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1. Introduction. Let g(p) denote the least primitive root of a prime p.
Burgess [4] showed that g(p) < p/**t¢ for any e > 0. This remains the
best known bound in general—see [12] for an insightful survey of related
problems. Grosswald [7] conjectured that

(1.1) 9(p) <Vp—2

for all primes p > 409. This has implications for the generators of I'(p), the
principal congruence subgroup modulo p of the modular group I'—see [7 §8].
Grosswald verified numerically that is true for all 409 < p < 10,000.
He also gave an explicit version of Burgess’ bound, thereby proving that
g(p) < p*4% for all p > 1 + exp(exp(24)) ~ 1010"°.

Using computational and theoretical arguments we improve on Gross-

wald’s estimate in the following theorem.

THEOREM 1.1. Let g(p) denote the least primitive root modulo p. Then
g(p) < /p—2 for all 409 < p < 2.5 x 10¥ and for all p > 3.38 x 107L.

The ‘gap’ in Theorem between the ranges of p seems difficult to
bridge. The trivial bound g(p) < p when combined with the results in The-
orem [I.1] gives the following corollary.

COROLLARY 1.2. g(p) < 5.2p%% for all p.

The bound in Corollary while weak, appears to be the first bound
that holds for all p.

The remainder of the paper is organised as follows. In §2| we make use of
an explicit version of Burgess’ bound. This gives a substantial improvement
on the upper bound exp(exp(24)) + 1 given by Grosswald. We introduce a
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sieving inequality in §3] which enables us to reduce this further. Finally, in
we present some computations that complete the proof of Theorem
and present some data on two related problems involving primitive roots.

2. Explicit versions of Burgess’ bounds. Burgess’ bounds on the

character sum
N+H

Su(N)= > x(m)
m=N+1
were first made explicit by Grosswald [7], and were later refined by
Booker [3], McGown [10], and, most recently, by Trevifio [16]. The following
is Theorem 1.7 in [16].

THEOREM 2.1 (Trevino). Suppose x is a non-principal Dirichlet char-
acter modulo p where p > 10%°. Let N,H € 7 with H > 1. Fiz a positive
integer r > 2. Then there exists a computable constant C(r) such that when-
ever H < 2pY/2TV4 we have

(2.1) 1S (N)| < C(r)H'""V/"p's7 (log p) 2+ .

We follow Burgess who in [4, §6] considers

O = (R S PEI
p—1 dp st )
p—1,d>1 Xd
whence it follows that f(z) = 1 if  is a primitive root, and f(z) = 0 oth-
erwise, provided that p { x. Thus, if N(H) denotes the number of primitive
roots in the interval 1 < x < H we have
H
N(H) = > f).
x=1, z#0 (mod p)
We can estimate the sum of f(x) using with H = (1 — 2/p(1)/2)p1/2.
This choice of H guarantees that H < /p — 2 for p > py.
Since we need only consider square-free divisors d in the outer sum
in (2.2), and since there are ¢(d) characters x4, we arrive at the follow-
ing theorem.

THEOREM 2.2. We have g(p) < \/p — 2 for p > po provided that
—1/r
r—1 2
(2.3) pi? > C(r) (1 — 1/2) (log p)'/?r {20(=1) _ 1},
Po
The exponent on the left side of (2.3) is maximised when r = 2. We
rearrange ([2.3) accordingly to show that we require

(2.4) (10§p>4 > 0(2)16(0.99)"8{22(~1) _ 1}16 5 102
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With C(2) = 3.5751 as in [16, Table 3], a quick computation shows that
(2.4) is true for 17984 < w(p — 1) < 18300. For larger values of w(p — 1) we
make use of the bound

1 1 2.8973
(2.5) win) < —2m + . n>3,
loglogn loglogn = (loglogn)?

proved by Robin [15, Theorem 16]. Since the bound on the right of (2.5)) is

increasing for all n > ¢®* > 1619 and since p—1>p - pig3or >5.9 x 1088331,
we have

20-’(1’*1) S plog)fgofw( log%ogp+(102?§gi)2) S p0-062457
whence it follows that is true for all p with w(p — 1) > 18301.

Hence we need only consider w(p — 1) < 17983. Solving for p in ([2.4]) we
find we need only consider p < 108669 which is much less than 100 ", We
reduce this upper bound substantially by introducing a sieving inequality in
the next section.

3. A sieving inequality. Let e be an even divisor of p— 1. Let Rad(n)
denote the product of the distinct prime divisors of n. If Rad(e) = Rad(p—1),
then set s = 0 and § = 1. Otherwise, if Rad(e) < Rad(p — 1), let p1,...,ps,
s > 1, be the primes dividing p — 1 but not e, and set § =1 -7, pi_l. In
practice, it is essential to choose e so that § > 0.

Again let e be an even divisor of p — 1. An integer z (indivisible by p)
will be called e-free if, for any divisor d of e (with d > 1), the congruence
z = y?% (mod p) is insoluble. With this terminology, z is a primitive root iff
it is (p—1)-free. Given H let N.(H) be the number of integers x in the range
1 < x < H that are indivisible by p and such that x is e-free. Hereafter we
write 8(n) = ¢(n)/n.

LEMMA 3.1. Suppose e is an even divisor of p — 1. Then, in the above
notation,

(3.1) Ny1(H) > S Nyyo(H) — (s — N (H).
i=1
Hence
(32) Np—l(H) > Z[Npie(H) _e(pi)Ne(H)] +5N€(H)'
i=1

Proof. For a given e-free integer x, the right side of (3.1)) contributes 1 if
x is additionally p;-free, and otherwise contributes a non-positive quantity.
We deduce (3.2)) by rearranging ({3.1]) bearing in mind the definitions of 6(p;)
and §. m
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Given the divisor e of p — 1, we extend the definition of f(z) to fe(z),

where
_ p(d)
fe(x) = 9(6){1 + E r(d) g xd(x)}.

dle,d>1 Xd

Hence fe(z) =1 if = is e-free, and f.(z) = 0 otherwise, provided that p 1 x.

Thus,
H

No(H) = > folz).

z=1, 20 (mod p)
It follows from Theorem that, under the constraints of that theorem,
(3.3) N.(H) > 6(e) (H — (W(e) — 1)C(r)H " /"p's (log p) 27 ),

where W (e) = 2(¢) is the number of square-free divisors of e.
Similarly, for any prime divisor [ of p — 1 not dividing e,

B4 |t - (1= 1 )t

1-1/r "3 L
< 0(e)0(YW (e)C(r)H =/ "par (logp)2r,
where the factor W (e) arises from the expression W (le) — W (e).

Now apply (3.3) and (3.4) to (3.2]) to obtain
Ny 1 (H) > 0()H — C(r)H' M7 p7 (log p)#0(e)W (e) (5 + Ze p))-
Since Y7, 0(p;) = s — 1+ 4, this yields

(3.5) N,_1(H) > 50(6){H W (e)C(r)H V52 (log p) 7 (5’;1 +2> }

As in E we take H = (1 — 2/p(1)/2)p1/2 and 7 = 2 in {i After some
rearranging this proves the following refinement of Theorem [2.2]

THEOREM 3.2. Let e be an even divisor of p—1 and s,9 as in Lemma[3.]]
with § > 0. Then g(p) < \/p — 2 for p > py provided that

(3.6) log o> C(2)! (1 - 12”))8{ <5;1 + 2) 2"—5}16.

We consider (3.6 for w(p — 1) = n < 17983. By making the choice of
s for n given in Table we obtain bounds on § and py that enable us to
verify (3.6)) for all n > 42. For example, when n = 42, choosing s = 38 shows
that

1 1 7
o0>1 11 181>02476 p—1>p; P42 po > 5.39 x 10
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This verifies (3.6) since the left-hand side is greater than pg/ log* po > 6.8 x
1053 whereas the right-hand side is less than 1.01 x 1093,

Table 1. Choices of s for various ranges of w(p — 1) = n such that (3.6) holds

Range of w(p—1)=n s

[800, 17983] 750
400, 799] 300
198, 399] 180
108, 197] 104
[72,107) 68

(55, 71] 52
47, 54] 44
(43, 46] 40

42 38

We are left with those p satisfying w(p — 1) < 41. When w(p — 1) = n
= 41 we choose s = 37 to minimise the right side of (3.6)). This shows that
Grosswald’s conjecture is satisfied provided that

(3.7) P> 459 x 1002,

log™p
Solving for p gives p > 3.38 x 1071, It is tempting to try to remove
the w(p — 1) = 41 case by enumerating possible primes as in [5]. Since
p—1>py---ps we seek the number of solutions of
(3.8) 2.98 x 100 < p <3.38 x 10",  p prime, w(p — 1) = 41.

A quick computer check shows that there are 307 different primes that could
appear in the factorisation of p — 1. While it may be possible to enumerate
all such products satisfying , this would, at best, eliminate the n = 41
case only. We have not pursued such an enumeration.

4. Computational results. The computational part of Theorem
was proved in the following way. The interval [2,2.5 x 10'®] was subdivided
into consecutive subintervals of manageable size (each with 2% integers). An
efficient segmented Eratosthenes sieve (see [2] and [I3], §1.1]) was then used
to identify all primes in each interval. For each prime p that was found,
a second Eratosthenes sieve, modified to yield complete factorisations [6),
§3.2.4], was used to find the factorisation of (p — 1)/2. Since the least prim-
itive root modulo p cannot be of the form a® with @ > 0 and b > 1, i.e., it
cannot be a perfect power, the integers 2,3,5,6,7,10,... were tried one at
a time until a primitive root was found.

With ¢ as a candidate primitive root, the first test was to check if
c?=1/2 = _1 (mod p). This was efficiently done using the quadratic reci-
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procity law data from known tables. If this test failed the next ¢ candidate
was tried. Otherwise, for each odd prime factor ¢ of (p—1)/2 it was checked
whether ¢P~1/¢ # 1 (mod p). The next ¢ candidate was tried if one of
these tests failed. These tests were efficiently done by performing all modu-
lar arithmetic using the Montgomery method [11]. Since the “probability”
of failure of an individual test is 1/q, the odd factors ¢ were sorted in in-
creasing order before performing these tests. Note that g(p) is equal to the
first ¢ that passes all tests.

Instead of checking directly for each prime up to 2.5 x 10%, the
record-holder values of g(p), i.e., the values of g(p) such that g(p’) < g(p)
for all p’ < p, were computed, as these are of independent interest [I] and
can be used to check indirectly. The computation required a total
time of about three one-core years, and took about one month to finish
on nine computers (each with four cores) of one computer lab of the Elec-
tronics, Telecommunications, and Informatics Department of the Univer-
sity of Aveiro. Table [2| presents all g(p) record holders that were found up
to 2.5 x 10, Tt extends and corrects one entry of Table 2 of [14], which is
a summary of computations up to 4 x 1019,

Table 2. g(p) record holders with p < 2.5 x 10%°

9(p) P 9(p) P 9(p) p
2 3 69 110881 179 6064561441
3 73 760321 194 7111268641
5 23 94 5109721 197 9470788801
6 41 97 17551561 227 28725635761
7 71 101 20418841 229 108709927561
19 191 107 33358081 263 386681163961
21 409 111 45024841 281 1990614824641
23 2161 113 90441961 293 44384069747161
31 5881 127 184254841 335 89637484042681
37 36721 137 324013369 347 358973066123281
38 55441 151 831143041 359  2069304073407481
44 71761 164 1685283601

The largest g(p) record holder in Table [2| that does not satisfy (1.1
is 21, corresponding to p = 409. Thus, up to 2.5 x 10'°, the largest p for
which is possibly false satisfies \/p—2 < 21, i.e., p < 529. This is covered
by Grosswald’s computations, which showed that there are no exceptions
to for 409 < p < 10,000.

An analysis similar to the one described above was also performed for
least prime primitive roots §(p), and for least negative primitive roots h(p).
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The least negative primitive root modulo p is equal to the negative integer,
least in absolute value, that is a primitive root modulo p. It cannot be of
the form —a® with a > 0 and b > 1, and is equal to —g(p) if p = 1 (mod 4).
It was found that g(p) < /p — 2 for 2791 < p < 2.5 x 10'%, and that
—h(p) < \/p— 2 for 409 < p < 10'5. We remark that little is known about
either g(p) or h(p)—the reader may consult [9] for more details.

5. Conclusion. It appears difficult to resolve Grosswald’s conjecture
completely. Table 3 in [16] indicates that one may hope to reduce the size of
C'(2) further by taking a larger value of pg. However, this appears at present
not to give an improvement for our purposes.

An alternative approach would be to use a smoothed version of Burgess’
bounds, in the same way that a smoothed Pélya—Vinogradov inequality was
used in [§].
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