s —ru od?)s
:2_Bl< ’ _ )>+Bl< 2_(p )>
podsq podq q podq q

for almost all u € (0, X) in the sense of Lebesgue measure. If we apply this

formula in (4.38)), we get
(4.39) > \[(X, pod*ty,7)|

£1=(pod?)s (mod q)

X paqu{BZ< X (pad2)s> _BZ<_(de2)s>
q

B pod3q r
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From this point on, we suppose that » < 0. The case r > 0 requires only
minor modifications. With this hypothesis, both
(1-rmX —rX
———— an
pod?q pod?q
are positive for every p,o 2 1.

We insert (4.39)) in and define

B(D q,CLT Z h Aquv )7
(d,qr)=1
where Ap(d,q;a) is as in (4.28). From (4.37) and (4.39) we deduce that

2
(4.40)  &pral(X.q) = A(q,m)g

X 1—-7)X
- q{G<;q,—8;T> - G<( ) 14, —8;7">
r q q
+G<_ZX;q, —8;T>}7

G(Y;q,s;T) ZZH po’B<\/p7U,q,pas;r>,

where

polr?
k(p)u(o h(d
e ]
polr? (d,gr)=1

Let (m) be the function defined in Lemma [4.1] We observe that for all
D >0,

B(D;q,a;r) Z B(m Z Ap(mn;q,a)

(m,gr)=1 (n,gr)=1

> Bm) Y. Appm(n;g,ma)
(m,qr)=1 (n,gr)=1

= Y. Bm)Y_ u(r) Y Apjem(n;q, 7 ma)
(m,qr)=1 Tlr (n 9)=1

= Y Bm))_ u(n)AD/(rm), ¢;7°m’a).
(m,qr)=1 T|r

We apply the equality above with D = /Y /(po) and a = pas, multiply
by k(p)u(o)po and sum over p, o such that po |r2. We obtain

(441)  G(Y;q,s;r)

XSS X stomniemsima(([ 5 agms)
1

palrz  T|r (m,qr)=
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Our discussion depends on the size of Y

e If Y < ¢°, we have the trivial bound (see (4.25)))

Y —— Y y1/2
A —— 54, poT Ms | K 55 <
poTEM pPoOTEM m

for every p,o,7 > 1. Summing over p, o, 7 and m gives

(4.42) G(Yiq,sim) < Y2 Br(m””‘) < q“?,

m>1

as a consequence of the upper bound (4.1)).
o If Y > ¢, we decompose the quadruple sum of (4.41)) as

P IED I ILS D) B3P Bt

quE/Q quE/Q m>qe/2
poT2m2>Y/q¢ por2m?2<Y/q*

For the first sum we use again the trivial bound

[y Y ,
(443) A( m, q7l()0'7'2m23> < p0_7_2m2 S qe/ .

The most delicate is the second sum, for which we appeal to (4.26)). This
gives

Y — Y _
(4.44) A(, / W; q,p072m25> < ”W (log q)~°.

For the third sum, we use the trivial bound

| Y —_— [ Y
(445) A( M,q,p072m25> < m

Applying inequalities (4.43)—(4.45)) in (4.41)), we obtain
G(Y;q,s;7)
e qe/2 Z |6(m)| + ﬁ(logq)—é Z ‘B(m)‘ + \/? Z ’ﬂ(m)’
) m m Y

quG/Q que/2 m>qe/2

and finally, by Lemma [4.T
(4.46) G(Yiq,57) <er a° + VY (logg) ™ (Y >¢°).

Comparing with (4.42)), we see that (4.46) is true for any Y > 1.
Combining (4.46) and (4.40)), one has

X2 _
(4.47)  &'[y(X,q) = Mg, N+ Ocr (¢ + X122 (log ) °).
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If we multiply the above formula by Cs Hp|T ;% (recall (4.36])), we deduce

X2
(4.48)  &[ysl(X,q) = A(q, 7“)7 + Ocr (g + X12¢12(log g) 79),

where

2
_ p—1 K(p)p(o) h(d)
Aaor) = CQ(HPQ _2> s ooy, )
p|r
Since for r squarefree, we have

K o 21
>y (p)u():Hp =

o
poirz P dir P

standard calculations show that A(g, ) does not depend on r. More precisely,
since ¢ is prime and (g,r) = 1, we have

= () (1)

Now, formula (4.48|) completes the proof of Proposition "

5. Study of S[v,](X,q). We rewrite S[ys](X,q) (see (8.4)) as
(5.1) Shrsl(Xoa) = 3 Y mn)’u(rn+ 07

{=s (mod q) n€I(X £,r)
Recall that for |[¢| > 2|r|X we have defined I(X,¢,r). Hence, by (4.8) (recall
Definition ,

Shrsl(X,a) = ) f(g,’r')|I(X,€,r)|+Or<‘;(X2/3+e>

{=s (mod q)
e]<2r|X

= 6[’77",8] (X7 Q) + Or<

From Proposition we deduce that
6\° 1 2
o smaxa- (5) (et )

7*(¢*> - 2) q

+ O <q1+€ + X12¢12(log q) 70 +

X5/3+e )

X5/3+5
q >
By the definition (3.2) for C'(g), one can easily see that

(2) () —cor+o(z)

In conclusion, we have proved
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PROPOSITION 5.1. Let C(q) be as in (3.2)). There exists 6 > 0 such that
for every e > 0 and every r # 0, one has the asymptotic formula

(5.3)  Shwsl(X,9)
X2 X'5/3+e€ X2
— C(Q)27 + Oc;r (qHE + X122 (log ) ° + — q3>

uniformly for X > 2, for integers s and prime numbers q such that q t rs
and ¢ < X.

6. Proof of the main theorem. We start by recalling (3.3):

2 2
Chr,s] (X7 Q) = S['Yr,s](X, Q) — 20((]){ Z ,u(n)2 —+ C(q)2X— + O<)(2> .

q q
n<X
By Proposition |5.1{ and formula (3.5, we deduce the inequality
s X5/3+6 X2
C[’YKX, Q) <<5,7“ QHE + X1/2q1/2(log q)f + T + ?

The proof of Theorem is now complete.
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