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Gaps between primes in Beatty sequences
by

ROGER C. BAKER (Provo, UT) and LIANGYI ZHAO (Sydney)

1. Introduction. Let p, denote the nth prime and ¢ a natural number
with ¢ > 2. It has long been conjectured that

liminf(ppyi—1 — pn) < 00.
n—oo

This was established recently for ¢ = 2 by Y. Zhang [12], and shortly after
for all ¢t by J. Maynard [9]. Maynard showed that for N > C(t), the interval
[N,2N) contains a set S of ¢ primes of diameter
D(S) < t3 exp(4t),
where
D(S) :=max{n:n € S} —min{n:n € S}.

In the present paper, we adapt Maynard’s method to prove a similar
result where S is contained in a prescribed set A (see Theorem . We then
work out applications (Theorems [2|and [3) to a section of a Beatty sequence,
so that

A={lam+ ] :m >1}N[N,2N).
The number « is assumed to be irrational with « > 1, while § is a given
real number. We require an auxiliary result (Theorem [4]) for the estimation
of errors of the form

N<n<N' QD(Q)
~yn€lmod 1
n=a mod q

where [ is an interval of length |I| < 1 and v = a~!'. Theorem [ is
of “Bombieri—Vinogradov type”; for completeness, we include a result of
Barban—Davenport—Halberstam type for these errors (Theorem .
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We note that Chua, Park and Smith [5] have already used Maynard’s
method to prove the existence of infinitely many sets of k£ primes of diameter
at most C' = C(a, k) in a Beatty sequence [an], where « is irrational and of
finite type. However, no explicit bound for C' is given.

Now we introduce some notation to be used throughout this paper. We
suppose that ¢t € N, N > C(t) and write £ = log N,

_ logL
07 loglog £
Moreover, (d,e) and [d,e] stand for the greatest common divisor and the
least common multiple of d and e, respectively; 7(¢) and 7x(q) are the usual

divisor functions; and ||z|| is the distance of between = € R and the nearest
integer. Set

. 1 if (n,P(z) =1
P(z) = p with 2z >2 and n,z :{ ’ ’
(=) H vin.2) 0 otherwise.

p<z
X (E;n) stands for the indicator function of a set E, and P for the set of
primes. Let € be a positive constant, sufficiently small in terms of ¢. The
constant implied in “<”, when it appears, may depend on ¢ and on A (if
A appears in the statement of the result). “F < G” means both F' < G
and G < F hold. As usual, e(y) = exp(2miy), and o(1) indicates a quantity
tending to 0 as N tends to infinity. Furthermore,
> X X
x mod ¢ x mod g x modgq
denote, respectively, a sum over all Dirichlet characters modulo ¢, a sum
over non-principal characters modulo ¢, and a sum restricted to primitive
characters, other than x = 1, modulo q. We write y for the primitive charac-
ter that induces x. A set H = {hq,..., hi} of distinct non-negative integers
is admissible if for every prime p, there is an integer a, such that a, # h
(mod p) for all h € H.

In Sections 1 and 2, let 8 be a positive constant. Let A be a subset of
[N,2N)NN. Suppose that Y > 0 and Y/qp is an approximation to #.4, the
cardinality of A. Let qg, g1 be given natural numbers not exceeding N with
(q1,90P(Dyp)) =1 and ¢(q1) = ¢1(1 + o(1)). Suppose that n = ap (mod qo)
for all n € A with (ap, go) = 1. An admissible set H is given with

h=0 (mod qo) (heH)
and
(1.1) p|lh—h with h,h' € H, h#h',p> Dy implies p|qo.

We now state “regularity conditions” on A:
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(I) We have
} : 2 Y Y
0 = d q9o0 q0
g<N n=aq mod qqo
(g,90q1)=1

(for any aq = ap (mod qo)).
(IT) There are non-negative functions g1, . .., gs defined on [V, 2N) (with
s constant, 0 < a < s) such that

(1.3)  X(P;n) > 01(n) + -+ 0a(n) — (as1(n) + - - + 05(n))
for n € [N,2N). There are positive Y, (¢ = 1,...,s and m =
1,...,k) with
Yym =Y (bgm + 0(1))£71,
where the positive constants by ,, satisfy

(1.4) bim + -+ bam — Gatim + -+ bsm) >b>0

for m = 1,...,k. Moreover, for m < k, g < s and any a; = ag
(mod ¢qo) with (aq,q) = 1 defined for ¢ < 2%, (¢,90q1) = 1, we have

15) Y wle)lrle) > gg(n)X((AJrhm)mA;n)_M

g<N? n=aq mod qqo ©(q09)
(‘LQOQI):l Y

< .
©(qo)Lr+e

Finally, g4(n) = 0 unless (n, P(N?/2)) = 1.

THEOREM 1. Under the above hypotheses on H and A, there is a set S
of t primes in A with diameter not exceeding D(H), provided k > ko(t,b,0)
(ko is defined at the end of this section).

In proving Theorem 2 we shall take s =a =1, g0 = ¢1 = 1, p1(n) =
X(P;n). A more complicated example with s = 5, of the inequality ,
occurs in proving Theorem |3, but again gy = g1 = 1. We shall consider
elsewhere a result in which qg, g1 are large. Maynard’s Theorem 3.1 in [10]
overlaps with our Theorem [l but neither subsumes the other.

THEOREM 2. Leta > 1, v =a~! and B € R. Suppose that
(1.6) [yr]l > 73

for all r € N. Then for any N > c1(t,«, 3), there is a set of t primes of the
form [am + (] in [N,2N) having diameter

< Cya(log a + t) exp(8t),

where Cy is an absolute constant.
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THEOREM 3. Let « be irrational with o > 1 and € R. Let r > Cs(a, )

and
1 b

o T

Let N = r2. There is a set of t primes of the form [an + B] in [N,2N)
having diameter

1
<=, beN, (br)=1.

r2’

< Cya(loga +t) exp(7.743t),
where Cy is an absolute constant.

Theorem [3| improves Theorem |2 in that o can be any irrational number
in (1,00) and 7.743 < 8, but we lose the arbitrary placement of N.

Turning our attention to our theorem of Bombieri—Vinogradov type, we
write

N v(q)
~An€l mod 1
n=a mod ¢

E(N,N',~,q,a) = sup

Here, I runs over intervals of length |I| < 1.

THEOREM 4. Let A >0, v be a real number and b/r a rational approx-
1mation to v,

) - < — € < p < N34 -1
(1.7) "y S = N Ne<r <N (byr)=1

Then for N < N' <2N and any A > 0, we have

(1.8) Z max E(N,N’,v,q,a) < NL™4.

a,q)=1
quin(r,Nl/‘l)N*E( 9

Our Barban—Davenport—Halberstam type result is the following.

THEOREM 5. Let A > 0 and ~ be an irrational number. Suppose that for
each 1 > 0 and sufficiently large r € N, we have

(1.9) [yr|l > exp(—r").
Let NLC~4 < R < N. Then for N < N’ < 2N,
q
(1.10) > > E(N,N',v,q,0)> < NRL(log £)*.
g<R a=1

(a,9)=1

There are weaker results overlapping with Theorems [] and [f, due to
W. D. Banks and I. E. Shparlinski [4].
Let « be irrational, n > 0 and suppose that

lyr]] < exp(—rT)
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for infinitely many r € N. Then - fails (so Theorem [5|is optimal in this
sense). To see this, take N = exp(r"/?), N’ = 2N and R = NL%/". We
have, for some u € Z,

1
"\ < aNr T exp(—r) < 5. (n<2N).
T

From this, we infer that

yn ¢ <41T j) (mod 1) (n < 2N).

So
N2
EN72N 7q7 qSR7 a7q :1'
( 7,4, a) 29(g) ( (a,q) =1)
Therefore,
q 2
N? 1 N
> Y B(N.2N,v.qa > 15 > —— > — = NRL'".
q<R a=1 <R (
(a,q)=1

We now turn to the definition of kg(¢,b,0). For a smooth function F
supported on

Rk:{(xl,...,xk)e[O,l]k:Z:cigl},
i=1
set

101

Ik(F):S SF(tla"'atk)2dtl"'dtk7
Lo .

J(EF) =\ S(SFtl,...,tk)dtm> dt1 - by dtysr - - dty,
0 0 0

form=1,... k. Let

(m)
St i (F)
R I
where the sup is taken over all functions F' specified above and subject to

the conditions I (F) # 0 and J,E,m)(F ) # 0 for each m. Sharpening a result
of Maynard [9], D. H. J. Polymath [I1] gives the lower bound

(1.11) My, > logk + O(1).

Now let ko(t,b,6) be the least integer k for which
2t — 2

(1.12) My > =22

b
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2. Deduction of Theorem (1| from two propositions. We first write
down some lemmas that we shall need later.

LEMMA 1. Let k, A1, Aa, L > 0. Suppose that v is a multiplicative func-
tion satisfying

for all prime p, and

1
1< Y yp)logp 002 < 4,
p w
w<p<lz

for any w and z with 2 < w < z. Let g be the totally multiplicative function
defined by

_ ()
»—(p)
Suppose that G : [0,1] — R is a piecewise differentiable function with
G(y)| +|G'(y)| < B

g(p)

for0 <y <1 and

(2.1) S:l?[(]t—?)_l(l—;)ﬁ.

Then for z > 1, we have

1

Z,u(d)Qg(d)G(igii> - S(llf(g&;)ﬁ jir1G(t)dt + O(SLB(log z)" ).
d<z 0

The implied constant above depends on Ay, As, k, but is independent of L.
Proof. This is [7, Lemma 4]. u

Throughout this section, we assume that the hypotheses of Theorem
hold. Moreover, we write

Wy = H b, Wy = H b, R = NO/Q_E-
p<Dg or p|gog1 p<Do
plgo

Recalling the definition of admissible set, we pick a natural number vy with
(V0+hm,W2):1 (m:1,...,k¢).

LEMMA 2. Suppose that y(p) = 1+ O(p~') if pt W1, and v(p) = 0 if
p|Wi. Let k =1 and S be as defined in (2.1). Then

(W)

S = W,

(14+0(Dyh)).
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Proof. We have

(T 2ol ()

p|W1 ptWi
W B
— A T (14 02),
p>Do
PfQOth

from which the statement of the lemma can be readily obtained. =

LEMMA 3. Let H > 1 and

_ M(d)z 4(@) _ M(d)2 —1/2
hi= 3 =52 B=> —p>an”
d<R ald H<d<R ald
(d,W1)=1
Then
(W)
2.2 T —L
( ) 1 K Wl y
(2.3) T, < H L.
Proof. Let v(p) = 0 if p| W1, and
A(p) = PPHdp
pP’+p+4
if pt W1. Then g(p), as defined in the statement of Lemma |1} is
() 1 n 4
p)=—T—=5
I p P
if p 4 Wy. Therefore, if d is square-free and (d, W;) = 1, then

4w(a)

1 1 4
dazd: . :dg<1+p) — 4(d).

213

Otherwise, if (d,W7) # 1, then g(d) = 0. Using Lemma [1] with G(y) = 1

and Lemma [2| we have
log d
Ty =) p(d)’g(d)G
1 u(d)”g(d) <logR>

d<R

= SO(VVV‘?) (1+0(D;")) log R + 0<¢(VVVV11)L>,

where we can take
logp
L= Z < log Dy + log w(qp) < log L.
p[W1 P
Combining everything, we get .
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To prove (2.3), we interchange the summations and get

T, <Y a P > EP<) aPH < H !

a<R Ha 1<k<Ra—! a<R
LEMMA 4. Let fo, f1 be multiplicative functions with fo(p) = fi(p) +1
Then for square-free d and e,
1

follde) @ 2 N1®)

k|de

Proof. We have

( Zfl fo(d)fo(e) H (1+ fi(p)

) e pl(d.e)
= T @dh© H fop) = T (fop)) ™
0 p|<d o) plld.e]

The lemma follows from this. =

We now present two propositions that readily yield Theorem [I| when
combined. To state them, we define weights y, and A, for tuples

=(r1,...,r) € NF

having the properties

2 (Iw) =1 u(ITn) =1

1= 1=
We set y. = Ay = 0 for all other tuples. Let ' be a smooth function with
|F'| <1 and the properties given at the end of Section 1. Let

log 1 log r,
2.5 r=F e ,
(2:5) Y (logR logR)
(2.6) Ad i )d;
H Z z 1 SO(TZ)
d; |m Vi
We have

(2.7) Ar < LF

(see [9, (5.9)]). For n = vy (mod Wa), let

= X ),

and w, = 0 for all other natural numbers n.
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ProrosSITION 1. Let

Z wp X (A;n).
N<n<2N
Then
5, = (14 0(1))(W1)*Y (log R)* I.(F ).
QOW1 Wa
PROPOSITION 2. Let
S2(g7m) = Z ang(n+hm)-
N<n<2N
nEAN(A—hum)

Then for1<g<sand1l<m<k,
byan (1 + 0(1))o(W1)FH1Y (log R)* I\ (F)
o(q0) p(Wo)WH L

Before proving the above propositions, we shall deduce Theorem [1| from
them.

Proof of Theorem[1 Let
_ Y o(Wh)*

SQ(gvm) =

log R)*
qOWkWQ(Og )%
k
SNy= 3w (ZXIP’OA;n—i—hm)—(t—l)).
N<n§42N m=1
ne

Since w,, > 0, (|1.3)) gives

Z (Zsz g,m Z Sz(g,m)) —(t—1)8;.

m=1 g=a-+1
By Propositions [1] and [2] l7 the right-hand side of the above is

(1+o(1))z<mi1 (ibg,m - Z bg,m>J,§m>(F)(z _5) — (t— 1)Ik(F)).

g=a+1
Here we have used

plao)ela) (W) Wa o #la)
q0q1 W2 e(Wh) ¢

Therefore, from (|1.4) we get

k
S(N) > (1+ o(l))Z(b S (F) <;) - 5) —(t— 1)Ik(F)> >0
m=1

=1+o0(1).
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for a suitable choice of F. The positivity of the above expression is a
consequence of (1.12]). Therefore, there must be at least one n € A for
which

k
ZX(PHA;n+hm) >t —1.
m=1

For this n, there is a set of ¢t primes n + hy,,, ..., + hyp, in A. =

3. Proof of Propositions [1] and

Proof of Proposition[1. We first show that

(3.1) G= L oy W +O(Y%0<W1>’“ﬁk>,
qoWa S TTE, o(ri) qoWaWFDy

From the definition of w,,, we get

(3.2) Si=> Xade >, X(An)
d,e

N<n<2N
n=vrg mod Wy
[di,@i”’ﬂ‘i’hi Vi

Recall that n = ag (mod qq) for all n € A. The inner sum of the above
takes the form

k
Z X(A;n), where ¢q=Ws H[di’ eil,
N<n<2N i=1
n=aq mod gqo

provided that Wy, [dy,e1],...,[dk,ex] are pairwise coprime. The latter re-
striction reduces to

(3.3) (di, €j) =1

for all ¢ # j, and we exhibit this condition on the summation by writing
>
d,e

Outside of E:i o» the inner sum is empty. To see this, suppose that p | d;,
p|e; with ¢ # j; then the conditions

[di,eiHn—i—hi and [dj,ean—i-hj

imply that p | h; — hj. This means that either p < Dy or p|qo, both contrary
to p|d;.
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Counting the number of times a given ¢ can arise, we get

Y ! )\d)\e
34) S —
B4 5= o dz 1, [di, ei]

2 Y

< (maxpal) Y w@Prel@| Y X(Am) -
q<R2W, n=aq mod gqo
(g,90)=1

Since R?Wy < N, we can appeal to (1.2)) and (2.7) to majorize the right-
hand side of (3.4) by
< Z[/Qlcf(lﬁ»s) < @(Wl)kYﬁﬁ'
9 q@W2W§ Do
Applying Lemma [] with f; = ¢, we see that
k
Y 1 Adde (so(Wo’fYﬁk)
g — g _fdhe (AU 2 )
LT oW Z H Plu) Z qoWaWF Dy

k
u =1 do Llimidies
w;|d;,e; Vi

Now we follow [9] verbatim to transform this equation into

k
)% *
(3.5) S1= > [lew) > I wsiy)
Qo¥V2 =3 i=1 81,258k k—1 1<4,5<k
i#£]j

D e (M) .
de [Tz dies qoWaW' Dy
u;|d;,e; Vi
si,j|di,ej Vi

Here >." indicates that (s;;,u;u;) = 1 and (sij,sic) = 1 = (85, 84,;) for
¢ # j and d # i. Now define

(36) aj; = Uj H Sj.i5 bj = Uy H Si,5-
i# i#i
As in [9], we recast (3.5]) as

Y o)
(3.7) slquWQZH o) I wlsig)

u =1 81,2558k, k—1 1<4,5<k
i#j
k k
w(si W)FY L
X Z (7”)anyb + O(Mg)
e~ p(sig) qQoW2Wi Do
w;|d;,e; Vi

sij|die; ViF]
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For the non-zero terms on the right-hand side of (3.7), either s; ; =1 or
si.j > Dg. The terms of the latter kind (for given 4, j with ¢ # j) contribute

Y p(w)*\" p(5i)° pls)
(3.8) <<qu2< Z;% @(u)> <siz>:D0 @(si,j)2><;s@(s)2)
(u7)=1 ’ )
UU,Us,

Y

W
say. Clearly, Us < 1. Now if u is square-free, we have

o)) <ix

plu alu
and @
1 1 2 1 i 1
- _ 1+2) == - 71/2'
¢(u)2<<u2H(+p> u2z a <<U2Z“
plu alu alu
So (2.2) and ([2.3)) give, respectively,
< (E )t e -
Wy Dy’
Hence, the right-hand side of (3.8) is
(p(Wl)kYEk
qoW2WFDy
and we arrive at (3.1)).

Now, we shall deduce Propositionfrom (3.1). Mindful of ([2.6)), we have

k 2
Y w(u;)? log uy log uy,
S = F
! qoWs Zu: E o(u;) logR’" " logR
() =1 VI
(u,W1)=1Vl

n O(SD(W1)]€Yﬁk)
qWaWFEDy )
Note that the common prime factors of two integers both coprime to Wy
are strictly greater than Dy. Thus, we may drop the condition (u;,u;) =1
in the above expression at the cost of an error of size

Y 5 p(us)?
< QW2 Z Z H i)

U
p>Dg up-up<R i=1 Q’O(

plug,u;
(g, W1)=1V1
k
<am T oo T M) < S
wWs 22 (p—1)2\ = #u) QWoWFDy’
(u,Wl):l

by virtue of ([2.2).
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It remains to evaluate the sum

2

w(u;)? log uy log uy,
3.9 ey :
(39) Z 11_11 (u;) <logR logR>

(ul,Wl) 1Vl

This requires applying Lemma [I] ¥ times with
[0, p[Wn,
v(p) = { L ptin.
We take A1 and As to be suitable constants and

1
L<<1+Zﬂ<<log/;
p|W1

as noted earlier. In the jth application, we replace the summation over u;
by the integral over [0,1]. Ultimately, we express the sum in (3.9)) in the

form
(W1)(log E)ﬁk_l)
Wi ’

(Wy)k
wf

and Proposition [1| follows at once. m

(log R)*I,.(F) + O(

We shall need the following lemma in the proof of Proposition
LEMMA 5. Let 1 <m < k and suppose that r,, = 1. Let

k
= Z];IIM( z)g( z) Z H?:1 (p(di)

d
ri|d; Vi

dm=1

Then

(m) Yri oo P —1,Qm Tm41,-Tk (@(Wl)»(:)
m — + o B2UEY
Y 2 ¢(am) WDy

am
Proof. Following [9] verbatim, we have
k

e | OO S e | /“’;
i=1 a 1l;=1 CL@ i#m z

rila; Vi

Fix j with 1 < j < k. In (3.10]), the non-zero terms will have either a; = r;
or aj > Dorj. The contribution from the terms with a; # r; is

(3.11)

<<f[19(7“i)7“i< M >< > ) 11 ZM

a]>D07"J am<R 1<i<k rila;
rila; (am,W1)=1 i#jm
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Now, as before, from and (| ., we have

)? 1 m)> w
3 u(ag) <5 3 plam)” @(Wl)ﬁ
2 @R S D 2 eaw) W
rjla; (am,W1)=1
and
plai u 1
<
e < <
majorizing (3.11)) by
g9(r:) n e(W1) p(W)L
[, )
< H 2 WDy < Wi Dy

Hence (| m ) becomes

H g 7‘2 T@ yrl,...,rm,l,am,rm+1,...,rk + O(QD(WI);&)
QO(CLm) WIDO ’

and the proof is Completed by applying Lemma [2| »
Proof of Proposition[d Let

v = max ™|,

where yﬁm) is defined in Lemma |5, We shall first show that

(3.12)  Sa(g,m)
(m)\2 k-2 k-1 (m)y2 k—e
Yym u YL W) (Yax YL
_ 9, yol (yu)? +0< ©"H(W1) (Ymax) N )

- elao)e(W2) 4TI, g(w) p(@0)e (W)W Do #lao)
From the definition of w,,, we have
(3.13) Sy(g, m Z AdAe > 0g(n + ).
nEAN(A—hm)
N<n<2N,n=vg mod W
[di,ei]|n+h; Vi

As in the proof of Proposition Zde reduces to > o Let n =n+ hpy.
Since n 4 hy = ag (mod o) for n € A, the inner sum of ( reduces to

T(d,e) := > X(AN(A+ hm),n )og(n).
n'=vg+hm mod Wy
n’=ag mod qo
n/=hpy—h; mod [d;,e;] Vi
Recall that g4(n') = 0 if n is divisible by a prime divisor of [d;, e;]. Since
one condition of the summation is [dy,, e;,] | 7', we have T'(d,e) = 0 unless
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dm = em =1. When d,,, = e, = 1,
Te)= Y X(AN(A+h) m)ey(n).

n=aq mod gqo

Here we have
k

q= Wo H[d’u Ei], (CLq, Q) = ]-7 aq = ap (mOd QO)
i=1
For (aq,q) = 1, we need (hy, — h, [d;, €;]) = 1 whenever m # i, which was
noted earlier.
Arguing as in the proof of Proposition [l| and using (1.5) now gives

_ Yom v Adde e
Sa(g,m) = 2(q0) (W) dz; 15, (s e)) +O< (q0) >
dm=em=1

With a; and b; as in (3.6)), we follow [9] to obtain

k 2 i}
<,0 u =1 51,27---75k,k—1
m m Y[’k—e
pe y£)+0< W)
1<i ]<k} 5ij ¥l
i

Here g is the totally multiplicative function with g(p) = p — 2 for all p and
we have used Lemma [4] with f; = g.
The contribution to the sum in (3.14) from s; ; # 1 (for given i, j) is

Y (yhiak)’ p(w)?\ "
(3.15) L —t
P(q0)p(W2)L ;% g(u)
(u,W1)=1
< ,UfS > (k—1)— 1( Z ,Ul(si,j>2>
T2
8 84,5>Do g(sz"j)
Y(yl(n@c)
— U)oy
plao)p(Wa)L 12
say. Clearly, Vo < 1. Using while mindful of the estimate
1 1 2@
7 <52

yields

e(W1) \
e (0
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From (2.3) and the observation that, for s square-free,
1 1 49 .
e il -2
LORE PV AR PN
we get
Vs < Dyt
Note the bound in (3.15)) is
Y (yhnae)* £ («P(Wl)>k_1 !
©(q0)p(Wa) Wi
and we have established (3.12)).
Now we use Lemma 5] in (3.12), recalling (2.5). When ., = 1, we have

2
316) W= % “((“u))
(u,W1 [T, ri)=1 v

< F (log o) logrm—1 logu logr,i1 log >

<

logR>""7 logR ’'logR’ logR '~ logR
p(W1)L
o ———|.
* < W1Dy
From this, we find that
m) o W)
ymax << Wl °

We shall apply Lemma (1| to (3.16]) with x = 1,
1, W T3,
v(p) = { Pl

0, otherwise,
Aq, Ay suitably chosen and
L <logL

(similar to the proof of (2.2)). Define

1
log 1 log rp—1 log rm+1 log r,
™= \F .
’ S <logR’ " logR '™ logR ' logR) ™

We obtain

e ven ) o 55)

Inserted into (3.12)), the above produces the main term
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(10g R)%Y, mp(W)? T elrn(r)? om)y2
(3.17) E e R | S G

r 1
(reW)=1¥i =

(ri,rj)=1Vi#]

rm=1

and an error term of size

Ym W 22
< £ > i 12£
©(q0)p(Wa) WEDOHi:1g(74i)
rm=1
Y(Wh)2L2 1\ Y (W )Rtk
< p(W1) ! ( 3 ) < (W) £
P(q0)p(W2)WiDo \ =  g(r) (q0)(W2)Wy™ Dy

(r,W1)=1

Recall that Yy, < Y£~!. Now we remove the condition (r;, ;) = 1 from
(3.17)). As before, this introduces an error of size

“ s (3 ane) (5 “560)

p>Do r<R
(r,W1)=1

Y Ek QO(Wl )k-i—l
p(a0) (W)W Dy
by an application of Lemma [3] Combining all our results, we get

log R mo (W T’z T'z m
Solg,m) = LBR Yoo (W) > H“O RO iy
=1 ¢

p(q0)p(Wa) W7
(m,Wl) 1Vi
rm=1
O< Y(,D(Wl)k+1£k )
(q0)p(Wo)W{*1Dg )

The last sum is evaluated by applying Lemma [I] to each summation variable
in turn, taking

3 2
p°—2p°+p
) W Y
) ={ ooy M1
07 p‘ W17
to produce the right value of v(p)/(p — v(p)). Of course,
W
s =2 4 omgy)
Wi

by Lemma 2 while L. < log £. Our final conclusion is that
(log R)* 1Yy mep(W1)F+1 7™
(o) (W)Wt

completing the proof of Proposition 2. =

SQ(g’m) = (1+O(1))’



224 R. C. Baker and L. Zhao

4. Further lemmas. Let v = a~!'. As noted in [4], the set of [am + f3]
in [V,2N) may be written as

{n €[N,2N) :qyn € (v8 — 7, B] (mod 1)}.

LEMMA 6. Let I = (a,b) be an interval of length | with 0 <1 < 1, and
let h be a natural number satisfying

0 < —h7vy < 2 (mod 1),
where 2¢ < 1. Let
A={n€[N,2N):yn €I (mod 1)}.

Then
AN(A+h)={ne[N+h,2N):yn e J (mod 1)},

where J is an interval of length I' with
-2 <l <l

Proof. Let t = —h7y (mod 1), 0 < t < 2¢. Clearly AN (A+ h) consists of
the integers in [N + h,2N) for which

yn € (a,b) (mod 1), ~n+t € (a,b) (mod 1).
The lemma follows with J = (a,b —¢). =

LEMMA 7. Let I be an interval of length I, 0 <1 < 1. Let x1,...,zN be
real. Then:

(i) There exists z such that
#{j<N:zj€z+1I (mod 1)} > NI.
(ii) We have (fora; >0, j=1,...,N, and L > 1)

N N N L N
Z aj—lZaj<<L_1Zaj+2h_l‘2aje(hmj)‘.
Jj=1 Jj=1 j=1 h=1 j=1

z;€1 mod 1

Proof. We leave (i) as an exercise; (ii) is a slight variant of [I, Theorem
2.1]. m

LEMMA 8. Let 1 < @ < N and F a non-negative function defined on
Dirichlet characters. Then for some @1, 1 < Q1 < Q,

> Y <y Y Y e

g<Q x mod ¢ Q1<q1<2Q1 ¥ mod q1

Proof. We recall that x is the primitive character that induces x, so that
F(x) may be quite different from F(x).
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The left-hand side of the claimed inequality is

> Y Fw) Y 1=y 3F

¢1<Q v mod q1 xmod g ¢1<Q ¥ mod q1
q<Q, q1lq
1 induces x

The lemma follows on applying a splitting-up argument to ¢;. =

LEMMA 9. Let f(5) (j > 1) be a periodic function with period q,

- jzn;fme(—”qj),

F >0, and R > 1. Let H(y) be a real function with H'(y) monotonic and
|H'(y))| < Fy~!
for R <y <2R. Then for J =[R,R'] with R < R' < 2R,

S fmHm) ¢ Y S(f,n)Se(T;erH(y))dy

meJ 1<|n|<2FqR~! J

where
J' = [min{2FqR™", q/2}, max{2FqR™", ¢} + q].

Proof. This is [2, Theorem 8. m

For a finite sequence {ay : K < k < K'}, set
1/2
lallo = (2 lasl?)
K<k<K'
LEMMA 10. Let R,M,H > 1. Let 8 be real and

H

(4.1) 2,

where 11 > H and (u1,r1) = 1. Then for My, €N,

i 5 () () s

m=Mi+1

If M < ry and

1
< 5.
— 2r
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then
Moo
(4.3) ——— K r1log2r;.
2 gl

Proof. For (4.2)), it suffices to show that a block of [r1/H]| consecutive

m’s contributes

a1
<R —.
25
=1
Writing m = mo + j, 1 < j < [r1/H], yields
. ju1 jH 1
(mo + )8 —moB — < < —,
™ 1 ™

so there are O(1) values of j for which the bound

I(mo + )81 >

fails. Our block estimate follows immediately.
The argument for (4.3) is similar. In this case,

1
mp — —| < —
1

— 2
if 1 < m < M. Therefore, the left-hand side of can be estimated by
2t/
LEMMA 11. Let N < N' < 2N, MK < N and N > K > M > 1.
Suppose that

H
r2

(44) Y= = S ) (U,T‘):l,HST’SN.

b

Let (am) m<m<2m and (by) k<p<2kx be sequences of complex numbers. Then

(4.5) Si= > > ’ > > ambkx(mk)e(vmk)’

Q<g<2@Q x mod g M<m<2M K<k<2K
N<mk<N'

satisfies the bound
S < |lall2[bll2£% D

Q32H/2N1/2

% (Qle/z 4 7 +Q32HV2RV? 4 Q3/2r1/2>,

where

D =max#{q € [Q,2Q) : n = lg}.

Proof. Let S’ be the sum obtained from S by removing the condition
N < mk < N'. It suffices to prove the same bound, with £'/2 in place
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of £3/2, for S, since the condition can be restored at the cost of a factor
of L. See [8, Section 3.2].

We have
SO Y il X bx®etymb)| =3 S0,
Q<q<2Q x mod g M<m<2M K<k<2K q

say. We may also assume that by = 0 if (k,q) > 1. By Cauchy’s inequality,
and with summations subject to the obvious restrictions on m, k1 and ko,

Se<e@llaly D D D> b x(k)X(k2)e(ym(ki — ka)).
xmodg m ki ko
Bringing the sum over x inside we see that the right-hand side of the above

is

p@llald Y brbr ) e(ym(ky — ky))

k1,k2 m
k1=ko mod ¢

PllalBd b Y [ etymk — k)
k1 ki=ka modgq m
upon using the parallelogram rule
|bk1bk2‘ < %(|bk1|2 + |bk2’2)‘

Now summing the geometric sum over m and then summing over ¢, we see
that

(4.6)
1

S S2< @ a3l +@al3ol3 > > mm( ||l||>
Q<q<2Q Q<¢<2Q 1<I<K/q 7

Now we combine the variables [ and ¢ and then apply (4.2)), which leads to

HK
> s @alBIbIEM + QlallbEp( 1 + 1) + riog
Q<qg<2Q

HN
< Ha\|%rbu§(@3M+cQ2D( +HK+M+r)>

The desired bound for S’ follows by another application of Cauchy’s inequal-
ity. m

LEMMA 12. Under the hypotheses of Lemmal[Ll], suppose that AMQ < N,
b =1 for K < k < 2K and |ap,| <1 for M < m < 2M. Define D as in
Lemma [l Then:

(i) We have

S<<Q3/2£D<QMH+1> <K+r>.
T Q
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(ii) If AMQ <1 and

<

1
4MQ”Y— o

then
S < LDQ3 ?r.

Proof. Let I,, (here and after) denote a subinterval of [N/m, N'/m). We
have

where, for a suitably chosen non-principal x, (mod q)

= X X [ X e

Q<q<2Q M<m<2M = kel

D D DD SR vmk]

Q<q<2Q M<m<2M kel

To prove part , it suffices to show that

S* < QWLD(QMH - 1) (K +r>,
r Q
ST < QL:D(QMH + 1) (K + 1).
r Q

We give the proof for S*; the proof for S** is similar.
Given ¢ and m, Lemma [J] together with

1SOGal < Ve

(see [6, Chapter 9]) gives

S wWelmk) = = S S, )S <<Z+7m>y>dy

keln, 1<|n|<Mq
<gVPMT 42 YT nTh < gL
1<n<Mgq
Therefore
. 1
Z Xq ’)/mk < q1/2£ + q 1/2 Z min (K, WW) .
k€lm 1<|n|< Mg

Summing over m and ¢, we get
K 1
S eMPL@ Y Y% mm( )
Q<g<2Q M<m<2M 1<|n|<Mgq hmq -
The contribution to the right-hand side from n’s with |n — ymgq| > 1/2 is
< MQ*L.
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Combining the variables m and ¢, we see that

(4.7) St < M@Q*PL+Q"’D > min(K, 1, )
MO<m <4MQ Q" [[ym/||

We deduce the desired bound for S* by applying (4.2]).
Now for part , we note that (4.3]) is applicable to the reciprocal sum
in (4.7) with 4M @ and + in place of M and . Hence

S* < MQ32L + Q2 Drlog 2r < DLQY?r
since 4M Q) < r. Similarly S** < DLQr, and part follows. =

LEMMA 13. Suppose that
L‘A+1

u
2

y-—|<
r

,
with (u,r) = 1, and that r> < N < r2L24%2, Then:

(i) For Q < N*7-¢ NY" « K < N°7 and any an,, by with |an,| <
7(m)B, |br| < 7(k)B, where B is an absolute constant, the sum S

in (4.5) satisfies the bound
(4.8) S < QN4

(i) For Q < N?/"¢, M < N*" and by = 1 for K < k < 2K, |a,| <1
for M < m < 2M, the sum S in (4.5) satisfies (4.8)).

Proof. In order to prove (i), we use Lemma (11} As D <« N¢/15,
SQ—IN—1+€/4 < Q—lN—1/2+5/3(Q2N3/14 + Q3/2N5/14)
<« N-V2e2(QN3/M 4 QU2 NS/ 1.

To prove (ii), we consider two cases. If K < N17¢ then by Lemma [12(i),

1—
SQ*IN*HEM < Q1/2N71+5/2 <N1/2 4 MO+ NQ a)

< N1/7—1/2+£ +N3/7+4/7—1—E +N—8/2 < 1.
If K> N'7¢, then M < N¢ and Lemma (ii) is applicable since

AMQ

v - u‘ < N_1+2/7+6_
r

Hence
SQ—lN—1+€/4 < Ql/ZN—l/Q-i-E <1,

giving the desired majorant. =
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LEMMA 14. Let f be an arbitrary complex function on [N,2N). Let N <
N' < 2N. The sum

S= 3 Amfm)

N<n<N'

can be decomposed into O(L?) sums of the form

N/

dw
E am E flmk) or S E am, g f(mk) —
M<m<2M  K<k<2K N M<m<2M k>w v
N<mk<N’ K<k<2K

N<mk<N’
with M < N'Y* and |a,| < 1, together with O(L) sums of the form

M<m<2M K<k<2K
N<mk<N'

with NY/? < K < N3/* and ||al|2||b|ls < NY2L2.
Proof. This follows from the arguments in [6, Chapter 24] by taking
U=V =NYu

We record a special case of [3| Lemma 14]. For more background on the
“Harman sieve”, see [3].

LEMMA 15. Let W(n) be a complex function with support in (N,2N]NZ,
W (n)| < NYe. Forr €N, z>2, let

(4.9) S*(r,z)= > W(rn).
(n,P(2))=1

Suppose that for some constant ¢ > 0, 0 < d < 1/2, and for some Y > 0,
we have, for any coefficients an,, by with |ay| < 1, |bx| < 7(k),

(4.10) Y am Yy W(mk) <Y
m<2Nec k
and
(4.11) > am Y bW(mk) <.
Ne<m<2Netd k

Let u, (r < N€) be complex numbers such that |u,| < 1 and u, = 0 for
(r, P(N¢)) > 1. Then

Z u,S*(r, (2N)%) < Y L3
r<(2N)e

The following application of Lemma will be used in the proof of
Theorem Bl We take
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(4.12) W= 3 i)
Q<¢<2Q x mod q
for N <n < N'; otherwise, W(n) = 0. Here 7, is arbitrary with |n,| < 1.
LEMMA 16. Suppose that

£A+1
, (wr)=1, N=r* 1<Q<NY"

YT >

U
<
b

)
Define S*(r, z) as above with W defined in (4.12). Then
Z uS*(r, 2N)Y7y <« NL™4
r<(2N)/7
for every A >0, provided that |u,| <1 and u, =0 for (r, P(N¥)) > 1.

Proof. We need to verify (4.10) and (4.11)) with ¢ = 4/7, d = 1/7 and
Y = NL£~473. This is an application of Lemmam "

We now introduce some subsets of R/ needed in the proof of Theorem
Write E; for the set of j-tuples a; = (a1, ..., a;) satisfying

1/7§Oéj <oj1 << < 1/2 and C¥1+"'+Oéj_1+206j§ 1.
A tuple a; is said to be good if some subsum of o +- - -+ is in [2/7,3/7]U

[4/7,5/7], and bad otherwise.
We use the notation p; = (2N)®. For instance, the sum

> Y(ns, p2)

p1p2ns=k
(2N)7<pa<pr < (2N)1/2

will be written as

> W(ns,pa).

p1panz=k
asc By

LEMMA 17. Let~, u/r, N, Q be as in Lemma and E be a subset of
E; defined by a bounded number of inequalities of the form
(4.13) cron + -+ cjay < cjy1 (or <cjqr).

Suppose that all points in E are good and that throughout E, z; is either the
function z; = (2N)% or the constant z; = (2N)/7. Then for arbitrary n,
with || <1,

Y m > X(p1 - ping1)e(ypr - ping11) (1, 25)

Q<g<2Q xmodgq N<pj-pjnj1<N’
OLjEE

< NL£™
for every A > 0.
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Proof. This is a consequence of Lemma (1) On grouping a subset of
the variables as a product m = [[,cqpi, with S C {1,...,;j}, we obtain
a sum S of the form appearing in Lemma [13{i), except that a bounded
number of inequalities of the form are present. These inequalities
may be removed at the cost of a log power, by the mechanism noted earlier.
See [3, p. 184] for a few more details of a similar argument. The lemma
follows at once. =

LEMMA 18. Let D = {(a1,a2) € Es : (a1, a2) is bad, oy + 200 > 5/7}.
Then

X(Bin)— > (n3,p2) = 01(n) + 02(n) + 03(n) — 0a(n) — 05(n).

pip2n3=n
aseD
Here
Ql(n) = ¢(n, (QN)1/7)7

oo(n)= > Wng, 2NYT), es(n)= D W(ns,pa),
pip2n3=n P1p2p3p4ns=n
as€F\D ay€Ey
(al,ag)EEQ\D

oan) = > v(na, 2NV, es(n)= D p(ng, (2N)V7).
pinz2=n p1p2p3ngs=n
a1€EE] a3z€FE3
(a1,02)EE2\D

Proof. We repeatedly use Buchstab’s identity in the form
P(m, z) = Pp(m,w) — Z Y(h,p) (2<w<z2).

ph=m
wp<z
Thus
X(P;n) = 1)(n, (2N)'/?)
= ¢(n, (2N)V7) - > ¥(n2,p1)
(2N)Y7<p<(2N)1/?
p1n2=n
(414) =01 (’I’L) - Q4(n) + Z @ZJ(TLS,])Q),
p1p2n3=n
asEFo
X(Pin)— Y d(ng,p2) =01(n) —oa(n)+ > b(nz,pa).
P1p2an3=n P1p2an3=n
a2ED az€F\D

The last sum decomposes as

(4.15) > wnap) = D W(ns, (2N)V)
pP1P2N3=n pip2n3z=n
OLQEEQ\D OLQEEQ\D
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Y W N+ S (ns,p).

p1p2p3ngs=n pP1p2p3p4ns=n
asz€ls as€l,
(al,ag)GEg\D (Ozl,aQ)GEQ\D

Combining (4.14) and (4.15]), we complete the proof of the lemma. =
LEMMA 19. Letr, u/r, N and Q be as in Lemma with o1,...,05 as
in Lemma[18. Then
. —A
SN ae D eimx(n)e(yn) < QNL
Q<g¢<2Q x mod ¢ N<n<N
for arbitrary n,, with |n,| <1 and any A > 0.

Proof. This follows from Lemmas [16] and [17] for 7 = 1,2,4,5 on noting
that ag + ag + a3 < aj + 2a9 < 5/7 for j = 5, so that either as is good
or ag + oo + az < 4/7 (similarly for j = 2). For j = 3, we need to show
that each a4 counted is good. Suppose that some a4 is bad. Then we have
a1 + as + ag + 2a4 < 1. Hence a1 + ag + a3 < 5/7, from which we infer
that a1 + ag + ag < 4/7. Therefore, a; + ay < 3/7. But we know that
a1 + ag > 2/7. This makes a4 good, a contradiction. =

5. Proof of Theorems 4 and [5

Proof of Theorem [4} With a suitable choice of aq with (ag,q) = 1, we
have

max E(N,N' v,q,a)

(a,9)=1
N — N
ssw| X aw-i ¥ amf+] X am-T
4 N<n<N’ N<n<N’ N<n<N’ wia
yn€l mod 1 n=aq mod ¢ n=aq mod ¢

n=aq mod ¢
= T1(q) + T2(q),
say. In view of the Bombieri-Vinogradov theorem, we need only bound
Zq Ti(q), which is, by Lemma

S W/ ()

q<N1/4-¢ N<n<N'
n=aq mod ¢

. > ol X Awetmn)|

g<min(r,N1/4)N—¢ h<LA+1 N<n<N'’
n=aq mod q

Let H = £A11. In view of the Brun-Titchmarsh inequality, it remains to
show that for 1 < h < H,

> \ ) A(n)e(vnh)\<<N£—A—1.

g<min(N1/4r)N-¢  N<n<N’
n=aq mod q
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Reducing hu/r to lowest terms, we need only show that

S Y Ame(m) < NLA
q<min(N1/4 r)N—¢/2 N<n<N’
n=aq mod q
under the modified hypothesis ([#.4) on v (with H = £AT!), whenever
mg] < 1.
Using Lemma [T4] it suffices to show that

(5.1) Z Mg Z Z ambre(ymk) < NL™A73
g<min(N/4 p)N-¢/2  M<m<2M K<k<2K
N<mk<N'

mk=aq mod ¢
under either of the following sets of conditions:
(a) [lall2[bll2 < N¥/2£% and NV/2 < K < N3/4;
() |am| <1, b, =1for k € I,,, C [K,2K), by = 0 otherwise, M < N'/4,

We use Dirichlet characters to detect the congruence relation in (5.1]),
and we require the estimate

Z s Z X(aq) Z Z ambix(mk)e(ymk)

q<min(N/4r)N—¢/2 SO(Q) x mod ¢ M<m<2M K<k<2K
N<mk<N'

< N4,
It suffices to show that

(5.2) Si= > Z‘ YooY ambix(mk)e(ymk)

Q<g<2@Q x mod g M<m<2M K<k<2K
N<mk<N’

<QNL=A6

for @ < min(NY4 r)N—¢/2,
In case (a), we apply Lemma which gives

3/2 n71/2
n er]/\; QYK 4 Q3/2r1/2>

S < N1/2+€/6 (QZMI/Z
N1+5/6Q3/2
r1/2

Each one of these three terms is < QNL 476 as
N3 QUQNL A0 <« QNP « 1,
N1+a/6Q3/27’_1/2(QNﬁ_A_G)_l < Q1/2N5/47”_1/2 <1,
since Q < rN~¢/2, and
N7/8+6/6Q3/2(QN£—A—6)—1 < N—1/8+€/5Q1/2 < 1.

< N3/4+€/6Q2+ +Q3/2N7/8+8/6.
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In case (b), we use Lemma Suppose that K < N'=¢/4; Lemma (1)
gives

S < Q3/2NE/6< comi B -l—r)

Q
Each of the above four terms is < QNL£~476 since
3/2 \1+¢/6
Q QNE_A 6\—1 < Q1/2r—1N£/5 < 1,

( )"
Q5/2Ns/6M( E—A—ﬁ)—l < Q3/2N—3/4+s/5 <1,
Q1/2Ns/6K(QN£ A- 6y-1 < KN~1Fe/4 « 1,
QS/ZNa/Gr(QNE—A—ﬁ)—l < QV2N"VA+E/5 1.
Now suppose that K > N'~¢/4 Then
AMQ < QN/*, thus 4MQ <r
and

AMQr < MQN73/*  hence 4MQr

1
2

u
Y- A I
r
So of Lemma [12(ii) gives comfortably
S < N°Q**r <« QNL76,
completing the proof. m

Proof of Theorem[5. We first show that the contribution to the sum in

1.10) from <L 1 is
q=>

Since, for some Q < £A*!,

q
> Z EBP<N Y — Z E(N,N',~,q,a)
a=1

S o sern <a,q>=1
NL
<K — Z max E(N,N' ~,q,a),
Q (a,9)=1
Q<q<2Q
it suffices to show for this @) that
(5.3) > (mf);LXIE(N, N’ v,q,a) < QNL™AL,
a,q)=

R<q<2Q
We may suppose that A is large. Arguing as in the proof of Theorem
we need only show that (5.2)) follows from either (a) or (b). By Dirichlet’s
theorem, there is a rational approximation b/r to v satisfying (1.7). For any
n >0,

N73/% > |lyr|| > exp(—r"),
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hence r > £°4. Now we apply Lemma [11] to prove the desired bound un-
der (a). Since D < Q < £A*! the term

alla||bl|l2£2DY2 Q%2 2N/ 2p—1/2

presents no difficulty; the other terms are clearly all small enough. For the
bound under (b), a similar remark applies to Lemma [12] and the terms

Q*2LDNHr™ ! if K < N=¢/4,
EDQ3/2T if K > N1/
This establishes

It remains to examine the contribution to the sum in ) from ¢ €
(Q,2Q) with £A*! < @ < R. We have

> Z E(N,N',~,q,a)”

Q<g<2Q a=1

(a,9)=1

<X Xaw| ¥ aw-il 3 Am)[
N<n<N’ N<n<N’
{yn}eIl n=a mod g

n=a mod ¢q

- 2
YN (X am- T ) ~1i@ + ),
q

o\ NaZw ©(q)
n=a mod ¢q

say. Since T»(Q) is covered by a slight variant of the discussion in [6, Chapter
29], we focus our attention on T1(Q). By Lemmal7]

TQ) < Y. zq: L—2A( y A(n))2

Q<g<2Q  a=1 N<n<N’
(a,9)=1 n=a mod g

+ Y zq: (Z;] 3 A(n)e(ynh)‘>2

Q<g<2Q a=1 h<LA N<n<N'
a,q)= n=a mod ¢

= T3(Q) + Tu(Q),

say. The Brun—-Titchmarsh theorem gives a satisfactory bound for T5(Q).
Applying Cauchy’s inequality to T4(Q), we get

T4(Q)§<Z ,ﬁ) SIS S| T Awetmn)|

h<LA h<LA Q§q<2Q(a=1 N<n<N’

a,9)=1 n=q mod q
< (log £)? Z

Z ’ Z A(n 'ynh)‘
Q<q<2Q

(,0 Xmodq N<n<N'
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for some h < £A. From this point, we can conclude the proof by following,
with slight changes, the argument in [6, pp. 170-171]. =

6. Proof of Theorems [2] and 3

Proof of Theorem @ Let v =a ! and N > Ci(a,t), 0 < € < Co(a,t).
By Dirichlet’s theorem, there is a reduced fraction b/r satisfying . Our
hypothesis on a implies that

N34 > yr| >3, r> NYA
Let hf,...,h} be the first [ primes in (/,00). Any translate
H={hy,....,h,} +h, heN,
with {h],..., b} € {hY,... b/} is an admissible set. Using Lemma [7{i), we
choose A}, ..., h) so that
(6.1) k> el
and for some real n,
—yhi, € (1,1 + 7) (mod 1)
for every m =1,..., k. Now choose h € N, h < 1, so that
hy € (n—ev,n) (mod 1).
Thus, writing h,, = hl, + h, we have
~Yhm = —vhl, —vh € (0,2¢7) (mod 1).
We apply Theorem |1] to the set
A={n€[N,2N):ym €I (mod 1)}
where I = (y8 — 7v,70), taking o = 1 = 1, s = 1, o(n) = X(P;n),
0=1/4—e,b=1—2¢,

2N
o | dt 1Y

Y:’YNa Ylm: @_T’y

)

(I+o0(1)).
N

Here J,,, L, are the interval J and its length [ in Lemma@ (with e in place
of €), so that

¥ > by > (1 - 2e).
Since (1.2]) can be proved in a similar (but simpler) fashion to (1.5]), we only

show that ((1.5)) holds. We can rewrite this in the form
2N

l dt e
(6.2) > wa)lPme(e)| Y. 1—% J g <L
q<x1/4_5 N+hpy<p<2N P N &
- p=aq mod q
ypEJm mod 1

The function E(N, N’,~,q,a) appearing in Theorem (4| is not quite in the
form that we need. However, discarding prime powers and using partial
summation in the standard way, we readily deduce a variant of from
Theorem [4] in which N£~4 appears in place of N£ %72, and the weight
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1(q)?73x(q) is absent. We then obtain by using Cauchy’s inequality;
see [9, (5.20)] for a very similar computation.
We are now in a position to use Theorem [l obtaining a set S of ¢ primes
in AN[N,2N), which of course have the form [an + ], with
D(S) < hp—h1 <N
provided that
2t — 2
(6.3) Mk>(1—2€)(1/4—6)'
We take [ to be the least integer with
2t — 2
log(evl) > (1= 2:)(1/4—2) +C
for a suitable absolute constant C', so that follows from and .
Therefore,
vl < exp(8t), <K aexp(8), D(S)<llogl< a(t+loga)exp(8t). m
In the proof of Theorem (3 we shall need the following.
LEMMA 20. Let D be as in Lemma [18] and let wy(t) denote Buchstab’s
function.

(i) The points of D lie in two triangles A1, A2, where Ay has vertices
(5/21,5/21), (2/7,3/14), (2/7,2/7),
and As has vertices
(1/2,3/14), (3/7,2/7), (1/2,1/4).
(ii) Forj=1,2, let
I; = S al 2w0<1 el a2> doq das.
4, 019 s
Then I; < 0.03925889 and Iy < 0.0566295.

Proof. Let (a1, a2) € D. If a1 + ag > 5/7, then
ar+ag >5/7, ar+2a3<1, a3 <1/2.
This defines a triangle which is easily verified to be As. If ag + ae < 5/7,
then as as is bad, we have in turn

051—|-0é2<4/7, 061<3/7, a1<2/7.
Altogether, we have

a1+2a2>5/7, aq <2/7, ag < (.
This defines a triangle which we can verify to be A;j. This proves (|1).

Part requires a computer calculation, which was kindly carried out
by Andreas Weingartner. =

Proof of Theorem @ With a different value of I, we choose Af,..., R
and hq,..., hi exactly as in the proof of Theorem [2| In applying Theorem
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we also take I, A, qo, ¢1, Y, Jm, Ly as in that proof, but now 6 = 2/7 — ¢,
s =5, a = 3; the functions g;(n),...,05(n) are given in Lemma

There is little difficulty in verifying by a similar but simpler version
of the proof of . So we concentrate on . We recall that this can be

rewritten as
Y,
Z 04(n) — =%

64 3wl
n=aq mod g

q<=zf
nEJpy mod 1
N+hm<n<2N

‘ < NL k==,

We define Y, ,, by
Yom =1lm Z 04(n).

N<n<2N
It is well known that
LncoN
(6.5) Yy = 2= (1 +o(1),

where ¢, is given by a multiple integral. In fact,

1 l—a; —«
ci+c+cg—cg—c5=1-— S oza2w0< a12 2>da1dag.
19

Similar calculations are found in [§, Chapter 1].
Fix m and g. By analogy with the proof of Theorem [ we can obtain

by showing
1
Y on)——= > o4ln)

(6.6) > @
g<N2/7—e 1 N<n<N’ P\ N<n<N’
n=aq mod q

< NL£=4

for every A > 0, and

(6.7) Z ‘ Z Qg(n)e('ynh)‘ < NL£™A

q<N2/7==  N<n<N’
n=aq mod q

for 1 < h < £A*! and for every A > 0. Again adapting the argument of
Theorem (4 l we see that ( is a consequence of Lemma

For , it suffices to show recalling Lemmal 8l that for arbitrary n, <1
and Q < N2/7—¢,
(6.8) Z S Y ea(mx(n) < QNLTA
Q<g<2Q x mod ¢ N<n<N'
for every A > 0. This can be readily deduced from the Siegel-Walfisz theo-
rem for Q < £24, so we assume that Q > £24.

We apply Lemma [15] with
*
S nx(n)

Q<¢<2Q x mod ¢
if N <n < N, and W(n) = 0 otherwise.
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For example, when g = 3, the left-hand side of is

> W(pipapsna) = Y S*(pipaps, (2N)V/7).
N<pipapsna<N’ a3z€E3
(na,P((2N)V/7))=1 (o1,a2)€E2\D
ascFls

(al,az)GEQ\D

We shall show that and hold with Y = QNL 473, ¢ = 4/7
and d = 1/7. (We could reduce the constraints on ¢ and d, but that would
not be useful in the present context.) Once we have done this, we can follow
the proof of Lemma [19| to deduce .

To prove (4.10]), we use the Pélya—Vinogradov bound for character sums
to obtain

Z ZW(nk‘): Z am, Z Z X (mk)

m<2N4/7 k m<2N4/7 Q<q<2Q x mod g
N<mk<N'

<L Y D> (P <LPNYTE < QNLTATE
m<2N4/7 Q<q<2Q

Now to prove (4.11)), we note that by the method of [8, Section 3.2]
mentioned earlier, it suffices to show that

> am Y, pW(mk) < QNLT
M<m<2M  K<k<2K
whenever |a,| < 1 and |bg| < 7(k), N7 <« M < N7, MK =< N. That is,
it suffices to show that
*
69 > ST Y awxtm|| X k)| <one
Q<g<2Q x mod ¢ M<m<2M K<k<2K
Following the proof of (6) in [6l Chapter 28], we find that the left-hand side
of is
< ,C(M + Q2)1/2(K + Q2)1/2HC’JH2H6H2 < ,CS(Nl/Z + M1/2Q + QQ)Nl/Z
< QNL™,
since £L3Q7IN <« L37AN, £L2MV2N1/?2 « £3NS/7T « NL£~4 and L3QN1/?
< L3N/ « NL£~4. This proves (I.5) with the present choice of A, Y, s
etc.
Applying Theorem (1} we find that there is a set S of ¢ primes in A (and
thus of the form [am + f]) having diameter
D(S) < hy — hy < llogl
provided that
2t —2

My > sem—a
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Here b must have the property
b1,m + b2m + b3.m — bam — b5 > b > 0;
that is,
Im(c1+ca+c3—cg—c5) > by>0.
We can choose

b— (1_2g)<1— | ! 2w0<1_0;1_a2)da1da2>.

a2€D
Using Lemma [20] we see that

b > 0.90411.

Now we proceed just as in the proof of Theorem [2 We may choose any [ for

which
2t — 2

>

~ 0.90411(2/7 —¢)

for a suitable constant C, and now it is a simple matter to deduce that
D(S) < Csa(log a + t) exp(7.743t),

where C4 is an absolute constant. m

+C

log(evl)
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