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ON THE CONVERGENCE OF SECANT-LIKE ALGORITHMS

WITH APPLICATIONS TO GENERALIZED FRACTIONAL

CALCULUS

Abstract. We present local and semilocal convergence results for secant-
like algorithms in order to approximate a locally unique solution of a non-
linear equation in a Banach space setting. In the last part of the study we
present some choices of the operators involved in fractional calculus where
the operators satisfy the convergence conditions.

1. Introduction. In this study we are concerned with the problem of
approximating a locally unique solution x∗ of the nonlinear equation

(1.1) F (x) = 0,

where F is a continuous operator defined on a subset D of a Banach space
X with values in a Banach space Y .

A lot of problems in computational sciences and other disciplines can be
brought into a form like (1.1) using mathematical modelling [7, 11, 15]. The
solutions of such equations can be found in closed form only in special cases.
That is why most solution methods for these equations are iterative. Iterative
methods are usually studied based on semilocal and local convergence. The
semilocal convergence analysis is, based on the information around the initial
point, to give hypotheses ensuring the convergence of the iterative algorithm;
while the local convergence analysis is, based on the information around a
solution, to find estimates of the radii of convergence balls as well as error
bounds on the distances involved.
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We introduce the secant-type method defined for n = 0, 1, 2, . . . by

(1.2) xn+1 = xn −A(F )(xn, xn−1)
−1F (xn),

where x−1, x0 ∈ D are initial points and A(F )(x, y) ∈ L(X,Y ), the space
of bounded linear operators from X into Y . There is a plethora of local as
well as semilocal convergence theorems for method (1.2) provided that the
operator A is an approximation to the Fréchet derivative F ′ [1, 2, 5–15]. In
the present study we do not assume that the operator A is related to F ′.
This way we expand the applicability of the iterative algorithm (1.2). Notice
that many well known methods are special cases of method (1.2).

Newton’s method: Choose A(F )(x, x) = F ′(x) for each x ∈ D.

Secant method: Choose A(F )(x, y) = [x, y;F ], where [x, y;F ] denotes
a divided difference of order one [7, 11, 14].

The so-called Newton-like algorithms and many other methods are spe-
cial cases of method (1.2).

The paper is organized as follows. The semilocal as well as local conver-
gence analysis of method (1.2) is given in Section 2. Some applications to
fractional calculus are given in Section 3.

2. Convergence analysis. We present the main semilocal convergence
result for method (1.2).

Theorem 2.1. Let F : D ⊂ X → Y be a continuous operator and let
A(F )(x, y) ∈ L(X,Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1,
and a function ϕ : [0,∞)2 → [0,∞) continuous and nondecreasing (in each
variable separately) such that for all x, y, z ∈ D,

A(F )(z, y)−1 ∈ L(Y,X),(2.1)

max{‖x−1 − x0‖, ‖A(F )(x0, x−1)
−1F (x0)‖} ≤ η,(2.2) ∥∥A(F )(z, y)−1

(
F (z)− F (y)−A(F )(y, x)(z − y)

)∥∥(2.3)

≤ ϕ(‖z − y‖, ‖y − x‖)‖z − y‖p+1,

q := ϕ(η, η)ηp < 1(2.4)

and

(2.5) U(x0, r) ⊆ D,
where

(2.6) r =
η

1− q
.

Then the sequence {xn} generated by method (1.2) is well defined, remains
in U(x0, r) for all n = 0, 1, 2, . . . and converges to some x∗ ∈ U(x0, r) such
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that

‖xn+1 − xn‖ ≤ ϕ(‖xn − xn−1‖, ‖xn−1 − xn−2‖)‖xn − xn−1‖p+1(2.7)

≤ q‖xn − xn−1‖
and

(2.8) ‖xn − x∗‖ ≤
qnη

1− q
.

Proof. The iterate x1 is well defined by method (1.2) for n = 0 and
(2.1). By (2.2) and (2.6) we also have ‖x1− x0‖ = ‖A(F )(x0, x−1)

−1F (x0)‖
≤ η < r, so x1 ∈ U(x0, r) and x2 is well defined (by (2.5)). Using (2.3) and
(2.4) we get

‖x2 − x1‖ =
∥∥A(F )(x1, x0)

−1[F (x1)− F (x0)−A(F )(x0, x−1)(x1 − x0)]
∥∥

≤ ϕ(‖x1 − x0‖, ‖x0 − x−1‖)‖x1 − x0‖p+1 ≤ q‖x1 − x0‖,
which shows (2.7) for n = 1. Then

‖x2 − x0‖ ≤ ‖x2 − x1‖+ ‖x1 − x0‖ ≤ q‖x1 − x0‖+ ‖x1 − x0‖

= (1 + q)‖x1 − x0‖ ≤
1− q2

1− q
η < r,

so x2 ∈ U(x0, r) and x3 is well defined.
Assuming ‖xk+1 − xk‖ ≤ q‖xk − xk−1‖ and xk+1 ∈ U(x0, r) for k =

1, . . . , n we get

‖xk+2 − xk+1‖
=
∥∥A(F )(xk+1, xk)

−1[F (xk+1)− F (xk)−A(F )(xk, xk−1)(xk+1 − xk)
]∥∥

≤ ϕ(‖xk+1 − xk‖, ‖xk − xk−1‖)‖xk+1 − xk‖p+1

≤ ϕ(‖x1 − x0‖, ‖x0 − x−1‖)‖x1 − x0‖p‖xk+1 − xk‖ ≤ q‖xk+1 − xk‖
and

‖xk+2 − x0‖ ≤ ‖xk+2 − xk+1‖+ ‖xk+1 − xk‖+ · · ·+ ‖x1 − x0‖
≤ (qk+1 + qk + · · ·+ 1)‖x1 − x0‖

≤ 1− qk+2

1− q
‖x1 − x0‖ <

η

1− q
= r,

which completes the induction for (2.7) and shows xk+2 ∈ U(x0, r). We also
have, for m ≥ 0,

‖xn+m − xn‖ ≤ ‖xn+m − xn+m−1‖+ · · ·+ ‖xn+1 − xn‖
≤ (qm−1 + qm−2 + · · ·+ 1)‖xn+1 − xn‖

≤ 1− qm

1− q
qn‖x1 − x0‖.
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It follows that {xn} is a Cauchy sequence in the Banach space X and as such
it converges to some x∗ ∈ U(x0, r). By letting m→∞, we obtain (2.8).

Stronger hypotheses are needed to show that x∗ is a solution of F (x) = 0.

Proposition 2.2. Let F : D ⊂ X → Y be a continuous operator and let
A(F )(x, y) ∈ L(X,Y ). Suppose that there exist x−1, x0 ∈ D, η ≥ 0, p ≥ 1,
µ > 0, and a function ϕ1 : [0,∞)2 → [0,∞) continuous and nondecreasing
such that for all x, y ∈ D,

A(F )(x, y)−1 ∈ L(Y,X), ‖A(F )(x, y)−1‖ ≤ µ,
max{‖x−1 − x0‖, ‖A(F )(x0, x−1)

−1F (x0)‖} ≤ η,(2.9)

‖F (z)− F (y)−A(F )(y, x)(z − y)‖(2.10)

≤ ϕ1(‖z − y‖, ‖x− y‖)
µ

‖z − y‖p+1,

q1 := ϕ1(η, η)ηp < 1

and
U(x0, r1) ⊆ D, where r1 =

η

1− q1
.

Then, the conclusions of Theorem 2.1 for the sequence {xn} hold with ϕ1,
q1, r1 replacing ϕ, q, r, respectively. Moreover, x∗ is a solution of F (x) = 0.

Proof. Notice that∥∥A(F )(xn, xn−1)
−1[F (xn)−F (xn−1)−A(F )(xn−1, xn−2)(xn−xn−1)

]∥∥
≤ ‖A(F )(xn, xn−1)

−1‖ ‖F (xn)−F (xn−1)−A(F )(xn−1, xn−2)(xn−xn−1)‖
≤ ϕ1(‖xn−xn−1‖, ‖xn−1−xn−2‖)‖xn−xn−1‖p+1 ≤ q1‖xn−xn−1‖.

Therefore, the proof of Theorem 2.1 can apply. Then, in view of the estimate

‖F (xn)‖ = ‖F (xn)− F (xn−1)−A(F )(xn−1, xn−2)(xn − xn−1)‖

≤ ϕ1(‖xn − xn−1‖)
µ

‖xn − xn−1‖p+1 ≤ q1‖xn − xn−1‖,

we deduce by letting n→∞ that F (x∗) = 0.

Concerning the uniqueness of the solution x∗ we have the following result:

Proposition 2.3. Under the hypotheses of Proposition 2.2, suppose
moreover that there exists ϕ2 : [0,∞)2 → [0,∞) continuous and nonde-
creasing such that

(2.11) ‖F (z)−F (x)−A(F )(z, y)(z−x)‖ ≤ ϕ2(‖z − x‖, ‖y − x‖)
µ

‖z−x‖p+1

and

(2.12) ϕ2(r1, η + r1)r
p
1 < 1.

Then x∗ is the only solution of F (x) = 0 in U(x0, r1).
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Proof. The existence of a solution x∗ ∈ U(x0, r1) has been established
in Proposition 2.2. Let y∗ ∈ U(x0, r1) with F (y∗) = 0. Then

‖xn+1 − y∗‖ = ‖xn − y∗ −A(F )(xn, xn−1)
−1F (xn)‖

=
∥∥A(F )(xn, xn−1)

−1[A(F )(xn, xn−1)(xn − y∗)− F (xn) + F (y∗)]
∥∥

≤ ‖A(F )(xn, xn−1)
−1‖ ‖F (y∗)− F (xn)−A(F )(xn, xn−1)(y

∗ − xn)‖

≤ µϕ1(‖xn − y∗‖, ‖xn−1 − y∗‖)
µ

‖xn − y∗‖p+1

≤ ϕ2(r1, η + r1)r
p
1‖xn − x

∗‖ < ‖xn − y∗‖,
so we deduce that limn→∞ xn = y∗. But since limn→∞ xn = x∗, we conclude
that x∗ = y∗.

Next, we present a local convergence analysis for algorithm (1.2).

Proposition 2.4. Let F : D ⊂ X → Y be a continuous operator and
let A(F )(y, x) ∈ L(X,Y ). Suppose that there exist x∗ ∈ D, p ≥ 1, and a
function ϕ3 : [0,∞)2 → [0,∞) continuous and nondecreasing such that for
all x, y ∈ D,

F (x∗) = 0, A(F )(y, x)−1 ∈ L(Y,X),

‖A(F )(y, x)−1[F (x)− F (x∗)−A(F )(y, x)(x− x∗)]‖(2.13)

≤ ϕ3(‖y − x∗‖, ‖x− x∗‖)‖y − x∗‖p+1,

and

U(x∗, r2) ⊆ D,

where r2 is the smallest positive solution of the equation

h(t) := ϕ3(t, t)t
p − 1 = 0.

Then the sequence {xn} generated by method (1.2) for x−1, x0 ∈ U(x∗, r2)−
{x∗} is well defined, remains in U(x∗, r2) for n = 0, 1, 2, . . . and converges
to x∗. Moreover,

‖xn+1 − x∗‖ ≤ ϕ2(‖xn − x∗‖, ‖xn−1 − x∗‖)‖xn − x∗‖p+1 < ‖xn − x∗‖ < r2.

Proof. We have h(0) = −1 < 0 and h(t) → ∞ as t → ∞. Then the
intermediate value theorem shows that h has positive zeros. Denote by r2
the smallest such zero. By hypothesis x−1, x0 ∈ U(x∗, r2)− {x∗}. Then

‖x1 − x∗‖ = ‖x0 − x∗ −A(F )(x0, x−1)
−1F (x0)‖

=
∥∥A(F )(x0, x−1)

−1[F (x∗)− F (x0)−A(F )(x0, x−1)(x
∗ − x0)]

∥∥
≤ ϕ2(‖x0 − x∗‖, ‖x−1 − x∗‖)‖x0 − x∗‖p+1

< ϕ3(r2, r2)r
p
2‖x0 − x

∗‖ = ‖x0 − x∗‖ < r2,
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which shows that x1 ∈ U(x∗, r2) and x2 is well defined. By a simple inductive
argument as in the preceding estimate we get

‖xk+1−x∗‖ = ‖xk−x∗−A(F )(xk, xk−1)
−1F (xk)‖

≤
∥∥A(F )(xk, xk−1)

−1[F (x∗)−F (xk)−A(F )(xk, xk−1)(x
∗−xk)]

∥∥
≤ ϕ2(‖xk−x∗‖, ‖xk−1−x∗‖)‖xk−x∗‖p+1

< ϕ3(r2, r2)r
p
2‖xk−x

∗‖ = ‖xk−x∗‖ < r2,

which shows limk→∞ xk = x∗ and xk+1 ∈ U(x∗, r2).

Remark 2.5. (a) Hypothesis (2.3) specializes to Newton–Mysovskĭı-
type if A(F )(x) = F ′(x) [7, 11, 14]. However, if F is not Fréchet-differenti-
able, then our results extend the applicability of the iterative algorithm
(1.2).

(b) Theorem 2.1 has a practical value although we do not show that x∗

is a solution of the equation F (x) = 0, since this may be shown in another
way.

(c) Hypothesis (2.13) can be replaced by a stronger one:∥∥A(F )(y, x)−1[F (x)− F (z)−A(F )(y, x)(x− z)]
∥∥

≤ ϕ3(‖z − y‖, ‖z − x‖)‖z − y‖p+1.

3. Applications to g-fractional calculus. Here the background
needed comes from [4].

Definition 3.1. Let α > 0, dαe = n (d·e is the ceiling of the number).
Let g ∈ AC([a, b]) (absolutely continuous functions) be strictly increasing.
We assume that (f ◦ g−1)(n) ◦ g ∈ L∞([a, b]), where f : [a, b]→ N.

We define the left generalized g-fractional derivative of f of order α as
follows:

(Dα
a+;gf)(x) :=

1

Γ (n− α)

x�

a

(g(x)− g(t))n−α−1g′(t)(f ◦ g−1)(n)(g(t)) dt

for a ≤ x ≤ b, where Γ is the gamma function.

If α /∈ N, we have Dα
a+;gf ∈ C([a, b]).

We set

Dn
a+;gf(x) = ((f ◦ g−1)(n) ◦ g)(x),

D0
a+;gf(x) = f(x), ∀x ∈ [a, b].

If g = id, then

Dα
a+;gf = Dα

a+;idf = Dα
∗af,

the usual left Caputo fractional derivative.



Convergence of secant-like algorithms 197

We will use the following g-left fractional generalized Taylor formula
from [4].

Theorem 3.2. Let g ∈ AC([a, b]) be strictly increasing. Assume that
f ◦ g−1 ∈ ACn([g(a), g(b)]) (this means (f ◦ g−1)(n−1) ∈ AC([g(a), g(b)])),
where N 3 n = dαe, α > 0. Also, assume that (f ◦ g−1)(n) ◦ g ∈ L∞([a, b]).
Then

f(x)− f(a) =
n−1∑
k=1

(f ◦ g−1)(k)(g(a))

k!
(g(x)− g(a))k(3.1)

+
1

Γ (α)

x�

a

(g(x)− g(t))α−1g′(t)(Dα
a+;gf)(t) dt

for all x∈ [a, b]. The remainder of (3.1) is a continuous function in x∈ [a, b].

Here we are going to operate more generally. We consider f ∈ Cn([a, b]).
We define the left g-fractional derivative of f of order α as follows:

(Dα
y+;gf)(x) :=

1

Γ (n− α)

x�

y

(g(x)− g(t))n−α−1g′(t)(f ◦ g−1)(n)(g(t)) dt

for any a ≤ y ≤ x ≤ b;

Dn
y+;gf(x) = ((f ◦ g−1)(n) ◦ g)(x), ∀x, y ∈ [a, b],

and

D0
y+;gf(x) = f(x), ∀x ∈ [a, b].

For α > 0, α /∈ N, by convention we set

(Dα
y+;gf)(x) = 0, ∀x, y ∈ [a, b], x < y.

Similarly, we define

(Dα
x+;gf)(y) :=

1

Γ (n− α)

y�

x

(g(y)− g(t))n−α−1g′(t)(f ◦ g−1)(n)(g(t)) dt

for any a ≤ x ≤ y ≤ b;

Dn
x+;gf(y) = ((f ◦ g−1)(n) ◦ g)(y), ∀x, y ∈ [a, b],

and

D0
x+;gf(y) = f(y), ∀y ∈ [a, b].

For α > 0, α /∈ N, by convention we set

(Dα
x+;gf)(y) = 0, ∀x, y ∈ [a, b], y < x.
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Assuming (f ◦ g−1)(n) ◦ g ∈ L∞([a, b]), we get

|(Dα
a+;gf)(x)| ≤ 1

Γ (n− α)

x�

a

(g(x)− g(t))n−α−1g′(t)|(f ◦ g−1)(n)(g(t))| dt

≤
‖(f ◦ g−1)(n) ◦ g‖∞,[a,b]

Γ (n− α)

x�

a

(g(x)− g(t))n−α−1g′(t) dt

=
‖(f ◦ g−1)(n) ◦ g‖∞,[a,b]

Γ (n− α+ 1)
(g(x)− g(a))n−α

≤
‖(f ◦ g−1)(n) ◦ g‖∞,[a,b]

Γ (n− α+ 1)
(g(b)− g(a))n−α, ∀x ∈ [a, b].

Hence

(Dα
a+;gf)(a) = 0

and

(Dα
y+;gf)(y) = (Dα

x+;gf)(x) = 0, ∀x, y ∈ [a, b].

Thus when α > 0, α /∈ N, both Dα
y+;gf,D

α
x+;gf ∈ C([a, b]).

Notice also that

f ◦ g−1 ∈ ACn([g(x), g(b)]) and (f ◦ g−1)(n) ◦ g ∈ L∞([x, b]),

and of course g ∈ AC([x, b]), and g is strictly increasing over [x, b] for all
x ∈ [a, b].

Hence by Theorem 3.2 we obtain

f(x)− f(y) =
n−1∑
k=1

(f ◦ g−1)(k)(g(y))

k!
(g(x)− g(y))k

+
1

Γ (α)

x�

y

(g(x)− g(t))α−1g′(t)(Dα
y+;gf)(t) dt, ∀x ∈ [y, b],

and

f(y)− f(x) =

n−1∑
k=1

(f ◦ g−1)(k)(g(x))

k!
(g(y)− g(x))k

+
1

Γ (α)

y�

x

(g(y)− g(t))α−1g′(t)(Dα
x+;gf)(t) dt, ∀y ∈ [x, b].
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We also define the following linear operator:

(A1(f))(x, y) :=

n−1∑
k=1

(f◦g−1)(k)(g(y))
k! (g(x)− g(y))k−1 + (Dα

y+;gf)(x) (g(x)−g(y))
α−1

Γ (α+1) for x > y,

n−1∑
k=1

(f◦g−1)(k)(g(x))
k! (g(y)− g(x))k−1 + (Dα

x+;gf)(y) (g(y)−g(x))
α−1

Γ (α+1) for x < y,

f (n)(x) when x = y,

for x, y ∈ [a, b], α > 0, n = dαe.
We may assume that

(3.2)
|(A1(f))(x, x)− (A1(f))(y, y)| = |f (n)(x)− f (n)(y)|,

|(f (n) ◦ g−1)(g(x))− (f (n) ◦ g−1)(g(y))| ≤ Φ|g(x)− g(y)|,
for x, y ∈ [a, b], where Φ > 0.

Now we estimate I1 := |f(x)− f(y)− (A1(f))(x, y)(g(x)− g(y))| in two
cases. If x > y then

I1 =

∣∣∣∣ 1

Γ (α)

x�

y

(g(x)− g(t))α−1g′(t)(Dα
y+;gf)(t) dt

− (Dα
y+;gf)(x)

(g(x)− g(y))α

Γ (α+ 1)

∣∣∣∣
=

1

Γ (α)

∣∣∣x�
y

(g(x)− g(t))α−1g′(t)
(
(Dα

y+;gf)(t)− (Dα
y+;gf)(x)

)
dt
∣∣∣

≤ 1

Γ (α)

x�

y

(g(x)− g(t))α−1g′(t)|(Dα
y+;gf)(t)− (Dα

y+;gf)(x)| dt.

We can assume that

|(Dα
y+;gf)(t)− (Dα

y+;gf)(x)| ≤ λ1|g(t)− g(x)|
for all t, x, y ∈ [a, b] with x ≥ t ≥ y, for some λ1 > 0. Then

I1 ≤
λ1
Γ (α)

x�

y

(g(x)− g(t))α−1g′(t)(g(x)− g(t)) dt

=
λ1
Γ (α)

x�

y

(g(x)− g(t))αg′(t) dt =
λ1
Γ (α)

(g(x)− g(y))α+1

α+ 1
.

We have proved that

|f(x)− f(y)− (A1(f))(x, y)(g(x)− g(y))|

≤ λ1
Γ (α)

(g(x)− g(y))α+1

α+ 1
, ∀x, y ∈ [a, b], x > y.
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Now we assume that y > x. Then

I1 = |f(y)− f(x)− (A1(f))(x, y)(g(y)− g(x))|

=

∣∣∣∣ 1

Γ (α)

y�

x

(g(y)− g(t))α−1g′(t)(Dα
x+;gf)(t) dt

− (Dα
x+;gf)(y)

(g(y)− g(x))α

Γ (α+ 1)

∣∣∣∣
=

1

Γ (α)

∣∣∣y�
x

(g(y)− g(t))α−1g′(t)
(
(Dα

x+;gf)(t)− (Dα
x+;gf)(y)

)
dt
∣∣∣

≤ 1

Γ (α)

y�

x

(g(y)− g(t))α−1g′(t)|(Dα
x+;gf)(t)− (Dα

x+;gf)(y)| dt.

We can assume that

|(Dα
x+;gf)(t)− (Dα

x+;gf)(y)| ≤ λ2|g(t)− g(y)|
for all t, y, x ∈ [a, b] with y ≥ t ≥ x, for some λ2 > 0. Then

I1 ≤
λ2
Γ (α)

y�

x

(g(y)− g(t))α−1g′(t)(g(y)− g(t)) dt

=
λ2
Γ (α)

y�

x

(g(y)− g(t))αg′(t) dt =
λ2
Γ (α)

(g(y)− g(x))α+1

α+ 1
.

We have proved that

|f(x)− f(y)− (A1(f))(x, y)(g(x)− g(y))|

≤ λ2
Γ (α)

(g(y)− g(x))α+1

α+ 1
, ∀x, y ∈ [a, b], y > x.

Conclusion 3.3. Set λ := max(λ1, λ2). Then

(3.3) |f(x)− f(y)− (A1(f))(x, y)(g(x)− g(y))|

≤ λ

Γ (α)

|g(x)− g(y)|α+1

α+ 1
, ∀x, y ∈ [a, b].

Notice that (3.3) is trivially true when x = y.

One may assume that

(3.4) λ/Γ (α) < 1.

Now based on (3.2) and (3.3), we can apply our numerical methods presented
in Section 2 to solve f(x) = 0.

Definition 3.4. Let α > 0, dαe = n. Let g ∈ AC([a, b]) be strictly
increasing. Assume that (f ◦ g−1)(n) ◦ g ∈ L∞([a, b]), where f : [a, b]→ R.
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We define the right generalized g-fractional derivative of f of order α as
follows:

(Dα
b−;gf)(x) :=

(−1)n

Γ (n− α)

b�

x

(g(t)− g(x))n−α−1g′(t)(f ◦ g−1)(n)(g(t)) dt

for x ∈ [a, b].

If α /∈ N, we have Dα
b−;gf ∈ C([a, b]).

We set

Dn
b−;gf(x) = (−1)n((f ◦ g−1)(n) ◦ g)(x),

D0
b−;gf(x) = f(x), ∀x ∈ [a, b].

If g = id, then

Dα
b−;gf = Dα

b−;idf = Dα
b−f,

the usual right Caputo fractional derivative.

We will use the following g-right fractional generalized Taylor formula
from [4].

Theorem 3.5. Let g ∈ AC([a, b]) be strictly increasing. Assume that
f ◦ g−1 ∈ ACn([g(a), g(b)]), where N 3 n = dαe, α > 0. Also assume that
(f ◦ g−1)(n) ◦ g ∈ L∞([a, b]). Then

f(x)− f(b) =
n−1∑
k=1

(f ◦ g−1)(k)(g(b))

k!
(g(x)− g(b))k(3.5)

+
1

Γ (α)

b�

x

(g(t)− g(x))α−1g′(t)(Dα
b−;gf)(t) dt

for all a ≤ x ≤ b. The remainder of (3.5) is a continuous function in
x ∈ [a, b].

Here we are going to operate more generally. We consider f ∈ Cn([a, b]).
We define the right g-fractional derivative of f of order α as follows:

(Dα
y−;gf)(x) =

(−1)n

Γ (n− α)

y�

x

(g(t)− g(x))n−α−1g′(t)(f ◦ g−1)(n)(g(t)) dt

for x ∈ [a, y], where y ∈ [a, b];

(Dn
y−;gf)(x) = (−1)n((f ◦ g−1)(n) ◦ g)(x), ∀x, y ∈ [a, b],

(D0
y−;gf)(x) = f(x), ∀x ∈ [a, b].

For α > 0, α /∈ N, by convention we set

(Dα
y−;gf)(x) = 0, ∀x, y ∈ [a, b], x > y.



202 G. A. Anastassiou and I. K. Argyros

Similarly, we define

(Dα
x−;gf)(y) =

(−1)n

Γ (n− α)

x�

y

(g(t)− g(y))n−α−1g′(t)(f ◦ g−1)(n)(g(t)) dt

for y ∈ [a, x], where x ∈ [a, b], and

(Dn
x−;gf)(y) = (−1)n((f ◦ g−1)(n) ◦ g)(y), ∀x, y ∈ [a, b],

(D0
x−;gf)(y) = f(y), ∀y ∈ [a, b].

For α > 0, α /∈ N, by convention we set

(Dα
x−;gf)(y) = 0, ∀x, y ∈ [a, b], y > x.

Assuming (f ◦ g−1)(n) ◦ g ∈ L∞([a, b]), we get

|(Dα
b−;gf)(x)| ≤

‖(f ◦ g−1)(n) ◦ g‖∞,[a,b]
Γ (n− α+ 1)

(g(b)− g(x))n−α

≤
‖(f ◦ g−1)(n) ◦ g‖∞,[a,b]

Γ (n− α+ 1)
(g(b)− g(a))n−α, ∀x ∈ [a, b].

That is,

(Dα
b−;gf)(b) = 0

and

(Dα
y−;gf)(y) = (Dα

x−;gf)(x) = 0, ∀x, y ∈ [a, b].

Thus when α > 0, α /∈ N, both Dα
y−;gf,D

α
x−;gf ∈ C([a, b]).

Notice also that f ◦ g−1 ∈ ACn([g(a), g(x)]) and (f ◦ g−1)(n) ◦ g ∈
L∞([a, x]), and of course g ∈ AC([a, x]), and g is strictly increasing over
[a, x] for all x ∈ [a, b].

Hence by Theorem 3.5 we obtain

f(x)− f(y) =
n−1∑
k=1

(f ◦ g−1)(k)(g(y))

k!
(g(x)− g(y))k

+
1

Γ (α)

y�

x

(g(t)− g(x))α−1g′(t)(Dα
y−;gf)(t) dt, ∀a ≤ x ≤ y ≤ b.

Also, we have

f(y)− f(x) =

n−1∑
k=1

(f ◦ g−1)(k)(g(x))

k!
(g(y)− g(x))k

+
1

Γ (α)

x�

y

(g(t)− g(y))α−1g′(t)(Dα
x−;gf)(t) dt, ∀a ≤ y ≤ x ≤ b.
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We also define the following linear operator:

(A2(f))(x, y) :=

n−1∑
k=1

(f◦g−1)(k)(g(y))
k! (g(x)− g(y))k−1 − (Dα

y−;gf)(x) (g(y)−g(x))
α−1

Γ (α+1) for x < y,

n−1∑
k=1

(f◦g−1)(k)(g(x))
k! (g(y)− g(x))k−1 − (Dα

x−;gf)(y) (g(x)−g(y))
α−1

Γ (α+1) for x > y,

f (n)(x) when x = y,

for x, y ∈ [a, b], α > 0, n = dαe.
We may assume that

|(A2(f))(x, x)− (A2(f))(y, y)| = |f (n)(x)− f (n)(y)|(3.6)

≤ Φ∗|g(x)− g(y)|, ∀x, y ∈ [a, b],

where Φ∗ > 0.

Again we estimate, first for x < y,

I2 := |f(x)− f(y)− (A2(f))(x, y)(g(x)− g(y))|

=

∣∣∣∣ 1

Γ (α)

y�

x

(g(t)− g(x))α−1g′(t)(Dα
y−;gf)(t) dt

− (Dα
y−;gf)(x)

(g(y)− g(x))α

Γ (α+ 1)

∣∣∣∣
=

1

Γ (α)

∣∣∣∣y�
x

(g(t)− g(x))α−1g′(t)
(
(Dα

y−;gf)(t)− (Dα
y−;gf)(x)

)
dt

∣∣∣∣
≤ 1

Γ (α)

y�

x

(g(t)− g(x))α−1g′(t)|(Dα
y−;gf)(t)− (Dα

y−;gf)(x)| dt.

We can assume that

|(Dα
y−;gf)(t)− (Dα

y−;gf)(x)| ≤ ρ1|g(t)− g(x)|

for all t, x, y ∈ [a, b] with y ≥ t ≥ x, for some ρ1 > 0. Then

I2 ≤
ρ1
Γ (α)

y�

x

(g(t)− g(x))α−1g′(t)(g(t)− g(x)) dt

=
ρ1
Γ (α)

y�

x

(g(t)− g(x))αg′(t) dt

=
ρ1
Γ (α)

(g(y)− g(x))α+1

α+ 1
.
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We have proved that

|f(x)− f(y)− (A2(f))(x, y)(g(x)− g(y))|

≤ ρ1
Γ (α)

(g(y)− g(x))α+1

α+ 1
, ∀x, y ∈ [a, b], x < y.

Now assume that x > y. Then

I2 = |f(y)− f(x)− (A2(f))(x, y)(g(y)− g(x))|
= |f(y)− f(x) + (A2(f))(x, y)(g(x)− g(y))|

=

∣∣∣∣ 1

Γ (α)

x�

y

(g(t)− g(y))α−1g′(t)(Dα
x−;gf)(t) dt

− (Dα
x−;gf)(y)

(g(x)− g(y))α

Γ (α+ 1)

∣∣∣∣
=

1

Γ (α)

∣∣∣∣x�
y

(g(t)− g(y))α−1g′(t)
(
(Dα

x−;gf)(t)− (Dα
x−;gf)(y)

)
dt

∣∣∣∣
≤ 1

Γ (α)

x�

y

(g(t)− g(y))α−1g′(t)|(Dα
x−;gf)(t)− (Dα

x−;gf)(y)| dt.

We can assume that

|(Dα
x−;gf)(t)− (Dα

x−;gf)(y)| ≤ ρ2|g(t)− g(y)|

for all t, y, x ∈ [a, b] with x ≥ t ≥ y, for some ρ2 > 0. Then

I2 ≤
ρ2
Γ (α)

x�

y

(g(t)− g(y))α−1g′(t)(g(t)− g(y)) dt

=
ρ2
Γ (α)

x�

y

(g(t)− g(y))αg′(t) dt =
ρ2
Γ (α)

(g(x)− g(y))α+1

α+ 1
.

We have proved that

|f(x)− f(y)− (A2(f))(x, y)(g(x)− g(y))|

≤ ρ2
Γ (α)

(g(x)− g(y))α+1

α+ 1
, ∀x, y ∈ [a, b], x > y.

Conclusion 3.6. Set ρ := max(ρ1, ρ2). Then

(3.7) |f(x)− f(y)− (A2(f))(x, y)(g(x)− g(y))|

≤ ρ

Γ (α)

|g(x)− g(y)|α+1

α+ 1
, ∀x, y ∈ [a, b].

Notice that (3.7) is trivially true when x = y.
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One may assume that

(3.8)
ρ

Γ (α)
< 1.

Now based on (3.6) and (3.7), we can apply our numerical methods presented
in this article to solve f(x) = 0.

In both fractional applications α+ 1 ≥ 2, that is, α ≥ 1.
Also some examples for g follow:

g(x) = ex, x ∈ [a, b] ⊂ R,
g(x) = sinx,

g(x) = tanx, x ∈ [−π/2 + ε, π/2− ε], where ε > 0 is small.

Indeed, the above examples are strictly increasing and absolutely continuous
functions.

Remark 3.7. (a) Returning to Conclusion 3.3, we see that Proposi-
tion 2.2 can be applied if p = α, g(t) = t, F (t) = f(t), A(F )(s, t) =
A1(f)(s, t) and

ϕ1(s, t) =
λ|s− t|p

(α+ 1)Γ (α)µ

for each s, t ∈ [a, b].
(b) According to Conclusion 3.6, we can again use Proposition 2.2 as

in (a) but we must choose A(F )(s, t) = A2(f)(s, t) and

ϕ1(s, t) =
ρ|s− t|p

(α+ 1)Γ (α)µ

for each s, t ∈ [a, b].
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