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Abstract

An envelope in a category is a construction that generalizes the operations of “exterior com-
pletion”, like completion of a locally convex space, or the Stone–Čech compactification of a
topological space, or the universal enveloping algebra of a Lie algebra. Dually, a refinement gen-
eralizes the operations of “interior enrichment”, like bornologification (or saturation) of a locally
convex space, or simply connected covering of a Lie group. In this paper we define envelopes
and refinements in abstract categories and discuss conditions under which these constructions
exist and are functors. The aim of the exposition is to lay the foundations for duality theories
of non-commutative groups based on the idea of envelope. The advantage of this approach is
that in the arising theories the analogs of group algebras are Hopf algebras. At the same time
the classical Fourier and Gelfand transforms are interpreted as envelopes with respect to certain
classes of algebras.
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1. Introduction

In 1972 J. L. Taylor [45] introduced an operation which associates to an arbitrary topo-

logical algebra A a new topological algebra EnvA later called by A. Ya. Helemskii [16]

“the Arens–Michael envelope of A”. In his next paper [46] Taylor gave an amusing for-

mula (1) which suggests an unexpectedly simple way to formalize the heuristically evident

connection between algebraic geometry and complex analysis:

EnvP(Cn) = O(Cn) (1.1)

(here P(Cn) and O(Cn) are the algebras of polynomials and, respectively, of holomor-

phic functions on the complex space Cn). Despite this promising application, up to the

end of the century Taylor’s construction did not manifest itself in mathematical liter-

ature, and only recently did the interest in the operation A 7→ EnvA appear again in

A. Yu. Pirkovskii’s papers [31], [32] on “holomorphic non-commutative geometry”. In par-

ticular, in [32] formula (1.1) was generalized to the case of an arbitrary affine algebraic

variety M :

EnvP(M) = O(M). (1.2)

This identity was very soon applied by the author [3] to the construction of a generaliza-

tion of Pontryagin’s duality from the category of commutative compactly generated Stein

groups to the category of arbitrary (not necessarily commutative) compactly generated

Stein groups with the algebraic connected component of identity. The idea of the duality

suggested in [3] is illustrated by the diagram

O?(G) � Env // O?exp(G)
_
?
��

O(G)

_?
OO

Oexp(G)�Envoo

(1.3)

where G is a group of the above described class, O(G) the algebra of holomorphic func-

tions on G, Oexp(G) its subalgebra consisting of functions of exponential type, A 7→ EnvA

the operation of taking the Arens–Michael envelope, and X 7→ X? the operation of pas-

sage to the dual stereotype space in the sense of [2], i.e. to the space of continuous linear

functionals with the topology of uniform convergence on totally bounded sets (in this

case this is equivalent to uniform convergence on compact sets).

One can call the duality presented in diagram (1.3) the complex geometry duality,

having in mind the class of objects under consideration. The theory obtained for this

(1) Taylor mentions this fact in passing on pp. 207 and 251 of [46].

[7]



8 1. Introduction

class of groups contrasts with other existing theories in the following two points. First,

its enveloping category (to which the group algebras belong) consists of Hopf algebras.

And second, diagram (1.3) suggests a natural way for constructing analogous dualities for

“other geometries”, in particular, for differential geometry and for topology: one should

just replace the Arens–Michael envelope in diagrams analogous to (1.3) with some other

envelopes (and this automatically leads to replacing the constructions in the corners of

the diagram with some proper analogs from analysis).

This alleged connection between different dualities in geometry and different envelopes

of topological algebras was recently supported by other examples:

1) In the work by Yu. N. Kuznetsova [24] the Arens–Michael envelope was replaced by

the envelope generated by the C∗-quotient maps (2), and this immediately led to a

variant of topological duality where the Stein groups are replaced by the Moore groups,

and the algebras O(G) and Oexp(G), respectively, by the algebra C(G) of continuous

functions on G and the algebra K(G) of coefficients of norm-continuous representations

of G.

2) In the author’s work [5] a notion of smooth envelope Env∞A of a topological algebra A

was introduced. This construction replaces the Arens–Michael envelope in the passage

from complex analysis to differential geometry, and an analogue of the Pirkovskii

theorem (1.2) was proved in the differential-geometric context: if a subalgebra A of

the algebra C∞(M) of smooth functions on a smooth variety M has the same spectrum

and the same tangent space at each point, then

Env∞A = C∞(M).

This result gives hope that a similar duality theory in differential geometry will be

constructed in the near future with a proper class of real Lie groups.

It is interesting (and predictable) that in these theories the classical Fourier and Gelfand

transforms are interpreted as envelopes with respect to some class of algebras (see e.g.

Theorems 5.44, 5.53 and 5.52 below).

It is clear to the author that the results obtained are just first observations in the

field, but they already show the validity of the common philosophical idea which justifies

and guides the investigations in this area: in each standard mathematical discipline where

certain classes of symmetries play a role (classes of groups, including those understood in a

generalized way, like quantum groups), a certain duality theory works (and apparently, is

not unique). This idea was suggested in the author’s work [3], and among such disciplines

the following four were mentioned:

– general topology,

– differential geometry,

– complex analysis,

– algebraic geometry.

This paper is planned as a part of the program described in [3]. We discuss here

the question (which has remained open until recently) how one should define envelopes

(2) On p. 179 we define this construction as the Kuznetsova envelope.



1. Introduction 9

in general category theory, and under what conditions they exist and are functors. We

suggest a natural definition (from our point of view) and establish some wide necessary

and sufficient conditions for the existence of envelopes and their dual constructions, which

we call refinements. As applications, we show that in the categories Ste of stereotype

spaces and Ste~ of stereotype algebras the envelopes and the refinements exist in a very

wide class of situations.

Notations and conventions. Everywhere in category theory we use the terminology

of the textbooks [11], [47] and of the handbook [6], and as a set-theoretic foundation for

the notion of category we choose the Morse–Kelley theory [19].

Everywhere Mono(K), Epi(K), SMono(K) and SEpi(K) mean the classes of monomor-

phisms, epimorphisms, strong monomorphisms and strong epimorphisms (the last two

are defined on p. 18) respectively in the category K. We say that a category K is

– injectively (projectively) complete if each functor K : M → K from a small category M

(i.e. one where the class of morphisms is a set) has an injective (projective) limit,

– complete if it is injectively and projectively complete,

– finitely injectively (projectively) complete if each functor K : M → K from a finite

category M (i.e. one where the class of morphisms is a finite set) has an injective

(projective) limit,

– finitely complete if it is finitely injectively complete and finitely projectively complete,

– linearly complete if any functor from a linearly ordered set to K has injective and

projective limits.

For any morphism ϕ : X → Y in an arbitrary category the symbols Domϕ and Ranϕ

mean respectively the domain and the range of ϕ, i.e. Domϕ = X and Ranϕ = Y . If L

and M are two classes of objects in K, then Mor(L, M) means the class of morphisms with

domains in L and ranges in M.

Let Φ be a class of morphisms and L a class of objects in a category K. We say that:

– Φ goes from L if for any object X ∈ L there is a morphism ϕ ∈ Φ with Domϕ = X; in

the special case when L consists of only one object X, we say that Φ goes from X.

– Φ goes to L if for any object X ∈ L there is a morphism ϕ ∈ Φ with Ranϕ = X; in the

special case when L consists of only one object X, we say that Φ goes to X.

In the theory of topological vector spaces we follow the textbook [38] by H. H. Schaefer,

and in the theory of stereotype spaces and algebras the author’s papers [2] and [3]. In

particular, following [38] we assume that all locally convex spaces (LCS for short) are

Hausdorff. By a topological algebra we mean a locally convex topological algebra in the

spirit of the textbook [27], i.e. a locally convex space A over the field C, endowed with

associative multiplication which is separately continuous and has a unit.

We also use the following notation. First, for any locally convex space X the symbol

U(X) denotes the system of all neighborhoods of zero inX. Second, for each neighborhood

U of zero in X the set

KerU =
⋂
ε>0

ε · U
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will be called the kernel of this neighborhood of zero. If U is an absolutely convex neigh-

borhood of zero, then KerU is a closed subspace in X. And third, if a topological space Y

is imbedded into a topological space X (injectively, but the topology of Y is not neces-

sarily inherited from X), and A is a subset in Y , then to distinguish the closure of A in

Y from its closure in X, we denote the first one by A
Y

, and the second by A
X

.

Moreover, we say that a subset M in a locally convex space X is total (in X) if its

linear span, spanM , is dense in X.



2. Nodal decomposition and factorizations

2.1. Skeletally small graphs

2.1.1. Graphs. Recall that an oriented graph is a set V with a given subset Γ ⊂ V ×V .

The elements of V are called vertices, and the elements of Γ edges of this graph. An

oriented graph is said to be reflexive if (x, x) belongs to Γ for each x ∈ V , and transitive

if for any two edges (x, y) and (y, z) from Γ the pair (x, z) also belongs to Γ . Obviously,

every reflexive transitive oriented graph is a (small) category, where the objects and the

morphisms are respectively the vertices and the edges (the composition of edges (x, y)

and (y, z) is (x, z), and the local identities 1x are (x, x)). A characteristic property of

such categories (apart from their being small) is that the sets of morphisms, Mor(A,B),

always contain at most one element. This justifies the following definition.

• A graph is a category K (not necessarily small) where

∀A,B ∈ Ob(K) card Mor(A,B) ≤ 1. (2.1)

Clearly, this is equivalent to the structure of (reflexive and transitive) oriented graph

on the class Ob(K) (with the observation that Ob(K) is not necessarily a set, but just a

class).

Properties of graphs.

1◦ In any graph a morphism ϕ : A → B is an isomorphism iff there exists a morphism

in the reverse direction, ψ : A← B:

∀ϕ ∈ Mor(A,B) (ϕ ∈ Iso⇔ ∃ψ ∈ Mor(B,A)). (2.2)

2◦ In any graph a composition of morphisms is an identity iff the same remains true

after switching the factors:

ψ ◦ ϕ = 1 ⇔ ϕ ◦ ψ = 1. (2.3)

3◦ In any graph a composition of morphisms ψ ◦ ϕ is an isomorphism iff both ψ and ϕ

are isomorphisms:

ψ ◦ ϕ ∈ Iso ⇔ ψ ∈ Iso & ϕ ∈ Iso. (2.4)

Proof. 1◦ If ϕ : A→ B and ψ : A← B, then ψ◦ϕ acts from A into A, so it must coincide

with 1A. Similarly, ϕ ◦ ψ acts from B into B, so it must coincide with 1B .

2◦ From ψ ◦ ϕ = 1 it follows that Ranϕ = Domψ and Ranψ = Domϕ, and we apply

the same reasoning as in part 1◦.

3◦ If ω = ψ ◦ϕ ∈ Iso, then ψ ◦ϕ ◦ω−1 = 1, so by (2.3), ϕ ◦ω−1 ◦ψ = 1, hence ψ ∈ Iso,

and finally ϕ = ψ−1 ◦ ω ∈ Iso.

[11]
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2.1.2. Partially ordered classes. Every partially ordered set I can be considered as

a category, where the objects are the elements of this set, and the morphisms are the

pairs (i, j) for which i ≤ j. Such categories K are, of course, special cases of graphs,

since every set Mor(A,B) contains at most one element (i.e. (2.1) holds). But in addition

(and this property distinguishes the partially ordered sets among all graphs), for A 6= B

the existence of a morphism ϕ : A → B automatically excludes the existence of any

morphisms ψ : A← B. This justifies the following definition.

• A partially ordered class is a graph where the existence of opposite morphisms ϕ :

A → B and ψ : A ← B is possible only if A = B (and then ϕ = ψ = 1A). In other

words,

∀A 6= B ∈ Ob(K) (Mor(A,B) 6= ∅ ⇒ Mor(B,A) = ∅). (2.5)

Obviously, this is equivalent to the structure of partial order on Ob(K) (as in the

previous definition, with the difference that Ob(K) is not necessarily a set, but just a

class).

Example 2.1. Category Ord. The class Ord of all ordinal numbers with its natural order

(see e.g. [19]) is an example of a partially ordered class which is not a set.

Proposition 2.2. In a partially ordered class only local identities are isomorphisms.

Proof. The identity A = B follows from the fact that Mor(A,B) 6= ∅ and Mor(B,A) 6= ∅,
and the identity ϕ = 1A from the fact that ϕ and 1A are collinear arrows in a graph.

2.1.3. Skeleton. A class S of objects of a category K is called a skeleton of K if every

object in K is isomorphic to exactly one object of S. In other words, S satisfies the

following two requirements:

1) elements of S are isomorphic only if they coincide;

2) there exists a map G : Ob(K)→ S such that

∀X ∈ Ob(K) X ∼= G(X).

The skeleton S is usually endowed with the structure of a full subcategory in K.

Properties of skeletons.

1◦ Each category K has a skeleton.

2◦ Any two skeletons in K are isomorphic (as categories).

3◦ Each category K is equivalent to its skeleton S.

4◦ Two categories K and L are equivalent if and only if their skeletons are isomorphic (as

categories).

Proof. Only the first property is not obvious. It follows from the fact that the class Set

of all sets can be well-ordered (see [25, V, 4.1]): Ob(K) is a subclass in Set, so it can also

be well-ordered, and we can assign to each X ∈ Ob(K) the minimal among all objects

isomorphic to X in K with respect to this order.
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• A category K is said to be

– skeletal if any two isomorphic objects coincide in K (equivalently, K is a skeleton for

itself),

– skeletally small if it has a skeleton which is a set.

Example 2.3. Each partially ordered class is a skeletal category (since as already noted,

only local identities are isomorphisms), but not vice versa. For instance, the category

of all finite sets of the form {0, . . . , n}, n ∈ Z+, with arbitrary maps as morphisms, is

skeletal, but it is not a partially ordered class, since {0, . . . , n} has many bijections onto

itself.

2.1.4. Transfinite chain condition

• Let us say that a (covariant or contravariant) functor F : Ord → K stabilizes if it

satisfies the following two equivalent conditions:

(i) there exists k ∈ Ord such that

∀l ≥ k F (k, l) ∈ Iso;

(ii) there exists k ∈ Ord such that

∀l,m
(
k ≤ l ≤ m ⇒ F (l,m) ∈ Iso

)
.

Proof of equivalence. The implication (i)⇐(ii) is obvious, so we only need to prove

(i)⇒(ii). Let F be a covariant functor (the case of a contravariant functor is similar).

If (i) holds, then for k ≤ l ≤ m we have

F (k,m)︸ ︷︷ ︸∈
Iso

= F (l,m) ◦ F (k, l)︸ ︷︷ ︸∈

Iso

⇒ F (k,m)︸ ︷︷ ︸∈

Iso

◦F (k, l)−1︸ ︷︷ ︸∈

Iso

= F (l,m) ⇒ F (l,m) ∈ Iso.

Remark 2.4. If a category K is a partially ordered class, then by Proposition 2.2, for a

functor F : Ord→ K the isomorphisms in (i) and (ii) become local identities:

(i)′ there exists k ∈ Ord such that

∀l ≥ k F (k, l) = 1F (k);

(ii)′ there exists k ∈ Ord such that

∀l,m
(
k ≤ l ≤ m ⇒ F (l,m) = 1F (l)

)
.

Theorem 2.5 (Transfinite chain condition). Every functor F : Ord→ K into an arbitrary

skeletally small graph K stabilizes.

We will need the following

Lemma 2.6. In the class Ord there is no cofinal subclass which is a set.

Proof. If K is a cofinal subclass in Ord, then

Ord =
⋃
k∈K

{i ∈ Ord : i ≤ k}.

Hence if K is a set, then Ord must also be a set, which is not true.
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Corollary 2.7. For any directed set I each monotone map F : I → Ord has a least

upper bound in Ord.

Proof. It is sufficient to note that F (I) is bounded in Ord: this follows from the fact that

F (I) is a set, and thus cannot be a cofinal subclass in Ord.

Proof of Theorem 2.5. Let F : Ord → K be a (covariant or contravariant) functor into a

skeletally small graph K. Suppose that it is not stabilized, i.e. for any i ∈ Ord there is

j ∈ Ord such that F (i, j) /∈ Iso. Let us construct a transfinite sequence {ki; i ∈ Ord} ⊆ Ord

according to the following rules:

0) We set k0 = 0.

1) If for some j ∈ Ord all the {ki; i < j} are already chosen, then we consider two cases:

– if j is an isolated ordinal, i.e. j = i+ 1 for some i < j, then we take kj with

ki < ki+1 = kj , F (ki, ki+1) = F (ki, kj) /∈ Iso

(kj exists due to our assumption that F is not stabilized),

– if j is a limit ordinal, i.e. j 6= i+ 1 for any i < j, then we take

kj = lim
i→j

ki = sup
i<j

ki

(it exists due to Corollary 2.7).

We obtain a transfinite sequence i ∈ Ord 7→ ki ∈ Ord with the following properties:

(i) It is cofinal in Ord, since i ≤ ki for any i ∈ Ord.

(ii) For i < j we have F (ki, kj) /∈ Iso, since

i < j ⇒ i+ 1 ≤ j ⇒ F (ki, kj) = F (ki+1, kj) ◦ F (ki, ki+1)︸ ︷︷ ︸

/∈

Iso

=⇒
(2.4)

F (ki, kj) /∈ Iso

(we assume here that F is a covariant functor, but for a contravariant one the rea-

soning is the same).

Now let S ⊆ K be a skeleton of K. For any i ∈ Ord we consider G(i) ∈ S such that

G(i) ∼= F (ki).

Suppose that G(i) = G(j) for some i ≤ j. Then the morphism F (ki, kj) : G(i) → G(j)

must coincide with the local identity 1G(i) = 1G(j), since the category S is a graph, and

therefore it cannot have two different collinear morphisms. Thus, F (ki, kj) must be an

isomorphism, and, by (ii), this is possible only if i = j. So G : Ord→ S is injective. But

Ord is a proper class, while S is a set, and this is impossible.

2.2. Some classes of monomorphisms and epimorphisms. The notions of mono-

morphism and epimorphism, widely used in category theory, have several variations, and

two of them, immediate and strong mono- and epimorphisms, will be important for us.

As the reader will see, we will stress the analogy between mono/epimorphisms on the

one hand and strong mono/epimorphisms on the other. In the cases where due to this

analogy the proofs become identical (up to the insertion of “strong” in appropriate places,
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as in the results about the categories SMonoX and SEpiX), as well as in the elementary

propositions, we omit the proofs.

2.2.1. Monomorphisms and epimorphisms. Recall that a morphism ϕ : X → Y is

called

– a monomorphism if ϕ ◦ α = ϕ ◦ β implies α = β;

– an epimorphism if α ◦ ϕ = β ◦ ϕ implies α = β;

– a bimorphism if it is a monomorphism and an epimorphism.

Example 2.8. In any graph K every morphism is a bimorphism. Indeed, if ϕ ◦α = ϕ ◦β,

then since α and β are collinear, α = β. So ϕ is a monomorphism. Similarly, it is an

epimorphism.

Proposition 2.9. A composition of monomorphisms (respectively, epimorphisms) is a

monomorphism (respectively, an epimorphism).

Properties of mono- and epimorphisms.

1◦ If ϕ ◦ µ is a monomorphism, then so is µ.

2◦ If µ ◦ ϕ is an isomorphism and µ a monomorphism, then µ and ϕ are isomorphisms.

3◦ If ε ◦ ϕ is an epimorphism, then so is ε.

4◦ If ϕ ◦ ε is an isomorphism and ε an epimorphism, then ϕ and ε are isomorphisms.

By a covariant system (respectively, contravariant system) in a category K over a

partially ordered set (I,≤) we mean an arbitrary covariant (respectively, contravariant)

functor from I into K.

Proposition 2.10. If a covariant system {Xj ; ιji} over a directed set (I,≤) has projective

limit {X;πj} and all the morphisms ιji are monomorphisms, then all the morphisms πj

are monomorphisms as well.

Proof. Assume that I is decreasingly directed. Take k ∈ I, and let Y
α→ X and Y

β→ X

be morphisms such that

πk ◦ α = πk ◦ β.

Then for any j ≤ k we have

ιkj ◦ πj︸ ︷︷ ︸
πk

◦ α = ιkj ◦ πj︸ ︷︷ ︸
πk

◦ β.

Here ιkj is a monomorphism, so we can cancel it:

πj ◦ α = πj ◦ β, j ≤ k.

Set σj = πj ◦ α = πj ◦ β. Then the morphisms Y
α→ X and Y

β→ X generate the same

cone of the covariant system {Xj ; ιji ; i ≤ j ≤ k}:
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Y

σi

��

α
�� σj





X

πi~~ πj !!

Xi
ιji 44 Xj

Y

σi

��

β
�� σj





X

πi~~ πj !!

Xi
ιji 44 Xj

(the projective limit of a covariant system over a cofinal interval {j ∈ I; j ≤ k} is the

same as over I, so we substitute X into this place). This implies that α and β coincide

by the uniqueness of the corresponding arrow in the definition of projective limit.

The dual proposition is the following:

Proposition 2.11. If a covariant system {Xj ; ιji} over a directed set (I,≤) has injective

limit {X; ρi} and all the morphisms ιji are epimorphisms, then all the morphisms ρi are

epimorphisms as well.

Remark 2.12. If the set I of indices is not directed, then the projective (injective)

limit of a covariant system of monomorphisms (epimorphisms) over I is not necessarily

a cone of monomorphisms (epimorphisms). For example if the order in I is discrete, i.e.

i ≤ j ⇔ i = j, then the projective limit of any covariant system {Xi; ιji} over I is the

direct product
∏
i∈I X

i, where the projections∏
i∈I

Xi πk−−→ Xk

are not monomorphisms in general (although the initial morphisms ιii = 1Xi are mono-

morphisms). Similarly, the injective limit of {Xi; ιji} is the coproduct
∐
i∈I Xi, and the

corresponding injections

Xk
ρk−→
∐
i∈I

Xi

are not epimorphisms in general (although ιii = 1Xi are epimorphisms).

2.2.2. Immediate monomorphisms and immediate epimorphisms

• A factorization of a morphism X
ϕ−→ Y is its representation as a composition of an

epimorphism and a monomorphism, i.e. any commutative diagram

X Y

M
��ε

//
ϕ

??

µ (2.6)

where ε is an epimorphism and µ a monomorphism.

• A monomorphism µ : X → Y is said to be immediate if in any of its factorizations

µ = µ′ ◦ ε the epimorphism ε is automatically an isomorphism. Note that for a mono-

morphism µ in a factorization µ = µ′ ◦ ε the epimorphism ε is automatically a bi-

morphism. As a corollary, the condition of µ being an immediate monomorphism is

equivalent to the requirement that, in any decomposition µ = µ′ ◦ ε where ε is a bi-

morphism and µ′ a monomorphism, ε must be an isomorphism. It is natural to call a
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monomorphism µ′ in the factorization µ = µ′ ◦ ε a mediator of the monomorphism µ;

then the qualifier “immediate” for µ will mean that there are no non-trivial mediators

for µ (i.e. mediators which are not isomorphic to µ in MonoY —see definition (2.9)

below; here Γ = Mono).

• An epimorphism ε : X → Y is said to be immediate if ε is an immediate monomorphism

in the dual category. In other words, in any factorization ε = µ ◦ ε′ the monomorphism

µ must be automatically an isomorphism. Note that for an epimorphism ε in any of

its factorizations ε = µ ◦ ε′ the monomorphism µ is automatically a bimorphism. As

a corollary, the condition of ε being an immediate epimorphism is equivalent to the

requirement that, in any decomposition ε = µ ◦ ε′ where µ is a bimorphism and ε′ an

epimorphism, µ must be an isomorphism. It is natural to call an epimorphism ε′ in the

factorization ε = µ◦ε′ a mediator of the epimorphism ε; then the qualifier “immediate”

for ε will mean that there are no non-trivial mediators for ε (i.e. mediators which are

not isomorphic to ε in EpiX—see definition (2.16) below; here Ω = Epi).

Remark 2.13. If in the definition of immediate monomorphism we omit the require-

ment that the morphism µ′ in the representation µ = µ′ ◦ ε is a monomorphism (i.e. if

we only require that each epimorphism ε in such a representation must be an isomor-

phism), then we obtain exactly the definition of extremal monomorphism. Similarly, if in

the definition of immediate epimorphism we omit the requirement that the morphism ε′

in ε = µ ◦ ε′ is an epimorphism (i.e. if we only require that each monomorphism µ in

such a representation must be an isomorphism), then we obtain the definition of extremal

epimorphism [7, Definition 4.3.2]. Clearly, each extremal monomorphism (respectively,

extremal epimorphism) is an immediate monomorphism (respectively, immediate epi-

morphism). But the converse is not true, as the following example shows (1). Consider a

monoid 〈a, b, c | ac = bc〉 (generated by three elements a, b, c with the equality ac = bc)

as a category with one object. In this category:

1) a, b, c are monomorphisms (since they can be canceled in equalities like a ·P = a ·Q);

2) a, b are epimorphisms (since they can be canceled in equalities like P · a = Q · a);

3) c is not an epimorphism (since it cannot be canceled in a · c = b · c);
4) ac = bc is

– a monomorphism (since it can be canceled in equalities like ac · P = ac ·Q),

– an epimorphism (since it can be canceled in equalities like P · ac = Q · ac),
– an immediate epimorphism (since there is only one possibility to write it in the

form (mono) ◦ (epi), namely, ac = 1 · (ac), and 1 is an isomorphism), but

– not an extremal epimorphism (since it can be written in the form (mono) ◦ (. . .),

namely ac = a · c, where the first morphism, i.e. a, is not an isomorphism).

In addition, acac is not an immediate epimorphism, since it can be represented as

acac = (ac)︸︷︷︸

3

Mono

· (ac)︸︷︷︸

3

Epi

(1) This example was suggested to the author by B. V. Novikov.
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where the first morphism is not an isomorphism. This shows that a composition of im-

mediate monomorphisms (respectively, of immediate epimorphisms) is not necessarily an

immediate monomorphism (respectively, an immediate epimorphism).

Properties of immediate mono- and epimorphisms.

1◦ If ϕ ◦ µ is an immediate monomorphism, then so is µ.

2◦ If µ is an immediate monomorphism, and at the same time an epimorphism, then µ

is an isomorphism.

3◦ If ε ◦ ϕ is an immediate epimorphism, then so is ε.

4◦ If ε is an immediate epimorphism, and at the same time a monomorphism, then ε is

an isomorphism.

2.2.3. Strong monomorphisms and strong epimorphisms. The following two defi-

nitions are due to M. Sh. Tsalenko and E. G. Shul’gĕıfer [47, Chapter 1, §7] and F. Borceux

[7, 4.3].

• A monomorphism C
µ−→ D is said to be strong if for any epimorphism A

ε−→ B and for

any morphisms A
α−→ C and B

β−→ D such that β ◦ ε = µ ◦ α there exists a (unique)

morphism B
δ−→ C such that the following diagram is commutative (2):

A B

C D
��

α

//ε

��
β

��

δ

//
µ

(2.7)

• Dually, an epimorphism A
ε−→ B is said to be strong if for any monomorphism C

µ−→ D

and for any morphisms A
α−→ C and B

β−→ D such that β ◦ ε = µ ◦ α there exists a

(unique) morphism B
δ−→ C such that diagram (2.7) is commutative.

Remark 2.14. The uniqueness of δ follows from the monomorphy of µ (or from the

epimorphy of ε): if δ′ is another morphism with the same property, then

µ ◦ δ = β = µ ◦ δ′ ⇒ δ = δ′.

Moreover, the commutativity of the upper triangle in (2.7) implies the commutativity of

the lower one, and vice versa. For example,

α = δ ◦ ε ⇒ β ◦ ε

3

Epi

= µ ◦ α = µ ◦ δ ◦ ε

3

Epi

⇒ β = µ ◦ δ. (2.8)

The following facts are proved in [7, Proposition 4.3.6]:

Proposition 2.15. A composition of strong monomorphisms (respectively, of strong

epimorphisms) is a strong monomorphism (respectively, a strong epimorphism).

Properties of strong mono- and epimorphisms.

1◦ If ϕ ◦ µ is a strong monomorphism, then so is µ.

2◦ Every strong monomorphism µ is an immediate monomorphism.

(2) In the following, we will omit in most cases the phrase “the following diagram is commu-
tative” before diagrams.
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3◦ If ε ◦ ϕ is a strong epimorphism, then so is ε.

4◦ Every strong epimorphism ε is an immediate epimorphism.

Proposition 2.16. If in a covariant system {Xj ; ιji} over a decreasingly directed set

(I,≤) the morphisms ιji are strong monomorphisms, then in its projective limit {X;πj}
the morphisms πj are strong monomorphisms as well.

Proof. Take k ∈ I. By Proposition 2.10, πk is a monomorphism, so we need only show

that it is strong. Consider a diagram

A B

X Xk

//ε

��

α
��
β

//

πk

where ε is an epimorphism. For any j ≤ k we can construct a diagram

A B

Xj

X Xk

//ε

��

πj◦α

��

α

��

β

��ιkj
//

πk

??

πj

and consider the fragment

A B

Xj

Xk

//ε

��πj◦α

��

β

��ιkj

Since ε is an epimorphism and ιkj is a strong monomorphism, there exists a (unique)

morphism δj such that

A B

Xj

Xk

//ε

��πj◦α

��

β

�� δj

��ιkj

In particular,

ιkj ◦ δj = β, j ≤ k.

As a corollary, if we take a new index i ≤ j, then for the morphisms δj and δi we get

ιkj ◦ δj = β = ιik ◦ δi = ιkj ◦ ι
j
i ◦ δ

i.

Here ιkj is a monomorphism, so we can cancel it:

δj = ιji ◦ δ
i.
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Thus for any i ≤ j ≤ k the following diagram is commutative:

B

Xi

Xj

ww

δi

��

δj

��ιji

(for j = k we have δk = β).

This means that the system of morphisms {δj : B → Xj ; j ≤ k} is a projective cone

of a covariant system {ιji : Xi → Xj ; i ≤ j ≤ k}. Hence, there exists a unique morphism

δ : B → X such that all the following diagrams are commutative:

B

X Xj

��

δj

��

δ

//πj

(the limit along a cofinal interval {j ∈ I : j ≤ k} coincides with the limit along I).

In particular, for j = k we get a commutative diagram

B

X Xk

��

β

��

δ

//πk

This implies the following chain:

β = πk ◦ δ ⇒ πk︸︷︷︸

3

Mono

◦ α = β ◦ ε = πk︸︷︷︸

3

Mono

◦ δ ◦ ε ⇒ α = δ ◦ ε.

Thus, the following square is commutative:

A B

X Xk

//ε

��

α
��
β

��

δ

//πk

The dual proposition is the following:

Proposition 2.17. If in a covariant system {Xj ; ιji} over an increasingly directed set

(I,≤) the morphisms ιji are strong epimorphisms, then in its injective limit {X; ρi} the

morphisms ρi are strong epimorphisms as well.

2.3. Categories of monomorphisms and epimorphisms

2.3.1. Categories of monomorphisms ΓX and systems of subobjects. Let Γ be

a class of monomorphisms in a category K, and suppose all local identities belong to it
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(the key examples are the classes Γ = Mono and Γ = SMono). For each object X in K

let

ΓX = {σ ∈ Γ : Ranσ = X}. (2.9)

It is a category where a morphism ρ
κ−→ σ from an object ρ ∈ ΓX into an object σ ∈ ΓX ,

i.e. from a monomorphism ρ : A→ X into a monomorphism σ : B → X, is an arbitrary

morphism κ : A→ B in K such that

A
ρ

%%
κ

��

X

B
σ

99 (2.10)

Actually, this diagram in the initial category K can be considered as a morphism ρ
κ−→ σ

in the category ΓX . A composition of such morphisms ρ
κ−→ σ and σ

λ−→ τ , i.e. of diagrams

A
ρ

%%
κ

��

X

B
σ

99

B
σ
%%

λ

��

X

C
τ

99

is a morphism ρ
λ◦κ−−→ τ , i.e. a diagram

A
ρ

%%
λ◦κ
��

X

C
τ

99

One can view it as a result of splicing the initial diagrams along the common edge σ,

adding the arrow κ ◦ λ, and then throwing away the vertex B together with all the

incident edges:

A ρ

��

λ◦κ

��

κ   

B
σ
//

λ

~~

X

C τ

@@

Of course, local identities in ΓX are diagrams of the form

A
ρ

$$
1X

��

X

A
ρ

::

Remark 2.18. The composition of morphisms in ΓX can be defined in two ways. In our

definition this operation is connected with the composition in K through the identity

λ ◦
ΓX

κ = λ ◦
K
κ.

Theorem 2.19. For any object X the category ΓX is a graph.
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Proof. We should verify that for any two objects ρ : A→ X and σ : B → X there exists

at most one morphism ρ
κ−→ σ. Indeed, a morphism κ in diagram (2.10) is unique, since

the monomorphy of σ gives the implication σ ◦ κ = ρ = σ ◦ κ′ ⇒ κ = κ′.

Remark 2.20. By Example 2.8 this means that in the category ΓX all morphisms are

bimorphisms. The connection between the properties of a morphism ρ
κ−→ σ in ΓX and

the properties of the same morphism κ : A→ B in the initial category K is expressed in

the following observations:

1) Every morphism ρ
κ−→ σ in ΓX is a monomorphism in K.

2) A morphism ρ
κ−→ σ in ΓX is an isomorphism in ΓX iff κ is an isomorphism in K.

Proof. 1) A morphism κ in (2.10) must be a monomorphism due to property 1◦ on p. 15,

since σ ◦ κ is a monomorphism.

2) If a morphism κ : A → B in (2.10) is an isomorphism in K, then we can set

λ = κ−1 : A← B, and the diagrams

A

1A

��

ρ

��κ ��

B
σ
//

λ

��

X

A ρ

@@

B

1B

��

σ

��λ ��

A
ρ
//

κ
��

X

B σ

@@
(2.11)

will be commutative, since ρ and σ are monomorphisms. This means that the morphisms

ρ
κ−→ σ and σ

λ−→ ρ in ΓX are inverse to each other. Conversely, if ρ
κ−→ σ and σ

λ−→ ρ are

inverse to each other in ΓX , then diagrams (2.11) are commutative. Hence, κ and λ are

inverse to each other in K, and thus κ is an isomorphism in K.

It is convenient to introduce a special notation, →, for the pre-order in ΓX :

ρ→ σ ⇔ ∃κ ∈ Mor(K) ρ = σ ◦ κ. (2.12)

Here the morphism κ, if it exists, is unique, and it is a monomorphism (because σ is).

As a corollary, there is an operation which to any pair of morphisms ρ, σ ∈ ΓX with the

property ρ→ σ assigns the morphism κ = κσρ in (2.12):

ρ = σ ◦ κσρ . (2.13)

If ρ→ σ → τ , then the chain

τ ◦ κτρ = ρ = σ ◦ κσρ = τ ◦ κτσ ◦ κσρ
implies, due to monomorphy of τ , the equality

κτρ = κτσ ◦ κσρ . (2.14)

• A system of subobjects of class Γ in an object X of a category K is an arbitrary skeleton

S of the category ΓX such that the morphism 1X belongs to S. In other words, a

subclass S in ΓX is a system of subobjects in X if

(a) the local identity of X belongs to S;

(b) every monomorphism µ ∈ ΓX has an isomorphic monomorphism in S;

(c) in S, isomorphism (in the sense of ΓX) is equivalent to equality.
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Due to property 1◦ on p. 12, such a class S always exists. The elements of S are

called subobjects of X (of class Γ ). The class S is endowed with the structure of a full

subcategory in ΓX .

Theorem 2.21. Any system of subobjects S of an object X is a partially ordered class.

Proof. Let ρ ∈ S and σ ∈ S have mutually inverse morphisms κ : A← B and λ : A→ B,

i.e.

ρ = σ ◦ κ, σ = ρ ◦ λ.
Then

ρ ◦ λ ◦ κ = ρ = ρ ◦ 1A, σ ◦ κ ◦ λ = σ = σ ◦ 1B ,

and since ρ and σ are monomorphisms in K, one can cancel them:

λ ◦ κ = 1A, κ ◦ λ = 1B ,

Thus, κ and λ are isomorphisms. We obtain ρ ∼= σ, and by property (c), ρ = σ.

Theorem 2.22. If S is a system of subobjects in X, then for any σ ∈ S, σ : Y → X, the

class of monomorphisms

A = {α ∈ ΓY : σ ◦ α ∈ S}
is a system of subobjects in Y . If in addition S is a set, then A is a set as well.

Proof. Step 1: Property (a). This is obvious: since σ ◦ 1Y = σ ∈ S, we have 1Y ∈ A.

Step 2: Property (b). Let β : B → Y be a monomorphism. The composition σ◦β : B → X

is a monomorphism from ΓX , and since S is a system of subobjects in X, there exists

τ ∈ S such that

τ ∼= σ ◦ β.
This means that

τ = σ ◦ β ◦ ι
for some isomorphism ι. Now we see that the monomorphism α = β ◦ ι is isomorphic to β

and lies in A, since σ ◦ α = τ ∈ S.

Step 3: Property (c). Let α, β ∈ A be isomorphic monomorphisms, i.e.

α = β ◦ ι
for some isomorphism ι. Then, first, the morphisms σ ◦ α and σ ◦ β are isomorphic as

well, since

σ ◦ α = σ ◦ β ◦ ι.
And second, they lie in S, since α and β lie in A. But S satisfies (c), hence

σ ◦ α = σ ◦ β.
In addition σ is a monomorphism, so α = β.

Step 4: It remains to check that if S is a set, then so is A. This follows from the fact

that the map α ∈ A 7→ σ ◦ α ∈ S is injective. Indeed, if for some α, α′ ∈ A we have

σ ◦ α = σ ◦ α′,
then, since σ is a monomorphism, α = α′.
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• We say that a category K is well-powered in the class Γ if each object X has a system

of subobjects S of class Γ which is a set (i.e. not a proper class); in other words, each

category ΓX must be a skeletally small graph.

Example 2.23. The standard categories frequently used as examples, as the category of

sets, groups, vector spaces, algebras (over a given field), topological spaces, topological

vector spaces, topological algebras etc., are obviously well-powered in the class Mono.

Theorem 2.24. If a category K is well-powered in a class Γ , then there is a map X 7→ SX
which assigns to each object X in K its system of subobjects SX of class Γ (and SX is a

set).

Proof. The class of all sets can be well-ordered [25, V, 4.1]; this allows us to assign to

each X the system of subobjects S which is minimal with respect to this well-ordering.

2.3.2. Categories of epimorphisms ΩX and systems of quotient objects. Let Ω

be a class of epimorphisms in a category K, and suppose all local identities belong to it

(the key examples are Ω = Epi and Ω = SEpi). For each object X in K we denote

ΩX = {σ ∈ Ω : Domσ = X}. (2.15)

This class forms a category where a morphism ρ
κ−→ σ from ρ ∈ ΩX into σ ∈ ΩX , i.e. from

an epimorphism ρ : X → A into an epimorphism σ : X → B, is an arbitrary morphism

κ : A→ B in K such that

A

κ

��

X

ρ 99

σ %%
B

(2.16)

Actually, this diagram in K can be considered as a morphism ρ
κ−→ σ in ΩX . A composition

of such morphisms ρ
κ−→ σ and σ

λ−→ τ , i.e. diagrams

A

κ

��

X

ρ 99

σ %%
B

B

λ

��

X

σ 99

τ %%
C

is a morphism ρ
λ◦κ−−→ τ , i.e. a diagram

A

λ◦κ
��

X

ρ 99

τ %%
C

One can view it as a result of splicing the initial diagrams along the common edge σ,

adding the arrow λ ◦ κ, and then throwing away the vertex B together with all the
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incident edges:

A

λ◦κ

��

κ~~
X

ρ 00

σ
//

τ ..

B
λ

  

C

Of course, local identities in ΩX are diagrams of the form

A

1A

��

X

ρ ::

σ $$
A

Remark 2.25. The composition of morphisms in ΩX can be defined in two ways. In our

definition this operation is connected with the composition in K through

λ ◦
ΩX

κ = λ ◦
K
κ.

By analogy with ΓX the following properties of ΩX are proved.

Theorem 2.26. For any object X the category ΩX is a graph.

Remark 2.27. By Example 2.8 this means that in the category ΩX all morphisms are

bimorphisms. The connection between the properties of a morphism ρ
κ−→ σ in ΩX and

the properties of the same morphism κ : A→ B in the initial category K is expressed in

the following observations:

– every morphism ρ
κ−→ σ in ΩX is an epimorphism in K;

– a morphism ρ
κ−→ σ in ΩX is an isomorphism in ΩX ⇔ κ is an isomorphism in K.

It is convenient to introduce a special notation, →, for the pre-order in ΩX :

ρ→ σ ⇔ ∃ι ∈ Mor(K) σ = ι ◦ ρ. (2.17)

Here the morphism ι, if it exists, must be unique, and it is an epimorphism (since ρ and

σ are). As a corollary, there is an operation which to each pair of morphisms ρ, σ ∈ ΩX
with the property ρ→ σ assigns the morphism ι = ισρ in (2.17):

σ = ισρ ◦ ρ. (2.18)

If π → ρ→ σ, then the chain

ισπ ◦ π = σ = ισρ ◦ ρ = ισρ ◦ ιρπ ◦ π

implies by epimorphy of π the equality

ισπ = ισρ ◦ ιρπ. (2.19)

• A system of quotient objects of class Ω on an object X in a category K is an arbitrary

skeleton Q of the category ΩX such that 1X belongs to Q. In other words, a subclass

Q in ΩX is called a system of quotient objects on X if

(a) the local identity of X belongs to Q;
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(b) every epimorphism ε ∈ ΩX has an isomorphic epimorphism in Q;

(c) in Q, isomorphism (in the sense of ΩX) is equivalent to equality.

By property 1◦ on p. 12 such a class Q always exists. The elements of Q are called

quotient objects on X. The class Q is endowed with the structure of a full subcategory

in ΩX .

By analogy with Theorems 2.21 and 2.22 we have:

Theorem 2.28. Any system Q of quotient objects on an object X is a partially ordered

class.

Theorem 2.29. If Q is a system of quotient objects on an object X, then for any quotient

object π ∈ Q, π : X → Y , the class of epimorphisms

A = {α ∈ ΩY : α ◦ π ∈ Q}

is a system of quotient objects on Y . If in addition Q is a set, then A is a set as well.

• We say that a category K is co-well-powered in the class Ω if each object X has a system

of quotient objects Q of class Ω which is a set (i.e. not a proper class); in other words,

each category ΩX must be a skeletally small graph.

Example 2.30. Among the standard categories—of sets, groups, vector spaces, algebras

over a given field, topological spaces, topological vector spaces, topological algebras—

some are co-well-powered in the class Epi, but sometimes this is not easy to prove (see [1]).

In contrast, the co-well-poweredness in the class SEpi is much easier to verify.

By analogy with Theorem 2.24 the following fact is proved:

Theorem 2.31. If a category K is co-well-powered in a class Ω, then there exists a map

X 7→ QX which assigns to any object X in K a system of its quotient objects QX of class

Ω (and QX is a set).

2.4. Nodal decomposition

2.4.1. Strong decompositions

• A representation of a morphism ϕ as a composition

ϕ = ι ◦ ρ ◦ γ,

where ι is a strong monomorphism and γ a strong epimorphism, will be called a strong

decomposition of ϕ.

Theorem 2.32. If ϕ = ι ◦ ρ ◦ γ is a strong decomposition of ϕ, then for any other

decomposition

ϕ = µ ◦ ε

we have:
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– the epimorphy of ε implies the existence of a unique morphism µ′ such that

X Y

M

X ′ Y ′
��

γ
��ε

//
ϕ

??

µ

��

µ′

//
ρ

OO

ι (2.20)

(in this case if µ is a monomorphism, then so is µ′);

– the monomorphy of µ implies the existence of a unique morphism ε′ such that

X Y

M

X ′ Y ′
��

γ
��ε

//
ϕ

??

µ

//
ρ

??
ε′

OO

ι (2.21)

(in this case if ε is an epimorphism, then so is ε′).

Proof. Let ε be an epimorphism. Consider the diagram

X Y

M

X ′ Y ′
��

γ
��ε

??

µ

//
ρ

OO

ι

and transform it into

X M

Y ′ Y
��

ρ◦γ

//ε

��

µ

//ι

Here ε is an epimorphism, and ι a strong monomorphism, hence there exists a (unique)

morphism µ′ such that

X M

Y ′ Y
��

ρ◦γ

//ε

��

µ

��

µ′

//ι

This is the morphism for (2.20). By property 1◦ on p. 15, if in addition µ = ι ◦ µ′ is a

monomorphism, then so is µ′. The second case is dual.

Suppose we have two strong decompositions ϕ = ι ◦ ρ ◦ γ and ϕ = ι′ ◦ ρ′ ◦ γ′ of a
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morphism ϕ:

X
ϕ
//

γ
��

Y

P
ρ
// Q

ι

OO X
ϕ
//

γ′

��

Y

P ′
ρ′
// Q′

ι′

OO

If there exist (necessarily unique by Theorem 2.32) morphisms σ : P → P ′ and τ : Q′ → Q

such that

X
ϕ

//

γ′

  

γ

��

Y

P ′
ρ′
// Q′

ι′
>>

τ
��

P
ρ

//

σ

??

Q

ι

OO

(2.22)

then we say that the strong decomposition ϕ = ι ◦ ρ ◦ γ is subordinated to the strong

decomposition ϕ = ι′ ◦ ρ′ ◦ γ′, and we write

(ι, ρ, γ) ≤ (ι′, ρ′, γ′).

If in addition σ and τ are isomorphisms, then we say that the decompositions ϕ = ι◦ρ◦γ
and ϕ = ι′ ◦ ρ′ ◦ γ′ are isomorphic, and we write

(ι, ρ, γ) ∼= (ι′, ρ′, γ′).

Proposition 2.33. The double inequality

(ι, ρ, γ) ≤ (ι′, ρ′, γ′) ≤ (ι, ρ, γ)

is equivalent to the isomorphism of strong decompositions:

(ι, ρ, γ) ∼= (ι′, ρ′, γ′).

Proof. The first inequality implies the existence of the (unique) dotted arrows in (2.22),

and the second one means that the reverse arrows exist as well (and again are unique).

In addition the epimorphy of γ and γ′ implies that σ and its reverse arrow are mutually

inverse isomorphisms, while the monomorphy of ι and ι′ implies that the same is true for

τ and its reverse arrow.

2.4.2. Nodal decomposition. If in a strong decomposition ϕ = ι′ ◦ ρ′ ◦ γ′ the middle

morphism ρ′ is a bimorphism, then we call this a nodal decomposition. We also say that K is

a category with nodal decomposition if every morphism ϕ in K has a nodal decomposition.

Proposition 2.34. Each nodal decomposition ϕ = ι′ ◦ ρ′ ◦ γ′ subordinates each strong

decomposition ϕ = ι ◦ ρ ◦ γ:

(ι, ρ, γ) ≤ (ι′, ρ′, γ′).

As a corollary, a nodal decomposition is unique up to isomorphism.
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Proof. Let ϕ = ι ◦ ρ ◦ γ be a strong decomposition. If we transform the diagram

X
γ′

  

γ

��

Y

P ′
ρ′
// Q′

ι′
>>

P
ρ

// Q

ι

OO

(2.23)

into

X
ρ′◦ γ′

((

ρ ◦ γ 22

Y

Q′

ι′
<<

Q

ι

OO

then one can recognize here a quadrangle of the form (2.7), since ι is a strong monomor-

phism, and ρ′ ◦ γ′ an epimorphism (as a composition of an epimorphism γ′ and a bimor-

phism ρ′). Hence, there is a unique morphism τ such that

X
ρ′◦γ′

&&

ρ◦γ
00

Y

Q′

ι′
>>

τ
��

Q

ι

OO

Similarly, one can transform diagram (2.23) into

X
γ′

  
γ

��

Y

P ′

ι′◦ρ′
88

P
ι◦ρ

KK

and this is again a quadrangle of the form (2.7), since γ is a strong epimorphism, and

ι′ ◦ ρ′ a monomorphism (as a composition of a bimorphism ρ′ and a monomorphism ι′).

Hence, there exists a unique morphism σ such that

X
γ′

  
γ

��

Y

P ′

ι′◦ρ′
88

P
σ

>>

ι◦ρ

KK

These two morphisms together give diagram (2.22).

• From the uniqueness (up to isomorphism) of the nodal decomposition ϕ = ι′ ◦ ρ′ ◦ γ′ it

follows that one can assign symbols to its components. We will further depict a nodal
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decomposition of a morphism ϕ : X → Y as a diagram

X Y

Coim∞ ϕ Im∞ ϕ
��

coim∞ ϕ

//
ϕ

//
red∞ ϕ

OO

im∞ ϕ (2.24)

(where elements are defined up to isomorphism). The proof of Theorem 2.36 below and

Remark 2.43 justify these symbols, since they show that coim∞, red∞ and im∞ can be

conceived as a sort of “transfinite induction” of the usual operations coim, red and im

in pre-abelian categories:

coim∞ = lim
n→∞

coim ◦ · · · ◦ coim︸ ︷︷ ︸
n factors

, red∞ = lim
n→∞

red ◦ · · · ◦ red︸ ︷︷ ︸
n factors

,

im∞ = lim
n→∞

im ◦ · · · ◦ im︸ ︷︷ ︸
n factors

.

We will call

– im∞ ϕ the nodal image,

– red∞ ϕ the nodal reduced part,

– coim∞ ϕ the nodal coimage

of the morphism ϕ.

Remark 2.35. By Theorem 2.32:

– for any decomposition ϕ = µ◦ε where ε is an epimorphism, there is a unique morphism

µ′ such that

X
ϕ

//

coim∞ ϕ

��

ε

&&

Y

M

µ ::

µ′

$$

Coim∞ ϕ
red∞ ϕ

// Im∞ ϕ

im∞ ϕ

OO

(2.25)

(and if µ is a monomorphism, then so is µ′),

– for any decomposition ϕ = µ◦ε where µ is a monomorphism, there is a unique morphism

ε′ such that

X
ϕ

//

coim∞ ϕ

��

ε

&&

Y

M

µ ::

Coim∞ ϕ
red∞ ϕ

//

ε′
99

Im∞ ϕ

im∞ ϕ

OO

(2.26)

(and if ε is an epimorphism, then so is ε′).

2.4.3. On existence of a nodal decomposition. Let us note that if µ is a monomor-

phism in a category K, then for any decomposition µ = µ′◦ε, if ε is a strong epimorphism,

then ε must be an isomorphism. Indeed, by 1◦ on p. 15, the equality µ = µ′ ◦ ε means
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that ε is an monomorphism, and since in addition ε is a strong epimorphism, so (by 4◦

on p. 19) an immediate epimorphism, we deduce by 4◦ on p. 18 that ε is an isomorphism.

• Let us say that in a category K strong epimorphisms discern monomorphisms if the

converse is true: from the fact that a morphism µ is not a monomorphism it follows

that µ can be represented as a composition µ = µ′ ◦ ε where ε is a strong epimorphism

which is not an isomorphism.

Dually, if ε is an epimorphism in a category K, then for any decomposition ε = µ ◦ ε′,
if µ is a strong monomorphism, then µ must be an isomorphism.

• Let us say that in a category K strong monomorphisms discern epimorphisms if the

converse is true: from the fact that a morphism ε is not an epimorphism it follows that

ε can be represented as a composition ε = µ ◦ ε′ where µ is a strong monomorphism

which is not an isomorphism.

Recall that the notion of linearly complete category was introduced on p. 9.

Theorem 2.36. Let K be a linearly complete category, well-powered in strong monomor-

phisms and co-well-powered in strong epimorphisms, where strong epimorphisms discern

monomorphisms, and dually, strong monomorphisms discern epimorphisms. Then K is a

category with nodal decomposition.

Before proving this theorem let us introduce the following auxiliary construction.

Take a morphism ϕ : X → Y in a category K. Since K is co-well-powered in strong

epimorphisms, in the category SEpiX of strong epimorphisms going from X there exists

a set of strong quotient objects Q ⊆ SEpiX , and in the category SMonoY of strong

monomorphisms coming to Y there exists a set of strong subobjects S ⊆ SMonoY . We

fix these sets Q and S.

• A decomposition ϕ = ι ◦ ρ ◦ γ of a morphism ϕ is said to be admissible if γ ∈ Q and

ι ∈ S. Clearly, any strong decomposition ϕ = ι′ ◦ ρ′ ◦ γ′ of a morphism ϕ is isomorphic

to some admissible decomposition ϕ = ι ◦ ρ ◦ γ.

• A local basic decomposition of a morphism ϕ in a category K is an arbitrary map

ρ 7→ (coim ρ, red ρ, im ρ) that to each admissible decomposition (ι, ρ, γ) of ϕ assigns

some strong decomposition (im ρ, red ρ, coim ρ) of ρ:

X Y

Dom ρ Ran ρ

Coim ρ Im ρ

��
γ

//
ϕ

��
coim ρ

//
ρ

OO

ι

//
red ρ

OO

im ρ

(2.27)

in such a way that the following conditions are fulfilled:

(a) the decomposition (ι ◦ im ρ, red ρ, coim ρ ◦ γ) of ϕ is admissible (i.e. coim ρ ◦ γ ∈ Q
and ι ◦ im ρ ∈ S),

(b) ρ is a monomorphism ⇔ coim ρ is an isomorphism ⇔ coim ρ = 1,
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(c) ρ is an epimorphism ⇔ im ρ is an epimorphism ⇔ im ρ = 1.

Lemma 2.37. Let K be a category well-powered in strong monomorphisms and co-well-

powered in strong epimorphisms, where strong epimorphisms discern monomorphisms,

and strong monomorphisms discern epimorphisms. Then each morphism ϕ in K has a

local basic decomposition.

Proof. First of all, it is clear that admissible decompositions always exist, for example

one can take ϕ = 1◦ϕ◦1. Let us now show that for any admissible decomposition (ι, ρ, γ)

of ϕ a diagram (2.27) satisfying (a)–(c) exists. Let us fix such a decomposition (ι, ρ, γ)

and consider several cases.

1. If ρ is not a monomorphism, then there exists a decomposition ρ = ρ′ ◦ ε where ε

is a strong epimorphism, but not an isomorphism. Set coim ρ = ε and consider the

morphism ρ′.

1.1. If ρ′ is not an epimorphism, then there exists a decomposition ρ′ = µ ◦ ρ′′ where

µ is a strong monomorphism, but not an isomorphism. Then we set im ρ = µ and

red ρ = ρ′′.

1.2. If ρ′ is an epimorphism, then we set im ρ = 1Ran ρ and red ρ = ρ′.

2. If ρ is a monomorphism, then we set coim ρ = 1Dom ρ and again consider ρ.

2.1. If ρ is not an epimorphism, then there exists a decomposition ρ = µ◦ρ′ where µ is

a strong monomorphism, but not an isomorphism. We set im ρ = µ and red ρ = ρ′.

2.2. If ρ is an epimorphism, then we set im ρ = 1Y and red ρ = ρ.

In any case we obtain a decomposition ρ = im ρ ◦ red ρ ◦ coim ρ where im ρ is a strong

monomorphism, coim ρ is a strong epimorphism, and (b) and (c) are fulfilled. Now to

prove (a) we have to replace (if necessary) the epimorphism coim ρ with an isomorphic

epimorphism π ◦ coim ρ in such a way that π ◦ coim ρ◦γ ∈ Q, and this can be done due to

Theorem 2.29. Similarly, the monomorphism im ρ should be replaced with an isomorphic

monomorphism im ρ ◦ σ in such a way that ι ◦ im ρ ◦ σ ∈ S, and this can be done due to

Theorem 2.22.

Thus, for an arbitrary admissible decomposition (ι, ρ, γ) of ϕ a diagram (2.27) satisfy-

ing (a)–(c) exists. Note now that from 2.29 and 2.22 it follows that for a given admissible

decomposition (ι, ρ, γ) of a morphism ϕ the class of decompositions (im ρ, red ρ, coim ρ)

of ρ which satisfy (a)–(c) is a set. Indeed, every such (im ρ, red ρ, coim ρ) is uniquely de-

fined by the morphisms im ρ and coim ρ (since from monomorphy of im ρ and epimorphy

of coim ρ it follows that red ρ, if it exists, is unique). So the class of decompositions

(im ρ, red ρ, coim ρ) can be viewed as a subclass in the cartesian product A × B of sets,

where A = {α ∈ SMonoRan ρ : ι ◦α ∈ S} is a class of monomorphisms through which im ρ

runs, and which is a set by Theorem 2.22, and B = {β ∈ SEpiDom ρ : β ◦ ε ∈ Q} is a class

of epimorphisms through which coim ρ runs, and which is a set by Theorem 2.29).

We deduce that for any admissible decomposition (ι, ρ, γ) of ϕ the class of decomposi-

tions (coim ρ, red ρ, im ρ) satisfying (2.27) and (a)–(c) is a (non-empty) set. Hence we can

apply the axiom of choice and construct a map which to each admissible decomposition
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(ι, ρ, γ) of ϕ assigns a decomposition (coim ρ, red ρ, im ρ) satisfying (2.27) and (a)–(c).

This is the required map ρ 7→ (coim ρ, red ρ, im ρ).

Proof of Theorem 2.36. Take a morphism ϕ : X → Y , find a set of strong quotient

objects Q ⊆ SEpiX and a set of strong subobjects S ⊆ SMonoY , and construct a local

basic decomposition as in Lemma 2.37. The proof consists in constructing a transfinite

system of objects and morphisms, indexed by i ∈ Ord,

Xi ϕi−→ Y i, Xi
εij−→ Xj , Y i

µij←− Y j (i ≤ j),

the idea of which is illustrated by the following diagram (extended infinitely below):

X
ϕ

//

1X

Y

X0 ϕ0=ϕ
//

ε01=coimϕ0

��

Y 0

1Y

X1 ϕ1=redϕ0

//

ε12=coimϕ1

��

Y 1

µ0
1=imϕ0

OO

X2 ϕ2=redϕ1

//

ε23=coimϕ2

��

Y 1

µ1
2=imϕ1

OO

... ...

µ2
3=imϕ2

OO

(2.28)

Here is how we do this.

0) Initially, we set

X0 = X, Y 0 = Y, ϕ0 = ϕ, ε01 = coimϕ0, µ0
1 = imϕ0, ϕ1 = redϕ0.

1) Then for an arbitrary ordinal k we set

εkk = 1Xk , µkk = 1Y k

and:

– If k = j + 1 for some j, then we set

Xk = Xj+1 = Coimϕj , Y k = Y j+1 = Imϕj ,

εjk = εjj+1 = coimϕj , µjk = µjj+1 = imϕj , ϕk = ϕj+1 = redϕj ,

and then, for any other ordinal i < j,

εik = εij+1 = εjj+1 ◦ ε
i
j , µik = µij+1 = µij ◦ µ

j
j+1.

– If k is a limit ordinal, then Xk is defined as the injective limit of the covariant sys-

tem {Xj , εij ; i ≤ j < k}, and Y k as the projective limit of the contravariant system

{Y j , µij ; i ≤ j < k}:
Xk = lim

j→k
Xj , Y k = lim

k←j
Y j ,

the system of morphisms {εik; i < k} is the corresponding injective cone of morphisms

going to Xk, and {µik; i < k} is the corresponding projective cone of morphisms going
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from Y k,

εik = lim
j→k

εij , µik = lim
k←j

µij , i ≤ k.

This automatically implies

εik = εjk ◦ ε
i
j , µik = µij ◦ µ

j
k, i ≤ j ≤ k,

and by Proposition 2.17 all the morphisms εik are strong epimorphisms, while by Propo-

sition 2.16 all the morphisms µij are strong monomorphisms. As a corollary, Xk can

be chosen in such a way that the epimorphism ε0k lies in Q (for this we just need to

multiply the system {εik; i < k} from the left by a morphism so that the property of

being an injective cone is preserved); similarly, Y k can be chosen in such a way that the

monomorphism µ0
k lies in S (for this we just need to multiply the system {µik; i < k}

from the right so that the property of being a projective cone is preserved). Then ϕk

can be defined by two equivalent formulas:

ϕk = lim
k←i

lim
j→k

µij ◦ ϕj = lim
i→k

lim
k←j

ϕj ◦ εij .

Here the first double limit should be understood as follows: for a given i < k the family

{µij ◦ ϕj ; i ≤ j < k} is an injective cone of the covariant system {εlj ; i ≤ l, j < k}, so

the limit
lim
j→k

µij ◦ ϕj

exists; then {limj→k µ
i
j◦ϕj ; i < k} turns out to be a projective cone of the contravariant

system {µlj ; i ≤ l, j < k}, so the limit

lim
k←i

lim
j→k

µij ◦ ϕj

exists. Similarly, in the second double limit for a given i < k the family {ϕj ◦ εij ; i ≤
j < k} is a projective cone of the contravariant system {µlj ; i ≤ l, j < k}, so the limit

lim
k←j

ϕj ◦ εij

exists; then {limk←j ϕ
j ◦ εij ; i < k} turns out to be an injective cone of the covariant

system {εlj ; i ≤ l, j < k}, so the limit

lim
i→k

lim
k←j

ϕj ◦ εij

exists. Each of these double limits gives an arrow from Xk into Y k which makes all

the necessary diagrams commutative, and since this arrow is unique (this follows from

the fact that the µik are monomorphisms and the εik are epimorphisms), those double

limits (arrows) coincide.

Eventually we obtain a system of morphisms such that for any i ≤ j the following diagram

is commutative:
Xi Y i

Xj Y j
��

εij

//
ϕi

//
ϕj

OO

µij

and for any i ≤ j ≤ k the following diagrams are commutative:
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Xi

Xj

Xk

��

εij

��

εik

��εjk

Y i

Y j

Y k

??µij

__

µjk

OO

µik

and moreover the εij are strong epimorphisms, and the µij are strong monomorphisms.

From the last two diagrams it follows that the formulas{
F (i) = ε0i , i ∈ Ord,

F (i, j) = εij , i ≤ j ∈ Ord,

{
G(i) = µ0

i , i ∈ Ord,

G(i, j) = µij , i ≤ j ∈ Ord,

define a covariant functor F : Ord → Q and a contravariant functor G : Ord → S. Since

Q and S are sets, by Theorem 2.5 these functors must stabilize, i.e. starting from some

ordinal k (which can be chosen common for F and G) the morphisms F (i, j) and G(i, j)

become isomorphisms. Since in addition the categories Q and S are partially ordered

classes (and as a corollary, only local identities are isomorphisms, by Proposition 2.2), we

conclude (following Remark 2.4) that diagram (2.28) stabilizes in the sense that, starting

from some k,

– the objects X l become the same, and the morphisms εlm become local identities of Xk;

– the objects Y l become the same and the morphisms µlm become local identities of Y k.

Now let us consider the diagram

X Y

Xk Y k
��

ε0k

//
ϕ

//
ϕk

OO

µ0
k (2.29)

Here ε0k is a strong epimorphism, and µ0
k a strong monomorphism. From the equality

εkk+1 = coimϕk = 1Xk (which holds since the sequence ε0j stabilizes for j ≥ k) it follows

by condition (b) on p. 31 that ϕk is a monomorphism. On the other hand, from µkk+1 =

imϕk = 1Y k (which holds since the sequence µ0
j stabilizes for j ≥ k) it follows by condition

(c) on p. 32 that ϕk is an epimorphism. Thus, ϕk is a bimorphism, hence (2.29) is a nodal

decomposition for ϕ.

2.4.4. Connection with the basic decomposition in pre-abelian categories. Let

us discuss the obvious analogy between nodal decomposition and the decomposition of

a morphism ϕ in a pre-abelian category K into a coimage coimϕ, an image imϕ and a

morphism between them which we denote by redϕ.

Recall (see definition in [11] or in [6]) that a pre-abelian category is an enriched cate-

gory K over the category Ab of abelian groups, which is finitely complete and has a zero

object. In such a category every morphism ϕ : X → Y has a kernel and a cokernel. Hence
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ϕ can be represented as a composition

X Y

Coimϕ Imϕ
��

coimϕ

//
ϕ

//
redϕ

OO

imϕ (2.30)

where coimϕ = coker(kerϕ) is called the coimage of ϕ, imϕ = ker(cokerϕ) the image

of ϕ, and redϕ the reduced part of ϕ; its existence and uniqueness are proved separately.

• The representation (2.30) of ϕ will be called the basic decomposition of ϕ.

It is known (see [7, Proposition 4.3.6(4)]) that in a pre-abelian category (in fact, in a

category with zero) every kernel kerϕ (and thus every image imϕ) is always a strong

monomorphism, and every cokernel cokerϕ (and thus every coimage coimϕ) is a strong

epimorphism. As a corollary, we have

Theorem 2.38. In a pre-abelian category every basic decomposition is strong.

This implies that if a category K is abelian, then every basic decomposition in K is

nodal. But if K is not abelian, then these decompositions do not necessarily coincide: see

Example 4.98 below.

The following two propositions are obvious:

Proposition 2.39. In a pre-abelian category for a morphism ϕ : X → Y the following

conditions are equivalent:

(i) ϕ is a monomorphism,

(ii) the zero morphism 00,X is the kernel for ϕ,

(iii) the identity morphism 1X is the coimage for ϕ,

(iv) coimϕ is an isomorphism.

Proposition 2.40. In a pre-abelian category for a morphism ϕ : X → Y the following

conditions are equivalent:

(i) ϕ is an epimorphism,

(ii) 0Y,0 = cokerϕ,

(iii) 1Y = imϕ,

(iv) imϕ is an isomorphism.

They imply

Proposition 2.41. In a pre-abelian category K strong epimorphisms discern mono-

morphisms and strong monomorphisms discern epimorphisms.

Proof. Consider the basic decomposition of ϕ : X → Y :

ϕ = imϕ ◦ redϕ ◦ coimϕ.

If ϕ : X → Y is not a monomorphism, then by Proposition 2.39, coimϕ is not an

isomorphism. On the other hand, by Theorem 2.38, coimϕ is a strong epimorphism. So,

if we set ϕ′ = imϕ◦redϕ, then in the decomposition ϕ = ϕ′◦ coimϕ the morphism coimϕ

is a strong epimorphism, but not an isomorphism. This means that strong epimorphisms
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discern monomorphisms in K. The statement about strong monomorphisms is proved

similarly.

Proposition 2.41 implies that if a pre-abelian category K is well-powered in strong

monomorphisms and co-well-powered in strong epimorphisms, then K has a local basic

decomposition (defined on p. 31): the map (ι, ρ, γ) 7→ (coim ρ, red ρ, im ρ) that to each

admissible decomposition (ι, ρ, γ) (again see p. 31) of a given morphism ϕ assigns the basic

decomposition of ρ, is a local basic decomposition of ϕ. Hence, the sufficient condition

for the existence of nodal decomposition (Theorem 2.36) becomes simpler:

Theorem 2.42. If a pre-abelian category K is well-powered in strong monomorphisms

and co-well-powered in strong epimorphisms, then every morphism ϕ : X → Y in K has

a nodal decomposition (2.24).

Remark 2.43. From Proposition 2.41 and diagram (2.28) it follows that:

– the nodal reduced part red∞ ϕ in diagram (2.24) can be viewed as a “limit” of the

transfinite sequence of “usual” reduced morphisms ϕi+1 = redϕi;

– the nodal coimage coim∞ ϕ is an injective limit of the transfinite sequence of “usual”

coimages coimϕi of this system of morphisms;

– the nodal image im∞ ϕ is a projective limit of the transfinite sequence of “usual” images

imϕi of this system of morphisms.

Remark 2.44. Since the basic decomposition ϕ = imϕ ◦ redϕ ◦ coimϕ is strong, and

thus, by Proposition 2.34, is subordinated to the nodal decomposition, there must exist

unique morphisms σ and τ such that

X
ϕ

//

coim∞ ϕ

&&

coimϕ

��

Y

Coim∞ ϕ
red∞ ϕ

// Im∞ ϕ

im∞ ϕ
99

τ
$$

Coimϕ
redϕ

//

σ

88

Imϕ

imϕ

OO

(2.31)

At the same time, by Theorem 2.32:

– for any decomposition ϕ = µ ◦ ε where ε is an epimorphism, there exists a unique

morphism µ′ such that

X
ϕ

//

coim∞ ϕ

""coimϕ

��

ε

,,

Y

M

µ
33

µ′

''

Coim∞ ϕ
red∞ ϕ

// Im∞ ϕ

im∞ ϕ

>>

τ ''

Coimϕ
redϕ

//
σ

66

Imϕ

imϕ

OO

(2.32)

(in addition, if µ is a monomorphism, then so is µ′);



38 2. Nodal decomposition and factorizations

– for any decomposition ϕ = µ ◦ ε where µ is a monomorphism, there exists a unique

morphism ε′ such that

X
ϕ

//

coim∞ ϕ

""coimϕ

��

ε

,,

Y

M

µ
33

Coim∞ ϕ
red∞ ϕ

//

ε′
77

Im∞ ϕ

im∞ ϕ

>>

τ ''

Coimϕ
redϕ

//
σ

66

Imϕ

imϕ

OO

(2.33)

(in addition, if ε is an epimorphism, then so is ε′);

– in particular, for any factorization ϕ = µ ◦ ε of ϕ there exist unique morphisms

Coimϕ
ε′−→M and M

µ′−→ Imϕ such that

X
ϕ

//

coim∞ ϕ

""coimϕ

��

ε

,,

Y

M

µ
33

µ′

''

Coim∞ ϕ
red∞ ϕ

//

ε′
77

Im∞ ϕ

im∞ ϕ

>>

τ ''

Coimϕ
redϕ

//
σ

66

Imϕ

imϕ

OO

(2.34)

and in addition, ε′ is an epimorphism and µ′ a monomorphism.

2.5. Factorizations of a category

2.5.1. Factorizations in a category with nodal decomposition. Recall that the

notion of a factorization of a morphism was defined in (2.6). From (2.25) and (2.26) we

immediately have

Proposition 2.45. If X
ε−→ M

µ−→ Y is a factorization of a morphism X
ϕ−→ Y in a

category K with a nodal decomposition, then there are unique morphisms Coim∞ ϕ
ε′−→M

and M
µ′−→ Im∞ ϕ such that

X
ϕ

//

coim∞ ϕ

��

ε

((

Y

M

µ
77

µ′

''

Coim∞ ϕ
red∞ ϕ

//

ε′
77

Im∞ ϕ

im∞ ϕ

OO

(2.35)

Moreover, ε′ is an epimorphism and µ′ a monomorphism.

Let (ε, µ) and (ε′, µ′) be factorizations of ϕ. We say that (ε, µ) is subordinated to

(ε′, µ′) (or (ε′, µ′) subordinates (ε, µ)), and write

(ε, µ) ≤ (ε′, µ′),
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if there exists a morphism β such that

ε′ = β ◦ ε, µ = µ′ ◦ β,

that is,

X

ε

��

ϕ
//

ε′
$$

Y

M
β
//

µ

::

M ′

µ′

OO

From properties 1◦ and 3◦ on p. 15 it follows that β, if it exists, must be a bimorphism,

and from the fact that µ′ is a monomorphism (or from the fact that ε is an epimorphism)

that β is unique.

Theorem 2.46. In a category K with nodal decomposition:

(i) every morphism ϕ has a factorization;

(ii) among all factorizations of ϕ there is a minimal one (εmin, µmin) and a maximal one

(εmax, µmax), i.e. for any other factorization (ε, µ),

(εmin, µmin) ≤ (ε, µ) ≤ (εmax, µmax).

Proof. Part (i) follows from (ii). To prove (ii), let

εmin = coim∞ ϕ, µmin = im∞ ϕ ◦ red∞ ϕ

and

εmax = red∞ ϕ ◦ coim∞ ϕ, µmax = im∞ ϕ.

Then these will be factorizations of ϕ, and from (2.35) it follows that the first is minimal,

and the second is maximal.

2.5.2. Strong morphisms in a category with nodal decomposition

Theorem 2.47. In a category with nodal decomposition:

(a) µ is an immediate monomorphism ⇔ µ is a strong monomorphism ⇔ µ ∼= im∞ µ⇔
coim∞ µ and red∞ µ are isomorphisms,

(b) ε is an immediate epimorphism ⇔ ε is a strong epimorphism ⇔ ε ∼= coim∞ ε ⇔
im∞ µ and red∞ µ are isomorphisms.

Proof. By the duality principle it is sufficient to prove (a).

If µ : X → Y is an immediate monomorphism, then in its maximal factorization

µ = µmax ◦ εmax the morphism εmax = red∞ µ ◦ coim∞ µ must be an isomorphism. This

implies

1X = (εmax)−1 ◦ red∞ µ ◦ coim∞ µ,

from which one can conclude that coim∞ µ is a coretraction. On the other hand, coim∞ µ

is an epimorphism, hence an isomorphism. This implies that red∞ µ = εmax◦(coim∞ µ)−1

is an isomorphism.

If coim∞ µ and red∞ µ are isomorphisms, then χ = red∞ µ◦coim∞ µ is an isomorphism

as well, and at the same time µ = im∞ µ ◦ χ. This means that µ ∼= im∞ µ.

If µ ∼= im∞ µ, then since im∞ µ is a strong monomorphism, so is µ.
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If µ is a strong monomorphism, then by property 2◦ on p. 18, µ is an immediate

monomorphism.

2.5.3. Factorization of a category

• A pair of morphisms (µ, ε) is said to be diagonizable [6, 47] if for all morphisms α :

Dom ε→ Domµ and β : Ran ε→ Ranµ such that µ ◦α = β ◦ ε there exists a morphism

δ : B → C such that diagram (2.7) is commutative:

Dom ε Ran ε

Domµ Ranµ
��

α

//ε

��

β

��

δ

//
µ

This is denoted by writing µ ↓ ε.

Example 2.48. The following example shows that in contrast to the situation considered

above (in particular on p. 18) the relation µ ↓ ε does not necessarily mean that µ ∈ Mono

and ε ∈ Epi: in the category of vector spaces over C the pair of morphisms µ = 0 : C→ 0

and ε = 0 : 0→ C is diagonizable:

0 C

C 0
��

α

//ε=0

��

β

��

δ

//
µ=0

• For any class Λ of morphisms in K:

– its epimorphic conjugate class is the class

Λ↓ = {ε ∈ Epi(K) : ∀λ ∈ Λ λ ↓ ε}.

– its monomorphic conjugate class is the class

↓Λ = {µ ∈ Mono(K) : ∀λ ∈ Λ µ ↓ λ}.

Clearly, for each class Λ of morphisms,

Iso ⊆ Λ↓ ⊆ Epi, Iso ◦ Λ↓ ⊆ Λ↓, (2.36)

Iso ⊆ ↓Λ ⊆ Mono, ↓Λ ◦ Iso ⊆ ↓Λ. (2.37)

• Let us say that classes Γ and Ω of morphisms define a factorization of the category (3)

K if:

F.1. Ω is the epimorphic conjugate class for Γ : Γ ↓ = Ω;

F.2. Γ is the monomorphic conjugate class for Ω: Γ = ↓Ω;

F.3. the composition of the classes Γ and Ω covers the class of all morphisms: Γ ◦Ω =

Mor(K) (this means that each morphism ϕ ∈ Mor(K) can be represented as a

composition µ ◦ ε where µ ∈ Γ , ε ∈ Ω).

(3) This construction is also called a bicategory [6, 47].
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If these conditions are fulfilled, we write

K = Γ }Ω. (2.38)

Example 2.49. In a category K with nodal decomposition the following classes of mor-

phisms define factorizations:

K = Mono} SEpi = SMono} Epi.

The following is proved in [47, Theorem 8.2]:

Theorem 2.50. Classes Γ and Ω define a factorization of K if and only if the following

conditions hold:

(i) Γ ⊆ Mono(K) and Ω ⊆ Epi(K);

(ii) Iso(K) ⊆ Ω ∩ Γ ;

(iii) for each ϕ ∈ Mor(K) there is a decomposition

ϕ = µϕ ◦ εϕ, µϕ ∈ Γ, εϕ ∈ Ω; (2.39)

(iv) for any other decomposition with the same properties

ϕ = µ′ ◦ ε′, µ′ ∈ Γ, ε′ ∈ Ω,
there is θ ∈ Iso(K) such that

µ′ = µϕ ◦ θ, ε′ = θ−1 ◦ εϕ.

• Let us say that a class Ω of morphisms in K is monomorphically complementable if

K = ↓Ω }Ω. (2.40)

In other words, Ω must be the epimorphic conjugate to its monomorphic conjugate

class: Ω = (↓Ω)↓, and the composition of ↓Ω and Ω must cover the class of all mor-

phisms: ↓Ω ◦Ω = Mor(K). In this case ↓Ω will be called the monomorphic complement

to Ω.

Remark 2.51. From (2.36) it follows that if a class Ω of morphisms is monomorphically

complementable, then

Iso ⊆ Ω ⊆ Epi, Iso ◦Ω ⊆ Ω. (2.41)

• Similarly, we say that a class Γ of morphisms in K is epimorphically complementable if

K = Γ } Γ ↓. (2.42)

In other words, Γ must be the monomorphic conjugate to its epimorphic conjugate

class: Γ = ↓(Γ ↓), and the composition of Γ and Γ ↓ must cover the class of all mor-

phisms: Γ ◦ Γ ↓ = Mor(K). In this case Γ ↓ will be called the epimorphic complement

to Γ .

Remark 2.52. From (2.37) it follows that if Γ is epimorphically complementable, then

Iso ⊆ Γ ⊆ Mono, Γ ◦ Iso ⊆ Γ. (2.43)



3. Envelope and refinement

3.1. Envelope

3.1.1. Envelope in a class of morphisms with respect to a class of morphisms.

Suppose we have:

– a category K called an enveloping category,

– a category T called an attracting category,

– a covariant functor F : T→ K,

– two classes Ω and Φ of morphisms in K, taking values in objects of the class F (T), with

Ω called the class of realizing morphisms, and Φ the class of test morphisms.

Then:

• For X ∈ Ob(K) and X ′ ∈ Ob(T) a morphism σ : X → F (X ′) is called an extension

of the object X ∈ K over the category T in the class Ω of morphisms with respect to

the class Φ of morphisms if σ ∈ Ω, and for any object B in T and any morphism

ϕ : X → F (B) in Φ there exists a unique morphism ϕ′ : X ′ → B in T such that

X

F (X ′) F (B)
��

Ω3σ
��

ϕ∈Φ

//
F (ϕ′)

(3.1)

• An extension ρ : X → F (E) of an object X ∈ K over a category T in the class Ω with

respect to the class Φ is called an envelope of X over the category T in the class Ω with

respect to the class Φ if for each extension σ : X → F (X ′) (of X over the category T

in the class Ω with respect to the class Φ) there exists a unique morphism υ : X ′ → E

in T such that

X

F (X ′) F (E)
��

σ

��

ρ

//
F (υ)

(3.2)

In what follows, we are almost exclusively interested in the case when T = K and

F : K→ K is the identity functor. It is useful to give the definitions for this case separately:

• A morphism σ : X → X ′ in a category K is called an extension of X ∈ Ob(K) in the

class Ω with respect to the class Φ if σ ∈ Ω, and for any morphism ϕ : X → B in Φ

[42]
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there exists a unique morphism ϕ′ : X ′ → B in K such that

X

X ′ B
��

Ω3σ
��

∀ϕ∈Φ

//
∃!ϕ′

(3.3)

• An extension ρ : X → E of an object X ∈ Ob(K) in the class Ω with respect to the

class Φ is called an envelope of X in Ω with respect to Φ if for any other extension

σ : X → X ′ (of X in Ω with respect to Φ) there is a unique morphism υ : X ′ → E in

K such that

X

X ′ E
��
∀σ

��

ρ

//∃!υ
(3.4)

For an envelope ρ : X → E we use the notation

ρ = envΩΦ X. (3.5)

The very object E is also called an envelope of X (in Ω with respect to Φ), and we

write

E = EnvΩΦ X. (3.6)

Remark 3.1. Clearly, the object EnvΩΦ X (if it exists) is unique up to isomorphism. The

question when the correspondence X 7→ EnvΩΦ X can be defined as a functor is discussed

below starting from p. 69.

Remark 3.2. If Ω = ∅, then of course neither extensions nor envelopes in Ω exist. So

this construction can be interesting only when Ω is a non-empty class. The following two

situations will be of special interest:

– Ω = Epi(K) (the class of all epimorphisms in K); then we will use the notation

envEpiΦ X := env
Epi(K)
Φ X, EnvEpiΦ X := Env

Epi(K)
Φ X. (3.7)

– Ω = Mor(K) (the class of all morphisms in K); in this case it is convenient to omit

Ω from the formulations and notation, so we will be speaking about the envelope of

X ∈ K in K with respect to the class Φ, and the notation will be simplified:

envΦX := env
Mor(K)
Φ X, EnvΦX := Env

Mor(K)
Φ X. (3.8)

Remark 3.3. Another degenerate, but this time informative case is when Φ = ∅. It is

essential that for a given object X, Φ does not contain morphisms going from X. Then,

obviously, any morphism σ : X → X ′ belonging to Ω is an extension of X (in the class

Ω with respect to the class ∅). If in addition Ω = Epi, then the envelope of X is the

terminal object in the category EpiX (if it exists):

EnvΩ∅ X = max EpiX .

In particular, if K is a category with zero 0, and Ω contains all morphisms going to 0,

then the envelope of any object with respect to the empty class of morphisms is 0.
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Remark 3.4. Another extreme situation is when Φ = Mor(K). It is essential that for a

given object X the class Φ contains the local identity of X. Then for any extension σ the

diagram

X
σ //

1X   

X ′

}}

X

implies that σ must be a coretraction (moreover, the dashed arrow must be unique).

When Ω ⊆ Epi this is possible only if σ is an isomorphism. As a corollary, in this case

the envelope of X coincides with X (up to isomorphism).

Properties of envelopes.

1◦ Suppose that Σ ⊆ Ω. Then for any object X and any class Φ of morphisms:

(a) each extension σ : X → X ′ in Σ with respect to Φ is an extension in Ω with

respect to Φ;

(b) if there are envelopes envΣΦ X and envΩΦ X, then there is a unique morphism ρ :

EnvΣΦ X → EnvΩΦ X such that

X

EnvΣΦ X EnvΩΦX

zz

envΣΦ X

$$

envΩΦX

//
ρ

(3.9)

(c) if there is envΩΦ X ∈ Σ, then envΩΦ X = envΣΦ X.

2◦ Let Σ, Ω, Φ be classes of morphisms, and suppose that, for an object X,

(a) every extension σ : X → X ′ in Ω with respect to Φ belongs to Σ.

Then:

(b) an envelope of X with respect to Φ in the class Ω exists if and only if there exists

an envelope of X with respect to Φ in the class Ω ∩Σ, and envΩΦ = envΩ∩ΣΦ ;

(c) if Σ ⊆ Ω, then an envelope of X with respect to Φ in the (narrower) class Σ exists

if and only if there exists an envelope of X with respect to Φ in the (wider) class

Ω, and envΩΦ X = envΣΦ X.

3◦ Suppose Ψ ⊆ Φ. Then for any object X and for any class Ω of morphisms:

(a) each extension σ : X → X ′ in Ω with respect to Φ is an extension in Ω with

respect to Ψ ;

(b) if there are envelopes envΩΨ X and envΩΦ X, then there is a unique morphism α :

EnvΩΨ X ← EnvΩΦ X such that

X

EnvΩΨ X EnvΩΦX

zz

envΩΨ X

$$

envΩΦX

oo α
(3.10)

4◦ Suppose that Φ ⊆ Mor(K) ◦ Ψ (i.e. each ϕ ∈ Φ can be represented as ϕ = χ ◦ ψ, where

ψ ∈ Ψ). Then for any object X and any class Ω of morphisms:
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(a) if an extension σ : X → X ′ in Ω with respect to Ψ is at the same time an

epimorphism in K, then it is an extension in Ω with respect to Φ;

(b) if there are envelopes envΩΨ X and envΩΦ X, and envΩΨ X is at the same time an

epimorphism in K, then there exists a unique morphism β : EnvΩΨ X → EnvΩΦ X

such that

X

EnvΩΨ X EnvΩΦX

zz

envΩΨ X

$$

envΩΦX

//
β

(3.11)

5◦ Suppose that Ω and Φ are some classes of morphisms, and ε : X → Y is an epimor-

phism in K such that:

(a) there exists an envelope envΩΦ◦εX (with respect to Φ ◦ ε = {ϕ ◦ ε; ϕ ∈ Φ});
(b) there exists an envelope envΩΦ Y ;

(c) envΩΦ Y ◦ ε ∈ Ω.

Then there exists a unique morphism υ : EnvΩΦ◦εX ← EnvΩΦ Y such that

X

envΩΦ Y ◦ε

**

envΩΦ◦εX ��

ε
// Y

envΩΦ Y��

EnvΩΦ◦εX EnvΩΦ Yυ
oo

(3.12)

Proof. 1◦ If a morphism σ satisfies (3.3) with Σ instead of Ω, then σ satisfies the initial

condition (3.3), since Σ ⊆ Ω. This proves (a). From this we moreover see that envΣΨ X is

an extension in Ω with respect to Φ, so there must exist a unique dashed arrow in (3.9).

This means that (b) is also true. Finally, if there exists an envelope envΩΦ X (in the wider

class), and it lies in Σ (in the narrower class), then envΩΦ X is an extension in Σ. On the

other hand, any other extension σ : X → X ′ in Σ is an extension in Ω due to (a), hence

there is a unique morphism υ into the envelope in Ω:

X

X ′ EnvΩΦ X
zz

σ
$$

envΩΦ X

//υ

This proves that envΩΦ X is an envelope in Σ, and we have proved (c).

2◦ If an object X has an envelope envΩΦ X in Ω with respect to Φ, then by (a) this

will be an extension in the narrower class Ω ∩ Σ with respect to Φ. Applying 1◦(c), we

deduce that envΩΦ X = envΩ∩ΣΦ X.

Conversely, suppose there exists an envelope envΩ∩ΣΦ X. Then by 1◦(a), it will be an

envelope with respect to Φ in Ω. Take another extension σ : X → X ′ with respect to Φ

in Ω. By (a), σ is an extension with respect to Φ in Ω ∩Σ. Hence, there exists a unique

morphism υ : X ′ → EnvΩ∩ΣΦ X such that

X

X ′ EnvΩ∩ΣΦ X
zz

σ
$$

envΩ∩ΣΦ X

//υ
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This proves that envΩ∩ΣΦ X is (not just an extension, but also) an envelope with respect

to Φ in Ω. We see that 2◦(b) is true, and 2◦(c) is a corollary.

3◦ Suppose that Ψ ⊆ Φ. Then (a) is obvious: each extension σ : X → X ′ with respect

to Φ is an extension with respect to Ψ . For (b) we have: since envΩΦ X is an extension

with respect to Φ, it must be an extension with respect to Ψ , so there exists a unique

morphism from EnvΩΦ X into EnvΩΨ X such that (3.10) is commutative.

4◦ Suppose Φ ⊆ Mor(K) ◦ Ψ . For (a) our reasoning is illustrated by the diagram

X
σ //

ψ

$$

ϕ

**

X ′

ψ′

yy

ϕ′

tt

Y

χ
��

B

If σ : X → X ′ is an extension of X in Ω with respect to Ψ , then for any morphism

ϕ : X → B in Φ, we take a decomposition ϕ = χ ◦ ψ where ψ ∈ Ψ . There is a morphism

ψ′ such that ψ = ψ′ ◦ σ. Set ϕ′ = χ ◦ ψ′, and note that

ϕ = χ ◦ ψ = χ ◦ ψ′ ◦ σ = ϕ′ ◦ σ.

The uniqueness of ϕ′ follows from the epimorphy of σ ∈ Ω, and thus σ is an extension

of X in Ω with respect to Φ. Once (a) is proved, (b) becomes a corollary: the morphism

envΩΨX : X → EnvΩΨX is an extension of X in Ω with respect to Ψ , hence, by (a), with

respect to Φ as well. So there exists a morphism β from EnvΩΨX into EnvΩΦX such that

(3.11) is commutative.

5◦ For any morphism ϕ : Y → B in Φ we have the following diagram:

X
envΩΦ Y ◦ε //

ε
��

ϕ◦ε

**

EnvΩΦ Y

ϕ′

rr

Y

ϕ

��

envΩΦ Y

;;

B

It should be understood as follows. On the one hand, since envΩΦ Y is an extension with

respect to Φ, there exists a morphism ϕ′ such that the lower right triangle is commutative,

and as a corollary, the perimeter is commutative as well. On the other hand, if ϕ′ is a

morphism such that the perimeter is commutative, i.e.

ϕ′ ◦ envΩΦ Y ◦ ε = ϕ ◦ ε,

then, since ε is an epimorphism, we can cancel it:

ϕ′ ◦ envΩΦ Y = ϕ.

So the lower right triangle is commutative as well. This means that ϕ′ is unique (since

by the definition of envelope, the dashed arrow in the lower right triangle is unique).
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We see that the perimeter has a unique dashed arrow ϕ′. This is true for any ϕ ∈ Φ,

and in addition envΩΦ Y ◦ ε ∈ Ω. So we come to the conclusion that envΩΦ Y ◦ ε is an

extension of X in Ω with respect to Φ ◦ ε. As a corollary, there exists a unique morphism

υ from EnvΩΦ Y into EnvΩΦ◦εX Φ ◦ ε such that (3.12) is commutative.

• Let us say that in a category K a class Φ of morphisms is generated on the inside by a

class Ψ of morphisms if

Ψ ⊆ Φ ⊆ Mor(K) ◦ Ψ. (3.13)

Theorem 3.5. Suppose that in a category K a class Φ of morphisms is generated on the

inside by a class Ψ of morphisms. Then for any class Ω of epimorphisms (not necessarily

all) and any object X the existence of envΩΨX is equivalent to the existence of envΩΦX,

and

envΩΨX = envΩΦX. (3.14)

Proof. Suppose first that envΩΨX exists. Since it is an extension with respect to Ψ , and

at the same time an epimorphism, by 2◦(a) we see that it is an extension with respect to

Φ as well. If σ : X → X ′ is another extension with respect to Φ, then by 3◦(a) it is an

extension with respect to Ψ as well, so there exists a unique morphism υ : EnvΩΨ X ← X ′

such that

X

EnvΩΨ X X ′
zz

envΩΨ X

$$

σ

oo ∃!υ

This means that envΩΨX is an envelope with respect to Φ, and (3.14) holds.

Conversely, suppose that envΩΦX exists. It is an extension with respect to Φ, so by

2◦(a) it is an extension with respect to Ψ as well. If σ : X → X ′ is another extension in

Ω with respect to Ψ , then since σ ∈ Epi, by 3◦(a) it must be an extension with respect

to Φ, so there exists a unique morphism υ : X ′ → EnvΩΦ X such that

X

X ′ EnvΩΦ X
zz

σ
$$

envΩΦ X

//∃!υ

This means that envΩΦX is an envelope with respect to Ψ , and again we have (3.14).

• Let us say that a class Φ of morphisms in a category K separates morphisms on the

outside if for any two morphisms α 6= β : X → Y there is a morphism ϕ : Y → M in

Φ such that ϕ ◦ α 6= ϕ ◦ β.

Theorem 3.6. If a class Φ of morphisms separates morphisms on the outside, then for

any class Ω of morphisms:

(i) each extension in Ω with respect to Φ is a monomorphism;

(ii) an envelope with respect to Φ in Ω exists if and only if there exists an envelope with

respect to Φ in Ω ∩Mono; in this case envΩΦ = envΩ∩Mono
Φ ;
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(iii) if Ω contains all monomorphisms, then the existence of an envelope with respect to

Φ in Mono automatically implies the existence of an envelope with respect to Φ in Ω,

and envΩΦ = envMono
Φ .

Proof. (i) Suppose that some extension σ : X → X ′ is not a monomorphism, i.e. there

are parallel morphisms α 6= β : T → X such that

σ ◦ α = σ ◦ β. (3.15)

Since Φ separates morphisms on the outside, there exists a morphism ϕ : X → M in Φ

such that

ϕ ◦ α 6= ϕ ◦ β. (3.16)

As σ : X → X ′ is an extension with respect to Φ, there is a continuation ϕ′ : X ′ →M of

the morphism ϕ : X →M : ϕ = ϕ′ ◦ σ. Now we obtain

ϕ ◦ α = ϕ′ ◦ σ ◦ α (3.15)
= ϕ′ ◦ σ ◦ β = ϕ ◦ β,

and this contradicts (3.16).

(ii) Suppose for an object X there exists an envelope envΩΦ X. Then, as already proved,

it is an extension in Ω ∩Mono with respect to Φ. Applying property 1◦(c) on p. 44, we

deduce that envΩΦ X = envΩ∩Mono
Φ X.

Conversely, suppose there is an envelope envΩ∩Mono
Φ X. By 1◦(a) on p. 44, it is an

extension with respect to Φ in Ω. Consider another extension σ : X → X ′ with respect

to Φ in Ω. By (i), σ is an extension with respect to Φ in Ω ∩ Mono. Hence, there is a

unique morphism υ : X ′ → EnvΩ∩Mono
Φ X such that

X

X ′ EnvΩ∩Mono
Φ X

ww

σ
''

envΩ∩Mono
Φ X

//υ

This proves that envΩ∩Mono
Φ X is (not only an extension, but also) an envelope with respect

to Φ in the class Ω.

(iii) immediately follows from (ii).

• Let us recall that a class Φ of morphisms in a category K is called a right ideal if

Φ ◦Mor(K) ⊆ Φ.

Theorem 3.7. If a class Φ of morphisms separates morphisms on the outside and is a

right ideal in the category K, then for any class Ω of morphisms:

(i) each extension in Ω with respect to Φ is a bimorphism;

(ii) an envelope with respect to Φ in Ω exists if and only if there exists an envelope

with respect to Φ in the class Ω ∩ Bim of bimorphisms belonging to Ω; in this case

envΩΦ = envΩ∩BimΦ ;

(iii) if Ω contains all bimorphisms, then an envelope with respect to Φ in Ω exists if and

only if there exists an envelope with respect to Φ in Bim, and envΩΦ = envBimΦ .

Proof. By property 2◦ on p. 44, (ii) and (iii) follow from (i). To prove (i), let σ : X → X ′

be an extension in Ω with respect to Φ. By Theorem 3.6(i), σ is a monomorphism.
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Suppose that it is not an epimorphism. This means that there are parallel morphisms

α 6= β : X ′ → T such that

α ◦ σ = β ◦ σ. (3.17)

Since Φ separates morphisms on the outside, there is ϕ : T →M in Φ such that

ϕ ◦ α 6= ϕ ◦ β.

In addition, by (3.17),

ϕ ◦ α ◦ σ = ϕ ◦ β ◦ σ.

If we now suppose that Φ is a right ideal in K, then ϕ ◦ α ◦ σ = ϕ ◦ β ◦ σ is in Φ. So we

can interpret this picture as follows: the test (i.e. belonging to Φ) morphism ϕ ◦ α ◦ σ =

ϕ ◦ β ◦ σ : X → M has two different continuations ϕ ◦ α 6= ϕ ◦ β : X ′ → M along

σ : X → X ′. This means that σ cannot be an extension with respect to Φ.

3.1.2. Envelope in a class of objects with respect to a class of objects. A special

case of the construction is when Ω and/or Φ are classes of all morphisms into the objects

from some given subclasses of Ob(K). A precise formulation for the case when both Ω

and Φ are defined in that way is the following. Suppose we have a category K and two

subclasses L and M in Ob(K).

• A morphism σ : X → X ′ is called an extension of the object X ∈ K in the class L with

respect to the class M if X ′ ∈ L and for any object B ∈ M and any morphism ϕ : X → B

there exists a unique morphism ϕ′ : X ′ → B such that

3

L

3

M

X

X ′ B
��

σ

��

∀ϕ

//
∃!ϕ′

• An extension ρ : X → E of X ∈ K in L with respect to M is called an envelope of the

object X ∈ K in the class L with respect to the class M, in symbols

ρ = envLMX, (3.18)

if for any other extension σ : X → X ′ (in L with respect to M) there exists a unique

morphism υ : X ′ → E such that

3

L

3

L

X

X ′ E
��

∀σ

��

ρ

//∃!υ (3.19)

The object E is also called an envelope of X (in the class L with respect to the class M),

and we will write

E = EnvLMX. (3.20)

The following two extreme situations in the choice of L can occur:
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– If L = Ob(K), then we will speak about an envelope of an object X ∈ K in the category

K with respect to the class M of objects, and the notation will be

envMX := envKMX, EnvMX := EnvKMX. (3.21)

– If L = M, then the notions of extension and envelope coincide: each extension of X in

L with respect to L is an envelope of X in L with respect to L (indeed, if ρ : X → E

and σ : X → X ′ are two extensions in L with respect to L, then in diagram (3.19) the

morphism υ exists and is unique just because σ is an extension); for simplicity, in the

case of L = M we speak about the envelope of X in L, and our notation simplifies

envLX := envLLX, EnvLX := EnvLLX. (3.22)

• Let us say that a class M of objects in a category K separates morphisms on the outside,

if the class of morphisms with ranges in M has this property, i.e. for any morphisms

α 6= β : X → Y there is a morphism ϕ : Y →M in M such that ϕ ◦ α 6= ϕ ◦ β.

From Theorem 3.7 we have

Theorem 3.8. If a class M of objects separates morphisms on the outside, then for any

class L of objects:

(i) each envelope in L with respect to M is a bimorphism;

(ii) an envelope in L with respect to M exists if and only if there exists an anvelope in the

class of bimorphisms with values in L with respect to M; in this case envLM = env
Bim(K,L)
M .

3.1.3. Examples of envelopes

Example 3.9 (Universal enveloping algebra). Let K = LieAlg be the category of Lie

algebras (say, over C), T = Alg the category of associative algebras (again over C) with

identity, and F : Alg → LieAlg the functor that represents every associative algebra A

as the Lie algebra with Lie bracket

[x, y] = x · y − y · x.

Then the envelope of a Lie algebra g over Alg in Mor(LieAlg, F (Alg)) with respect to

Mor(LieAlg, F (Alg)) is exactly the universal enveloping algebra U(g) (cf. [9]): U(g) =

EnvMor(LieAlg,F (Alg))g.

Example 3.10 (Stone–Čech compactification). In the category Tikh of Tikhonov spaces

the Stone–Čech compactification β : X → βX is an envelope of the space X in the class

Com of compact spaces with respect to the same class Com: βX = EnvComX.

Proof. Here one uses [13, Theorem 3.6.1], which states that any continuous map f : X→K

into an arbitrary compact space K can be extended to a continuous map F : βX → K.

Since β(X) is dense in βX, this extension F is unique, and therefore β : X → βX is an

extension in Com with respect to Com. By the remark containing (3.22), in the case L = M

each extension is an envelope, so β is an envelope.

Example 3.11. The completion XH of a locally convex space X is an envelope of X

in the category LCS of all locally convex spaces with respect to the class Ban of Banach

spaces: XH = EnvLCSBanX.
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Proof. Let us denote the natural embedding of X into its completion by HX : X → XH

(we use the notation of [2]).

First, each continuous linear map f : X → B into an arbitrary Banach space B

uniquely extends to a continuous linear map F : XH → B (here one can refer, for

instance, to the general theorem for all uniform spaces [13, Theorem 8.3.10]). Hence, the

completion HX : X → XH is an extension of X in LCS with respect to the subclass Ban.

Note that Ban separates morphisms on the outside in LCS. By Theorem 3.8 this means

that any extension σ : X → X ′ with respect to Ban is a bimorphism in LCS, i.e. σ is

injective and σ(X) is dense in X ′. Let us show that in addition σ is an open map: for

any zero neighborhood U ⊆ X there is a zero neighborhood V ⊆ X ′ such that

σ(U) ⊇ V ∩ σ(X). (3.23)

We can assume that U is closed and convex. Then KerU =
⋂
ε>0 ε ·U is a closed subspace

in X. Consider the quotient space X/KerU and endow it with the topology of normed

space with unit ball U + KerU . Then (X/KerU)H will be a Banach space, and we will

denote it by A/U . The natural map (the composition of the quotient map X → X/KerU

and the completion X/KerU → (X/KerU)H) will be denoted by πU : X → X/U . Since

σ : X → X ′ is an extension with respect to Ban, the map πU : X → X/U extends to

some continuous linear map (πU )′ : X ′ → X/U :

X X ′

X/U

//σ

��πU �� (πU )′

If we denote by W the unit ball in X/U , i.e. the closure of U + KerU in (X/KerU)H =

X/U , then for the zero neighborhood V = ((πU )′)−1(W ) we obtain the following chain,

which proves (3.23):

y ∈ V ∩ σ(X) ⇒ ∃x ∈ X y = σ(x) & y ∈ V
⇒ ∃x ∈ X y = σ(x) & (πU )′(y) = (πU )′(σ(x)) = πU (x) ∈W︸ ︷︷ ︸

m
x ∈ U

⇒ ∃x ∈ U y = σ(x) ⇒ y ∈ σ(U).

Thus, σ : X → X ′ is an open and injective continuous linear map, and σ(X) is dense

in X ′. This means that X ′ can be perceived as a subspace in the completion XH with

the induced topology. That is, there is a unique continuous linear map υ : X ′ → XH such

that

X

X ′ XH
��

σ

��

HX

//υ

We conclude that HX : X → XH is an envelope of X in LCS with respect to Ban.
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3.2. Refinement

3.2.1. Refinement in a class of morphisms by means of a class of morphisms.

Suppose we have:

– a category K, called the enveloping category,

– a category T, called the repelling category,

– a covariant functor F : T→ K,

– two classes Γ and Φ of morphisms in K whose domains are objects of F (T); Γ is called

a class of realizing morphisms, and Φ a class of test morphisms.

Then:

• For X ∈ Ob(K) and X ′ ∈ Ob(T) a morphism σ : F (X ′) → X is called an enrichment

of the object X ∈ K in the class Γ over the category T by means of the class Φ if σ ∈ Γ
and for any object B in T and any morphism ϕ : F (B) → X in Φ there is a unique

morphism ϕ′ : B → X ′ in T such that

X

F (B) F (X ′)

??
Φ3ϕ

//
F (ϕ′)

__
σ∈Γ

(3.24)

• An enrichment ρ : F (E)→ X of X ∈ K in Γ over T by means of Φ is called a refinement

of the object X ∈ K in the class Γ over the category T by means of the class Φ if for

any other enrichment σ : F (X ′)→ X (of X ∈ K in Γ over T by means of Φ) there is a

unique morphism υ : E → X ′ in T such that

X

F (E) F (X ′)

??
ρ

//
F (υ)

__
σ

(3.25)

In what follows, we are almost exclusively interested in the case when T = K and

F : K→ K is the identity functor. As in the case of envelopes, we formulate the definitions

for this situation separately.

• A morphism σ : X ′ → X in K is called an enrichment of the object X ∈ Ob(K) in the

class Γ by means of the class Φ if σ ∈ Γ and for any morphism ϕ : B → X in Φ there

exists a unique morphism ϕ′ : B → X ′ in K such that

X

B X ′

??∀ϕ∈Φ

//
∃!ϕ′

__
σ∈Γ

(3.26)

• An enrichment ρ : E → X of X ∈ Ob(K) in Γ by means of Φ is called a refinement of

X in the class Γ by means of Φ if for any other enrichment σ : X ′ → X (of X in Γ by
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means of Φ) there exists a unique morphism υ : E → X ′ in K such that

X

E X ′

??ρ

//∃!υ

__ ∀σ
(3.27)

For a refinement ρ : E → X we use the notation

ρ = refΓΦ X. (3.28)

The very object E is also called a refinement of X in Γ by means of Φ, and is denoted

by

E = RefΓΦ X. (3.29)

Remark 3.12. As in the case of envelopes, the refinement RefΓΦ X (if any) is defined up

to isomorphism. The question when the correspondence X 7→ RefΓΦ X can be defined as

a functor is discussed below starting from p. 70.

Remark 3.13. If Γ = ∅, then, of course, neither enrichments nor refinements of the

objects of K exist in Γ . So this construction is interesting only if Γ is a non-empty class.

The following two situations will be of special interest:

– Γ = Mono(K) (the class of all monomorphisms of K); then we will use the notation

refMono
Φ X := ref

Mono(K)
Φ X, RefMono

Φ X := Ref
Mono(K)
Φ X. (3.30)

– Γ = Mor(K) (the class of all morphisms of K); in this case it is convenient to omit Γ

from the formulations and notation, so we will be speaking about refinements of X ∈ K

in K by means of Φ, and the notation will be simplified to

refΦX := ref
Mor(K)
Φ X, RefΦX := Ref

Mor(K)
Φ X. (3.31)

Remark 3.14. Another degenerate, but this time informative case is when Φ = ∅. It is

essential that for a given object X, Φ does not contain morphisms coming to X:

ΦX = {ϕ ∈ Φ : Ranϕ = X} = ∅.

Then, obviously, any morphism σ ∈ Γ coming to X, σ : X ← X ′, is an enrichment

of X (in Γ by means of the class of morphisms ∅). If in addition Γ = Mono, then the

refinement will be the initial object of the category MonoX (if it exists):

RefΓ∅ X = min MonoX .

On the other hand, if K is a category with 0, and Γ contains all morphisms going from 0,

then the refinement in Γ of each object by means of the empty class of morphisms is 0:

refΓ∅ X = 0.

Remark 3.15. Another extreme situation is when Φ = Mor(K). For a given object X the

essential thing here is that Φ contains the local identity of X. Then for any enrichment

σ the diagram

X X ′
σoo

B
1X

`` >>
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implies that σ is a coretraction (moreover, the dashed arrow is unique). In the special

case of Γ ⊆ Mono this is possible only if σ is an isomorphism. As a corollary, refΓMor(K)X

coincides here with X (up to isomorphism).

Properties of refinements.

1◦ Suppose Σ ⊆ Γ . Then for any object X and any class Φ of morphisms:

(a) every enrichment σ : X ← X ′ in Σ by means of Φ is an enrichment in Γ by

means of Φ;

(b) if there are refinements refΣΦ X and refΓΦ X, then there is a unique morphism ρ :

RefΣΦ X ← RefΓΦ X such that

X

RefΣΦ X RefΓΦ X

??
refΣΦ X

__
refΓΦ X

oo
ρ

(3.32)

(c) if there is refΓΦ X ∈ Σ, then refΓΦ X = refΣΦ X.

2◦ Let Σ,Γ, Φ be classes of morphisms, and suppose for an object X that

(a) every enrichment σ : X ← X ′ in Γ by means of Φ belongs to Σ.

Then:

(b) a refinement of X in Γ by means of Φ exists if and only if there exists a refinement

of X in Γ ∩Σ by means of Φ; in this case refΓΦ = refΓ∩ΣΦ ;

(c) if Σ ⊆ Γ , then the existence of a refinement of X in Σ by means of Φ automat-

ically implies the existence of a refinement of X in Γ by means of Φ and their

coincidence.

3◦ Suppose Ψ ⊆ Φ. Then for any object X and any class of Γ morphisms:

(a) every enrichment σ : X ← X ′ of X in Γ by means of Φ is an enrichment of X in

Γ by means of Ψ ;

(b) if there are refinements refΓΨ X and refΓΦ X, then there is a unique morphism α :

refΓΨ X → refΓΦ X such that

X

RefΓΨ X RefΓΦ X

??
refΓΨ X

//α

__
refΓΦ X

(3.33)

4◦ Suppose Φ ⊆ Ψ ◦Mor(K). Then for any object X and for any class Γ of morphisms:

(a) if an enrichment σ : X ← X ′ in Γ by means of Ψ is at the same time a monomor-

phism in K, then it is an enrichment in Γ by means of Φ;

(b) if there are refinements refΓΨ X and refΓΦ X, and refΓΨ X is at the same time a

monomorphism in K, then there is a unique morphism β : refΓΨ X ← refΓΦ X such

that
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X

RefΓΨ X RefΓΦ X

??
refΓΨ X

__
refΓΦ X

oo
β

(3.34)

5◦ Let Γ,Φ classes of morphisms and a monomorphism µ : X ← Y in K satisfy the

following conditions:

(a) there is a refinement RefΓµ◦ΦX (by means of µ ◦ Φ = {µ ◦ ϕ; ϕ ∈ Φ});
(b) there is a refinement RefΓΦ Y ;

(c) µ ◦ refΓΦ Y ∈ Γ .

Then there is a unique morphism υ : RefΓµ◦ΦX → RefΓΦ Y such that

X Y
µ

oo

RefΓµ◦ΦX

refΓµ◦ΦX

OO

υ // RefΓΦ Y

refΓΦ Y

OO

µ ◦ refΓΦ Y
ee

(3.35)

• Let us say that in a category K a class Φ of morphisms is generated on the outside by

a class Ψ of morphisms if

Ψ ⊆ Φ ⊆ Ψ ◦Mor(K).

The following fact is dual to Theorem 3.5 and is proved by analogy:

Theorem 3.16. Suppose in a category K a class Φ of morphisms is generated on the out-

side by a class Ψ of morphisms. Then for any class Γ of monomorphisms (not necessarily

all) and any object X the existence of refΓΨ X is equivalent to the existence of refΓΦ X, and

refΓΨ X = refΓΦ X. (3.36)

• Let us say that a class Φ of morphisms in a category K separates morphisms on the

inside if for any morphisms α 6= β : X → Y there is a morphism ϕ : M → X in Φ such

that α ◦ ϕ 6= β ◦ ϕ.

The following result is dual to Theorem 3.6:

Theorem 3.17. If a class Φ of morphisms separates morphisms on the inside, then for

any class Γ of morphisms:

(i) every enrichment in Γ by means of Φ is an epimorphism;

(ii) a refinement in Γ by means of Φ exists if and only if there exists a refinement in

Γ ∩Mono by means of Φ; in that case refΓΦ = refΓ∩EpiΦ ;

(iii) if Γ ⊇ Epi, then the existence of a refinement in Epi by means of Φ automatically

implies the existence of a refinement in Γ by means of Φ, and their coincidence.

• Let us recall that a class Φ of morphisms in a category K is called a left ideal if

Mor(K) ◦ Φ ⊆ Φ.

The following is dual to Theorem 3.7:
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Theorem 3.18. If a class Φ of morphisms separates morphisms on the inside and is a

left ideal in a category K, then for any class Γ of morphisms:

(i) every enrichment in Γ by means of Φ is a bimorphism;

(ii) a refinement in Γ by means of Φ exists if and only if there exists a refinement in

Γ ∩ Bim by means of Φ; in that case refΓΦ = refΓ∩BimΦ ;

(iii) if Γ contains all bimorphisms, then a refinement in Γ by means of Φ exists if and

only if there exists a refinement in Bim by means of Φ, and refΓΦ = refBimΦ .

3.2.2. Refinement in a class of objects by means of a class of objects. A special

case is when Γ and/or Φ are classes of all morphisms from a given subclass of Ob(K). An

exact formulation for the case when both Γ and Φ are defined in this way is the following.

Suppose we have a category K and two subclasses L and M of Ob(K).

• A morphism σ : X ′ → X is called an enrichment of the object X ∈ K in the class L by

means of the class M if for any B ∈ M and any morphism ϕ : B → X there is a unique

morphism ϕ′ : B → X ′ such that

3

M

3

L

X

B X ′

??∀ϕ

//
∃!ϕ′

__
σ

• An enrichment ρ : E → X of X ∈ K in L by means of M is called a refinement of the

object X ∈ K in the class L by means of the class M, in symbols

ρ = refLMX, (3.37)

if for any other enrichment σ : X ′ → X (of X ∈ K in L by means of M) there is a unique

morphism υ : E → X ′ such that

3

L

3

L

X

E X ′

??
ρ

//∃!υ

__
∀σ

(3.38)

The very object E is also called a refinement of X ∈ K in L by means of M, and we

write

E = RefLMX. (3.39)

The following two extreme situations in the choice of L can occur:

– If L = Ob(K), then we speak about a refinement of the object X ∈ K in the category K

by means of the class M, and the notation will be

refMX := refKMX, RefMX := RefKMX. (3.40)

– If L = M, then the notions of enrichment and of refinement coincide: every enrichment

of X ∈ K in L by means of L is a refinement of X in L by means of L (since if ρ : E → X
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and σ : X ′ → X are two enrichments of X in L by means of L, then in diagram (3.38)

the morphism υ exists and is unique just because σ is an enrichment); for simplicity,

in this case we will be speaking about a refinement of X in L, and the notation will be

refLLX =: refLX, RefLLX =: RefLX. (3.41)

• Let us say that a class M of objects in the category K separates morphisms on the inside

if the class of all morphisms going from objects of M has this property, i.e. for any

morphisms α 6= β : X → Y there is a morphism ϕ : M → X such that α ◦ ϕ 6= β ◦ ϕ.

Theorem 3.18 implies

Theorem 3.19. If a class M of objects separates morphisms on the inside, then for any

class L of objects:

(i) every enrichment in L by means of M is a bimorphism,

(ii) a refinement in L by means of M exists if and only if there exists a refinement in the

class of bimorphisms going from L by means of M; in that case refLM = ref
Bim(L,K)
M .

3.2.3. Examples of refinements

Example 3.20. A simply connected covering used in the theory of Lie groups is from the

categorical point of view a refinement in the class of pointed simply connected coverings

by means of the empty class of morphisms in the category of connected locally connected

and semilocally simply connected topological spaces (see definitions in [33]).

Example 3.21. The bornologification (see definition in [22]) Xborn of a locally convex

space X is a refinement of X in the category LCS of locally convex spaces by means of

the subcategory Norm of normed spaces: Xborn = RefLCSNormX.

Proof. This follows from the characterization of bornologification as the strongest locally

convex topology on X for which all the imbeddings XB → X are continuous, where B

runs over the system of bounded absolutely convex subsets in X, and XB is a normed

space with unit ball B (see [22, Chapter I, Lemma 4.2]).

Example 3.22. The saturation XN of a pseudocomplete locally convex space X is a

refinement of X in the category LCS of locally convex spaces by means of the subcategory

Smi of Smith spaces (see definitions in [2]): XN = RefLCSSmiX.

3.3. Connection with factorizations and with nodal decomposition

3.3.1. Connection with projective and injective limits. The similarity between

the notions of envelope and projective limit is formalized in the following

Lemma 3.23. The projective limit ρ = lim←− ρ
i : X → lim←−X

i of any projective cone {ρi :

X → Xi; i ∈ I} from a given object X into a covariant (or contravariant) system {Xi; ιji}
is an envelope of X in an arbitrary class Ω containing ρ with respect to the system

{ρi; i ∈ I}:
ρ = lim←− ρ

i ∈ Ω ⇒ EnvΩ{ρi; i∈I}X = lim←−X
i. (3.42)

In particular, this is always true for Ω = Mor(K):

Env
Mor(K)
{ρi; i∈I}X = lim←−X

i. (3.43)
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Proof. First, ρ is an extension of X with respect to {ρi}, since the definition of projective

limit guarantees that for any ρj there exists a unique continuation πj on lim←−X
i:

X lim←−X
i

Xj

//
ρ

��ρj �� πj
(3.44)

Suppose now that σ : X→X ′ is another extension. Then for any morphism ρj : X→Xj

there is a unique morphism υj : X ′ → Xj such that

X X ′

Xj

//σ

��ρj �� υj
(3.45)

For any indices i ≤ j in the diagram

X

ρi

��

σ
�� ρj





X ′

υi}} υj !!

Xi
ιji 44 Xj

the following elements will be commutative: the two upper triangles (each has one dashed

arrow) and the perimeter (without dashed arrows). This together with the uniqueness of

υj in the upper right triangle implies that the lower triangle (with two dashed arrows) is

commutative as well:{
(ιji ◦ υi) ◦ σ = ιji ◦ (υi ◦ σ) = ιji ◦ ρi = ρj

υj ◦ σ = ρj
⇒ ιji ◦ υ

i = υj .

The commutativity of the triangle with two dashed arrows means in turn that X ′ with

the system of morphisms υi is a projective cone of the covariant system {Xi; ιji}. So there

exists a unique morphism υ such that for any j in the diagram

X

ρ

��

σ
�� ρj





X ′

υ
|| υj   

lim←−X
i

πj 44 Xj

the lower triangle is commutative. On the other hand, the upper right triangle here

is also commutative since this is diagram (3.45) turned around, and the perimeter is

commutative since this is diagram (3.44) turned around. Together with the uniqueness

of ρ in the system of all those perimeters with different j this implies that the upper left
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triangle is also commutative:(
∀j
{
πj ◦ υ ◦ σ = υj ◦ σ = ρj

πj ◦ ρ = ρj

)
⇒ υ ◦ σ = ρ.

We observe that there is a morphism υ such that diagram (3.4) is commutative (with

E = lim←−X
i). It remains to verify that such a morphism is unique. Let υ′ be another

morphism with the same property: ρ = υ′ ◦ σ. Consider the diagram

X

ρ

��

σ
�� ρj





X ′

υ′|| υj   

lim←−X
i

πj 44 Xj

Here (besides the upper left triangle) the upper right triangle will be commutative (since

this is diagram (3.45) turned around), and the perimeter as well (since this is diagram

(3.44) turned around). Together with the uniqueness of the arrow υj in the upper right

triangle, this implies that the lower triangle is also commutative:{
πj ◦ υ′ ◦ σ = πj ◦ ρ = ρj

υj ◦ σ = ρj
⇒ πj ◦ υ′ = υj .

This is true for each index j, so υ′ must coincide with the morphism υ which we con-

structed before.

Lemma 3.24. Let Ω be a monomorphically complemented class in a category K, {Xi; ιji}
a covariant (or contravariant) system, and {ρi : X → Xi; i ∈ I} a projective cone from a

given object X into {Xi; ιji}. If ρ = lim←− ρ
i : X → lim←−X

i exists, then in its factorization

ρ = µρ ◦ ερ, µρ ∈ ↓Ω, ερ ∈ Ω,

the epimorphism ερ is an envelope of X with respect to the system {ρi; i ∈ I} of mor-

phisms in Ω:

εlim←− ρi = ερ = envΩ{ρi; i∈I}X, Ran εlim←− ρi = Ran ερ = EnvΩ{ρi; i∈I}X. (3.46)

Proof. By definition of projective limit every ρj has an extension πj to lim←−X
i. The

restriction of πj to Ran ερ, i.e. the composition τ j = πj ◦ µρ, is an extension of ρj to

Ran ερ along ερ:

X
ερ

//

ρj ,,

ρ

))

Ran ερ µρ
//

τj��

lim←−X
i

πjrrXj

(3.47)

Such an extension τ j is unique since ερ ∈ Epi, and we can say that ερ is an extension of

X in Ω with respect to the system {ρi}.
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Now, let σ : X → X ′ be another extension of X in Ω with respect to {ρi}. As in the

proof of Lemma 3.23, we find a morphism υ such that υ ◦ σ = ρ. We have

υ ◦ σ = ρ = µρ ◦ ερ,

and since σ ∈ Ω, µρ ∈ ↓Ω, there exists a diagonal morphism δ such that

δ ◦ σ = ερ.

This morphism is unique since σ ∈ Ω ⊆ Epi.

The dual results are as follows.

Lemma 3.25. The injective limit ρ = lim−→ ρi : X ← lim−→Xi of any injective cone {ρi :

X ← Xi; i ∈ I} into a given object X from a covariant (or contravariant) system {Xi; ιji}
is a refinement of X in an arbitrary class Γ of objects containing ρ by means of the system

{ρi; i ∈ I}:
ρ = lim−→ ρi ∈ Γ ⇒ RefΓ{ρi; i∈I}X = lim−→Xi. (3.48)

In particular, this is true for Γ = Mor(K):

Ref
Mor(K)
{ρi; i∈I}X = lim−→Xi. (3.49)

Lemma 3.26. Let Γ be an epimorphically complementable class in a category K, {Xi; ιji}
a covariant (or contravariant) system, and {ρi : X ← Xi; i ∈ I} an injective cone from

{Xi; ιji} into a given object X. If ρ = lim−→ ρi : X ← lim−→Xi exists, then in its factorization

ρ = µρ ◦ ερ, µρ ∈ Γ, ερ ∈ Γ ↓,

the monomorphism µρ is a refinement of X in Γ by means of the system {ρi; i ∈ I}:

refΓ{ρi; i∈I}X = µρ = µlim−→ ρi , RefΓ{ρi; i∈I}X = Domµρ = Domµlim−→ ρi . (3.50)

3.3.2. Existence of envelopes and refinements for complementable classes

Lemma 3.27. Let Ω be a monomorphically complementable class in a category K. Then

for each object X and any class Φ of morphisms,

envΩΦ X = envΩ{εϕ;ϕ∈Φ}X (3.51)

(this means that if one of these envelopes exists then so does the other and they coincide).

Proof. Let ϕ = µϕ ◦ εϕ be a factorization with µϕ ∈ ↓Ω and εϕ ∈ Ω. We need to verify

that the extensions with respect to the classes Φ and {εϕ; ϕ ∈ Φ} are the same. Let

σ : X → X ′ be an extension of X in Ω with respect to {εϕ; ϕ ∈ Φ}. Then in the diagram

X
σ //

εϕ $$

ϕ

,,

X ′

ε′yy

ϕ′

rr

Ran εϕ

µϕ
��

Y

the existence of ε′ for which the upper little triangle is commutative implies the existence

of ϕ′ for which the lower right triangle is commutative, and since the lower left triangle
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is commutative, we conclude that so is the perimeter. In addition, ϕ′ is unique since σ is

an epimorphism. Hence, σ : X → X ′ is an extension of X with respect to Φ.

Conversely, suppose that σ : X → X ′ is an extension of X with respect to Φ. Then

for any ϕ ∈ Φ there exists a morphism ϕ′ such that in the diagram

X
σ //

εϕ %%

ϕ

,,

X ′

ϕ′

rr

Ran εϕ
µϕ
��

Y

the perimeter is commutative. The lower left triangle is commutative as well due to (2.39),

hence so is the quadrangle

X
σ //

εϕ %%

X ′

ϕ′

rr

Ran εϕ
µϕ
��

Y

Here σ ∈ Ω and µϕ ∈ Ω↓. Thus, there exists a diagonal ε′:

X
σ //

εϕ %%

X ′

ϕ′

rr

ε′yy

Ran εϕ
µϕ
��

Y

In particular, the upper triangle is commutative, and since this is true for any ϕ ∈ Φ,

σ : X → X ′ is an extension of X with respect to {εϕ; ϕ ∈ Φ}.

Properties of envelopes in monomorphically complementable classes. Let

Ω be a monomorphically complementable class in a category K.

1◦ For each morphism ϕ : X → Y in K the epimorphism εϕ in the factorization ϕ =

µϕ ◦ εϕ (defined by the classes ↓Ω and Ω) is an envelope of X in Ω with respect to ϕ:

envΩϕ X = εϕ, EnvΩϕ X = Ran εϕ. (3.52)

2◦ If K is a category with finite products, then each object X in K has an envelope in Ω

with respect to an arbitrary finite set Φ of morphisms going from X.

3◦ If K is a category with products (1), then every object X in K has an envelope in Ω

with respect to an arbitrary set Φ of morphisms going from X.

4◦ If K is a category with products, then every object X in K has an envelope in Ω with

respect to an arbitrary class Φ of morphisms going from X and having a subset which

generates Φ on the inside (see p. 47).

5◦ If K has products, and is co-well-powered in Ω, then every object X in K has an

envelope in Ω with respect to an arbitrary class Φ of morphisms going from X.

(1) In 3◦–5◦ we assume that K has products over arbitrary index sets, not necessarily finite.
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Proof. 1◦ The morphism εϕ is an extension of X in Ω with respect to ϕ, as is seen from

the diagram

X
εϕ
//

ϕ ��

Ran εϕ

µϕ{{
Y

(3.53)

Let σ : X → N be another extension of X in Ω with respect to ϕ:

X
σ //

ϕ   

N

∃!ν~~

Y

We have a commutative diagram

X
ϕ

//

σ

$$

εϕ
##

Y

N

ν
::

Ran εϕ

µϕ

LL

Here σ ∈ Ω and µϕ ∈ ↓Ω, hence there exists a diagonal of the lower quadrangle:

X
ϕ

//

σ

$$

εϕ
##

Y

N

ν
::

υ
��

Ran εϕ

µϕ

LL

The morphism υ is the one in diagram (3.4) which connects the extension σ with the

envelope εϕ. Its uniqueness follows from the epimorphy of σ.

2◦ Let X be an object and Φ a finite set of morphisms. Clearly, it is sufficient to

pick in Φ a subset ΦX = {ϕ : X → Yϕ; ϕ ∈ ΦX} of morphisms going from X. Then the

envelope with respect to Φ is the same as the envelope with respect to ΦX . Consider the

product
∏
ϕ∈ΦX Yϕ of objects and the product

∏
ϕ∈ΦX ϕ : X →

∏
ϕ∈ΦX Yϕ of morphisms.

The envelope of X with respect to ΦX is exactly the envelope of X with respect to one

morphism,
∏
ϕ∈ΦX ϕ. We conclude by applying 1◦.

3◦ Let K be a category with products over an arbitrary (not necessarily finite) index

set. Then the above reasoning works in the case when Φ is a set (not necessarily finite)

of morphisms.

4◦ Let Ψ ⊆ Φ be a subset (not a proper class) generating Φ on the inside. By 3◦, every

object X has an envelope with respect to Ψ . And by (3.14) this envelope coincides with

the envelope with respect to Φ.

5◦ Let K be a category with products (over an arbitrary set of indices), A an object

in K, and Φ a class of morphisms (not necessarily a set). The idea of the proof is to replace

the class Φ by a set M of morphisms such that the envelope will be the same. As in 2◦, we

can assume that Φ consists of morphisms going from X. Then for any ϕ ∈ Φ we consider
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the morphism εϕ. By Lemma 3.27, we can replace Φ by the class {εϕ; ϕ ∈ Φ}:

envEpiΦ X = envEpi{εϕ;ϕ∈Φ}X.

Next we recall that all εϕ belong to Ω, and since our category is co-well-powered in

the class Ω, we can choose among εϕ a set M such that every εϕ will be isomorphic to

some ε ∈ M , i.e. εϕ = ι ◦ ε for some isomorphism ι. The set M now replaces the class

{εϕ; ϕ ∈ Φ} (and hence the class Φ), and so 3◦ works.

The dual results for refinements look as follows.

Lemma 3.28. Let Γ be an epimorphically complementable class in a category K. Then for

every object X and every class Φ of morphisms,

refΓΦ X = refΓ{µϕ;ϕ∈Φ}X (3.54)

(this means that if one of these refinements exists then so does the other and they

coincide).

Properties of refinements in epimorphically complementable classes. Let Γ

be an epimorphically complementable class of morphisms in a category K.

1◦ For each morphism ϕ : X ← Y in K the monomorphism µϕ in the factorization

ϕ = µϕ ◦ εϕ (defined by the classes Γ and Γ ↓) is a refinement of X in Γ by means

of ϕ:

refΓϕ X = µϕ, RefΓϕ X = Domµϕ. (3.55)

2◦ If K is a category with finite coproducts, then every object X in K has a refinement in

Γ by means of an arbitrary finite set Φ of morphisms going to X.

3◦ If K is a category with coproducts (2), then every object X in K has a refinement in Γ

by means of some set Φ of morphisms going to X.

4◦ If K is a category with coproducts, then every object X in K has a refinement in Γ

by means of an arbitrary set Φ of morphisms going to X such that there is a set that

generates Φ on the inside.

5◦ If K has coproducts and is well-powered in Γ , then every object X in K has a refinement

in Γ by means of an arbitrary class Φ of morphisms going to X.

3.3.3. Existence of envelopes and refinements in categories with nodal decom-

position. The general properties on p. 61, when applied to Ω = Epi and Ω = SEpi, give

the following:

Properties of envelopes in Epi and in SEpi in a category with nodal decom-

position. Let K be a category with nodal decomposition.

1◦ For each morphism ϕ : X → Y in K:

– the epimorphism red∞ ϕ ◦ coim∞ ϕ in the nodal decomposition of ϕ is an envelope

of X in the class Epi of all epimorphisms with respect to ϕ:

envEpiϕ X = red∞ ϕ ◦ coim∞ ϕ, EnvEpiϕ X = Im∞ ϕ; (3.56)

(2) In 3◦–5◦ we assume that K has coproducts over arbitrary index sets, not necessarily finite.
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– the epimorphism coim∞ ϕ in the nodal decomposition of ϕ is an envelope of X in

the class SEpi of strong epimorphisms with respect to ϕ:

envSEpiϕ X = coim∞ ϕ, EnvSEpiϕ X = Coim∞ ϕ. (3.57)

2◦ If K has finite products, then every object X in K has envelopes in Epi and SEpi with

respect to an arbitrary finite set Φ of morphisms going from X.

3◦ If K is a category with products (3), then every object X in K has envelopes in Epi and

in SEpi with respect to an arbitrary set Φ of morphisms going from X.

4◦ If K is a category with products, then every object X in K has envelopes in Epi and in

SEpi with respect to an arbitrary class Φ of morphisms going from X such that there

is a set that generates Φ on the inside.

5◦ If K is a category with products, co-well-powered in Epi (respectively, in SEpi), then

every object X in K has an envelope in Epi (respectively, in SEpi) with respect to an

arbitrary class Φ of morphisms going from X.

Proposition 3.29. If K is a category with products, with nodal decomposition, and co-

well-powered in Epi, then every object X in K has an envelope in each class Ω ⊇ Bim

with respect to an arbitrary right ideal Φ of morphisms going from X which separates

morphisms on the outside (4), and

envΩΦ X = envBimΦ X = envEpiΦ X.

Proof. By property 5◦, there exists an envelope envEpiΦ X. By Theorem 3.6(i) this envelope

is a monomorphism, and hence a bimorphism. Then by property 1◦(c) on p. 44, envEpiΦ X =

envBimΦ X. Now by Theorem 3.7, envBimΦ X = envΩΦ X.

The dual results for refinements look as follows.

Properties of refinements in Mono and SMono in a category with nodal

decomposition. Let K be a category with nodal decomposition.

1◦ For each morphism ϕ : X ← Y in K:

– the monomorphism im∞ ϕ ◦ red∞ ϕ in the nodal decomposition of ϕ is a refinement

in the class Mono of all monomorphisms in X by means of ϕ:

refMono
ϕ X = im∞ ϕ ◦ red∞ ϕ, RefMono

ϕ X = Coim∞ ϕ; (3.58)

– the monomorphism im∞ ϕ in the nodal decomposition of ϕ is a refinement in the

class SMono of strong monomorphisms in X by means of ϕ:

refSMono
ϕ X = im∞ ϕ, RefSMono

ϕ X = Im∞ ϕ. (3.59)

2◦ If K is a category with finite coproducts, then every object X in K has refinements in

Mono and in SMono by means of an arbitrary finite set Φ of morphisms going to X.

3◦ If K is a category with coproducts (5), then every object X in K has refinements in

Mono and in SMono by means of an arbitrary set Φ of morphisms going to X.

(3) Similarly to footnote (2).
(4) See definition on p. 47.
(5) In 3◦–5◦ we assume that K has coproducts over arbitrary sets of indices, not necessarily

finite.
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4◦ If K is a category with coproducts, then every object X in K has refinements in Mono

and in SMono by means of an arbitrary class Φ of morphisms coming to X such that

there is a set which generates Φ on the outside.

5◦ If K is a category with coproducts, and well-powered in Mono (respectively, in SMono),

then each object X in K has a refinement in Mono (respectively, in SMono) by means

of an arbitrary class Φ of morphisms going to X.

Proposition 3.30. If K is a category with coproducts, with nodal decomposition, and

well-powered in Mono, then every object X in K has a refinement in an arbitrary class

Γ ⊇ Bim by means of an arbitrary left ideal Φ of morphisms going to X which separates

morphisms on the inside (6), and

refΓΦ X = refBimΦ X = refMono
Φ X.

3.3.4. Existence of nodal decomposition in categories with envelopes and re-

finements. By analogy with definitions on p. 31 we will say that in a category K:

– epimorphisms discern monomorphisms if from the fact that a morphism µ is not a

monomorphism it follows that µ can be represented as µ = µ′ ◦ ε where ε is an epimor-

phism which is not an isomorphism;

– monomorphisms discern epimorphisms if from the fact that a morphism ε is not an epi-

morphism it follows that ε can be represented as ε = µ◦ε′ where µ is a monomorphism

which is not an isomorphism.

Theorem 3.31. Suppose that in a category K:

(a) epimorphisms discern monomorphisms, and dually, monomorphisms discern epimor-

phisms;

(b) every immediate monomorphism is a strong monomorphism, and dually, every im-

mediate epimorphism is a strong epimorphism;

(c) every object X has an envelope in Epi with respect to any morphism starting from

X, and dually, in every object X there is a refinement in Mono by means of any

morphism coming to X.

Then K is a category with nodal decomposition.

Proof. Consider a morphism ϕ : X → Y .

Suppose ε : X → N is an envelope of X in Epi with respect to ϕ, and denote by β

the dashed arrow in (3.3): ϕ = β ◦ ε. Note first that β is a monomorphism. Indeed, if not,

then by (a), there exists a decomposition β = β′ ◦ π where π is an epimorphism, but not

an isomorphism. If we denote by N ′ the range of π, then we get a diagram

X

ε

��

ϕ
//

ε′

  

Y

N
π //

β
>>

N ′

β′

OO

(3.60)

(6) See definition on p. 55.
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where by definition ε′ = π ◦ ε, and this is an epimorphism, as a composition of two

epimorphisms. Thus, ε′ is another extension of X with respect to ϕ. Hence, there exists

a unique morphism υ such that

X

N N ′
��

ε

��

ε′

oo υ

Here

π ◦ ε = ε′ ⇒ υ ◦ π ◦ ε = υ ◦ ε′ = ε = 1N ◦ ε ⇒ υ ◦ π = 1N ,

υ ◦ ε′ = ε ⇒ π ◦ υ ◦ ε′ = π ◦ ε = ε′ = 1N ′ ◦ ε′ ⇒ π ◦ υ = 1N ′ .

That is, π is an isomorphism, contrary to our assumption.

Similarly one can prove that β is an immediate monomorphism. Indeed, any factor-

ization β = β′ ◦ π leads again to diagram (3.60), and the same reasoning shows that π is

an isomorphism.

The fact that β is an immediate monomorphism together with condition (b) implies

that β is a strong monomorphism.

Denote by µ : M → Y the refinement of Y in Mono by means of ϕ, and by α the

dashed arrow in the corresponding diagram (3.26), i.e. ϕ = µ◦α. Using the dual reasoning

to the one used when proving that β is a strong monomorphism, we can show that α is

a strong epimorphism.

Consider now a diagram

X Y

M N

//
ϕ

��

α

��

ε

??
µ

OO

β

As we already observed, here α is an epimorphism, hence α is an extension of X in Epi

with respect to ϕ. At the same time ε is an envelope of X in Epi with respect to ϕ. Hence

there exists a morphism υ such that

X

M N
��

α

��

ε

//υ

As a corollary, the following diagram is commutative as well:

X Y

M N

//
ϕ

��

α

��

ε

//υ

OO

β (3.61)

Similarly, β is a monomorphism, so it is an enrichment of Y in Mono by means of ϕ.

At the same time, µ is a refinement of Y in Mono by means of ϕ. Hence, there exists a



3.3. Connection with factorizations and with nodal decomposition 67

morphism υ′ such that

Y

M N

??
µ

//υ′

OO

β

As a corollary, we get

X Y

M N

//
ϕ

��

α

//υ′

??
µ

OO

β (3.62)

From (3.61) and (3.62) we have

β

3

Mono

◦ υ ◦ α

3

Epi

= ϕ = β
3

Mono

◦ υ′ ◦ α

3

Epi

⇒ υ = υ′,

that is, the following diagram is commutative:

X Y

M N

//
ϕ

��

α

��

ε

??
µ

//υ

OO

β

Here ε = υ ◦ α is an epimorphism, hence so is υ. On the other hand, µ = β ◦ υ is a

monomorphism, hence so is υ. Thus, υ is a bimorphism, and ϕ = β ◦ υ ◦ α is a nodal

decomposition of ϕ.

Theorem 3.32. Suppose that in a category K:

(a) strong epimorphisms discern monomorphisms and strong monomorphisms discern

epimorphisms (7);

(b) each object X has an envelope in the class SEpi of all strong epimorphisms with

respect to an arbitrary morphism that goes from X, and dually, in each object X

there is a refinement in the class SMono of all strong monomorphisms by means of

an arbitrary morphism that comes to X.

Then K is a category with nodal decomposition.

Proof. Take a morphism ϕ : X → Y .

By (b), there is an envelope envSEpiϕ X : X → EnvSEpiϕ X. Denote by α the morphism

that extends ϕ onto EnvSEpiϕ X:

X

envSEpiϕ X
��

ϕ

''
EnvSEpiϕ X

α // Y

(7) See definitions on p. 31.
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Similarly, by (b) there is a refinement refSMono
ϕ Y : RefSMono

ϕ Y → Y . Denote by β the

morphism that lifts ϕ to refSMono
ϕ X:

X

ϕ

''

β
// RefSEpiϕ Y

refSMono
ϕ Y

��

Y

Pasting these triangles together along the common side ϕ, and throwing away this

side, we obtain a quadrangle:

X

envSEpiϕ X

��

β
// RefSEpiϕ Y

refSMono
ϕ Y

��

EnvSEpiϕ X
α

// Y

Here envSEpiϕ X is a strong epimorphism, and refSMono
ϕ Y a monomorphism, so there is a

diagonal δ:

X

envSEpiϕ X

��

β
// RefSEpiϕ Y

refSMono
ϕ Y

��

EnvSEpiϕ X
α

//

δ

66

Y

(3.63)

Let us show that δ is a bimorphism.

Suppose first that δ is not a monomorphism. Then, since strong epimorphisms discern

monomorphisms (by (a)), there is a decomposition δ = δ′ ◦ ε where ε is a strong epimor-

phism which is not an isomorphism. As a corollary, the following diagram is commutative:

X

envSEpiϕ X
�� β ((

ϕ
// Y

EnvSEpiϕ X
δ

//

ε

��

RefSEpiϕ Y

refSMono
ϕ Y

OO

M
δ′

;;

We see that impSMono
ϕ Y ◦ δ′ is a continuation of ϕ along ε ◦ envSEpiϕ X, which in turn is

a strong epimorphism (as a composition of two strong epimorphisms). This means that

ε ◦ envSEpiϕ X is an extension of X in SEpi with respect to ϕ. Hence, there is a morphism

υ from M to EnvSEpiϕ X such that diagram (3.4) is commutative:

X
envSEpiϕ X

}}

ε◦envSEpiϕ X

��

EnvSEpiϕ X M
υoo
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We now have υ ◦ ε ◦ envSEpiϕ X = envSEpiϕ X = 1M ◦ envSEpiϕ X, and since envSEpiϕ X is an

epimorphism, this implies υ ◦ ε = 1M , which means that ε is a coretraction. On the other

hand, ε is an epimorphism, and hence an isomorphism. This contradicts the choice of ε.

Thus, δ must be a monomorphism. By analogy we prove that it is an epimorphism.

Let us now add ϕ to diagram (3.63) and twist it as follows:

X

envSEpiϕ X

��

ϕ
//

β

%%

Y

EnvSEpiϕ X
δ //

α
99

RefSEpiϕ Y

refSMono
ϕ Y

OO

We then see that ϕ = refSMono
ϕ Y ◦ δ ◦ envSEpiϕ X is a nodal decomposition of ϕ.

3.4. Nets and functoriality. In general, the operations of taking envelopes and refine-

ments are not functors. But under some assumptions they are, and in the last part of

this section we discuss this. Let us make the following definition. Suppose Ω, Φ, Γ are

classes of morphisms in a category K.

• Let us say that the envelope EnvΩΦ can be defined as a functor if there exist

E.1. a map X 7→ (E(X), eX) that to each object X in K assigns a morphism eX : X →
E(X) in K which is an envelope in Ω with respect to Φ:

E(X) = EnvΩΦ X, eX = envΩΦ X,

E.2. a map α 7→ E(α) that turns each morphism α : X → Y in K into a morphism

E(α) : E(X)→ E(Y ) in K in such a way that

X

α

��

eX // E(X)

E(α)

��

Y
eY // E(Y )

(3.64)

and the following identities hold:

E(1X) = 1E(X), E(β ◦ α) = E(β) ◦ E(α). (3.65)

Clearly, in this case the map (X,α) 7→ (E(X), E(α)) is a covariant functor from K into K,

and X 7→ eX is a natural transformation of the identity functor (X,α) 7→ (X,α) into

the functor (X,α) 7→ (E(X), E(α)).

• Let us say that the envelope EnvΩΦ can be defined as an idempotent functor if in addition

to E.1 and E.2 one can ensure the condition

E.3. for each X∈Ob(K) the morphism eE(X) : E(X)→ E(E(X)) is the local identity:

E(E(X)) = E(X), eE(X) = 1E(X), X ∈ Ob(K). (3.66)

Remark 3.33. If Ω ⊆ Epi, then (3.66) implies

E(eX) = 1E(X), X ∈ Ob(K). (3.67)
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Indeed, if we insert α = eX into (3.64), we obtain

X

eX

��

eX // E(X)

E(eX)

��

E(X)
eE(X)=1E(X)

// E(E(X)) = E(X)

i.e. E(eX) ◦ eX = 1E(X) ◦ eX , and since eX ∈ Ω ⊆ Epi, we can cancel it: E(eX) = 1E(X).

• Let us say that the refinement RefΓΦ can be defined as a functor if there exist

R.1. a map X 7→ (I(X), iX) that to each object X in K assigns a morphism iX :

I(X)→ X in K, which is a refinement in Γ by means of Φ:

I(X) = RefΓΦ X, iX = refΓΦ X,

R.2. a map α 7→ I(α) that turns each morphism α : X ← Y in K into a morphism

I(α) : I(X)← I(Y ) in K in such a way that

X I(X)
iXoo

Y

α

OO

I(Y )
iYoo

I(α)

OO

(3.68)

and the following identities hold:

I(1X) = 1I(X), I(β ◦ α) = I(β) ◦ I(α). (3.69)

In this case (X,α) 7→ (I(X), I(α)) is a covariant functor from K into K, and X 7→ iX
is a natural transformation of the identity functor (X,α) 7→ (X,α) into the functor

(X,α) 7→ (I(X), I(α)).

• Let us say that the refinement RefΓΦ can be defined as an idempotent functor if in

addition to R.1 and R.2 one can ensure the condition

R.3. for each X ∈ Ob(K) the morphism iI(X) : I(X)← I(I(X)) is the local identity:

I(I(X)) = I(X), iI(X) = 1I(X), X ∈ Ob(K). (3.70)

Remark 3.34. If Γ ⊆ Mono, then (3.70) implies

I(iX) = 1I(X), X ∈ Ob(K). (3.71)

Remark 3.35. For envelopes, in the most important case when Ω ⊆ Epi, the identities

(3.65) automatically follow from E.1 and E.2. Dually, for refinements, when Γ ⊆ Mono,

the identities (3.69) automatically follow from R.1 and R.2.

3.4.1. Nets of epimorphisms. Suppose that to each object X in a category K there is

assigned a subset NX in the class EpiX of all epimorphisms of K going from X, and the

following three requirements are fulfilled:

(a) for each X the set NX is non-empty and is directed to the left with respect to the

pre-order (2.17) inherited from EpiX :

∀σ, σ′ ∈ NX ∃ρ ∈ NX ρ→ σ & ρ→ σ′;
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(b) for each X the covariant system of morphisms generated by NX given by

Bind(NX) := {ισρ ; ρ, σ ∈ NX , ρ→ σ} (3.72)

(the morphisms ισρ were defined in (2.18); by (2.19) this system is a covariant functor

from NX considered as a full subcategory in EpiX into K) has a projective limit in K;

(c) for each morphism α : X → Y and each τ ∈ N Y there is σ ∈ NX and a morphism

ατσ : Ranσ → Ran τ such that

X
α //

σ

��

Y

τ

��

Ranσ
ατσ // Ran τ

(3.73)

(for given α, σ and τ the morphism ατσ, if it exists, is unique, since σ is an epimor-

phism).

Then:

– We call the familyN = {NX ; X ∈ Ob(K)} a net of epimorphisms in K, and the elements

of the sets NX elements of the net N .

– For each X the system Bind(NX) defined by (3.72) will be called the system of binding

morphisms of the net N over the vertex X. Its projective limit (which exists by (b)) is

a projective cone whose vertex will be denoted by XN , and the morphisms going from

it by σN = lim←−ρ∈NX ι
σ
ρ : XN → Ranσ:

XN
σN

""

ρN

}}

Ran ρ
ισρ

// Ranσ

(ρ→ σ) (3.74)

In addition, by (2.18), the system NX is also a projective cone of Bind(NX):

X
σ

!!

ρ

~~

Ran ρ
ισρ

// Ranσ

(ρ→ σ) (3.75)

so there exists a natural morphism from X into the vertex XN of the projective limit

of the system Bind(NX). We denote this morphism by lim←−N
X and call it the local

limit of the net N at the object X:

X

σ
""

lim←−N
X

// XN

σN{{

Ranσ

(σ ∈ NX) (3.76)

– The element σ of the net in diagram (3.73) will be called a counterfort of the element

τ of the net.

Examples of nets of epimorphisms will be given in Sections 5.4 and 5.5.



72 3. Envelope and refinement

Theorem 3.36. Let N be a net of epimorphisms in a category K. Then:

(i) for each object X in K the local limit lim←−N
X : X → XN is an envelope envN X in

K with respect to the class N :

lim←−N
X = envN X; (3.77)

(ii) for each morphism α : X → Y in K and any choice of local limits lim←−N
X and

lim←−N
Y the formula

αN = lim←−
τ∈NY

lim←−
σ∈NX

ατσ ◦ σN (3.78)

defines a morphism αN : XN → YN such that

X

α

��

lim←−N
X=envN X

// XN = EnvN X

αN

��

Y
lim←−N

Y =envN Y
// YN = EnvN Y

(3.79)

(iii) the envelope EnvN can be defined as a functor.

Proof. (i) By Lemma 3.23, lim←−N
X = envNX X. Here one can replace NX by N , since

NX is exactly the subclass in N consisting of morphisms with X as domain: lim←−N
X =

envNX X = envN X.

(ii) Let us first explain the meaning of (3.78). Take a morphism α : X → Y . For each

τ ∈ N Y denote

ατ = τ ◦ α. (3.80)

Clearly, the family {ατ : X → Ran τ ; τ ∈ N Y } is a projective cone of the system

Bind(N Y ) of binding morphisms:

X
αυ

!!

ατ

}}

Ran τ
ιυτ // Ran υ

(τ → υ) (3.81)

By (c) for each τ ∈ N Y there are σ ∈ NX and a morphism ατσ : Ranσ → Ran τ such

that diagram (3.73) is commutative, and we have already denoted by ατ the diagonal

there:

ατ = τ ◦ α = ατσ ◦ σ. (3.82)

Let

ατN = ατσ ◦ σN . (3.83)

Then we obtain a diagram

X

ατ

&&

σ   

lim←−N
X

// XN

σN||

ατN

ww

Ranσ

ατσ
��

Ran τ

(σ ∈ NX) (3.84)
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Note that for any other ρ ∈ NX such that ρ→ σ the following equality analogous to

(3.83) is true:

ατN = ατρ ◦ ρN , ρ→ σ. (3.85)

Indeed, for ρ→ σ diagram (3.73) can be added to the diagram

X
α //

σ
��

ρ





Y

τ
��

Ranσ
ατσ // Ran τ

Ran ρ ατρ

99
ισρ

88 (3.86)

(here the dashed arrow is initially defined as ατσ ◦ ισρ ; since such an arrow, if it exists, is

unique, we deduce that this is the morphism ατρ). So we have

ατN = ατσ ◦ σN
(3.74)
= ατσ ◦ ισρ ◦ ρN

(3.86)
= ατρ ◦ ρN .

From (3.85) it follows that the definition of ατN in (3.83) does not depend on the

choice of σ ∈ NX , since if σ′ ∈ NX is another element such that there exists a morphism

ατσ′ : Ranσ′ → Ran τ for which diagram (3.73) is commutative (with σ replaced by σ′),

then we can take ρ ∈ NX standing to the left of σ and σ′, in symbols ρ→ σ and ρ→ σ′

(at this moment we use property (a) of a net of epimorphisms), and get

ατN = ατσ ◦ σN
(3.85)
= ατρ ◦ ρN =

(3.85)
= ατσ′ ◦ σ′N .

We can deduce that now formula (3.83) correctly defines a map τ ∈ N Y 7→ ατN . Let

us show that {ατN : XN → Ran τ ; τ ∈ N Y } is a projective cone Bind(N Y ). We have

XN
αυN

""

ατN

||

Ran τ
ιυτ // Ran υ

(τ → υ ∈ N Y ) (3.87)

For τ → υ diagram (3.73) can be added to the diagram

X
α //

σ
��

Y

τ
��

υ

��

Ranσ
ατσ //

αυσ
00

Ran τ
ιυτ

''

Ran υ

(3.88)

(where the dashed arrow is initially defined as ιυτ ◦ατσ; since such an arrow, if it exists, is

unique, we deduce that this is the morphism αυσ). Using this diagram we have

ιυτ ◦ ατN
(3.83)
= ιυτ ◦ ατσ ◦ σN

(3.88)
= αυσ ◦ σN

(3.83)
= αυN .

From diagram (3.87) it now follows that there exists a natural morphism αN from XN
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into the projective limit YN of Bind(N Y ):

XN

ατN ""

αN // YN

τN}}

Ran τ

(τ ∈ N Y ) (3.89)

Recall now that by property (b) of nets the passage from X to lim←−Bind(NX) can be

understood as a map. The further steps of building αN (the choice of the vertex XN
of the cone lim←−Bind(NX), and then the choice of the arrow αN such that all diagrams

(3.89) are commutative) are also unambiguous, so the correspondence α 7→ αN can also

be treated as a map.

Note further that for the morphisms αN the diagrams of the form (3.79) are commu-

tative. In the diagram

X

α

��

lim←−N
X

//

ατ ''

XN

αN

��

ατNvv

Ran τ

Y
lim←−N

Y

//

τ
77

YN

τN
hh

all the (small) triangles are commutative: the upper triangle is so because it is the perime-

ter of (3.84), the left triangle because this is a variant of formula (3.80), the lower triangle

because up to notation it is diagram (3.76), and the right triangle because it is a rotated

diagram (3.89). Therefore

τN ◦ lim←−NY ◦ α = ατ = τN ◦ αN ◦ lim←−N
X (τ ∈ N Y ).

One can interpret this as follows: each of the morphisms lim←−N
Y ◦ α and αN ◦ lim←−N

X

is a lifting of the projective cone {ατ : X → Ran τ ; τ ∈ N Y } for the system of binding

morphisms Bind(NY ) which we were talking about in diagram (3.81) to the projective

limit of this system. That is, lim←−N
Y ◦ α and αN ◦ lim←−N

X are the same dashed arrow in

the definition of projective limit, for which all the diagrams of the form

X

ατ   

// YN

τN}}

Ran τ

(τ ∈ N Y )

are commutative. But such an arrow is unique, so

lim←−N
Y ◦ α = αN ◦ lim←−NX .

This gives diagram (3.79).

(iii) The theorem on well-ordering of the class of all sets [25, V, 4.1] allows us to define

the operation of taking local limit as a map:

X 7→ lim←−Bind(NX)

(i.e. there is a map that assigns to each X ∈ Ob(K) a concrete projective limit of the
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subcategory Bind(NX) among all its projective limits in K). Let us show that in this case

the resulting map (X,α) 7→ (XN , αN ) is a functor, that is,

(1X)N = 1XN , (β ◦ α)N = βN ◦ αN . (3.90)

Suppose first that α = 1X : X → X. Then

ατ
(3.80)
= τ ◦ α = τ ◦ 1X = τ ⇒ ατσ ◦ σ

(3.82)
= ατ = τ

(2.18)
= ιτσ ◦ σ

⇒ ατσ = ιτσ ⇒ ατN = ιτσ ◦ σN = τN .

So in diagrams (3.89) we can replace ατN by τN :

XN

τN ""

αN // XN

τN||

Ran τ

(τ ∈ NX)

These diagrams are commutative for all τ ∈ NX , and the dashed arrow αN is defined

as the lifting of the projective cone {ατN = τN : XN → Ran τ} to the projective limit

{τN : XN → Ran τ}. Such an arrow is unique, so it must coincide with the morphism

1XN , for which all these diagrams are trivially commutative.

Let us now prove the second identity in (3.90). Consider morphisms X
α−→ Y

β−→ Z.

Take υ ∈ NZ and, using property (c), choose first τ ∈ N Y and a morphism βυτ such that

υ ◦ β = βυτ ◦ τ, and then, again using (c), choose σ ∈ NX and a morphism ατσ such that

τ ◦ α = ατσ ◦ σ. We get

X

σ

��

α // Y

τ

��

β
// Z

υ

��

Ranσ
ατσ // Ran τ

βυτ // Ran υ

If we remove the middle arrow, then we obtain

X

σ
��

β◦α
// Z

υ
��

Ranσ
βυτ ◦α

τ
σ // Ran υ

which can be understood as follows: the morphism βυτ ◦ ατσ is exactly the composition

of the dashed arrows from diagram (3.73), but the difference is that Y is replaced here

by Z, α by β ◦ α, and τ by υ. Hence there exists a morphism (β ◦ α)υσ such that

βυτ ◦ ατσ = (β ◦ α)υσ. (3.91)

This equality is used in the following chain:

υN ◦ βN︸ ︷︷ ︸

= (3.89)

βυN

= (3.83)

βυτ ◦ τN

◦ αN = βυτ ◦ τN ◦ αN︸ ︷︷ ︸

= (3.89)

ατN

= (3.83)

ατσ ◦ σN

= βυτ ◦ ατσ︸ ︷︷ ︸

= (3.91)

(β ◦ α)υσ

◦ σN = (β ◦ α)υσ ◦ σN︸ ︷︷ ︸

= (3.83)

(β ◦ α)υN

= (β ◦ α)υN
(3.89)
= υN ◦ (β ◦ α)N .
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If we omit the intermediate calculations, we arrive at

υN ◦ (βN ◦ αN ) = (β ◦ α)υN = υN ◦ (β ◦ α)N .

This is true for each υ ∈ NZ . So this can be treated as if both βN ◦ αN and (β ◦ τ)N
were liftings of the projective cone {(β ◦α)υN : XN → Ran υ; υ ∈ NZ} for Bind(NZ) (and

this family is indeed a projective cone due to diagram (3.88) where one should replace

Y by Z, and α by β ◦ α) to the projective limit of this system. Thus, both βN ◦ αN and

(β ◦ τ)N are exactly the dashed arrow in the definition of projective limit, for which all

the diagrams

XN

(β◦α)υN ""

// ZN

υN}}

Ran υ

(υ ∈ NZ)

are commutative. But this dashed arrow is unique, so

βN ◦ αN = (β ◦ τ)N .

This is the identity (3.90).

Theorem 3.37. Let N be a net of epimorphisms in a category K that generates a class Φ

of morphisms on the inside: N ⊆ Φ ⊆ Mor(K)◦N . Then for any class Ω of epimorphisms

in K with

{lim←−N
X ; X ∈ Ob(K)} ⊆ Ω ⊆ Epi(K), (3.92)

the following hold:

(a) for each object X in K,

lim←−N
X = envΩΦ X; (3.93)

(b) the envelope EnvΩΦ can be defined as a functor.

Proof. By Theorem 3.36,

lim←−N
X = envN X := env

Mor(K)
N X.

On the other hand, by (i), lim←−N
X belongs to a narrower class Ω, so by 1◦(c) on p. 44,

lim←−N
X = envN X = env

Mor(K)
N X = envΩN X.

Further, since N generates Φ on the inside, and Ω consists of epimorphisms, by (3.14)

we have

lim←−N
X = envN X = env

Mor(K)
N X = envΩN X = envΩΦ X.

This proves (3.93). Part (b) follows from Theorem 3.36(iii).

One can get rid of the left side of (3.92) if the class Ω is monomorphically comple-

mentable:

Theorem 3.38. Let N be a net of epimorphisms in a category K that generates a class

Φ of morphisms on the inside: N ⊆ Φ ⊆ Mor(K) ◦ N . Then for each monomorphically

complementable (8) class Ω of epimorphisms the following hold:

(8) See definition on p. 41.
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(a) for each object X in K the morphism εlim←−N
X in the factorization (2.39) defined by

the classes ↓Ω and Ω is an envelope envΩΦ X in Ω with respect to Φ:

εlim←−N
X = envΩΦ X; (3.94)

(b) for each morphism α : X → Y in K and any choice of envΩΦ X and envΩΦ Y there

exists a unique morphism EnvΩΦ α : EnvΩΦ X → EnvΩΦ Y in K such that

X

α

��

envΩΦ X // EnvΩΦ X

EnvΩΦ α

��

Y
envΩΦ Y // EnvΩΦ Y

(3.95)

(c) if K is co-well-powered in Ω, then EnvΩΦ can be defined as a functor.

Proof. (a) Since N generates Φ, and Ω consists of epimorphisms, by (3.14) we have

envΩN X = envΩΦ X. Hence (3.46) implies (3.94):

envΩΦ X = envΩN X = εlim←−NX .

(b) The property (3.95) is proved as follows. First we add diagram (3.79) by decom-

posing lim←−NX and lim←−N
Y :

X

lim←−N
X

))

α

��

envΩΦ X

// EnvΩΦ X = Domµlim←−N
X

µlim←−NX
// XN

αN

��

Y

lim←−N
Y

55

envΩΦ Y // EnvΩΦ Y = Domµlim←−N
Y

µlim←−NY // YN

Then we represent the inner quadrangle as

X

α

��

envΩΦ X // EnvΩΦ X = Domµlim←−N
X

αN ◦µlim←−NX

%%

Y
envΩΦ Y // EnvΩΦ Y = Domµlim←−N

Y

µlim←−NY // YN

Here the upper horizontal arrow, envΩΦ X, belongs to Ω, and the second lower horizontal

arrow, µlim←−N
Y , belongs to Γ = Ω↓. Hence there exists a morphism ξ such that

X

α

��

envΩΦ X // EnvΩΦ X = Domµlim←−N
X

ξ
��

αN ◦µlim←−NX

%%

Y
envΩΦ Y // EnvΩΦ Y = Domµlim←−N

Y

µlim←−NY // YN

This ξ will be the vertical arrow in (3.95) that we need.
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(c) Let K be co-well-powered in Ω, i.e. for each object X the category ΩX = Ω∩EpiX

is skeletally small. Let SX be its skeleton, which is a set. Using Theorem 2.31, we can fix a

map X 7→ SX which assigns to each object X a skeleton SX in ΩX . To define the envelope

EnvΩΦ as a functor, we now define (by the axiom of choice) a map X ∈ Ob(K) 7→ envΩΦ X

∈ SX . Then the object EnvΩΦ X is defined as the domain of the morphism envΩΦ X, and

the morphism EnvΩΦ α in (3.95) arises automatically (as the unique possible morphism).

3.4.2. Nets of monomorphisms. Suppose that to each object X in a category K there

is assigned a subset NX in the class MonoX of all monomorphisms of K coming to X, and

the following three requirements are fulfilled:

(a) for each object X the set NX is non-empty and is directed to the right with respect

to pre-order (2.12) inherited from MonoX :

∀ρ, ρ′ ∈ NX ∃σ ∈ NX ρ→ σ & ρ′ → σ;

(b) for each object X the covariant system of morphisms generated by the set NX given

by

Bind(NX) := {κσρ ; ρ, σ ∈ NX , ρ→ σ} (3.96)

(the morphisms κσρ were defined in (2.13); according to (2.14), this system is a co-

variant functor from NX considered as a full subcategory in MonoX into K) has an

injective limit in K;

(c) for each morphism α : X → Y and each σ ∈ NX there is τ ∈ NY and a morphism

ατσ : Domσ → Dom τ such that

X
α // Y

Domσ

σ

OO

ατσ // Dom τ

τ

OO

(3.97)

(for given α, σ and τ the morphism ατσ, if it exists, is unique, since τ is a monomor-

phism).

Then:

– We call the family N = {NX ; X ∈ Ob(K)} of sets a net of monomorphisms in K, and

the elements of the sets NX elements of the net N .

– For each X the system Bind(NX) defined by (3.96) will be called a system of binding

morphisms of the net N over the vertex X. Its injective limit (which exists by (b)) is

an injective cone whose vertex will be denoted by XN , and the morphisms coming to

it by ρN = lim−→σ∈NX
κσρ : XN ← Ranσ:

XN

Dom ρ

ρN

==

κσρ
// Domσ

σN

bb

(ρ→ σ) (3.98)



3.4. Nets and functoriality 79

In addition, by (2.13), the system NX is also an injective cone of Bind(NX):

X

Dom ρ
κσρ

//

ρ
==

Domσ

σ
aa

(ρ→ σ) (3.99)

so there exists a natural morphism into X from the vertex XN of the injective limit

of Bind(NX). This morphism will be denoted by lim−→NX and called a local limit of the

net N at the object X:

XN
lim−→NX // X

Domσ
σ

==

σN

bb
(σ ∈ NX) (3.100)

– The element τ of the net in diagram (3.97) will be called a shed for the element σ of

the net.

The following results are dual to Theorems 3.36–3.38.

Theorem 3.39. Let N be a net of monomorphisms in a category K. Then:

(i) for each object X in K the local limit lim−→NX : XN → X is a refinement refN X of

X in K by means of the class N :

lim−→NX = refN X; (3.101)

(ii) for each morphism α : X → Y in K and for choice of local limits lim−→NX and lim−→NY
the formula

αN = lim−→
σ∈NX

lim−→
τ∈NY

τN ◦ ατσ (3.102)

defines a morphism αN : XN → YN such that

X

α

��

XN = refN X

αN

��

lim−→NX=refN X
oo

Y YN = refN Y
lim−→NY =refN Y

oo

(3.103)

(iii) the refinement RefN can be defined as a functor.

Theorem 3.40. Let N be a net of monomorphisms in a category K that generates a

class Φ of morphisms on the outside: N ⊆ Φ ⊆ N ◦Mor(K). Then for every class Γ of

monomorphisms in K that contains all local limits, the following hold:

(a) for each object X in K,

lim−→NX = refΓΦ X; (3.104)

(b) the refinement RefΓΦ can be defined as a functor.
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Theorem 3.41. Let N be a net of monomorphisms in a category K that generates the class

Φ on the outside: N ⊆ Φ ⊆ N ◦Mor(K). Then for every epimorphically complementable (9)

class Γ of monomorphisms the following hold:

(a) in K there exists a net N of monomorphisms such that for any object X in K the

morphism µlim−→NX in the factorization (2.39) is a refinement refΓΦ X in Γ by means

of Φ:

µlim−→NX = refΓΦ X, (3.105)

(b) for each morphism α : X → Y in K and any choice of refΓΦ X and refΓΦ Y there is a

unique morphism RefΓΦ α : RefΓΦ X → RefΓΦ Y in K such that

X

α

��

RefΓΦ X
refΓΦ Xoo

RefΓΦ α
��

Y RefΓΦ Y
refΓΦ Yoo

(3.106)

(c) if K is well-powered in Γ , then RefΓΦ can be defined as a functor.

3.4.3. Existence of nets of epimorphisms and semiregular envelopes

Theorem 3.42. Suppose a category K and classes Ω and Φ of morphisms in it satisfy

the following conditions:

RE.1. K is projectively complete;

RE.2. Ω is monomorphically complementable;

RE.3. K is co-well-powered in Ω;

RE.4. Φ goes from (10) Ob(K) and is a right ideal in K.

Then:

(a) there is a net N of epimorphisms in K such that for each object X in K the morphism

εlim←−N
X in the factorization (2.39) is an envelope envΩΦ X in Ω with respect to Φ:

εlim←−N
X = envΩΦ X; (3.107)

(b) for each morphism α : X → Y in K and any choice of envΩΦ X and envΩΦ Y there

exists a unique morphism EnvΩΦ α : EnvΩΦ X → EnvΩΦ Y in K such that

X

α

��

envΩΦ X // EnvΩΦ X

EnvΩΦ α
��

Y
envΩΦ Y // EnvΩΦ Y

(3.108)

(c) the envelope EnvΩΦ can be defined as a functor.

• If RE.1–RE.4 are fulfilled, then we say that the classes Ω and Φ define a semiregular

envelope in K, or the envelope EnvΩΦ is semiregular.

(9) See definition on p. 41.
(10) In the sense of the definition on p. 9.



3.4. Nets and functoriality 81

Proof of Theorem 3.42. (a) By RE.3, for each X the category ΩX = Ω∩EpiX is skeletally

small. Let SX be its skeleton (which is a set). Using Theorem 2.31, we can choose a map

X 7→ SX that to each object X assigns a skeleton SX in ΩX .

For every object X in K set ΦX = {ϕ ∈ Φ; Domϕ = X} (from RE.4 it follows that

ΦX 6= ∅) and denote by 2ΦX the class of finite subsets in ΦX . To each object X in K and

each morphism Ψ ∈ 2ΦX we assign a morphism

Ψ =
∏
ψ∈Ψ

ψ : X →
∏
ψ∈Ψ

Ranψ,

and morphisms µΨ ∈ Γ and εΨ ∈ SX such that

Ψ = µΨ ◦ εΨ (3.109)

(since SX is a skeleton in ΩX , such morphisms are unique). Let NX = {εΨ ; Ψ ∈ 2ΦX}.
Since NX ⊆ SX , this is a set, and since the correspondence X 7→ SX is a map, we obtain

a map X 7→ NX .

(b) Let us check that N satisfies the axioms of a net of epimorphisms (p. 70). First,

we show that NX is directed to the left with respect to the pre-order (2.17) inherited

from EpiX . For any Ψ, Ψ ′ ∈ 2ΦX consider the diagram

X

Ψ∪Ψ ′
��

Ψ

��

Ψ ′

��

RanΨ RanΨ ∪ Ψ ′πoo π′ // RanΨ ′

∏
ψ∈Ψ

Ranψ
∏

ψ∈Ψ∪Ψ ′
Ranψ

∏
ψ∈Ψ ′

Ranψ

where π and π′ are natural projections. Let us decompose the arrows going from X by

using (3.109):

X

εΨ∪Ψ′

��

εΨ

��

εΨ′

��

Ran εΨ

µΨ
��

Ran εΨ∪Ψ ′

µΨ∪Ψ′

��

Ran εΨ ′

µΨ′

��

RanΨ RanΨ ∪ Ψ ′πoo π′ // RanΨ ′

(3.110)

We represent the left side as a quadrangle:

X

εΨ∪Ψ′
��

εΨ

��

Ran εΨ

µΨ
��

Ran εΨ∪Ψ ′

π◦µΨ∪Ψ′ooRanΨ
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Here εΨ∪Ψ ′ is an epimorphism, and µΨ a strong monomorphism, hence there exists a

leftward horizontal arrow:

X

εΨ∪Ψ′
��

εΨ

��

Ran εΨ

µΨ
��

Ran εΨ∪Ψ ′

π◦µΨ∪Ψ′oo

δoo

RanΨ

For the same reason there is a rightward arrow in (3.110), and we obtain a diagram

X

εΨ∪Ψ′
��

εΨ

||

εΨ′

""

Ran εΨ Ran εΨ∪Ψ ′
δoo δ′ // Ran εΨ ′

This means that in the category ΩX the morphism εΨ∪Ψ ′ majorizes εΨ and εΨ ′ :

εΨ∪Ψ ′ → εΨ , εΨ∪Ψ ′ → εΨ ′ .

The second condition in the definition of the net of epimorphisms is fulfilled automat-

ically: since K is projectively complete, the system Bind(NX), defined in (3.72), always

has a projective limit.

Let us check the third condition. Let α : X → Y be a morphism in Ψ ∈ 2ΦY . By

RE.4, Φ is a right ideal, hence for each ψ ∈ Ψ ⊆ Φ the composition ψ ◦ α belongs to Φ,

and we can consider the set Ψ ◦ α ∈ 2ΦX . We obtain the diagram

X
α //

∏
ψ∈Ψ

(ψ◦α)=Ψ◦α **

Y

Ψ=
∏
ψ∈Ψ

ψ

��

RanΨ
∏
ψ∈Ψ

Ranψ

Let us represent the morphisms coming to RanΨ as their factorizations (3.109):

X
α //

εΨ◦α
��

Y

εΨ
��

Ran εΨ◦α

µΨ◦α ,,

Ran εΨ

µΨ
��

RanΨ

This diagram can be represented as a quadrangle

X εΨ◦α

""
εΨ◦α

��

Ran εΨ◦α

µΨ◦α --

Ran εΨ

µΨ
��

RanΨ
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where εΨ◦α ∈ Ω and µΨ ∈ Γ = Ω↓. So there must exist a rightward horizontal arrow:

X εΨ◦α

""
εΨ◦α

��

Ran εΨ◦α

µΨ◦α --

δ // Ran εΨ

µΨ
��

RanΨ

This will be the horizontal arrow that we need in (3.73):

X
α //

εΨ◦α
��

Y

εΨ
��

Ran εΨ◦α
δ // Ran εΨ

(c) Note further that

envΩΦ X = envΩ2Φ X
(3.51)
= envΩ{εΨ ;Ψ∈2Φ}X = envΩN X.

Now the proof of Theorem 3.38 can be applied.

3.4.4. Existence of nets of monomophisms and semiregular refinements. The

dual result for refinements look as follows:

Theorem 3.43. Suppose a category K and classes Γ and Φ of morphisms satisfy the

following conditions:

RR.1. K is injectively complete;

RR.2. Γ is epimorphically complementable in K;

RR.3. K is well-powered in Γ ;

RR.4. Φ goes to (11) Ob(K) and is a left ideal in K.

Then:

(a) there exists a net N of monomorphisms in K such that for each object X in K the

morphism µlim−→NX in the factorization (2.39) is a refinement refΓΦ X in Γ by means

of Φ:
µlim−→NX = refΓΦ X; (3.111)

(b) for each morphism α : X → Y in K and any choice of refΓΦ X and refΓΦ Y there is a

unique morphism RefΓΦ α : RefΓΦ X → RefΓΦ Y in K such that

X

α

��

RefΓΦ X
refΓΦ Xoo

RefΓΦ α
��

Y RefΓΦ Y
refΓΦ Yoo

(3.112)

(c) the refinement RefΓΦ can be defined as a functor.

• If RR.1–RR.4 are fulfilled, then we say that the classes Γ and Φ define a semiregular

refinement RefΓΦ in K, or the refinement RefΓΦ is semiregular.

(11) In the sense of the definition on p. 9.
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3.4.5. Pushing, regular envelope and complete objects

• Let us say that a class Ω of morphisms pushes a class Φ of morphisms if

∀ψ ∈ Mor(K) ∀σ ∈ Ω (ψ ◦ σ ∈ Φ⇒ ψ ∈ Φ). (3.113)

Remark 3.44. Obviously, (3.113) holds if Φ = {ϕ ∈ Mor(K); Ranϕ ∈ M} for some class M

of objects in K.

Lemma 3.45. If Ω pushes Φ, then the composition σ ◦ρ : X → X ′′ of any two extensions

ρ : X → X ′ and σ : X ′ → X ′′ (in Ω with respect to Φ) is an extension (in Ω with respect

to Φ).

Proof. This is seen from the diagram

X

ϕ
++

ρ
// X ′

σ //

ϕ′

��

X ′′

ϕ′′ssM

Since ρ is an extension, for any ϕ ∈ Φ there exists ϕ′, and since Ω pushes Φ, we have

ϕ′ ∈ Φ. Then since σ is an extension, there exists ϕ′′. This way every next arrow is

uniquely defined by the previous one.

Proposition 3.46. Suppose Ω ⊆ Epi. Then for each A ∈ Ob(K) the following conditions

are equivalent:

(i) each extension σ : A→ A′ in Ω with respect to Φ is an isomorphism;

(ii) the local identity 1A : A→ A is an envelope of A in Ω with respect to Φ;

(iii) there exists envΩΦA ∈ Iso.

If in addition Ω pushes Φ, then these conditions are equivalent to:

(iv) A ∼= EnvΩΦ X for some X ∈ Ob(K).

• We will say that an object A in K is complete in a class Ω ⊆ Epi with respect to a class

Φ if it satisfies the above properties (i)–(iii).

Proof of Proposition 3.46. (i)⇒(ii). It follows from (i) that for the local identity 1A :

A→ A (which is also an extension) we have the diagram

A
σ
~~

1A

��

A′
σ−1

// A

which can be considered as the special case of (3.4), and this means that 1A is an envelope.

(ii)⇒(iii) is obvious.

(iii)⇒(i). Let ρ : A→ E be an envelope and at the same time an isomorphism. Then

for any extension σ : A→ A′ we can take a morphism υ in (3.4) and we get υ◦σ = ρ ∈ Iso,

hence σ is a coretraction. On the other hand, σ ∈ Ω ⊆ Epi, hence σ ∈ Iso.

(iii)⇒(iv) is also obvious: if envΩΦA ∈ Iso, then A ∼= EnvΩΦA.

It is sufficient to prove (iv)⇒(i) in the case when Ω pushes Φ. Suppose that A ∼=
EnvΩΦX for some X ∈ Ob(K). Then A can be considered as an envelope of X, i.e. there
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exists a morphism ρ : X → A which is an envelope. Take any extension σ : A → A′

of A. By Lemma 3.45, the composition σ ◦ ρ : X → A′ is an extension of X, so there is a

morphism υ such that (3.4) is commutative:

X
σ◦ρ

||

ρ

""
A′

υ // A

Now we have

υ ◦ σ ◦ ρ = ρ = 1A ◦ ρ

3

Epi

⇒ υ ◦ σ = 1A.

In the last equality, υ is unique, since σ is an epimorphism. We observe that the extension

σ is subordinated to the extension 1A, and since this is true for each σ, the morphism ρ

is an envelope of A.

Let us denote by L the class of complete objects in K (in Ω with respect to Φ). We

consider L as a full subcategory in K.

Proposition 3.47. Under the conditions of Theorem 3.42 the functor of envelope (X,α)

7→ (E(X), E(α)) on L ⊆ K is isomorphic to the identity functor:

∀A ∈ L E(A) ∼= A, ∀α : A

3

L

→ A′

3

L

E(α) = eA′ ◦ α ◦ e−1A . (3.114)

Proof. Take an arbitrary morphism α : A→ A′ in L, i.e. a morphism in K whose domain

and range belong to L. Then in diagram (3.64) the horizontal arrows are isomorphisms, so

A

α

��

A

E(α)

��

e−1
Aoo

A′
eA′ // A′

• We say that classes Ω and Φ define a regular envelope in a category K, or the envelope

EnvΩΦ is regular, if in addition to conditions RE.1–RE.4 of Theorem 3.42 the class Ω

pushes Φ.

Theorem 3.48. If Ω and Φ define a regular envelope in K, then EnvΩΦ can be defined as

an idempotent functor.

Proof. Consider the functor of envelope E built in Theorem 3.42, and denote by L0 the

class of all objects which are values of the map X 7→ E(X):

A ∈ L0 ⇔ ∃X ∈ Ob(K) A = E(X). (3.115)

Define a system of isomorphisms

∀X ∈ Ob(K) ζX =

{
1X , X /∈ L0,

e−1X , X ∈ L0



86 3. Envelope and refinement

(this definition is correct by Proposition 3.46). Now consider the maps X 7→ F (X),

X 7→ fX , α 7→ F (α), defined by

∀X ∈ Ob(K) F (X) =

{
E(X), X /∈ L0,

X, X ∈ L0,
fX =

{
eX , X /∈ L0,

1X , X ∈ L0,

∀α ∈ Mor(K) F (α) = ζRanE(α) ◦ E(α) ◦ ζ−1DomE(α).

The connection with the functor E is reflected in the diagram

F (X)

F (α)

��

X

α

��

eX //

fX
//

E(X)

E(α)

��

ζX

88

Y
eY //

fY //

E(Y )

ζY

&&

F (Y )

(3.116)

For any X the morphism fX : X → F (X) is an envelope of X, since fX and eX are

connected by the isomorphism ζX . The map (X,α) 7→ (F (X), F (α)) is a functor, since,

first,

F (β ◦ α) = ζRan β ◦ E(β ◦ α) ◦ ζ−1Domα = ζRan β ◦ E(β) ◦ E(α) ◦ ζ−1Domα

= ζRan β ◦ E(β) ◦ ζ−1Dom β ◦ ζRanα ◦ E(α) ◦ ζ−1Domα = F (β) ◦ F (α),

and, second, for X /∈ L0 diagram (3.116) has the form

E(X)

E(1X)

��

X

α

��

eX //

eX
//

E(X)

1E(X)

��

1E(X)

88

X
eX //

eX //

E(X)

1E(X)

&&

E(X)

hence

F (1X) = ζX ◦ E(1X) ◦ ζ−1X = 1−1E(X) ◦ 1E(X) ◦ 1E(X) = 1E(X) = 1F (X),
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and for X ∈ L0 diagram (3.116) turns into

X

F (1X)

��

X

1X

��

eX //

1X
//

E(X)

1E(X)

��

e−1
X

88

X
eX //

1X //

E(X)

e−1
X

&&
X

If we replace F (1X) by 1X , then the perimeter will still be a commutative diagram. Since

this arrow is unique we have

F (1X) = 1X = 1F (X).

Condition (3.66) holds for F by definition: since always F (X) ∈ L0, we have fF (X) =

1F (X).

Theorem 3.49 (description of envelope in terms of complete objects). Suppose that Ω

and Φ define a regular envelope in K. Then a given morphism ρ : X → A is an envelope

(in Ω with respect to Φ) if and only if the following conditions are fulfilled:

(i) ρ : X → A is an epimorphism;

(ii) A is a complete object (in Ω with respect to Φ);

(iii) for any complete object B (in Ω with respect to Φ) and for any morphism ξ : X → B

there is a unique morphism ξ′ : A→ B such that

X
ρ

//

ξ   

A

ξ′��

B

(3.117)

Proof. Let ρ : X → A be an envelope. Then, first, this is an epimorphism, since Ω ⊆ Epi.

Second, by Proposition 3.46, A ∼= EnvΩΦX is a complete object. Third, if ξ : X → B is a

morphism to a complete object B, then we can consider diagram (3.108) which in this

situation has the form

X
ρ=envΩΦX //

ξ

��

A = EnvΩΦX

EnvΩΦ ξ

��

B
envΩΦB // EnvΩΦB

In this case envΩΦB is an isomorphism, and as a corollary, there exists a morphism

ξ′ = (envΩΦB)−1 ◦ EnvΩΦ ξ.

It is the dashed arrow in (3.117).
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Conversely, suppose (i)–(iii) hold. In our circumstances Theorem 3.42 applies, so we

can consider diagram (3.108), now in the form

X

ρ

��

envΩΦX // EnvΩΦX

EnvΩΦ ρ

��

A
envΩΦA // EnvΩΦA

Here envΩΦA is an isomorphism (since A is a complete object). Hence if we take ζ =

envΩΦA
−1 ◦ EnvΩΦ (ρ), we obtain

X

ρ

��

envΩΦX // EnvΩΦX

ζ

xx
A

On the other hand, by Proposition 3.46, EnvΩΦX is a complete object, so by (iii), there

exists a morphism η such that

X

ρ

��

envΩΦX // EnvΩΦX

A

η

88

In these diagrams both ρ and envΩΦX are epimorphisms, so ζ and η are mutually inverse

morphisms. Thus, ρ = ζ ◦ envΩΦX, where ζ ∈ Iso. By (2.41), we see that ρ ∈ Ω, and thus

it is an envelope.

3.4.6. Pulling, regular refinement and saturated objects

• Let us say that a class Γ of morphisms pulls a class Φ of morphisms if

∀ψ ∈ Mor(K) ∀σ ∈ Γ (σ ◦ ψ ∈ Φ⇒ ψ ∈ Φ). (3.118)

Remark 3.50. Obviously, (3.118) holds if Φ is the class of morphisms with domains in

a subclass M of objects in K.

Lemma 3.51. If Γ pulls Φ, then the composition σ ◦ ρ : X ← X ′′ of any two enrichments

σ : X ← X ′ and ρ : X ′ ← X ′′ (in Γ by means of Φ) is an enrichment (in Γ by means

of Φ).

Proof. This is seen from the diagram

X X ′
σoo X ′′

ρ
oo

M
ϕ

TT

ϕ′

OO

ϕ′′

II



3.4. Nets and functoriality 89

Proposition 3.52. Suppose Γ ⊆ Mono. Then for A ∈ Ob(K) the following conditions

are equivalent:

(i) every enrichment σ : A← A′ in Γ by means of Φ is an isomorphism;

(ii) 1A : A→ A is a refinement of A in Γ by means of Φ;

(iii) there exists refΓΦ A ∈ Iso.

If in addition Γ pulls Φ, then these conditions are equivalent to:

(iv) A is isomorphic to a refinement of some X ∈ Ob(K).

• We say that an object A in K is saturated in Γ ⊆ Mono by means of Φ if it satisfies the

above conditions (i)–(iii).

Denote by L the class of all saturated objects in K (in Γ ⊆ Mono by means of Φ). We

consider L as a full subcategory in K.

Proposition 3.53. Under the conditions of Theorem 3.43 the functor of refinement

(X,α) 7→ (I(X), I(α)) on L ⊆ K is isomorphic to the identity functor:

∀A ∈ L I(A) ∼= A, ∀α : A

3

L

← A′

3

L

E(α) = i−1A ◦ α ◦ iA′ . (3.119)

• We say that classes Γ and Φ define a regular refinement in K, or the refinement RefΓΦ
is regular, if in addition to conditions RR.1–RR.4 of Theorem 3.43 the class Γ pulls Φ.

Theorem 3.54. If Γ and Φ define a regular refinement in K, then RefΓΦ can be defined

as an idempotent functor.

Theorem 3.55 (description of refinement in terms of saturated objects). Suppose Γ and

Φ define a regular refinement in K. Then a given morphism ρ : X ← A is a refinement

(in Γ by means of Φ) if and only if the following conditions hold:

(i) ρ : X ← A is a monomorphism;

(ii) A is a saturated object (in Γ by means of Φ);

(iii) for any saturated object B (in Γ by means of Φ) and for any morphism ξ : X ← B

there is a unique morphism ξ′ : A← B such that

X A
ρ

oo

B

ξ

``

ξ′

??

(3.120)

3.4.7. Functoriality on epimorphisms and monomorphisms. Denote by KEpi the

subcategory in K with the same class of objects as in K, but with epimorphisms from K

as morphisms: Ob(KEpi) = Ob(K), Mor(KEpi) = Epi(K).

Theorem 3.56. Let K be a category with products (over arbitrary index sets), and suppose

classes Ω and Φ of morphisms in K satisfy the following conditions:
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– Ω is monomorphically complementable in K;

– K is co-well-powered in the class Ω;

– Φ goes from (12) K;

– Φ ◦Ω ⊆ Φ.

Then:

(a) each object X in K has an envelope EnvΩΦ X in Ω with respect to Φ;

(b) for each epimorphism π : X → Y there is a unique epimorphism

EnvΩΦ π : EnvΩΦ X → EnvΩΦ Y

such that

X

π

��

envΩΦ X // EnvΩΦ X

EnvΩΦ π

��

Y
envΩΦ Y // EnvΩΦ Y

(3.121)

(c) the envelope EnvΩΦ can be defined as a functor from KEpi into KEpi.

We will need

Lemma 3.57. If K is a category with products (over arbitrary index sets), co-well-powered

in Ω, and Ω is monomorphically complementable in K, then for any class Φ of morphisms

and any epimorphism π : X → Y we have

EnvΩΦ◦πX = EnvΩΦ Y. (3.122)

Proof. Note first that the existence of the envelopes in (3.122) is guaranteed by prop-

erty 5◦ on p. 61. In addition, by 5◦ on p. 45, there exists a morphism υ such that (3.12)

is commutative:

X

envΩΦ Y ◦π

zz

envΩΦ◦π X

%%

EnvΩΦ Y
υ // EnvΩΦ◦πX

Let us show that there is an inverse morphism. Consider the envelope envΩΦ Y : Y →
EnvΩΦ Y and represent it as an envelope with respect to a set M of morphisms, as in the

proof of property 5◦ on p. 61. Then, as in the proof of 3◦ on p. 61, replace M by a unique

morphism ψ =
∏
χ∈M χ. By property 1◦ on p. 61, the envelope with respect to ψ will be

described as an epimorphism εψ in the factorization of ψ:

envΩΦ Y = envΩM Y = envΩψ Y = εψ.

(12) In the sense of definition on p. 9.
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We obtain a diagram

X

envΩΦ Y ◦π=εψ◦π

��

envΩΦ◦π X

--

π

��

EnvΩΦ◦πX

(ψ◦π)′

��

δ

��

EnvΩΦ Y Ran εψ

µψ

,,Y ψ 22

envΩΦ Y=εψ

DD

B

where (ψ ◦ π)′ is an extension of ψ ◦ π ∈ Φ ◦ π along the envelope envΩΦ◦πX. Here the

existence of the morphism δ follows from the fact that envΩΦ◦πX ∈ Ω, and µψ ∈ ↓Ω. We

now have the diagram

X
envΩΦ Y ◦π

{{

envΩΦ◦π X

$$

EnvΩΦ Y EnvΩΦ◦πX
δoo

It remains to verify that υ and δ are mutually inverse. First,

δ ◦υ ◦ envΩΦ Y ◦ π︸ ︷︷ ︸

3

Epi

= δ ◦ envΩΦ◦πX = envΩΦ Y ◦π = 1EnvΩΦ Y ◦ envΩΦ Y ◦ π︸ ︷︷ ︸
3

Epi

⇒ δ ◦υ = 1EnvΩΦ Y .

And second,

υ◦δ◦envΩΦ◦πX︸ ︷︷ ︸

3

Epi

= υ◦envΩΦ Y ◦π = envΩΦ◦πX = 1EnvΩΦ◦π X ◦envΩΦ◦πX︸ ︷︷ ︸

3

Epi

⇒ υ◦δ = 1EnvΩΦ◦π X .

Proof of Theorem 3.56. Part (a) follows from property 5◦ on p. 61. Let us prove (b).

By Lemma 3.57, EnvΩΦ Y = EnvΩΦ◦πX, and by property 3◦ on p. 44, when we pass to a

narrower class of morphisms Φ◦π ⊆ Φ, a dashed arrow arises in the upper triangle of the

diagram

X

envΩΦ Y ◦π ((

π

��

envΩΦ X // EnvΩΦ X

EnvΩΦ π

��

EnvΩΦ◦πX

Y
envΩΦ Y // EnvΩΦ Y

It will be the dashed arrow in (3.121), but we need to verify that it is an epimorphism

(so that it will be a morphism in KEpi). This follows from property 3◦ on p. 15: since

EnvΩΦ π ◦ envΩΦ X = envΩΦ Y ◦ π ∈ Epi, we have EnvΩΦ π ∈ Epi.
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As (a) and (b) are proven, (c) becomes a corollary due to Theorem 2.24: K is co-

well-powered in Ω, hence we can choose a map X 7→ SX , which assigns to each object

a skeleton SX in the category Ω ∩ EpiX . Then it becomes possible to choose a map

X 7→ envΩΦ X, and for any epimorphism π : X → Y the arrow EnvΩΦ π automatically

appears from diagram (3.121).

The dual results for refinements look as follows. Denote by KMono the subcategory in

K with the same class of objects as in K, but with monomorphisms from K as morphisms.

Theorem 3.58. Let K be a category with coproducts (over arbitrary index sets), and

suppose classes Γ and Φ of morphisms in K satisfy the following conditions:

– Γ is epimorphically complementable in K;

– K is well-powered in the class Γ ;

– Φ goes to (13) K;

– Γ ◦ Φ ⊆ Φ.

Then:

(a) each object X in K has a refinement RefΓΦ X in Γ by means of Φ;

(b) for each monomorphism π : X → Y there exists a unique monomorphism RefΓΦ π :

RefΓΦ X → RefΓΦ Y such that

X

π

��

RefΓΦ X
RefΓΦ Xoo

RefΓΦ π

��

Y RefΓΦ Y
refΓΦ Yoo

(3.123)

(c) the refinement RefΓΦ can be defined as a functor from KMono into KMono.

The following lemma is used in the proof:

Lemma 3.59. If K is a category with coproducts, well-powered in Γ , and Γ is epimorphi-

cally complemented in K, then for each class Φ of morphisms and each monomorphism

π : X ← Y we have

RefΓΦ X = RefΓπ◦Φ Y (3.124)

(here π ◦ Φ = {π ◦ ϕ; ϕ ∈ Φ}).

3.4.8. The case of EnvLL and RefLL. Theorem 3.42 has important corollaries in the case

when the classes of test morphisms and realizing morphisms coincide, i.e. Φ = Ω, and

are the class of all morphisms with ranges in a given class L of objects (this is the special

case of the situation described on p. 49, when L = M).

Theorem 3.60. Suppose a category K and a class L of objects have the following proper-

ties:

(i) K is projectively complete;

(ii) K has nodal decomposition;

(13) In the sense of the definition on p. 9.
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(iii) K is co-well-powered in Epi;

(iv) Mor(K, L) goes from K;

(v) L separates morphisms on the outside;

(vi) L is closed with respect to passage to projective limits;

(vii) L is closed with respect to passage from the range of a morphism to its nodal image:

if Ranα ∈ L, then Im∞ α ∈ L.

Then:

(a) each object X has an envelope envLLX;

(b) each envelope envLLX is a bimorphism;

(c) the envelope EnvLL can be defined as a functor.

Proof. Conditions (i)–(v) mean that the classes Epi and Φ = Mor(K, L) satisfy the premises

of Theorem 3.42, i.e. define a semiregular envelope EnvEpiΦ = EnvEpiL . In the proof of

Theorem 3.42 this envelope is constructed by passing from the spaces Ranϕ ∈ L (ϕ ∈ Φ)

to their projective limits, which belong to K by (vi), and then to the nodal images, which

belong to L by (vii). Therefore, EnvEpiL ∈ L, hence by property 1◦ on p. 44,

EnvEpiL = Env
Epi(K,L)
L .

By construction, the class Φ is a right ideal, and by (v), Φ separates morphisms on the

outside. So by Theorem 3.7,

Env
Epi(K,L)
L = Env

Bim(K,L)
L .

Still by Theorem 3.7 an envelope in the class Bim(K, L) = Mor(K, L) ∩ Bim exists if and

only if there exist the envelope in the class Mor(K, L), and Env
Bim(K,L)
L = Env

Mor(K,L)
L . We

obtain the following logical chain:

EnvEpiL = Env
Epi(K,L)
L = Env

Bim(K,L)
L = Env

Mor(K,L)
L = EnvLL.

This proves (a) and (c), and incidentally (b).

The dual result is as follows:

Theorem 3.61. Suppose a category K and a class L of objects satisfy the following con-

ditions:

(i) K is injectively complete;

(ii) K has nodal decomposition;

(iii) K is well-powered in Mono;

(iv) Mor(L, K) goes to K;

(v) L separates morphisms on the inside;

(vi) L is closed with respect to the operation of taking injective limits;

(vii) L is closed with respect to passage from the domain of a morphism to its nodal

coimage: if Domα ∈ L, then Coim∞ α ∈ L.

Then:

(a) each object X has a refinement refLLX;

(b) each refinement refLLX is a bimorphism;

(c) the refinement RefLL can be defined as a functor.
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3.5. Envelopes in monoidal categories

3.5.1. Envelopes coherent with tensor product. Let K be a monoidal category [26]

with tensor product ⊗ and unit object I.

• Let us say that the envelope EnvΩΦ is coherent with the tensor product ⊗ in K if the

following conditions are fulfilled:

T.1. The tensor product ρ⊗ σ : X ⊗ Y → X ′ ⊗ Y ′ of any two extensions ρ : X → X ′

and σ : Y → Y ′ (in Ω with respect to Φ) is an extension (in Ω with respect to Φ).

T.2. The local identity 1I : I → I is an envelope (in Ω with respect to Φ):

envΩΦ I = 1I . (3.125)

In this section we consider the case when Ω and Φ define a regular envelope in K. By

Theorem 3.48 this means that EnvΩΦ can be defined as an idempotent functor. We denote

it by E : K→ K, and the natural transformation of the identity functor into E is denoted

by e:

E(X) := EnvΩΦ X, E(ϕ) := EnvΩΦ ϕ, eX := envΩΦ X.

The class of all complete objects in K (in Ω with respect to Φ) is denoted by L.

Lemma 3.62. Let EnvΩΦ be a regular envelope coherent with the tensor product in K. Then:

(i) For any objects A ∈ L and X ∈ Ob(K) the envelope E(1A ⊗ eX) of the morphism

1A ⊗ eX : A⊗X → A⊗ E(X) is an isomorphism (in K and in L):

E(1A ⊗ eX) ∈ Iso. (3.126)

(ii) For any X,Y ∈ Ob(K) the envelope E(eX ⊗ eY ) of the morphism eX ⊗ eY : X ⊗Y →
E(X)⊗ E(Y ) is an isomorphism (in K and in L):

E(eX ⊗ eY ) ∈ Iso. (3.127)

Proof. (i) Take A ∈ L and X ∈ Ob(K). The product of the morphisms 1A : A → A and

eX : X → E(X) is 1A ⊗ eX : A⊗X → A⊗E(X). If we insert it instead of α into (3.64),

we obtain

A⊗X

1A⊗eX
��

eA⊗X
// E(A⊗X)

E(1A⊗eX)
��

A⊗ E(X)
eA⊗E(X)

// E(A⊗ E(X))

(3.128)

From the diagram

A⊗X

ϕ
--

1A⊗eX // A⊗ E(X)
eA⊗E(X)

//

ϕ′

��

E(A⊗ E(X))

ϕ′′qqB
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it is seen that eA⊗E(X) ◦ 1A ⊗ eX is an extension of A ⊗X (here in the left triangle we

use T.1). Hence eA⊗E(X) ◦ 1A ⊗ eX is subordinated to the envelope of A⊗X:

A⊗X

1A⊗eX

��

eA⊗X
// E(A⊗X)

A⊗ E(X)
eA⊗E(X)

// E(A⊗ E(X))

υ

OO

(3.129)

for some (unique) υ. In addition, Ω ⊆ Epi, hence eA⊗E(X) ◦ 1A ⊗ eX and eA⊗X , being

extensions, are epimorphisms. As a corollary, (3.128) and (3.129) together give

υ = E(1A ⊗ eX)−1.

(ii) For any two objects X and Y the product of eX : X → E(X) and eY : Y → E(Y )

is eX ⊗ eY : X ⊗ Y → E(X)⊗ E(Y ). If we insert it instead of α into (3.64), we get

X ⊗ Y

eX⊗eY

��

eX⊗Y
// E(X ⊗ Y )

E(eX⊗eY )

��

E(X)⊗ E(Y )
eE(X)⊗E(Y )

// E(E(X)⊗ E(Y ))

(3.130)

From the diagram

X ⊗ Y

ϕ
--

eX⊗eY // E(X)⊗ E(Y )
eE(X)⊗E(Y )

//

ϕ′

��

E(E(X)⊗ E(Y ))

ϕ′′
qqB

we see that eE(X)⊗E(Y ) ◦ eX ⊗ eY is an extension of X ⊗ Y (again in the left triangle we

use T.1). Hence eE(X)⊗E(Y ) ◦ eX ⊗ eY is subordinated to X ⊗ Y :

X ⊗ Y

eX⊗eY

��

eX⊗Y
// E(X ⊗ Y )

E(X)⊗ E(Y )
eE(X)⊗E(Y )

// E(E(X)⊗ E(Y ))

υ

OO

(3.131)

for some (unique) υ. And as in the previous case, eE(X)⊗E(Y ) ◦ eX ⊗ eY and eX⊗Y , being

extensions, are epimorphisms, so (3.130) and (3.131) together give

υ = E(eX ⊗ eY )−1.

3.5.2. Monoidal structure on the class of complete objects. Let EnvΩΦ be a regular

envelope coherent with the tensor product in K, E = EnvΩΦ the idempotent functor built

in Theorem 3.48, and L the (full) subcategory of complete objects in K. For any objects

A,B ∈ L and any morphisms ϕ,ψ ∈ L we define

A
E
⊗B := E(A⊗B), ϕ

E
⊗ ψ := E(ϕ⊗ ψ). (3.132)
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Notice the identity

E(X)
E
⊗ E(Y ) = E(E(X)⊗ E(Y )), X, Y ∈ Ob(K) (3.133)

(this is an equality of objects, since by Proposition 3.46, always E(X), E(Y ) ∈ L).

Theorem 3.63. Suppose EnvΩΦ is a regular envelope coherent with the tensor product

in K. Then the formulas (3.132) define a structure of monoidal category on L (with
E
⊗ as

tensor product and I as unit object).

Proof. The tensor product of local identities is a local identity. Insert 1A⊗B instead of α

into (3.64):

A⊗B

1A⊗B

��

e(A⊗B)
// A

E
⊗B

E(1A⊗B)

��

A⊗B
e(A⊗B)

// A
E
⊗B

If we replace here E(1A⊗B) by 1
A
E
⊗B

, then the diagram will remain commutative. But

this arrow is unique (since e(A⊗B) is an epimorphism), so these arrows must coincide,

and this is used in the last equality of the following chain:

1A
E
⊗ 1B

(3.132)
= E(1A ⊗ 1B) = E(1A⊗B) = 1

A
E
⊗B

.

The tensor product of commutative diagrams is a commutative diagram. Suppose we

have two commutative diagrams in L:

B

A C
��

χ??ϕ

//
ψ

B′

A′ C ′
��

χ′
??

ϕ′

//
ψ′

If we multiply them in K, we obtain a commutative diagram

B ⊗B′

A⊗A′ C ⊗ C ′
$$

χ⊗χ′
::

ϕ⊗ϕ′

//
ψ⊗ψ′

Then we apply the functor E and again obtain a commutative diagram:

E(B ⊗B′)

E(A⊗A′) E(C ⊗ C ′)
''

E(χ⊗χ′)77E(ϕ⊗ϕ′)

//
E(ψ⊗ψ′)
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By (3.132) this is the diagram that we need:

B
E
⊗B′

χ
E
⊗χ′

%%

A
E
⊗A′

ϕ
E
⊗ϕ′

99

ψ
E
⊗ψ′

// C
E
⊗ C ′

Notice that from what we already proved it follows that the tensor product of iso-

morphisms in L is also an isomorphism:

ϕ,ψ ∈ Iso ⇒ ϕ
E
⊗ ψ := E(ϕ⊗ ψ) ∈ Iso. (3.134)

Indeed,

(ϕ⊗ ψ) ◦ (ϕ−1 ⊗ ψ−1) = (ϕ ◦ ϕ−1)⊗ (ψ ◦ ψ−1) = 1⊗ 1 = 1,

so

(ϕ
E
⊗ ψ) ◦ (ϕ−1

E
⊗ ψ−1) = E(ϕ⊗ ψ) ◦ E(ϕ−1 ⊗ ψ−1)

= E((ϕ⊗ ψ) ◦ (ϕ−1 ⊗ ψ−1)) = E(1) = 1.

And similarly,

(ϕ−1
E
⊗ ψ−1) ◦ (ϕ

E
⊗ ψ) = 1.

If αA,B,C : (A ⊗ B) ⊗ C → A ⊗ (B ⊗ C) is the associativity transform in K, then

the associativity transform αEA,B,C : (A
E
⊗ B)

E
⊗ C → A

E
⊗ (B

E
⊗ C) in L is defined by the

diagram

E((A⊗B)⊗ C)
E(αA,B,C)

// E(A⊗ (B ⊗ C))

E(1A⊗eB⊗C)

��

E(E(A⊗B)⊗ C)

E(eA⊗B⊗1C)−1

OO

E(A⊗ E(B ⊗ C))

E(A⊗B)
E
⊗ C A

E
⊗ E(B ⊗ C)

(A
E
⊗B)

E
⊗ C

αEA,B,C
// A

E
⊗ (B

E
⊗ C)

(3.135)

(here we use (3.133) and Lemma 3.62, which implies that the morphism E(eA⊗B ⊗ 1C)

is invertible).

Let us show that the transform αE is natural with respect to the tensor product:

αE :
(
(A,B,C) 7→ (A

E
⊗B)

E
⊗ C

)
�
(
(A,B,C) 7→ A

E
⊗ (B

E
⊗ C)

)
.

Take morphisms ϕ : A→ A′, χ : B → B′, ψ : C → C ′ in L, and consider the diagram of
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naturality for α:

(A⊗B)⊗ C
(ϕ⊗χ)⊗ψ

��

αA,B,C
// A⊗ (B ⊗ C)

ϕ⊗(χ⊗ψ)
��

(A′ ⊗B′)⊗ C ′
αA′,B′,C′

// A′ ⊗ (B′ ⊗ C ′)

(3.136)

After applying the functor E we have

E((A⊗B)⊗ C)

E((ϕ⊗χ)⊗ψ)
��

E(αA,B,C)
// E(A⊗ (B ⊗ C))

E(ϕ⊗(χ⊗ψ))
��

E((A′ ⊗B′)⊗ C ′)
E(αA′,B′,C′ )

// E(A′ ⊗ (B′ ⊗ C ′))

Let us extend this diagram as follows:

(A
E
⊗ B)

E
⊗ C

E(eA⊗B⊗1C )−1

//

(ϕ
E
⊗χ)

E
⊗ψ

��

αEA,B,C

,,
E((A⊗B)⊗C)

E((ϕ⊗χ)⊗ψ)

��

E(αA,B,C )
//
E(A⊗(B⊗C))

E(ϕ⊗(χ⊗ψ))

��

E(1A⊗eB⊗C )

//
A
E
⊗ (B

E
⊗ C)

ϕ
E
⊗(χ

E
⊗ψ)

��

(A′
E
⊗ B′)

E
⊗ C′

E(e
A′⊗B′⊗1

C′ )
−1

//

αE
A′,B′,C′

22E((A′ ⊗ B′) ⊗ C′)
E(α

A′,B′,C′ )
//E(A′⊗(B′⊗C′))

E(1
A′⊗eB′⊗C′ )

//A′
E
⊗ (B′

E
⊗ C′)

If we remove the inner vertices, we obtain the diagram of naturality for αE :

(A
E
⊗B)

E
⊗ C

(ϕ
E
⊗χ)

E
⊗ψ
��

αEA,B,C
// A

E
⊗ (B

E
⊗ C)

ϕ
E
⊗(χ

E
⊗ψ)

��

(A′
E
⊗B′)

E
⊗ C ′

αE
A′,B′,C′

// A′
E
⊗ (B′

E
⊗ C ′)

Let us show that αE satisfies the associativity conditions. For α they look as the

pentagon

(A⊗ (B ⊗ C))⊗D
αA,B⊗C,D

// A⊗ ((B ⊗ C)⊗D)

1A⊗αB,C,D

%%

((A⊗B)⊗ C)⊗D

αA,B,C⊗1D
99

αA⊗B,C,D ,,

A⊗ (B ⊗ (C ⊗D))

(A⊗B)⊗ (C ⊗D)
αA,B,C⊗D

22

(3.137)

Let us apply E and add the diagram to the following prism:
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E
(
(
A
⊗

(
B
⊗
C

)
)
⊗
D

)

E
(
e
A
⊗

(
B
⊗
C

)
⊗

1
D

)

��

E
(
α
A
,B
⊗
C
,D

)
// E

(
A
⊗

(
(
B
⊗
C

)
⊗
D

)
)

E
(
1
A
⊗
α
B
,C
,D

)

��

E
(
1
A
⊗
e
(
B
⊗
C

)
⊗
D

)

��
E

(
E

(
A
⊗

(
B
⊗
C

)
)
⊗
D

)
E

(
A
⊗
E

(
(
B
⊗
C

)
⊗
D

)
)

E
(
(
(
A
⊗
B

)
⊗
C

)
⊗
D

)

E
(
e
(
A
⊗
B

)
⊗
C
⊗

1
D

)

��

E
(
α
A
,B
,C
⊗

1
D

)

88

E
(
α
A
⊗
B
,C
,D

)

((

E
(
A
⊗

(
B
⊗
C

)
)
E ⊗
D

E
(
1
A
⊗
e
B
⊗
C

)
E ⊗

1
D

��

A
E ⊗
E

(
(
B
⊗
C

)
⊗
D

)

1
A
E ⊗
E

(
e
B
⊗
C
⊗

1
D

)

��

E
(
A
⊗

(
B
⊗

(
C
⊗
D

)
)
)

E
(
1
A
⊗
e
B
⊗

(
C
⊗
D

)
)

��
E

(
E

(
(
A
⊗
B

)
⊗
C

)
⊗
D

)
E

(
A
⊗
E

(
B
⊗

(
C
⊗
D

)
)
)

E
(
(
A
⊗
B

)
⊗
C

)
E ⊗
D

E
(
e
A
⊗
B
⊗

1
C

)
E ⊗

1
D

��

E
(
A
⊗
E

(
B
⊗
C

)
)
E ⊗
D

E
(
(
A
⊗
B

)
⊗

(
C
⊗
D

)
)

E
(
e
A
⊗
B
⊗
e
C
⊗
D

)

��E
(
α
A
,B
,C
⊗
D

)

66

A
E ⊗
E

(
E

(
B
⊗
C

)
⊗
D

)
A
E ⊗
E

(
B
⊗

(
C
⊗
D

)
)

1
A
E ⊗
E

(
1
B
⊗
e
C
⊗
D

)

��

E
(
E

(
A
⊗
B

)
⊗
C

)
E ⊗
D

(
A
E ⊗

(
B
E ⊗
C

)
)
E ⊗
D

α
E A
,B
E ⊗
C
,D

// A
E ⊗

(
(
B
E ⊗
C

)
E ⊗
D

)

1
A
E ⊗
α
E B
,C
,D

!!

A
E ⊗
E

(
B
⊗
E

(
C
⊗
D

)
)

(
(
A
E ⊗
B

)
E ⊗
C

)
E ⊗
D

α
E A
,B
,C

E ⊗
1
D

==

α
E A
E ⊗
B
,C
,D

((

E
(
E

(
A
⊗
B

)
⊗
E

(
C
⊗
D

)
)

A
E ⊗

(
B
E ⊗

(
C
E ⊗
D

)
)

(
A
E ⊗
B

)
E ⊗

(
C
E ⊗
D

)

α
E A
,B
,C
E ⊗
D

66

(3.138)

The upper base of this prism is commutative, since this is the action of the functor E

on the diagram (3.137), and the commutativity of the lateral sides can be verified by

changing the vertical arrows in an equivalent way.

For example, the commutativity of the near side becomes obvious if we represent it

as the perimeter of the following diagram:
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E
((

(A
⊗
B

)
⊗
C

)
⊗
D

)
E

(
α
A
⊗
B
,C
,D

)
//

E
(
(
e
A
⊗
B
⊗

1
C

)
⊗

1
D

)

��

E
(
e
(
A
⊗
B

)
⊗
C
⊗

1
D

)

zz

E
((
A
⊗
B

)
⊗

(C
⊗
D

))

E
(
e
A
⊗
B
⊗

(
1
C
⊗

1
D

)
)

��

E
(
e
A
⊗
B
⊗
e
C
⊗
D

)

��

E
(E

((
A
⊗
B

)
⊗
C

)
⊗
D

)
E

((
E

(A
⊗
B

)
⊗
C

)
⊗
D

)
E

(E
(A
⊗
B

)
⊗

(C
⊗
D

))

E
((
A
⊗
B

)
⊗
C

)
E ⊗
D

E
(
e
A
⊗
B
⊗

1
C

)
E ⊗

1
D

��

E
((

(A
E ⊗
B

)
⊗
C

)
⊗
D

)

E
(
α

A
E ⊗
B
,C
,D

)

//

E
(
e

(
A
E ⊗
B

)
⊗
C

⊗
1
D

)

��

E
((
A

E ⊗
B

)
⊗

(C
⊗
D

))

E
(
1

A
E ⊗
B

⊗
e
C
⊗
D

)

��

E
(E

(A
⊗
B

)
⊗
C

)
E ⊗
D

E
(E

((
A

E ⊗
B

)
⊗
C

)
⊗
D

)
E

((
A

E ⊗
B

)
⊗
E

(C
⊗
D

))
E

(E
(A
⊗
B

)
⊗
E

(C
⊗
D

))

((
A

E ⊗
B

)
E ⊗
C

)
E ⊗
D

α
E A
E ⊗
B
,C
,D

// (
A

E ⊗
B

)
E ⊗

(C
E ⊗
D

)
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Here the upper inner triangle (or quadrangle) is the result of applying E to the diagram

((A⊗B)⊗ C)⊗D
αA⊗B,C,D

//

(eA⊗B⊗1C)⊗1D
��

(A⊗B)⊗ (C ⊗D)

eA⊗B⊗(1C⊗1D)

��

(E(A⊗B)⊗ C)⊗D
αE(A⊗B),C,D

// E(A⊗B)⊗ (C ⊗D)

(this is a corollary of (3.136)). The lower inner hexagon is diagram (3.135) for αE on the

components A
E
⊗B, C, D. The big octagon can be represented as a rhombus

E(((A⊗B)⊗ C)⊗D)
E(e(A⊗B)⊗C⊗1D)

tt

E((eA⊗B⊗1C)⊗1D)

**

E(E((A⊗B)⊗ C)⊗D)

E(E(eA⊗B⊗1C)⊗1D)
**

E((E(A⊗B)⊗ C)⊗D)

E(eE(A⊗B)⊗C⊗1D)
tt

E(E(E(A⊗B)⊗ C)⊗D)

which is a result of applying E to the rhombus

((A⊗B)⊗ C)⊗D
e(A⊗B)⊗C⊗1D

tt

(eA⊗B⊗1C)⊗1D

**

E((A⊗B)⊗ C)⊗D

E(eA⊗B⊗1C)⊗1D **

(E(A⊗B)⊗ C)⊗D

eE(A⊗B)⊗C⊗1Dtt

E(E(A⊗B)⊗ C)⊗D

which in turn results from multiplying by D on the right the diagram

(A⊗B)⊗ C
e(A⊗B)⊗C

uu

eA⊗B⊗1C

))

E((A⊗B)⊗ C)

E(eA⊗B⊗1C)
))

E(A⊗B)⊗ C

eE(A⊗B)⊗C
uu

E(E(A⊗B)⊗ C)

and it can be viewed as diagram (3.64) where α is replaced by eA⊗B ⊗ 1C . Finally, the

upper right pentagon is the triangle

E((A⊗B)⊗ (C ⊗D))

E(eA⊗B⊗(1C⊗1D))

��

E(eA⊗B⊗eC⊗D)

,,

E(E(A⊗B)⊗ (C ⊗D))
E(1A⊗B⊗eC⊗D)

// E(E(A⊗B)⊗ E(C ⊗D))
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which is a result of applying E to the triangle

(A⊗B)⊗ (C ⊗D)

eA⊗B⊗(1C⊗1D)

��

eA⊗B⊗eC⊗D

++

E(A⊗B)⊗ (C ⊗D)
1A⊗B⊗eC⊗D

// E(A⊗B)⊗ E(C ⊗D)

The same reasoning works for the other vertical sides of (3.138). In addition, the

vertical arrows are isomorphisms (by Lemma 3.62 and property (3.134)), so we deduce

that the lower base of this prism is commutative as well, and this is the diagram that we

need for αE .

Let λX : I⊗X → X be the left identity in the monoidal category K, and ρX : X⊗I →
X the right identity. For any A ∈ Ob(L) we set

λEA = E(λA) : I
E
⊗A = E(I ⊗A)→ E(A) = A,

ρEA = E(ρA) : A
E
⊗ I = E(A⊗ I)→ E(A) = A,

(3.139)

and these will be the left and the right identities for L. Indeed, for any morphism ϕ :

A→ A′ in L the diagrams

I ⊗A

1I⊗ϕ
��

λA // A

ϕ

��

I ⊗A′
λA′ // A′

A⊗ I

ϕ⊗1I
��

ρA // A

ϕ

��

A′ ⊗ I
ρA′ // A′

(3.140)

give

I
E
⊗A E(I ⊗A)

1I
E
⊗ϕ=E(1I⊗ϕ)

��

λEA=E(λA)
// A

ϕ

��

I
E
⊗A′ E(I ⊗A′)

λE
A′=E(λA′ )

// A′

A
E
⊗ I E(A⊗ I)

ϕ
E
⊗1I=E(ϕ⊗1I)

��

ρEA=E(ρA)
// A

ϕ

��

A′
E
⊗ I E(A′ ⊗ I)

ρE
A′=E(ρA′ )

// A′

Moreover, the identity λI = ρI implies λEI = E(λI) = E(ρI) = ρEI , and the diagram

(A⊗ I)⊗B

ρA⊗1B
%%

αA,I,B
// A⊗ (I ⊗B)

1A⊗λByy

A⊗B
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gives the upper base of the prism

E((A⊗ I)⊗B)

E(eA⊗I⊗1B)

��

E(ρA⊗1B)

**

E(αA,I,B)
// E(A⊗ (I ⊗B))

E(1A⊗eI⊗B)

��

E(1A⊗λB)

tt

E(E(A⊗ I)⊗B)
E(ρEA⊗1B)

// E(A⊗B) E(A⊗ E(I ⊗B))
E(1A⊗λEB)

oo

(A
E
⊗ I)

E
⊗B

ρEA
E
⊗1B ))

αEA,I,B
// A

E
⊗ (I

E
⊗B)

1A
E
⊗λEBuu

A
E
⊗B

The commutativity of its lateral sides is obvious, and the vertical arrows are isomor-

phisms, so the lower base is also commutative.

3.5.3. Envelope as a monoidal functor

Theorem 3.64. Let EnvΩΦ be a regular envelope coherent with the tensor product in K.

Then the functor of envelope E : K→ L built in Theorem 3.48 is monoidal.

Proof. To be monoidal the functor E : K→ L must define a morphism of bifunctors(
(X,Y ) 7→ E(X)

E
⊗ E(Y )

) E⊗
�
(
(X,Y ) 7→ E(X ⊗ Y )

)
.

In this case this is a family of morphisms

E⊗X,Y = E(eX ⊗ eY )−1 : E(X)
E
⊗ E(Y ) = E(E(X)⊗ E(Y ))→ E(X ⊗ Y )

(by Lemma 3.62 all morphisms E(eX ⊗ eY ) are isomorphisms, so E(eX ⊗ eY )−1 exists)

and a morphism EI in L that turns the identity object I of L into the image E(I) in K;

in this situation this will be the local identity:

EI = 1I : I → I
(3.125)

= E(I).

Let us check the axioms of monoidal functor for these components. The diagram of

coherence with associativity:

E
(
(X ⊗ Y )⊗ Z

) E(αX,Y,Z)
// E
(
X ⊗ (Y ⊗ Z)

)

E(X ⊗ Y )
E
⊗ E(Z)

E⊗X⊗Y,Z

OO

E(X)
E
⊗ E(Y ⊗ Z)

E⊗X,Y⊗Z

OO

(E(X)
E
⊗ E(Y ))

E
⊗ E(Z)

E⊗X,Y
E
⊗1E(X)

OO

αEE(X),E(Y ),E(Z)
// E(X)

E
⊗ (E(Y )

E
⊗ E(Z))

1E(X)

E
⊗E⊗Y,Z

OO
(3.141)
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is translated here as follows:

E
(
(X ⊗ Y )⊗ Z

)
E(eX⊗Y ⊗eZ)

��

E(αX,Y,Z)
// E
(
X ⊗ (Y ⊗ Z)

)
E(eX⊗eY⊗Z)

��

E(E(X ⊗ Y )⊗ E(Z))

E(E(eX⊗eY )⊗1E(Z))

��

E(E(X)⊗ E(Y ⊗ Z))

E(1E(X)⊗E(eY ⊗eZ))

��

E
(
E(E(X)⊗ E(Y ))⊗ E(Z)

) αEE(X),E(Y ),E(Z)
// E
(
E(X)⊗ E(E(Y )⊗ E(Z))

)
To see that it is commutative, let us represent it as the perimeter of the following diagram:

E((X ⊗ Y ) ⊗ Z)

E(eX⊗Y ⊗ eZ )

��

E((eX ⊗ eY ) ⊗ eZ )

��

E(αX,Y,Z )
//
E(X ⊗ (Y ⊗ Z))

E(eX ⊗ (eY ⊗ eZ ))

��

E(eX ⊗ eY⊗Z )

��
E(E(X ⊗ Y ) ⊗ E(Z))

E(E(eX ⊗ eY ) ⊗ 1E(Z))

**

E((E(X) ⊗ E(Y )) ⊗ E(Z))

E(αE(X),E(Y ),E(Z))

//

E(eE(X)⊗E(Y ) ⊗ 1E(Z))

��

E(E(X) ⊗ (E(Y ) ⊗ E(Z)))

E(1E(X) ⊗ eE(Y )⊗E(Z))

��

E(E(X) ⊗ E(Y ⊗ Z))

E(1E(X) ⊗ E(eY ⊗ eZ ))

tt
E(E(E(X) ⊗ E(Y )) ⊗ E(Z))

αE
E(X),E(Y ),E(Z)

// E(E(X) ⊗ E(E(Y ) ⊗ E(Z)))

(3.142)

Here the left inner triangle can be represented in the form

E((X ⊗ Y )⊗ Z)

E(eX⊗Y ⊗eZ)

��

E((eX⊗eY )⊗eZ)
// E((E(X)⊗ E(Y ))⊗ E(Z))

E(eE(X)⊗E(Y )⊗1E(Z))

��

E(E(X ⊗ Y )⊗ E(Z))
E(E(eX⊗eY )⊗1E(Z))

// E(E(E(X)⊗ E(Y ))⊗ E(Z))

This is the result of applying E to the diagram

(X ⊗ Y )⊗ Z

eX⊗Y ⊗eZ

��

(eX⊗eY )⊗eZ
// (E(X)⊗ E(Y ))⊗ E(Z)

eE(X)⊗E(Y )⊗1E(Z)

��

E(X ⊗ Y )⊗ E(Z)
E(eX⊗eY )⊗1E(Z)

// E(E(X)⊗ E(Y ))⊗ E(Z)



3.5. Envelopes in monoidal categories 105

which in turn is the product of the two diagrams

X ⊗ Y

eX⊗Y

��

(eX⊗eY )
// E(X)⊗ E(Y )

eE(X)⊗E(Y )

��

E(X ⊗ Y )
E(eX⊗eY )

// E(E(X)⊗ E(Y ))

Z

eZ

��

eZ // E(Z)

1E(Z)

��

E(Z)
1E(Z)

// E(Z)

The left one is trivial, and the right one is diagram (3.130) transposed.

Further, the upper inner quadrangle in (3.142):

E((X ⊗ Y )⊗ Z)

E((eX⊗eY )⊗eZ)

��

E(αX,Y,Z)
// E(X ⊗ (Y ⊗ Z))

E(eX⊗(eY ⊗eZ))

��

E
(
(E(X)⊗ E(Y ))⊗ E(Z)

) E(αE(X),E(Y ),E(Z))
// E
(
E(X)⊗ (E(Y )⊗ E(Z))

)
is the result of applying E to the diagram

(X ⊗ Y )⊗ Z

(eX⊗eY )⊗eZ
��

αX,Y,Z
// X ⊗ (Y ⊗ Z)

eX⊗(eY ⊗eZ)

��

(E(X)⊗ E(Y ))⊗ E(Z)
αE(X),E(Y ),E(Z)

// E(X)⊗ (E(Y )⊗ E(Z))

and the latter is a special case of (3.136).

Then, the lower inner quadrangle in (3.142):

E((E(X)⊗ E(Y ))⊗ E(Z))
E(αE(X),E(Y ),E(Z))

//

E(eE(X)⊗E(Y )⊗1E(Z))

��

E(E(X)⊗ (E(Y )⊗ E(Z)))

E(1E(X)⊗eE(Y )⊗E(Z))

��

E
(
E(E(X)⊗ E(Y ))⊗ E(Z)

) αEE(X),E(Y ),E(Z)
// E
(
E(X)⊗ E(E(Y )⊗ E(Z))

)
is a special case of (3.135).

Finally, it is useful to represent the right inner quadrangle in (3.142) in the form

E(X ⊗ (Y ⊗ Z))

E(eX⊗(eY ⊗eZ))

��

E(eX⊗eY⊗Z)
// E(E(X)⊗ E(Y ⊗ Z))

E(1E(X)⊗E(eY ⊗eZ))

��

E
(
E(X)⊗ (E(Y )⊗ E(Z))

) E(1E(X)⊗eE(Y )⊗E(Z))
// E
(
E(X)⊗ E(E(Y )⊗ E(Z))

)
This is the result of applying E to the diagram

X ⊗ (Y ⊗ Z)

eX⊗(eY ⊗eZ)

��

eX⊗eY⊗Z
// E(X)⊗ E(Y ⊗ Z)

1E(X)⊗E(eY ⊗eZ)

��

E(X)⊗ (E(Y )⊗ E(Z))
1E(X)⊗eE(Y )⊗E(Z)

// E(X)⊗ E(E(Y )⊗ E(Z))
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which in turn is the product of the two diagrams

X

eX

��

eX // E(X)

1E(X)

��

E(X)
1E(X)

// E(X)

Y ⊗ Z

eY ⊗eZ
��

eY⊗Z
// E(Y ⊗ Z)

E(eY ⊗eZ)

��

E(Y )⊗ E(Z)
eE(Y )⊗E(Z)

// E(E(Y )⊗ E(Z))

The left one here is trivial, and the right one is (3.130) changed a little.

It remains to verify the commutativity of the diagrams for the left and for the right

identities:

E(I ⊗X)
E(λX)

// E(X)

I
E
⊗ E(X)

E⊗I,X

OO

I ′
E
⊗ E(X)

λ′E(X)

OO

EI
E
⊗1E(X)

oo

E(X ⊗ I)
E(ρX)

// E(X)

E(X)
E
⊗ I

E⊗X,I

OO

E(X)
E
⊗ I ′

ρ′E(X)

OO

1E(X)

E
⊗EI

oo

In our situation they have the form

E(I ⊗X)
E(λX)

//

E(eI⊗eX)

��

E(X)

E(I ⊗ E(X))
E(1E(X)⊗1E(X))

// E(I ⊗ E(X))

E(λE(X))

OO

E(X ⊗ I)
E(ρX)

//

E(eX⊗I)

��

E(X)

E(E(X)⊗ I)
E(1E(X)⊗1E(X))

// E(E(X)⊗ I)

E(ρE(X))

OO

and this is the result of applying E to (3.140) with X ′ = E(X) and ϕ = eX .

Corollary 3.65. Suppose EnvΩΦ is a regular envelope coherent with the tensor prod-

uct in K. The operation EnvΩΦ turns each algebra (respectively, coalgebra, bialgebra, Hopf

algebra) A in K into an algebra (respectively, coalgebra, bialgebra, Hopf algebra) EnvΩΦ A

in L.

Proof. For the case of algebras and general monoidal functors this fact is pointed out

in [37].



4. The category Ste of stereotype spaces

In this section we discuss applications of the above results to the theory of stereotype

spaces. To make the exposition more self-contained we give a brief summary of the sim-

plest facts of the theory (for details see [2] and [3]).

4.1. Pseudocomplete and pseudosaturated spaces

4.1.1. Totally bounded and capacious sets. A set S in a locally convex space X

is said to be totally bounded (or precompact) [38] if for each zero neighborhood U in X

there is a finite set A such that the shifts of U by elements of A cover S, i.e. S ⊆ U +A.

This is equivalent to S being totally bounded in the sense of the uniform structure [13]

induced from X (i.e. A can be chosen as a subset in S).

A set D ⊆ X is said to be capacious if for any totally bounded set S ⊆ X there is a

finite set A ⊆ X such that the shifts of D by elements of A cover S. (If D is convex, then

A can be chosen to be a subset in S.)

Let X be a locally convex space over the field C of complex numbers. Denote by X?

the set of continuous linear functionals f : X → C endowed with the topology of uniform

convergence on totally bounded sets in X. We call X? the dual space of X.

If B ⊆ X and F ⊆ X? are arbitrary sets, then we denote by B◦ and ◦F their (direct

and inverse) polars (in X? and in X):

B◦ =
{
f ∈ X? : |f |B := sup

x∈B
|f(x)| ≤ 1

}
, ◦F =

{
x ∈ X : |x|F := sup

f∈F
|f(x)| ≤ 1

}
.

Similarly, the annihilators of B and F are the sets

B⊥ = {f ∈ X? : ∀x ∈ B f(x) = 0}, ⊥F = {x ∈ X : ∀f ∈ F f(x) = 0}.

Lemma 4.1. For each locally convex space X:

(a) if B ⊆ X is totally bounded, then B◦ ⊆ X? is capacious;

(b) if B ⊆ X is capacious, then B◦ ⊆ X? is totally bounded;

(c) if F ⊆ X? is totally bounded, then ◦F ⊆ X is capacious;

(d) if F ⊆ X? is capacious, then ◦F ⊆ X is totally bounded.

Lemma 4.2. For each LCS X, every set A ⊆ X and every subspace E ⊆ X,

A◦ ∩ E⊥ = (A+ E)◦. (4.1)

[107]
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Proof. When A = ∅ or E = 0 there is nothing to prove, so we assume that A 6= ∅ and

E 6= 0. Then

f ∈ A◦ ∩ E⊥ ⇒ sup
a∈A
|f(a)| ≤ 1 & ∀x ∈ E f(x) = 0

⇒ sup
a∈A,x∈E

|f(a+ x)| = sup
a∈A,x∈E

|f(a) + f(x)︸︷︷︸
‖
0

| ≤ 1 ⇒ f ∈ (A+ E)◦

and

f ∈ (A+ E)◦ ⇒ sup
a∈A,x∈E

|f(a+ x)| ≤ 1

⇒ sup
a∈A
|f(a)| = sup

a∈A,x=0
|f(a+ x)| ≤ 1 & ∃a ∈ A ∀x ∈ E |f(a+ x)| ≤ 1

⇒ sup
a∈A
|f(a)| ≤ 1 & ∀x ∈ E f(x) = 0 ⇒ f ∈ A◦ ∩ E⊥.

4.1.2. Pseudocomplete and pseudosaturated spaces

• A locally convex space X is said to be pseudocomplete if every totally bounded Cauchy

net in X converges. This is equivalent to every closed totally bounded set in X being

compact.

This notion is connected with the usual completeness and quasicompleteness (1) by the

implications

X is complete ⇒ X is quasicomplete ⇒ X is pseudocomplete.

In the metrizable case these properties are equivalent.

• A locally convex space X is said to be pseudosaturated if each closed convex balanced

capacious set D in X is a neighborhood of zero.

Example 4.3. Every barreled space is pseudosaturated.

Example 4.4. Every metrizable (not necessarily complete) space is pseudosaturated.

Theorem 4.5 (Criterion for being pseudosaturated). For a locally convex space X the

following conditions are equivalent:

(i) X is pseudosaturated;

(ii) if a set F ⊆ X ′ of continuous linear functionals is equicontinuous on each totally

bounded set S ⊆ X, then F is equicontinuous on X;

(iii) if Y is a locally convex space and Φ is a set of continuous linear maps ϕ : X → Y ,

equicontinuous on each totally bounded set S ⊆ X, then Φ is equicontinuous on X.

Theorem 4.6. For an arbitrary locally convex space X:

– if X is pseudocomplete, then X? is pseudosaturated;

– if X is pseudosaturated, then X? is pseudocomplete.

(1) A locally convex space X is said to be quasicomplete if every bounded Cauchy net in X
converges.
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Lemma 4.7. Let ϕ : X → Y be a morphism of LCS. Then

∀A ⊆ X ϕ(A)◦Y ? = (ϕ?)−1(A◦X?),

(ϕ?)−1(0) = (ϕ(X))⊥, (ϕ?)−1(0)⊥ = ϕ(X),
(4.2)

and if X is pseudocomplete, then

∀B ⊆ Y ϕ−1(B)◦X? = ϕ?(B◦Y ?),

ϕ−1(0) = (ϕ?(Y ?))⊥, ϕ−1(0)⊥ = ϕ?(Y ?).
(4.3)

4.1.3. The map iX : X → X??. The second dual space X?? of a locally convex space

X is the space dual to the first dual:

X?? = (X?)?

(each star ? means that we take the topology of uniform convergence on totally bounded

sets). The formula

iX(x)(f) = f(x)

defines a natural map iX : X → X??.

• Let us say that a linear map ϕ : X → Y of locally convex spaces is open (2) if the

image ϕ(U) of any zero neighborhood U ⊆ X is a zero neighborhood in ϕ(X) (with

the topology inherited from Y ):

∀U ∈ U(X) ∃V ∈ U(Y ) ϕ(U) ⊇ ϕ(X) ∩ V.

Clearly, it is sufficient to claim that U is open and absolutely convex. By the obvious

formula

ϕ(X) ∩ V = ϕ(ϕ−1(V )), V ⊆ Y (4.4)

(valid for any map ϕ : X → Y of sets), this condition can be rewritten as follows:

∀U ∈ U(X) ∃V ∈ U(Y ) ϕ(U) ⊇ ϕ(ϕ−1(V )).

Theorem 4.8. For each LCS X the map iX : X → X?? is injective, open and has dense

set of values in X??.

Theorem 4.9. For an arbitrary LCS X the following conditions are equivalent:

(i) X is pseudocomplete;

(ii) iX : X → X?? is surjective (and hence bijective).

Theorem 4.10. For an arbitrary LCS X the following conditions are equivalent:

(i) X is pseudosaturated;

(ii) iX : X → X?? is continuous.

Theorem 4.11. For an arbitrary LCS X:

– if X is pseudocomplete, then X? is pseudosaturated;

– if X is pseudosaturated, then X? is pseudocomplete.

(2) We use the notion of open map in the sense different from the one used in General
topology [13].
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4.2. Variations of openness and closure

4.2.1. Open and closed morphisms. In the stereotype theory the condition dual to

the openness defined above is:

• A continuous linear map ϕ : X → Y of locally convex spaces is closed if for any totally

bounded set T ⊆ ϕ(X) ⊆ Y there is a totally bounded set S ⊆ X such that T ⊆ ϕ(S).

This means in particular that ϕ(X) is closed in Y .

Theorem 4.12. For a continuous linear map ϕ : X → Y of locally convex spaces:

(a) if X pseudosaturated, Y is pseudocomplete and ϕ : X → Y is open, then ϕ? :

Y ? → X? is closed;

(b) if Y is pseudocomplete and ϕ : X → Y is closed, then ϕ? : Y ? → X? is open.

For the proof we need

Lemma 4.13. Let X be a closed subspace in a LCS Y , T an absolutely convex compact

set in Y , and f : X → C a continuous linear functional such that

sup
x∈T∩X

|f(x)| < 1. (4.5)

Then there exists a continuous linear extension g : Y → C of f such that

sup
y∈T
|g(y)| < 1. (4.6)

Proof. Take ε > 0 such that

sup
x∈T∩X

|f(x)| < 1− ε. (4.7)

Since f is continuous on X, the set Z = {x ∈ X : |f(x)| ≥ 1 − ε} is closed in X, and

in Y as well. On the other hand, by (4.7), Z is disjoint from T . As a corollary, there is

an absolutely convex closed zero neighborhood V in Y such that

Z ∩ (T + V ) = ∅.

This means, in particular, that

sup
x∈(T+V )∩X

|f(x)| < 1− ε.

If we denote by p the Minkowski functional of T +V (which is a closed absolutely convex

zero neighborhood in Y ), we obtain

|f(x)| ≤ (1− ε) · p(x), x ∈ X.

By the Hahn–Banach theorem there is a continuous linear extension g : Y → C of f such

that

|g(y)| ≤ (1− ε) · p(y), y ∈ Y.

On T + V we have

sup
y∈T+V

|g(y)| ≤ (1− ε) · sup
y∈T+V

p(y) = 1− ε < 1.

Proof of Theorem 4.12. (a) Let ϕ : X → Y be open. Take a totally bounded set F ∈
BS(ϕ?(Y ?)), i.e. F ∈ BS(X?) and F ⊆ ϕ?(Y ?). By Lemma 4.1(d), the polar U = ◦F is
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a capacious set in X, and since X is pseudosaturated, U is a zero neighborhood in X.

Therefore, since ϕ is open, there exists a zero neighborhood V ∈ BU(Y ) such that ϕ(U) ⊇
ϕ(X) ∩ V . By Lemma 4.1(b), the polar G = V ◦ is a totally bounded set in Y ?. Let us

show that F ⊆ ϕ?(G).

Take f ∈ F ; we will show that there exists g ∈ G such that f = ϕ?(g). Since Y is

pseudocomplete, we have F ⊆ ϕ?(Y ?) = (4.3) = ϕ−1(0)⊥, so ϕ−1(0) ⊆ f−1(0). Therefore

f = h ◦ϕ, where h is a (uniquely determined) functional on ϕ(X) (and we need to prove

that h is continuous). We have

1 ≥ sup
x∈U
|f(x)| = sup

x∈U
|h(ϕ(x))| = sup

y∈ϕ(U)

|h(y)| ≥ sup
y∈ϕ(X)∩V

|h(y)|,

i.e. h is bounded by 1 on the intersection of the unit ball V of the seminorm p(y) =

inf{λ > 0 : y ∈ λ · V } = supg∈G |g(y)| with ϕ(X) where h is defined. In other words, h is

subordinated to p on ϕ(X). By the Hahn–Banach theorem, h can be extended to some

continuous linear functional g ∈ Y ?, also subordinated to p, and as a corollary, lying in

V ◦ = G. Since on ϕ(X) the functionals h and g coincide, we have

f = h ◦ ϕ = g ◦ ϕ = ϕ?(g), g ∈ G.

(b) Suppose Y is pseudocomplete and ϕ : X → Y is closed. Consider a basic open

zero neighborhood V in Y ?, i.e. a set of the form

V =
{
g ∈ Y ? : sup

y∈T
|g(y)| < 1

}
,

where T is a convex balanced compact set in Y (since Y is pseudocomplete, each closed

totally bounded set in Y is compact). The map ϕ is closed, hence there is a totally

bounded set S ∈ BS(X) such that ϕ(S) ⊇ T ∩ ϕ(X). Let

U =
{
f ∈ X? : sup

x∈S
|f(x)| < 1

}
.

If f ∈ U ∩ ϕ?(Y ?), then supx∈S |f(x)| < 1 and f = ϕ?(g) = g ◦ ϕ for some g ∈ Y ?. Let

h = g|
ϕ(X)

. Then

sup
y∈T∩ϕ(X)

|h(y)| ≤ sup
y∈ϕ(S)

|h(y)| = sup
x∈S
|h(ϕ(x))| = sup

x∈S
|f(x)| < 1.

By Lemma 4.13, there is an extension h′ ∈ Y ? of h such that

sup
y∈T
|h′(y)| < 1.

This means that h′ ∈ V , and we obtain f = ϕ?(h′) ∈ ϕ?(V ). So U ∩ ϕ?(Y ?) ⊆ ϕ?(V ).

4.2.2. Weakly open and weakly closed morphisms. Here we consider weakenings

of the properties defined above.

• Let us say that a continuous linear map ϕ : X → Y of locally convex spaces is weakly

open if it satisfies the following equivalent conditions:

(i) each functional f ∈ X? with f |Kerϕ = 0 can be extended along ϕ to a functional

g ∈ Y ?: f = g ◦ ϕ;
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(ii) the image ϕ(U) of any X?-weak zero neighborhood U ⊆ X is a Y ?-weak neigh-

borhood of zero in ϕ(X) (with the topology induced from Y ):

∀U ∈ U(Xw) ∃V ∈ U(Yw) ϕ(U) ⊇ ϕ(X) ∩ V (4.8)

(here Xw denotes X with the X?-weak topology, and similarly Yw);

(iii) the image ϕ(U) of any X?-weak zero neighborhood U ⊆ X is a zero neighborhood

(not necessarily Y ?-weak) in ϕ(X):

∀U ∈ U(Xw) ∃V ∈ U(Y ) ϕ(U) ⊇ ϕ(X) ∩ V. (4.9)

Proof of equivalence. (i)⇒(ii). Let U be an X?-weak neighborhood of zero in X. Then

so is Ũ = U + ϕ−1(0), and in addition

ϕ(U) = ϕ(Ũ), Ũ + ϕ−1(0) = Ũ .

From the second equality it follows that Ũ contains the polar ◦{f1, . . . , fk} of some finite

sequence of functionals fi ∈ X? such that ϕ−1(0) ⊆ f−1i (0). By (i), each fi can be

extended to some functional gi ∈ Y ?:

fi = gi ◦ ϕ.

Letting V = ◦{g1, . . . , gk}, we have (4.9):

y ∈ ϕ(U) = ϕ(Ũ) ⇐ y ∈ ϕ(◦{f1, . . . , fk}) ⇔ ∃x ∈ ◦{f1, . . . , fk} y = ϕ(x)

⇔ ∃x ∈ X y = ϕ(x) & sup
i
|fi(x)| ≤ 1

⇔ ∃x ∈ X y = ϕ(x) & sup
i
|gi(ϕ(x))| ≤ 1

⇔ ∃x ∈ X y = ϕ(x) & sup
i
|gi(y)| ≤ 1

⇔ y ∈ ϕ(X) & y ∈ V ⇔ y ∈ ϕ(X) ∩ V.

(ii)⇒(iii) is obvious.

(iii)⇒(i). Let f ∈ X? be such that Kerϕ ⊆ Ker f . Its polar U = ◦f is an X?-weak

neighborhood of zero in X, so ϕ(U) ⊇ ϕ(X)∩V for some zero neighborhood V in Y . This

means that f can be extended to a functional h on ϕ(X), which is bounded on ϕ(X)∩V :

f = h ◦ ϕ, sup
y∈ϕ(X)∩V

|h(y)| ≤ 1.

Hence, h is a continuous functional on ϕ(X) (with respect to the topology induced

from Y ). By the Hahn–Banach theorem it can be extended to a functional g ∈ Y ?,

and we have f = h ◦ ϕ = g ◦ ϕ.

• Let us say that a continuous linear map ϕ : X → Y is weakly closed if ϕ(X) is closed

in Y .

Proposition 4.14. For a continuous linear map ϕ : X → Y of locally convex spaces:

– if ϕ is open, then it is weakly open;

– if ϕ is closed, then it is weakly closed.
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Proof. The first part follows from condition (iii) in the definition of weak openness on

p. 111, and the second part is obvious, as already noticed when we defined closure on

p. 110.

Theorem 4.15. For a continuous linear map ϕ : X → Y of locally convex spaces:

(a) ϕ : X → Y is weakly open ⇔ ϕ? : Y ? → X? is weakly closed;

(b) if Y is pseudosaturated and ϕ : X → Y is weakly closed, then ϕ? : Y ? → X? is

weakly open.

Proof. The first assertion is exactly the equivalence of (i) and (ii) in the definition of weak

openness. Let us prove the second one. Suppose Y is pseudosaturated and ϕ : X → Y

is weakly closed. By (a), to prove that ϕ? : Y ? → X? is weakly open, it is sufficient to

verify that ϕ?? : X?? → Y ?? is closed. Take h ∈ ϕ??(X??). Since Y is pseudosaturated,

Y ? is pseudocomplete by Theorem 4.11. Therefore,

h ∈ ϕ??(X??)
(4.3)
= (ϕ?)−1(0)⊥

(4.2)
=
(
ϕ(X)

)⊥⊥
= iY

(⊥
(ϕ(X)

⊥
)
)

(the last equality means that the map iY : Y → Y ??, bijective by Theorem 4.9, turns the

annihilator of the space ϕ(X)
⊥

, meant as a subspace in Y , into its annihilator, meant as

a subspace in Y ??). This in turn means that there is y ∈ ϕ(X) such that h = iY (y). Since

ϕ is weakly closed, there exists x ∈ X such that y = ϕ(x). If we denote g = iX(x), then

h = iY (y) = iY (ϕ(x)) = ϕ??(ix(x)) = ϕ??(g).

4.2.3. Relatively open and relatively closed morphisms. Another weakening of

openness and closure of morphisms is the following.

• We say that a continuous linear map ϕ : X → Y of locally convex spaces is

– relatively open if for each zero neighborhood U in X (without loss of generality

we may assume that U is closed and absolutely convex) such that every functional

f ∈ X? bounded on U can be extended along ϕ to some functional g ∈ Y ?,

∀f ∈ X?
(

sup
x∈U
|f(x)| <∞ ⇒ ∃g ∈ Y ? f = g ◦ ϕ

)
, (4.10)

its image ϕ(U) is a neighborhood of zero in ϕ(X) (with the topology inherited

from Y );

– relatively closed if for each absolutely convex compact set T ⊆ Y , if T ⊆ ϕ(X), then

there is a compact set S ⊆ X such that T ⊆ ϕ(S).

The following is obvious:

Proposition 4.16. For a morphism ϕ : X → Y of locally convex spaces:

– if ϕ is open, then it is relatively open;

– if ϕ is closed, then it is relatively closed.

Theorem 4.17. For a continuous linear map ϕ : X → Y of locally convex spaces:

(a) ϕ : X → Y is relatively open ⇔ ϕ? : Y ? → X? is relatively closed;

(b) if X is pseudocomplete and ϕ : X → Y is relatively closed, then ϕ? : Y ? → X? is

relatively open.
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Proof. (a) Suppose ϕ is relatively open, and T is a closed absolutely convex totally

bounded set in X?, contained in ϕ?(Y ?):

∀f ∈ T ∃g ∈ Y ? f = ϕ?(g) = g ◦ ϕ. (4.11)

For the polar U = ◦T this means condition (4.10) holds, and, since U is a zero neighbor-

hood in X, ϕ(U) is a zero neighborhood in ϕ(X) (with the topology induced from Y ).

That is, there exists a zero neighborhood V in Y such that

ϕ(U) ⊇ V ∩ ϕ(X).

Clearly, V can be chosen to be closed and absolutely convex in Y . Let S = V ◦; we will

show that T ⊆ ϕ?(S), i.e.

∀f ∈ U◦ ∃h ∈ V ◦ f = ϕ?(h) = h ◦ ϕ. (4.12)

Indeed, take f ∈ T = U◦. Then by (4.11) one can choose g ∈ Y ? such that f = g ◦ ϕ.

The restriction g|ϕ(X) is bounded by 1 on the zero neighborhood V ∩ ϕ(X):

sup
y∈V ∩ϕ(X)

|g(y)| ≤ sup
y∈ϕ(U)

|g(y)| ≤ sup
x∈U
|g(ϕ(x))| = sup

x∈U
|f(x)| ≤ 1.

In other words, g|ϕ(X) on ϕ(X) is subordinated to the seminorm

p(y) = inf{λ > 0 : y ∈ λ · V }.

By the Hahn–Banach theorem, g|ϕ(X) can be extended to some functional h on Y , sub-

ordinated to p:

|h(y)| ≤ p(y) (y ∈ Y ), h|ϕ(X) = g.

From the first condition it follows that supy∈V |h(y)| ≤ supy∈V p(y) ≤ 1, i.e. h ∈ V ◦ = S.

And from the second one, h(ϕ(x)) = g(ϕ(x)) = f(x). Together this means (4.12).

Now suppose ϕ? : Y ? → X? is relatively closed and let U be an absolutely convex

zero neighborhood in X satisfying (4.10). The polar T = U◦ is a closed absolutely convex

totally bounded set in X?, and for it the condition (4.10) is equivalent to (4.11). This

in turn means T ⊆ ϕ?(Y ?), and since ϕ? is relatively closed, there exists an absolutely

convex totally bounded set S ⊆ Y ? such that

T ⊆ ϕ?(S).

Hence

◦T = {x ∈ X : ∀f ∈ T |f(x)| ≤ 1} ⊇ {x ∈ X : ∀g ∈ S |g(ϕ(x))| ≤ 1}
= {x ∈ X : ϕ(x) ∈ ◦S} = ϕ−1(◦S).

Letting V = ◦S (a zero neighborhood in Y ) we obtain

U ⊇ ϕ−1(V ) ⇒ ϕ(U) ⊇ ϕ(ϕ−1(V ))
(4.4)
= ϕ(X) ∩ V.

(b) Suppose U is an absolutely convex zero neighborhood in Y ?, satisfying (4.10), i.e.

∀υ ∈ Y ??
(

sup
g∈U
|υ(g)| <∞ ⇒ ∃ξ ∈ X?? υ = ξ ◦ ϕ?

)
.

In particular, for any y ∈ T = ◦U there exists ξ ∈ X?? such that

iY (y) = ξ ◦ ϕ?.
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Since X is pseudocomplete, by Theorem 4.9 there exists x ∈ X such that iX(x) = ξ.

Then

∀g ∈ Y ? g(y) = iY (y)(g) = (iX(x) ◦ ϕ?)(g) = iX(x)(ϕ?(g)) = ϕ?(g)(x) = g(ϕ(x)),

and therefore y = ϕ(x). We have proved that T ⊆ ϕ(X), and since ϕ is relatively closed,

there exists an absolutely convex totally bounded set S ⊆ X such that

T ⊆ ϕ(S).

We have

T ◦ ⊇ (ϕ(S))◦
(4.2)
= (ϕ?)−1(S◦).

Now if we put V = S◦ (a zero neighborhood in X?), then

U ⊇ (ϕ?)−1(V ) ⇒ ϕ?(U) ⊇ ϕ?
(
(ϕ?)−1(V )

) (4.4)
= ϕ?(Y ?) ∩ V.

This is what we need.

4.2.4. Connections between the three variations of openness and closure.

Propositions 4.14 and 4.16 can be strengthened as follows.

Theorem 4.18. For a morphism ϕ : X → Y of locally convex spaces:

(a) ϕ is open ⇔ ϕ is weakly open and relatively open;

(b) ϕ is closed ⇔ ϕ is weakly closed and relatively closed.

Proof. In both cases the direction from left to right was already noticed in Propositions

4.14 and 4.16, so we must check the reverse implications.

(a) For each zero neighborhood U in X the set U+ϕ−1(0) is also a zero neighborhood

in X. If f ∈ X? is bounded on U + ϕ−1(0), then, f |ϕ−1(0) = 0, so by the weak openness

of ϕ, f can be extended to a functional g ∈ Y ?. This means that the zero neighborhood

U + ϕ−1(0) satisfies (4.10). Since ϕ is relatively open, we have

ϕ(U) = ϕ(U + ϕ−1(0)) ⊇ ϕ(X) ∩ V

for some zero neighborhood V in Y .

(b) First, ϕ(X) = ϕ(X), and second, each closed absolutely convex totally bounded

set T ⊆ ϕ(X) is the image of some totally bounded set S ⊆ X under ϕ. Together this

means that T can be chosen to be a subset in ϕ(X). Therefore ϕ is closed.

4.2.5. Embeddings and coverings

• A continuous linear map ϕ : X → Y of locally convex spaces will be called:

– an embedding (respectively, a weak embedding, a relative embedding) if it is injective

and open (respectively, weakly open, relatively open);

– a dense embeddding (respectively, a dense weak embedding, a dense relative embed-

ding) if in addition ϕ(X) is dense in Y ;

– a covering (respectively, a weak covering, a relative covering) if it is surjective and

closed (respectively, weakly closed, relatively closed);

– an exact covering (respectively, an exact weak covering, an exact relative covering) if

in addition it is injective.
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Remark 4.19. If a LCS X is pseudocomplete and ϕ : X → Y is an exact covering, then

for any totally bounded set S ⊆ X the restriction ϕ|S : S → ϕ(S) is a homeomorphism

of topological spaces.

Example 4.20. If a locally convex space X is pseudocomplete, then the (continuous and

bijective) map i−1X : X?? → X is defined, and it is an exact covering.

Example 4.21. If a locally convex space X is pseudosaturated, then iX : X → X?? is a

dense embedding.

The following is proved in [2, Theorems 3.2, 3.1].

Theorem 4.22. For a continuous linear map ϕ : X → Y of locally convex spaces:

– if X is pseudosaturated and ϕ : X → Y is a dense embedding, then ϕ? : Y ? → X? is

an exact covering;

– if X is pseudocomplete and ϕ : X → Y is an exact covering, then ϕ? : Y ? → X? is a

dense embedding.

4.3. Pseudocompletion and pseudosaturation

4.3.1. Pseudocompletion. As in the case of completeness, each locally convex space

X has a pseudocompletion, i.e. the “outward-nearest” pseudocomplete space. Formally

this construction is described in the following

Theorem 4.23. There exists a map X 7→ OX that assigns to each locally convex space X

a continuous linear map OX : X → XO into a pseudocomplete locally convex space XO

in such a way that:

(i) X is pseudocomplete if and only if OX : X → XO is an isomorphism;

(ii) for any continuous linear map ϕ : X → Y of locally convex spaces there is a unique

continuous linear map ϕO : XO → Y O such that

X XO

Y Y O

//
OX

��

ϕ

��

ϕO

//
OY

(4.13)

From (i), (ii) it follows that for any continuous linear map ϕ : X → Y into a pseu-

docomplete space Y there exists a unique continuous linear map XO → Y such that

X XO

Y

//
OX

��ϕ ��
(4.14)

This means that OX : X → XO is an extension of X in Ob(LCS) with respect to the ob-

ject C. Since C separates morphisms on the outside in LCS, by Theorem 3.8, OX : X → XO

is a bimorphism. This in turn implies that the morphism OX : X → XO is unique up to

an isomorphism in EpiX .
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• The space XO is called the pseudocompletion, and the map OX : X → XO the pseudo-

completion map, of the locally convex space X. From (ii) it also follows that ϕ 7→ ϕO

is a covariant functor from the category LCS into itself: (ψ ◦ ϕ)O = ψO ◦ ϕO. We call it

the pseudocompletion functor.

Theorem 4.24. For any locally convex space X the pseudocompletion map OX : X → XO

is a dense embedding.

Like the usual completion, the pseudocompletion operation X 7→ XO adds new ele-

ments to X, but does not change the topology of X.

4.3.2. Pseudosaturation. It is remarkable that there exists a dual construction, which

assigns to each locally convex space X an “inward-nearest” pseudosaturated locally con-

vex space XM:

Theorem 4.25. There exists a map X 7→MX that assigns to each locally convex space X

a continuous linear map MX : XM → X from a pseudosaturated locally convex space XM

in such a way that:

(i) X is pseudosaturated if and only if MX : XM → X is an isomorphism;

(ii) for any continuous linear map ϕ : Y → X of locally convex spaces there is a unique

continuous linear map ϕM : Y M → XM such that

X XM

Y Y M

oo
MX

OO

ϕ

oo
MY

OO

ϕM (4.15)

From (i), (ii) it follows that for any continuous linear map ϕ : Y → X from a

pseudosaturated locally convex space Y there is a unique continuous linear map Y → XM

such that

X XM

Y

oo
MX

__

ϕ

??
(4.16)

This means that MX : XM → X is an enrichment of X in the class Ob(LCS) by means

of the object C. Since C separates morphisms on the inside in LCS, by Theorem 3.19,

MX : XM → X is a bimorphism. This implies that the morphism MX : XM → X is unique

up to an isomorphism in MonoX .

• The space XM is called the pseudosaturation, and the map MX : XM → X the pseu-

dosaturation map, of X. From (ii) it follows that ϕ 7→ ϕM is a covariant functor from

the category LCS into itself: (ψ◦ϕ)M = ψM◦ϕM. We call it the pseudosaturation functor.

Theorem 4.26. For any locally convex space X the pseudosaturation map MX : XM → X

is an exact covering.

The pseudosaturation XM can be viewed as a new, stronger topologization of X, which

preserves the system of totally bounded sets in X and the topology on each of them.
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Each of the operations X 7→ XO and X 7→ XM preserves the properties of being

pseudocomplete and pseudosaturated:

Theorem 4.27. For a locally convex space X:

– if X is pseudocomplete, then so is its pseudosaturation XM;

– if X is pseudosaturated, then so is its pseudocompletion XO.

The following examples show that pseudocompletion and psudosaturation are inde-

pendent.

Example 4.28. Let X be an infinite-dimensional Banach space, and Y = X ′σ its dual

space with the X-weak topology. Then Y is pseudocomplete, but not pseudosaturated.

Example 4.29. An arbitrary non-complete metrizable locally convex space is pseudosat-

urated, but not pseudocomplete.

4.3.3. Duality between pseudocompletion and pseudosaturation. The passage

to the dual space X 7→ X? interchanges pseudocompleteness and pseudosaturatedness:

Theorem 4.30. Let X be a pseudocomplete LCS. Then:

(a) there is a unique isomorphism of locally convex spaces

(XM)? // (X?)O (4.17)

such that
(XM)? // (X?)O

X?
(MX)?

dd

OX?

::
(4.18)

(b) for any continuous linear map ϕ : X → Y of locally convex spaces we have

(XM)? // (X?)O

(Y M)? //

(ϕM)?
OO

(Y ?)O

(ϕ?)O
OO

(4.19)

Theorem 4.31. Let X be a pseudosaturated LCS. Then:

(a) there is a unique isomorphism of locally convex spaces

(XO)? // (X?)M (4.20)

such that
(XO)? //

(OX)? $$

(X?)M

MX?zz

X?

(4.21)

(b) for any continuous linear map ϕ : X → Y of locally convex spaces we have

(XO)? // (X?)M

(Y O)? //

(ϕO)?
OO

(Y ?)M

(ϕ?)M
OO

(4.22)
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4.4. Stereotype spaces

• A locally convex space X is said to be stereotype if its natural map to the second dual

space

iX : X → (X?)? iX(x)(f) = f(x), x ∈ X, f ∈ X?,

is an isomorphism of locally convex spaces (both ?’s means the dual space in the sense

of the definition on p. 107).

Clearly, if X is a stereotype space, then so is X?. Theorems 4.9 and 4.10 imply the

following criterion:

Theorem 4.32. A locally convex space X is stereotype if and only if it is pseudocomplete

and pseudosaturated.

This means in particular that there are non-stereotype locally convex spaces (since

there are non-pesudocomplete and non-pseudosaturated spaces: see Examples 4.28 and

4.29). Nevertheless, the class Ste of stereotype spaces turns out to be amazingly wide.

This is seen from the following series of examples, generalizing each other.

Example 4.33. All Banach spaces are stereotype.

Example 4.34. All Fréchet spaces are stereotype.

Example 4.35. All quasicomplete barreled spaces are stereotype.

As a corollary, the place of stereotype spaces among other frequently used classes of

spaces can be illustrated by the following diagram:'

&

$

%

STEREOTYPE SPACES'

&

$

%

quasicomplete barreled spaces

'

&

$

%
Fréchet spaces�
�

�
�Banach spaces

'

&

$

%
reflexive
spaces

(4.23)

This picture is supplemented by the examples of spaces, dual to the already mentioned,

and having quite unwonted (3) properties:

(3) Because of the non-standard notion of dual space.
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Example 4.36. A locally convex space X is called a Smith space (4) if it is a complete

k-space (5) and has a universal compact set, i.e. a compact set K ⊂ X that absorbs any

other compact set T ⊂ X: T ⊆ λK for some λ ∈ C. It is known that a locally convex

space X is a Smith space if and only if it is stereotype and its dual space X? is a Banach

space.

Example 4.37. A locally convex space X is called a Brauner space (6) if it is a complete

k-space and has a countable fundamental system of compact sets, i.e. a sequence of com-

pact sets Kn ⊆ X such that every compact set T ⊆ X is contained in some Kn. A locally

convex space X is a Brauner space if and only if it is stereotype and its dual space X? is

a Fréchet space.

The connections between the spaces of Fréchet, Brauner, Banach, and Smith are

illustrated in the following diagram (where the turnover corresponds to the passage to

the dual class):'

&

$

%

Fréchet spaces'
&Banach spaces

'

&

$

%Brauner spaces

$
%Smith spacesfinite-dimensional

spaces

It is clear from the definition that each stereotype space X can be recovered from

its dual space X?. So different properties of X have their dual analogs in X?. The most

obvious facts of that type are listed in the following

Theorem 4.38. Let X be a stereotype space. Then:

(a) X is normable ⇔ X is a Banach space ⇔ X? is a Smith space;

(b) X is metrizable ⇔ X is a Fréchet space ⇔ X? is a Brauner space;

(c) X is barreled ⇔ X? has the Heine–Borel psoperty;

(d) X is quasibarreled ⇔ in X? each subset absorbed by any barrel is totally bounded;

(e) X is a Mackey space ⇔ in X? each (X?)?-weak compact set is compact;

(f) X is a Montel space ⇔ X is barreled and has the Heine–Borel property ⇔ X? is a

Montel space;

(g) X has a weak topology ⇔ in X? every compact set is finite-dimensional;

(h) X is separable (i.e. has a countable everywhere dense set)⇔ in X? there is a sequence

of closed subspaces Ln of finite codimension with
⋂∞
n=1 Ln = {0};

(4) After M. F. Smith [43].
(5) A topological space X is called a k-space or a Kelley space if every set M ⊆ X having

closed trace M ∩K on each compact set K ⊆ X is closed in X.
(6) After K. Brauner [10].
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(i) X has the (classical) approximation property ⇔ X? has the approximation property;

(j) X is complete ⇔ X? cocomplete (7) ⇔ X? is saturated (8);

(k) X is a Pták space (9) ⇔ in X? a subspace L is closed if it leaves a closed trace L∩K
on each compact set K ⊆ X?;

(l) X is hypercomplete (10) ⇔ in X? an absolutely convex set B is closed if it leaves a

closed trace B ∩K on each compact set K ⊆ X?.

Proposition 4.39. Let E be a closed subspace in a locally convex space X, considered

as a locally convex space with the topology induced from X, and let the annihilator E⊥

be also endowed with the topology induced from X?. Then:

(a) there is a natural isomorphism of locally convex spaces

E? ∼= X?/E⊥, (4.24)

and if in addition E is pseudocomplete (for example, if X is pseudocomplete), then

(4.24) generates isomorphisms of stereotype spaces

(EM)? ∼= (X?/E⊥)O, EM ∼= [(X?/E⊥)O]?; (4.25)

(b) if X is stereotype, then there is a natural isomorphism of locally convex spaces

(E⊥)? ∼= X/E (4.26)

generating isomorphisms of stereotype spaces

((E⊥)M)? ∼= (X/E)O, (E⊥)M ∼= [(X/E)O]?. (4.27)

The following example is due to O. G. Smolyanov [44] and it was mentioned in [2] (as

Example 3.22). We will use it later as an important technical result:

Example 4.40. There is a stereotype space Z with the following properties:

(i) Z and Z? are complete and saturated;

(ii) Z has a closed subspace Y such that

(a) the quotient space Z/Y is metrizable, but not complete;

(b) the annihilator Y ⊥ (with the topology induced from Z?) is not a pseudosaturated

space.

Proof. An example is the space Z = D(R) of smooth functions with compact support

on R. It is complete (as the strong inductive limit of a sequence of complete spaces [35])

and saturated (as the inductive limit of a system of saturated spaces). By Theorem 4.11,

(7) A locally convex space X is said to be cocomplete [2] if each linear functional f : X → C
continuous on each totally bounded set S ⊆ X is continuous on X.

(8) A locally convex space X is said to be saturated [2] if for an absolutely convex set B,
being a zero neighborhood in X is equivalent to the following: for any totally bounded set S ⊆ X
there is a closed zero neighborhood U in X such that B ∩ S = U .

(9) A locally convex space X is called a Pták space [38] or a fully complete space [35] it in the
dual space X? every subspace Q ⊆ X? is X-weakly closed when it leaves an X-weakly closed
trace Q ∩ U◦ on the polar U◦ of each zero neighborhood U ⊆ X.

(10) A locally convex space X is said to be hypercomplete [35] if in the dual space X? an
absolutely convex set Q ⊆ X? is X-weakly closed when it leaves an X-weakly closed trace Q∩U◦
on the polar U◦ of each zero neighborhood U ⊆ X.
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Z? = D?(R) is also complete and saturated. In [44], O. G. Smolyanov showed that Z

contains a closed subspace Y such that Z/Y is metrizable, but not complete. Hence, Z/Y

is not pseudocomplete.

Set X = Z?, E = Y ⊥. By Proposition 4.39(a), Z/Y = X?/E⊥ = E?. So if E were

pseudosaturated, then Z/Y would be pseudocomplete by Theorem 4.11.

Example 4.41. There exists a complete locally convex space E (and thus E can be

represented as a projective limit of Banach spaces in the category LCS) such that E?

is metrizable, but not complete. As a corollary, E is not pseudosaturated, and there is

a discontinuous linear functional f : E → C which is continuous with respect to the

topology of the pseudosaturation EM.

Proof. An example is the space E = Y ⊥ from Example 4.40. It is complete, since it is a

closed subspace in the complete space Z? = D?(R). On the other hand, by Proposition

4.39(a), E? ∼= X?/E⊥ ∼= Z/Y , and the last space is metrizable, but not complete. That

is, E? 6= (E?)O, and this can be extended to

E? 6= (E?)O
(4.17)∼= (EM)?,

which means that there exists f ∈ (EM)? \ E?. (It is important here that E is pseudo-

complete, while E? is not.)

4.4.1. Spaces of operators and continuous bilinear maps

• Let X and Y be stereotype spaces. Let us denote:

– by Y : X the space of continuous linear maps ϕ : X → Y endowed with the topology

of uniform convergence on totally bounded sets in X;

– by Y �X the pseudosaturation of the space Y : X,

Y �X = (Y : X)M. (4.28)

The space Y � X is stereotype, and we call it the inner space of operators from X

into Y . Again, it consists of all continuous linear maps ϕ : X → Y , but its topology

is formally stronger than the topology of uniform convergence on totally bounded sets

in X (11).

Theorem 4.42. Let X and Y be locally convex spaces. A set of morphisms Φ ⊆ Y : X

is totally bounded in Y : X if and only if it satisfies the following two conditions:

(a) equicontinuity on totally bounded sets:

∀S ∈ S(X) ∀V ∈ U(Y ) ∃U ∈ U(X) ∀a, b ∈ S
a− b ∈ U ⇒ ∀ϕ ∈ Φ ϕ(a)− ϕ(b) ∈ V ;

(b) uniform total boundedness on totally bounded sets:

∀S ∈ S(X) Φ(S) = {ϕ(x); x ∈ S, ϕ ∈ Φ} ∈ S(Y ).

(11) Thus, Y : X and Y � X coincide as linear spaces, but may have different topologies.
So far, however, it is not clear whether Y : X and Y �X are indeed different, since examples
of non-pseudosaturated spaces of the form Y : X (with stereotype X and Y ) have not been
constructed yet.
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Condition (b) can be replaced by the weakened condition

(c) pointwise total boundedness:

∀x ∈ X Φ(x) = {ϕ(x); ϕ ∈ Φ} ∈ S(Y ).

Moreover,

– if Y is a Heine–Borel space, then (a) ⇒ (b) & (c);

– if X is barreled, then (c) ⇒ (a) & (b).

For any continuous linear map ϕ : X → Y its dual map ϕ? : Y ? → X? is defined by

ϕ?(f) = f ◦ ϕ, f ∈ Y ?.

Theorem 4.43. The map ϕ 7→ ϕ? is an isomorphism of stereotype spaces:

X? � Y ? ∼= Y �X.

Example 4.44. If X is a Smith space and Y a Banach space, then Y �X = Y : X is a

Banach space.

Example 4.45. If X is a Banach space and Y a Smith space, then Y �X = Y : X is a

Smith space.

Example 4.46. If X is a Brauner space and Y a Fréchet space, then Y �X = Y : X is

a Fréchet space.

Example 4.47. If X is a Fréchet space and Y a Brauner space, then Y �X = Y : X is

a Brauner space.

• Let X,Y, Z be stereotype spaces. Then:

– we say that a bilinear map β : X × Y → Z is continuous (12) if

(1) for each compact set K in X and for each zero neighborhood W in Z there is a

zero neighborhood V in Y such that

β(K,V ) ⊆W,

(2) for each compact set L in Y and for each zero neighborhood W in Z there is a

zero neighborhood U in X such that

β(U,L) ⊆W ;

– we denote by Z : (X,Y ) the space of continuous bilinear maps β : X × Y → Z

endowed with the topology of uniform convergence on compact sets in X × Y ;

– we denote by Z � (X,Y ) the pseudosaturation of Z : (X,Y ),

Z � (X,Y ) = (Z : (X,Y ))M. (4.29)

The space Z�(X,Y ) is stereotype, and we call it the inner space of bilinear maps from

X × Y into Z. Like Z : (X,Y ), it consists of continuous bilinear maps β : X × Y → Z,

but the topologies of Z : (X,Y ) and Z � (X,Y ) may be different (13).

(12) This type of continuity is sometimes called (K(X),K(Y ))-hypocontinuity (cf. [38]), where
K(X) and K(Y ) are systems of compact sets in X and Y respectively.

(13) Cf. footnote (11); the situation with Z : (X,Y ) and Z � (X,Y ) is the same.
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Example 4.48. If X and Y are Smith spaces, and Z a Banach space, then Z� (X,Y ) =

Z : (X,Y ) is a Banach space.

Example 4.49. If X and Y are Banach spaces, and Z a Smith space, then Z� (X,Y ) =

Z : (X,Y ) is a Smith space.

Example 4.50. If X and Y are Brauner spaces, and Z a Fréchet space, then Z�(X,Y ) =

Z : (X,Y ) is a Fréchet space.

Example 4.51. If X and Y are Fréchet spaces, and Z a Brauner space, then Z�(X,Y ) =

Z : (X,Y ) is a Brauner space.

Theorem 4.52. If X,Y, Z are stereotype spaces, then the formula

β(x, y) = ϕ(y)(x) (4.30)

defines an isomorphism of stereotype spaces

Z � (X,Y ) = (Z �X)� Y. (4.31)

Remark 4.53. In the special case when Z = C we have

C� (X,Y ) = X? � Y, (4.32)

Y �X = C� (Y ?, X). (4.33)

Theorem 4.54. For all stereotype spaces X,Y, Z the composition map

(β, α) ∈ (Z � Y )× (Y �X) 7→ β ◦ α ∈ Z �X

is a continuous bilinear map.

• Let α : E → F and β : G→ H be continuous linear maps of stereotype spaces. Define

β � α : G� F → H � E by

(β � α)(ψ) = β ◦ ψ ◦ α. (4.34)

Theorem 4.55. For all stereotype spaces X,Y, Z the bilinear map

(β, α) ∈ (H �G)× (F � E) 7→ β � α ∈ (H � E)� (G� F ) (4.35)

is continuous.

4.4.2. Tensor products. A projective (stereotype) tensor product X ~ Y of stereotype

spaces X and Y is defined by

X ~ Y = (X? � Y )?, (4.36)

or equivalently, due to (4.32),

X ~ Y = (C� (X,Y ))?. (4.37)

For x ∈ X and y ∈ Y the elementary tensor x~ y ∈ X ~ Y is defined by

(x~ y)(ϕ) = ϕ(y)(x) (4.38)

(where ϕ ∈ X?�Y , and x~ y is considered as an element of (X?�Y )?), or equivalently,

(x~ y)(β) = β(x, y) (4.39)

(where β ∈ C� (X,Y ), and x~ y is considered as an element of C� (X,Y )?).
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Proposition 4.56. The map ι : (x, y) ∈ X×Y 7→ x~y ∈ X~Y is a continuous bilinear

map.

Proposition 4.57. The algebraic tensor product X ⊗ Y is injectively and densely em-

bedded into the projective tensor product X ~ Y by

x⊗ y 7→ x~ y.

Theorem 4.58 (Universality of projective tensor product). For any stereotype spaces

X,Y, Z and for any continuous bilinear form β : X×Y → Z there is a unique continuous

linear map β̃ : X ~ Y → Z such that

X × Y X ~ Y

Z

//ι

��
β

�� β̃

where ι is defined in Proposition 4.56. Moreover, β 7→ β̃ is an isomorphism of stereotype

spaces

Z � (X,Y ) = Z � (X ~ Y ). (4.40)

An injective (stereotype) tensor product X�Y of stereotype spaces X and Y is defined

by the formula

X � Y = Y �X?, (4.41)

or equivalently, due to (4.33), by

X � Y = C� (X?, Y ?). (4.42)

For x ∈ X and y ∈ Y the elementary operator x� y ∈ X � Y is defined by

(x� y)(f) = f(x)y, f ∈ X? (4.43)

(if x� y is considered as an element of Y �X?), or by

(x� y)(f, g) = f(x)g(y), f ∈ X?, g ∈ Y ? (4.44)

(if x� y is considered as an element of C� (X?, Y ?)).

Proposition 4.59. The map ι : (x, y) ∈ X×Y 7→ x�y ∈ X�Y is a continuous bilinear

map.

Proposition 4.60. The algebraic tensor product X⊗Y is injectively (but not necessarily

densely) embedded into the injective tensor product X � Y by

x⊗ y 7→ x� y.

Example 4.61. If X and Y are Banach spaces, then so are X ~ Y and X � Y .

Example 4.62. If X and Y are Smith spaces, then so are X ~ Y and X � Y .

Example 4.63. If X and Y are Fréchet spaces, then so are X ~ Y and X � Y .

Example 4.64. If X and Y are Brauner spaces, then so are X ~ Y and X � Y .
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4.4.3. The category of stereotype spaces. The class Ste of stereotype spaces forms

a category with continuous linear maps as morphisms.

Properties of the category Ste.

1◦ Ste is pre-abelian.

2◦ Ste is complete: each covariant (and each contravariant) system has injective and

projective limits. In the case of direct coproducts and direct products these construc-

tions coincide with the standard ones in the category LCS of locally convex spaces,

while in the general case the difference is that the injective limits in LCS must be

pseudocomplete, while the projective limits must be pseudosaturated:

Ste-
⊕
i∈I

Xi = LCS-
⊕
i∈I

Xi, Ste-
∏
i∈I

Xi = LCS-
∏
i∈I

Xi, (4.45)

Ste- lim−→
i→∞

Xi =
(
LCS- lim−→

i→∞
Xi

)O
, Ste- lim←−

i→∞
Xi =

(
LCS- lim←−

i→∞
Xi

)M
. (4.46)

3◦ The tensor products ~ and � and the fraction � are related through the following

isomorphisms of functors:

(X ~ Y )? ∼= Y ? �X?, (X � Y )? ∼= Y ? ~X? (4.47)

Z � (X ~ Y ) ∼= (Z �X)� Y, (X � Y )� Z ∼= X � (Y � Z). (4.48)

4◦ Ste is a symmetric monoidal category with respect to each of ~ and �:

C~X ∼= X ∼= X ~ C, C�X ∼= X ∼= X � C, (4.49)

X ~ Y ∼= Y ~X, X � Y ∼= Y �X (4.50)

(X ~ Y )~ Z ∼= X ~ (Y ~ Z), (X � Y )� Z ∼= X � (Y � Z). (4.51)

5◦ The projective tensor product in Ste commutes with injective limits, and the injective

product commutes with projective limits:(⊕
i∈I

Xi

)
~
(⊕
j∈J

Yj

)
∼=

⊕
i∈I,j∈J

(Xi ~ Yj), (4.52)(∏
i∈I

Xi

)
�
(∏
j∈J

Yj

)
∼=

∏
i∈I,j∈J

(Xi � Yj), (4.53)(
lim−→
i→∞

Xi

)
~
(

lim−→
j→∞

Yj

)
∼= lim−→
i,j→∞

(Xi ~ Yj), (4.54)(
lim←−
i→∞

Xi

)
�
(

lim←−
j→∞

Yj

)
∼= lim←−
i,j→∞

(Xi � Yj), (4.55)

4.5. Subspaces

• Let Y be a subset in a stereotype space X endowed with the structure of stereotype

space in such a way that the set-theoretic inclusion Y ⊆ X is a morphism of stereotype

spaces (i.e. a continuous linear map). Then Y is called a subspace of X, and the set-

theoretic inclusion σ : Y ⊆ X its representing monomorphism. We then write

Y ⊂→ X or X ⊂→Y.
In this context, Y = X means that the stereotype spaces Y and X coincide not only

as sets but also with their algebraic and topological structure.
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• The system of subspaces of a stereotype space X will be denoted by Sub(X).

Proposition 4.65. For a morphism µ : Z → X in Ste the following conditions are

equivalent:

(i) µ is a monomorphism;

(ii) there exists a subspace Y in X with representing monomorphism σ : Y ⊂→ X and an

isomorphism θ : Z → Y of stereotype spaces such that

Z µ

''
θ

��

X

Y
σ

77

Corollary 4.66. For any stereotype space X the system Sub(X) is a system of subob-

jects in X (in the sense of the definition on p. 22).

Clearly, for a stereotype space P the relation ⊂→ is a partial order on Sub(P ).

4.5.1. Immediate subspaces

• Suppose

Z ⊂→ Y ⊂→ X,

and Z ⊂→ Y is a bimorphism of stereotype spaces, i.e. in addition to the other require-

ments, Z is dense in Y (with respect to the topology of Y ). Then we will say that Y

is a mediator for Z in X.

• We call a subspace Z of a stereotype space X an immediate subspace in X if it has

no non-isomorphic mediators, i.e. for any mediator Y in X the inclusion Z ⊂→ Y is an

isomorphism. In this case we use the notation Z ⊂→◦ X:

Z ⊂→◦ X ⇔ ∀Y
(
(Z ⊂→ Y ⊂→ X & Z

Y
= Y ) ⇒ Z = Y

)
.

Remark 4.67. In LCS the same construction gives a widely used object: immediate sub-

spaces in a locally convex space X are exactly closed subspaces in X with the topology

inherited from X. In Examples 4.70 and 4.71 below we will see that in Ste the situation

more complicated.

Recall that immediate monomorphisms were defined on p. 16.

Proposition 4.68. For a morphism µ : Z → X in Ste the following conditions are

equivalent:

(i) µ is an immediate monomorphism;

(ii) there exists an immediate subspace Y of X with representing monomorphism σ : Y

⊂→ X and an isomorphism θ : Z → Y such that

Z µ

''
θ

��

X

Y
σ

77 (4.56)

Here Y and θ are uniquely determined by Z and µ.
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Proof. The implication (i)⇐(ii) is obvious, so we only need to prove (i)⇒(ii). Set Y =

µ(Z), and denote by θ : Z → Y the corestriction of µ into Y , i.e. θ is the same map as µ

but viewed as acting into Y . Since µ is injective, θ is bijective. Let us endow Y with the

topology under which θ is an isomorphism of locally convex spaces. Then Y becomes a

subspace of X, since for any zero neighborhood U in X, µ−1(U) is a zero neighborhood

in Z, and thus Y ∩ U = θ(µ−1(U)) is a zero neighborhood in Y .

Proposition 4.69. (14) For an immediate subspace Y of a stereotype space X with

representing monomorphism σ : Y ⊆ X the following conditions are equivalent:

(i) σ is a closed map;

(ii) σ is a weakly closed map;

(iii) Y as a set is a closed subspace in the locally convex space X, and the topology of Y

is a pseudosaturation of the topology inherited from X.

• If the above conditions (i)–(iii) are fulfilled, we say that the immediate subspace Y of

X is closed.

Proof of Proposition 4.69. (i)⇒(ii) is a special case of the situation in Proposition 4.14.

(ii)⇒(iii). Let σ : Y ⊆ X be a weakly closed map, i.e. Y as a set is closed in X.

Denote by E the space Y with the topology inherited from X. Clearly, Y is continuously

embedded into E, and since Y is pseudosaturated, this inclusion preserves its continuity

after passage from E to its pseudosaturation EM (we use here the reasoning presented in

[2, diagram (1.26)]). Thus, we obtain a sequence of subspaces

Y ⊂→ EM ⊂→ X,

and since Y and EM coincide as sets, the first of these monomorphisms is a bimorphism.

Hence, EM is a mediator for Y , and we obtain Y = EM.

(iii)⇒(i) follows from the fact that pseudosaturation does not change the system of

totally bounded subsets.

Example 4.70. There exists a stereotype space P with a closed immediate subspace

Q whose topology is not inherited from P , and moreover some continuous functionals

g ∈ Q? cannot be continuously extended on P (in the formal language this means that

the representing monomorphism Q ⊂→◦ P is closed, but not weakly open).

Proof. Consider the space E from Example 4.41. It is complete, so it can be represented

as a complete subspace in some stereotype space P with the topology inherited from P

(for example, one can take as P the direct product of all Banach quotient spaces E/F ).

The space Q = EM has the required properties. Indeed, it is closed in P , since E is

closed in P . On the other hand, the functional f : Q → C described in Example 4.41 is

continuous on Q = EM, but it cannot be continuously extended on P , since otherwise it

would be continuous on E.

Example 4.71. There exists a stereotype space X with an immediate subspace Z which

is not closed as a subset in X. Hence the inclusion Z ⊆ X is not a weakly closed morphism

(14) [2, Theorem 4.14], which is equivalent to Proposition 4.69 here, and the more general
[2, Theorem 11.7], contain an inaccuracy: the requirement of closure of σ is omitted there.
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in the sense of definition on p. 112 (in particular, the inclusion Z ⊆ X is not isomorphic

in MonoX to the kernel of any other morphism ϕ : X → A in Ste).

Proof. Let E and f be as in Example 4.41. Endow F = {x ∈ EM : f(x) = 0} with the

topology inherited from EM (as a locally convex space, F is a closed subspace in EM).

By [2, Proposition 3.19], EM is complete, hence so is F , and again by [2, Proposition

3.19], the pseudosaturation Z = FM is complete. In addition, Z is pseudosaturated, and

thus stereotype. Note that since E is complete, it can be represented (as a locally convex

space) as a closed subspace in a direct product X of some Banach spaces (in such a

way that the topology of E is inherited from X). We will show that Z is an immediate

subspace, but not a closed set, in X.

First let us show that Z is not closed in X. As a set, Z coincides with F , which is

dense in E (in the topology of E, which is inherited from X). Hence,

Z
X

= F
X

= E 6= F = Z

(here
X

means closure in X). Now let us show that Z is an immediate subspace in X.

Let Y be a mediator of Z in X. Since Z is dense in Y , we obtain

Z
Y

= Y
⇓

Y
X

= Z
Y
X

= Z
X

= E

⇓
Y ⊆ E.

The latter is an inclusion of sets. Note that since Y is a subspace in X, the topology of

Y majorizes the topology inherited from X, or, what is the same, the topology inherited

from E. Hence the inclusion Y ⊆ E is continuous, and therefore Y is a subspace in E.

This implies that the pseudosaturation of Y is a subspace in the pseudosaturation of E,

and since Y is pseudosaturated, we obtain a continuous inclusion

Y = Y O ⊆ EO.

Thus, Y is a subspace in EO.

Let us now forget about X and consider the following chain of subspaces:

Z ⊆ Y ⊆ EO.

Since Z is a dense subspace in Y , we obtain a new logical chain:

Z
Y

= Y
⇓

Y
EO

= Z
Y
EO

= Z
EO

= F

⇓
Y ⊆ F.

Again the latter is an inclusion of sets. Note that since Y is a subspace in EO, the

topology of Y majorizes the topology inherited from EO, or, what is the same, the

topology inherited from F . Thus the inclusion Y ⊆ F is continuous, so Y is a subspace
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in F . This implies that the pseudosaturation of Y is a subspace in the pseudosaturation

of F , and since Y is pseudosaturated, we obtain a continuous inclusion

Y = Y O ⊆ FO = Z.

Thus, Y is a subspace in Z. On the other hand, from the very beginning Z was a subspace

in Y . Hence, Z = Y .

4.5.2. Envelope of a set M of elements in a space X. Theorem 4.107 below justifies

the following definition.

• The envelope of a set M ⊆ X in a stereotype space X is a subspace in X, denoted by

EnvXM or EnvM , and defined as the projective limit in Ste

EnvXM = EnvM = Ste- lim←−Ei (4.57)

of a contravariant system {Ei; i ∈ Ord} of subspaces in X, indexed by ordinals and

defined by the following inductive rules:

0) E0 = (spanM
X

)M.

1) Suppose that for some j ∈ Ord all the spaces {Ei; i < j} are already defined; then

Ej is defined as follows:

– if j = i+ 1 for some i, then

Ej = Ei+1 = (spanM
Ei

)M;

– if j is a limit ordinal, then

Ej = lim
j←i

Ei

in Ste; this means that, as a set,

Ej =
⋂
i<j

Ei,

and the topology in Ej is the weakest stereotype locally convex topology under

which all the inclusions Ej ⊆ Ei are continuous.

Since the transfinite sequence {Ei; i ∈ Ord} cannot be an injective map from Ord to

Sub(X), it stabilizes, i.e. for some k ∈ Ord,

∀l ≥ k El = Ek. (4.58)

This implies that the contravariant system {Ei; i ∈ Ord} indeed has a projective limit,

and this is exactly the subspace Ek in X.

Example 4.72. If spanM
X

= X, then EnvM = X.

Proof. The equality spanM
X

= X implies E0 = (spanM
X

)M = X, and consequently

X = E0 = E1 = · · · .

Hence, EnvM = X.

Example 4.73. If spanM
X

= M , then EnvM = MM.
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Proof. From spanM
X

= M we have E0 = (spanM
X

)M = MM, then E1 = (spanM
E0

)M =

MM = E0, and all the other spaces Ei coincide with E0. Thus, EnvM = E0 = MM.

Theorem 4.74. The envelope EnvXM of each set M ⊆ X is an immediate subspace

in X, containing M as a total subset:

M ⊆ EnvXM ⊂→◦ X, spanM
EnvXM

= EnvXM. (4.59)

Proof. First let us verify that M is total in EnvXM . Suppose (4.58) holds. Then EnvM =

Ek, and if M were not total in Ek, then we would have a contradiction with (4.58):

Ek+1 = spanM
Ek 6= Ek.

Next let us show that EnvM is an immediate subspace in X. Suppose Y is a subspace

in X such that

EnvM ⊆ Y ⊆ X,
and EnvM is dense in Y . Since, as already established, spanM is dense in EnvM , we

have

Y = spanM
Y
. (4.60)

Now by induction we see that Y is continuously embedded into each Ei:

0) For i = 0 we have

Y ⊂→ X ⇒ Y
(4.60)
= spanM

Y ⊂→ spanM
X

⇒ Y = Y M ⊂→ (spanM
X

)M = E0.

1) Suppose that we have proved Y ⊂→ Ei for all i less that some j. Then:

– if j = i+ 1 for some i, then

Y ⊂→ Ei ⇒ Y
(4.60)
= spanM

Y ⊂→ spanM
Ei

⇒ Y = Y M ⊆ (spanM
Ei

)M = Ei+1 = Ej ;

– if j is a limit ordinal, then from the continuous inclusions Y ⊂→ Ei for i < j we

obtain a continuous inclusion of locally convex spaces

Y ⊂→ LCS-lim
j←i

Ei,

and this implies a continuous inclusion of stereotype spaces

Y = Y M ⊂→
(
LCS-lim

j←i
Ei

)M
= Ste-lim

j←i
Ei = Ej .

Since Y is continuously embedded into each Ei, we obtain a continuous inclusion Y ⊂→
EnvM . Together with the initial inclusion EnvM ⊂→ Y this means that EnvM = Y (with

topologies).

The following theorem shows that in an immediate subspace the topology is automat-

ically defined by the set of its elements:

Theorem 4.75. Every subspace Y in a stereotype space X is a subspace in its envelope

EnvX Y :

Y ⊂→ X ⇒ Y ⊂→ EnvX Y, (4.61)
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and Y is an immediate subspace in X iff it coincides (topologically) with its envelope

in X:

Y ⊂→◦ X ⇔ Y = EnvX Y. (4.62)

Proof. The continuity of Y ⊂→ EnvX Y is proved by induction:

0) We have a continuous inclusion of locally convex spaces

Y ⊂→ spanY
X

= Y
X
,

which implies a continuous inclusion of stereotype spaces

Y = Y M ⊂→ (Y
X

)M = E0.

1) Suppose that the continuous inclusion Y ⊆ Ei is proved for all i less than some j.

Then:

– if j = i+1 for some i, then we obtain a continuous inclusion of locally convex spaces

Y ⊆ spanY
Ei

= Y
Ei
,

which implies a continuous inclusion of stereotype spaces

Y = Y M ⊆ (Y
Ei

)M = Ei+1 = Ej ;

– if j is a limit ordinal, then from the continuous inclusions Y ⊆ Ei for all i < j we

obtain a continuous inclusion of locally convex spaces

Y ⊆ LCS-lim
j←i

Ei,

which implies a continuous inclusion of stereotype spaces

Y = Y M ⊆
(
LCS-lim

j←i
Ei

)M
= Ste-lim

j←i
Ei = Ej .

Let us now consider the special case when Y is an immediate subspace in X. Then by

Theorem 4.74, Y is dense in Env Y , hence in the chain of inclusions

Y ⊆ Env Y ⊆ X

the second space is a mediator. Therefore, it coincides with the first one: Y = Env Y .

Corollary 4.76. The representing monomorphism σ : Y ⊂→◦ X of an immediate subspace

Y in a stereotype space X is always relatively closed.

Proof. By Theorem 4.75,

Y = EnvX Y = lim←−
i∈Ord

Ei =
⋂
i∈Ord

Ei.

Let T be an absolutely convex compact set in X, lying in Y as a set. Then T lies in

E0 = (Y
X

)M, and since in passing from the topology of X to the topology of E0 the

system of compact sets (as well as the topology on each compact set) is inherited from X

(this is one of the fundamental properties of the pseudosaturation M, [2, Theorem 1.17]),

we see that T is a compact set in E0. With the same technique we show that T is compact

in E1, and more generally, in passing from each ordinal i to its successor i+ 1. When we

need to pass to a limit ordinal j, we come to the situation where T is a compact set in
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each Ei with i < j. As a corollary, T is compact in lim←−i<j Ei =
⋂
i<j Ei. When we come

to an ordinal large enough, we conclude that T is compact in Y .

Theorem 4.77. If ϕ : Y → X is a morphism of stereotype spaces mapping a set N ⊆ Y
into a set M ⊆ X,

ϕ(N) ⊆M,

then ϕ continuously maps EnvY N into EnvXM :

Y
ϕ

// X

EnvY N

OO

// EnvXM

OO

In the special cases: 
Y ⊂→ X

⊆ ⊆

N ⊆M

 ⇒ EnvY N ⊂→ EnvXM, (4.63)


Y ⊂→◦ X

⊆ ⊆

N ⊆M

 ⇒ EnvY N ⊂→◦ EnvXM, (4.64)


Y ⊂→◦ X

⊆ ⊆

N = M

 ⇒ EnvY M = EnvXM. (4.65)

Proof. Let ϕ be as in the statement. If we denote by {Fi; i ∈ Ord} and {Ei; i ∈ Ord} the

sequences of subspaces in Y and X which define EnvN and EnvM respectively,

EnvN = lim←−Fi, EnvM = lim←−Ei,

then we can prove by induction that ϕ continuously maps each Fi into Ei, and hence

EnvN into EnvM . Let us now consider the special cases.

If N ⊆M and Y ⊂→ X, then we consider the sequences {Fi; i ∈ Ord} and {Ei; i ∈ Ord}
of subspaces in X which define EnvX N and EnvXM . By induction, we obtain an inclusion

of subspaces Fi ⊂→ Ei for each i, and this gives the inclusion EnvX N ⊂→ EnvXM .

Suppose that N ⊆M and Y ⊂→◦ X. Then, by (4.63), EnvY N ⊂→ EnvXM . Let us show

that in this inclusion, EnvY N is an immediate subspace in EnvXM . Let Z be a mediator

for EnvY N in EnvXM :

EnvY N ⊂→ Z ⊂→ EnvXM, EnvY N
Z

= Z.

Consider EnvX(Y ∪ Z). We can include it in a diagram (where all the arrows are set-

theoretic inclusions, and are continuous maps):

Y // EnvX(Y ∪ Z) // X

EnvY N

OO

// Z //

OO

EnvXM

OO
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By Theorem 4.74, N is total in EnvY N , which in turn is total in Z (since Z is a mediator).

Hence, N is total in Z. On the other hand, N ⊆ Y , hence Y is dense in Z (in the topology

of Z, and thus in the topology of X as well). From this we deduce that Y is dense in the

subset Y ∪ Z of the space X, and again by Theorem 4.74, Y is dense in EnvX(Y ∪ Z).

This means that EnvX(Y ∪ Z) is a mediator for Y in X:

Y ⊂→ EnvX(Y ∪ Z) ⊂→ X, Y
EnvX(Y ∪Z)

= EnvX(Y ∪ Z).

The condition Y ⊂→◦ X implies the equality of stereotype spaces Y = EnvX(Y ∪ Z). This

yields Z ⊂→ Y , i.e. Z is a mediator for EnvY N in Y :

EnvY N ⊂→ Z ⊂→ Y, EnvY N
Z

= Z.

By Theorem 4.74, EnvY N is an immediate subspace in Y , so EnvY N = Z.

Suppose finally that N = M ⊆ Y ⊂→◦ X. Then by (4.64),

EnvY M ⊂→◦ EnvXM.

On the other hand, by (4.63), M ⊆ Y ⊂→◦ X implies

EnvXM ⊂→◦ EnvX Y
(4.62)
= Y.

Together this gives

EnvY M ⊂→◦ EnvXM ⊂→◦ Y.

By Theorem 4.74, M is total in EnvXM , hence EnvY M is total in EnvXM . Thus,

EnvXM is a mediator in this chain, and we obtain EnvY M = EnvXM .

Theorem 4.78. The envelope EnvXM of any set M ⊆ X is a minimal subspace among

all the immediate subspaces in X which contain M , and in each of those immediate

subspaces Y ⊂→◦ X the space EnvXM is an immediate subspace:

∀Y
(
M ⊆ Y ⊂→◦ X ⇒ EnvXM ⊂→◦ Y

)
. (4.66)

Proof. We have

EnvXM
(4.65)
= EnvY M

(4.59)

⊂→◦ Y.

Proposition 4.79. If Y ⊂→◦ X and Z ⊂→ X, then Z ⊆ Y implies Z ⊂→ Y . In the special

case when Y ⊂→◦ X and Z ⊂→◦ X, the condition Z ⊆ Y implies Z ⊂→◦ Y .

Proof. If Y ⊂→◦ X, Z ⊂→ X, Z ⊆ Y , then

Z
(4.61)

⊂→ EnvX Z
(4.65)
= EnvY Z

(4.59)

⊂→◦ Y.

If Y ⊂→◦ X, Z ⊂→◦ X, Z ⊆ Y , then

Z
(4.62)
= EnvX Z

(4.65)
= EnvY Z

(4.59)

⊂→◦ Y.

4.6. Quotient spaces

• Let X be a stereotype space, and

1) in X as a locally convex space take a closed subspace E,

2) on the quotient space X/E consider an arbitrary locally convex topology τ which is

majorized by the natural quotient topology of X/E,
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3) in the completion (X/E)H of the locally convex space X/E with the topology τ

take a subspace Y which contains X/E and is a stereotype space with respect to

the topology inherited from (X/E)H.

Then we call the stereotype space Y a quotient space of the stereotype space X, and

the composition υ = σ ◦π of the quotient map π : X → X/E and the natural inclusion

σ : X/E → Y is called the representing epimorphism of the quotient space Y . We then

write

Y ←\ X or X ←\ Y.

The class of all quotient spaces of X will be denoted by Quot(X). It is clear that

Quot(X) is a set.

The following is evident:

Proposition 4.80. For a morphism ε : Z ← X in Ste the following conditions are

equivalent:

(i) ε is an epimorphism;

(ii) there is a quotient space Y of X with representing epimorphism υ : Y ←\ X, and an

isomorphism θ : Z ← Y such that

Z

X

εee

υyy
Y

θ

OO

(4.67)

Corollary 4.81. For a stereotype space X the system Quot(X) is a system of quotient

objects for X.

The formalization of the idea of quotient object we have presented here has a qualita-

tive shortcoming in comparison with the notion of subspace which we considered above:

the problem is that the relation ←\ does not establish a partial order in Quot(P ) for a

stereotype space P . In fact, neither reflexivity, antisymmetry or transitivity holds for←\ .

In particular, the first two axioms do not hold since Y ←\ X and Y = X is impossible. To

explain this, let us agree for simplicity that we do not take into account the necessity to

pass to a subspace in the completion which was stated in step 3 of our definition—then

Y ←\ X (and Y 6= ∅) implies by the axiom of regularity [19, Appendix, Axiom VII]

that there exists an element y ∈ Y such that y ∩ Y = ∅. But if in addition Y = X,

then y, being a coset of X, i.e. a non-empty subset in X, has non-empty intersection

y∩Y = y∩X = y 6= ∅ with X = Y . As to the transitivity, when Z ←\ Y and Y ←\ X, the

elements of Z are non-empty sets of elements of Y , and each such element is a non-empty

set of elements of X. From the point of view of set theory this is not the same as if

elements of Z were sets of elements of X, so in this situation the relation Z ←\ X is also

impossible. This forces us to introduce a new binary relation.

• Suppose Y ←\ X and Z ←\ X. We will say that the quotient space Y subordinates the

quotient space Z, and we write Z ≤ Y , if there exists a morphism κ : Y → Z such
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that

Y

κ

��

X

υYee

υZyy
Z

(4.68)

(here υY and υZ are representing epimorphisms for Y and Z). The morphism κ, if it

exists, is unique and is an epimorphism.

For any stereotype space P the relation ≤ is a partial order on Quot(P ).

4.6.1. Immediate quotient spaces

• Let Y and Z be two quotient spaces of X such that Z ≤ Y and the epimorphism κ :

Z ← Y in diagram (4.68) is a monomorphism (and hence a bimorphism) of stereotype

spaces. Then we will say that Y is a mediator for Z. One can notice that in this case

Y is a subset in Z, so we will write Z ⊇ Y .

• We call a quotient space Z of a stereotype space X an immediate quotient space in X

if it has no non-isomorphic mediators, i.e. for any mediator Y in X the corresponding

epimorphism Z ←\ Y is an isomorphism. We write in this case Z ←\◦ X:

Z ←\◦ X ⇔ ∀Y
(
(Z ≤ Y & Y ←\ X & Z ⊇ Y ) ⇒ Z = Y

)
.

• Let us say that an immediate quotient space Y ←\◦ X strongly subordinates an imme-

diate quotient space Z ←\◦ X, and write Z ≤◦ Y , if there exists a strong epimorphism

κ : Y → Z such that diagram (4.68) is commutative.

Remark 4.82. In the category LCS of locally convex spaces, immediate quotient spaces

of a locally convex space X are exactly quotient spaces of X by closed subspaces with

the usual quotient topologies. As in the case of subspaces, in Ste the situation becomes

more complicated (see Examples 4.85 and 4.86 below).

Recall that the notion of immediate epimorphism was defined on p. 17. The following

statement is dual to Proposition 4.68, and can be proved by the dual reasoning:

Proposition 4.83. For a morphism ε : Z ← X in Ste the following conditions are

equivalent:

(i) ε is an immediate epimorphism;

(ii) there exists an immediate quotient space Y of X with representing morphism υ : Y ←
\ X and an isomorphism θ : Z ← Y such that

Z

X

εee

υyy
Y

θ

OO

(4.69)

Here Y and θ are uniquely determined by Z and ε.
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Proposition 4.84 (15). For an immediate quotient space Y of a stereotype space X with

representing epimorphism υ : Y ← X the following conditions are equivalent:

(i) υ is an open map;

(ii) υ is a weakly open map;

(iii) Y is the pseudocompletion (X/E)O of the quotient space X/E of the locally convex

space X (with the usual quotient topology) by some closed locally convex subspace E.

• If the above conditions (i)–(iii) are fulfilled, we say that the immediate quotient space

Y of X is open.

Proof of Proposition 4.84. (i)⇒(ii) is a special case of the situation described in Propo-

sition 4.14.

(ii)⇒(iii). Suppose υ : Y ← X is a weakly open map. Denote by E its kernel. By

definition of stereotype quotient space, Y is a pseudocomplete locally convex subspace in

the completion (X/E)H of the locally convex space X/E under some topology τ which

is majorized by the quotient topology X/E, and X/E lies in Y as a set. Thus, we can

represent υ as a diagram

X/E

σ

��

X
πoo

υ
zz

Y

where π : X → X/E is the usual quotient map of locally convex spaces, and σ : X/E → Y

is a natural bimorphism. Since Y is pseudocomplete, σ can be extended to some mor-

phism σO on the pseudocompletion (X/E)O (use the reasoning in [2, diagram (1.13)]):

(X/E)O

σO

&&

X/E

σ

��

OX/E
oo X

πoo

υ
zz

Y

Note that σO is not only an epimorphism (this follows from property 3◦ of epimorphisms

on p. 15, since υ = σO ◦ OX/E ◦ π is an epimorphism), but also a monomorphism. This

is proved as follows. The fact that υ is weakly open implies that so is σ. This means

that every continuous linear functional on X/E can be extended along the map σ to

a continuous linear functional on Y . In other words, the dual map σ′ : Y ′ → X ′ is a

surjection. This implies that the pseudosaturation σO must be an injection (16).

As a result, we have a chain of epimorphisms

Y
σO

←−− (X/E)O
OX/E◦π←\ X,

where σO is a bimorphism. Thus, (X/E)O is a mediator for Y , and Y = (X/E)O.

(15) In [2, Theorem 4.16], which is equivalent to Proposition 4.84 here, as well as in the more
general [2, Theorem 11.9], there is an inaccuracy: the requirement of openness of υ is omitted.

(16) We use here the following obvious property of pseudocompletion: if ϕ : X → Y is a
monomorphism of locally convex spaces such that the dual map ϕ′ : X ′ ← Y ′ is a surjection,
then its pseudocompletion ϕO : XO → Y O is also a monomorphism of locally convex spaces.
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(iii)⇒(i). This follows from the fact that pseudocompletion does not change the topol-

ogy.

The following is dual to Example 4.70:

Example 4.85. There exists a stereotype space P with an immediate quotient space of

the form Y = (P/E)O which cannot be represented as Y = P/F for a subspace F ⊆ P

(in formal language this means that the representing epimorphism Y ←\◦ P is open, but

not closed).

Proof. The space Z from [2, 3.22] is such a space. It contains a closed subspace E such

that the locally convex quotient space Z/E is metrizable, but not complete. As a corollary,

in the stereotype sense the space (Z/E)O is an immediate quotient space, but it cannot

be represented as Z/F , since F is uniquely determined as the kernel of the map Z → Y ,

and hence must coincide with E.

From Example 4.71 we have

Example 4.86. There exists a stereotype space P with an immediate quotient space Y

such that the representing epimorphism Y ←\◦ P is not weakly open (in the sense of the

definition on p. 111). As a corollary, Y is not representable in the form Y = (P/E)O for

a subspace E ⊆ P (and hence is not isomorphic in EpiP to the cokernel of any morphism

ϕ : A→ P in Ste).

4.6.2. Refinement RefX F of a set F of functionals on a space X. Theorem 4.108

below justifies the following definition.

• Let F be a set of continuous linear functionals on a stereotype space X. The refinement

of F on X is a quotient space of X, denoted by RefX F or by Ref F , and defined as

the injective limit

RefX F = Ref F = Ste-lim−→Ei (4.70)

in the category Ste of the covariant system {Ei; i ∈ Ord} of quotient spaces of X

indexed by ordinal numbers and defined by the following inductive rules:

0) The space E0 is the pseudocompletion of the quotient space X/KerF (with the

usual quotient topology) where KerF =
⋂
f∈F Ker f :

E0 = (X/KerF )O;

the set F0 of continuous linear functionals on E0 is defined as the set of extensions

to E0 of the functionals from F (every f ∈ F vanishes on KerF , so it can be

uniquely extended to a continuous linear functional on X/KerF , and then to its

pseudocompletion E0 = (X/KerF )O).

1) If for some j ∈ Ord all the spaces {Ei; i < j} are already defined, then Ej is defined

as follows:

– if j = i + 1 for some i, then Ej = Ei+1 is defined as the pseudocompletion of

Ei/KerF (with the usual quotient topology):

Ej = Ei+1 = (Ei/KerF )O;
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the set Fi+1 of continuous linear functionals on Ei+1 is defined as the set of

extensions of functionals from Fi;

– if j is a limit ordinal, then Ej is defined as the injective limit in Ste of the net

{Ei; i→ j}:
Ej = Ste- lim

i→j
Ei =

(
LCS- lim

i→j
Ei

)O
;

the set Fj of continuous linear functionals on Ej is defined as the system of

functionals which when restricted to Ei coincide with Fi.

Since the transfinite sequence {Ei; i ∈ Ord} cannot be an injective map from Ord into

the set Quot(X) of quotient spaces of X, it stabilizes, i.e. from some i on, all the spaces

Ei coincide (together with their topologies). As a corollary, the formula (4.70) uniquely

determines some quotient space Ref F of X.

Example 4.87. If KerF =
⋂
f∈F Ker f = 0, then RefX F = X.

Proof. From KerF = {x ∈ X : ∀f ∈ F f(x) = 0} = 0 we have E0 = (X/KerF )
O

= X.

As a corollary, all the other spaces Ei coincide with X:

X = E0 = E1 = · · · .

Thus, Ref F = X.

Example 4.88. If spanF
X?

= F , then RefX F = (X/KerF )O.

Proof. In this case

E0 = (X/KerF )O = (X/F⊥)O
[2, (4.3)]

= (FM)?,

hence KerF0 = {y ∈ (FM)? : ∀f ∈ F f(y) = 0} = 0, and E1 = E0/0 = E0. And further

all the spaces Ei coincide with E0.

The following two theorems are dual to Theorems 4.74 and 4.75, and therefore we

omit the proofs.

Theorem 4.89. The refinement RefX F of any set F ⊆ X? on a stereotype space X is

an immediate quotient space of X to which the functionals from F can be continuously

extended:

RefX F
υ←\◦ X, ∀f ∈ F ∃g ∈ (RefX F )? f = g ◦ υ. (4.71)

Theorem 4.90. Every quotient space Y of a stereotype space X is subordinated to the

refinement RefX(Y ? ◦ υ) of the system of functionals Y ? ◦ υ = {g ◦ υ; g ∈ Y ?} on X,

where υ : Y ←\ X is the representing epimorphism of Y :

υ : Y ←\ X ⇒ Y ≤ RefX(Y ? ◦ υ), (4.72)

and Y is an immediate quotient subspace of X, iff Y coincides (as a locally convex space)

with this refinement:

υ : Y ←\◦ X ⇔ Y = RefX(Y ? ◦ υ). (4.73)

Corollary 4.91. The representing epimorphism υ : Y ←\◦ X of any continuous quotient

space Y of a stereotype space X is always relatively open.

The following theorem is dual to Theorem 4.77.
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Theorem 4.92. If ϕ : Y ← X is a morphism of stereotype spaces that maps a set of

functionals G ⊆ Y ? into a set of functionals F ⊆ X?, G ◦ ϕ ⊆ F, then there exists a

unique morphism ε : RefY G← RefX F such that

Y

��

X
ϕ

oo

��

RefY G RefX F
εoo

In the special cases:{
ϕ : Y ←\ X

G ◦ ϕ ⊆ F

}
⇒ ε is an epimorphism, (4.74){

ϕ : Y ←\◦ X

G ◦ ϕ ⊆ F

}
⇒ ε is an immediate epimorphism, (4.75){

ϕ : Y ←\◦ X

G ◦ ϕ = F

}
⇒ ε is an isomorphism. (4.76)

Theorem 4.93. The refinement RefX F of a set F ⊆ X? of functionals on a stereo-

type space X is a minimal quotient space among the immediate quotient spaces of X to

which the functionals F can be extended. Moreover, every such quotient space Y strongly

subordinates RefX F :

∀Y (F ⊆ Y ? & Y ←\◦ X ⇒ RefX F ≤◦ Y ). (4.77)

Proposition 4.94. If α : Y ←\◦ X and β : Z ←\ X, then the condition Z? ◦ α ⊆ Y ? ◦ β
implies Z ≤ Y . In the special case when Y ⊂→◦ X and Z ⊂→◦ X, the condition Z?◦α ⊆ Y ?◦β
implies Z ≤◦ Y .

4.7. Decompositions, factorizations, envelope and refinement in Ste

4.7.1. Pre-abelian property and basic decomposition in Ste. Since any two par-

allel morphisms

X
ϕ
**

ψ

44 Y

in Ste can be added and subtracted from each other, it is clear that Ste is an additive

category. In [2] it was noticed that this category is pre-abelian:

Theorem 4.95. In Ste, for each morphism ϕ : X → Y the formulas

Kerϕ = (ϕ−1(0))M, Cokerϕ = (Y/ϕ(X))O,

Coimϕ = (X/ϕ−1(0))O, Imϕ = (ϕ(X))M
(4.78)

define respectively the kernel, cokernel, coimage and image. The operation ϕ 7→ ϕ? of

taking the dual map establishes the following connections between these objects:

(kerϕ)? = cokerϕ?, (cokerϕ)? = kerϕ?, (imϕ)? = coimϕ?, (coimϕ)? = imϕ?,

(4.79)

(Kerϕ)⊥M = Imϕ?, (Imϕ)⊥M = Kerϕ?, Kerϕ = (Imϕ?)⊥M, Imϕ = (Kerϕ?)⊥M.

(4.80)
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The pre-abelian property of Ste implies

Theorem 4.96. Each morphism ϕ : X → Y in Ste has basic decomposition (2.30). The

operation ϕ 7→ ϕ? of taking the dual map establishes the following identities:

(imϕ)? = coimϕ?, (coimϕ)? = imϕ?, (4.81)

(Imϕ)? = Coimϕ?, (Coimϕ)? = Imϕ?. (4.82)

Formulas (4.78) imply

Theorem 4.97. For any morphism ϕ : X → Y of stereotype spaces:

– Kerϕ and Imϕ are closed immediate subspaces (in X and Y respectively);

– Coimϕ and Cokerϕ are open immediate quotient spaces (of X and Y respectively).

Example 4.98. There exists a morphism ϕ of stereotype spaces such that the reduced

morphism redϕ is not a bimorphism.

Proof. Let E be a space from Example 4.41, i.e. a complete locally convex space with

a discontinuous linear functional f : E → C which is continuous in the topology of the

pseudosaturation EM. Then F = Ker f is a closed subspace in EM, different from EM, but

in E the subspace F is dense. Since E is complete, we can embed it as a closed subspace

into a direct product of Banach spaces, say Y . Let ϕ : FM → Y be the composition of

the injections

FM ⊂ F ⊂ EM ⊂ E ⊂ Y.

Since F is a closed subspace in the pseudocomplete space EM, it is pseudocomplete

itself. Hence, its pseudosaturation FM is a stereotype space. On the other hand, Y is a

direct product of Banach spaces, therefore it is stereotype as well. Finally, since ϕ is an

injection, its kernel is zero, hence Coimϕ = FM. On the other hand, the image of ϕ is the

pseudosaturation of ϕ(FM) = F in Y , i.e. the pseudosaturation of E:

Imϕ = (ϕ(FM)
Y

)M = EM.

Thus, the reduced morphism redϕ is just the inclusion FM ⊂ EM, and it cannot be a

bimorphism, since FM is closed in EM, but not equal to EM. Diagram (2.30) for ϕ takes

the form

FM Y

FM EM

//
ϕ

��

coimϕ

//
redϕ

OO

imϕ

Corollary 4.99. The category Ste is not quasi-abelian in the sense of J.-P. Schneiders

[39].

Proof. Example 4.98 contradicts [39, Corollary 1.1.5].

4.7.2. Nodal decomposition in Ste. In [2, Theorem 4.21] it was noticed that Ste

is complete. On the other hand, from Corollaries 4.66 and 4.81 it follows that Ste is

well-powered and co-well-powered. Together with the existence of basic decomposition,

this means by Theorem 2.42 that Ste is a category with nodal decomposition:
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Theorem 4.100. In Ste each morphism ϕ : X → Y has nodal decomposition (2.24).

The operation ϕ 7→ ϕ? of taking the dual map establishes the following identities:

(im∞ ϕ)? = coim∞ ϕ?, (coim∞ ϕ)? = im∞ ϕ?, (4.83)

(Im∞ ϕ)? = Coim∞ ϕ?, (Coim∞ ϕ)? = Im∞ ϕ?. (4.84)

As we noticed above, the basic and the nodal decompositions are connected with each

other through diagram (2.31):

X
ϕ

//

coim∞ ϕ

((

coimϕ

��

Y

Coim∞ ϕ
red∞ ϕ

// Im∞ ϕ

im∞ ϕ
77

τ
''

Coimϕ
redϕ

//

σ

66

Imϕ

imϕ

OO

where the morphisms σ and τ are uniquely determined (by ϕ).

Example 4.101. For the morphism described in Example 4.98 diagram (2.31) has the

form
XM ϕ

//

coim∞ ϕ

&&
coimϕ

��

Y

XM red∞ ϕ
// XM

im∞ ϕ
88

τ
&&

XM redϕ
//

1XM

88

EM

imϕ

OO

This shows that τ is not necessarily an isomorphism. If we consider the dual map ϕ?, we

can conclude that σ is not necessarily an isomorphism either.

Theorem 4.102. For any morphism ϕ : X → Y of stereotype spaces:

– the nodal image Im∞ ϕ coincides with the envelope in Y of ϕ(X):

Im∞ ϕ = EnvY ϕ(X); (4.85)

– the nodal coimage Coim∞ ϕ coincides with the refinement of ϕ?(Y ?) on X:

Coim∞ ϕ = RefX ϕ?(Y ?). (4.86)

Proof. By Remark 2.43, Im∞ ϕ is the projective limit of the sequence of the “usual”

images Imϕi of the transfinite system of morphisms defined by ϕi+1 = redϕi. And each

Imϕi precisely coincides with the space Ei from the definition of EnvY M for M = ϕ(X).

Similarly, Coim∞ ϕ is the injective limit of the transfinite system of the “usual” coim-

ages Coimϕi, and each such space coincides with the space Ei from the definition of

RefX F for F = ϕ?(Y ?).

4.7.3. Factorizations in Ste. Recall that by definition on p. 38, a factorization of a

morphism X
ϕ−→ Y is its representation as a composition ϕ = µ ◦ ε of an epimorphism ε

and a monomorphism µ. Theorem 2.42 implies

Theorem 4.103. In the category Ste:

(i) each morphism ϕ has a factorization;
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(ii) among all factorizations of ϕ there is a minimal one (εmin, µmin) and a maximal one

(εmax, µmax), i.e. for each factorization (ε, µ),

(εmin, µmin) ≤ (ε, µ) ≤ (εmax, µmax).

4.7.4. Characterization of strong morphisms in Ste

Theorem 4.104. In Ste, for a morphism µ : Z → X the following conditions are equiv-

alent:

(i) µ is an immediate monomorphism;

(i)′ in diagram (4.56) the space Y is an immediate subspace in X;

(ii) µ is a strong monomorphism;

(ii)′ in diagram (4.56) the morphism σ is a strong monomorphism;

(iii) µ ∼= im∞ µ;

(iv) coim∞ µ and red∞ µ are isomorphisms.

Proof. The equivalences (i)⇔(ii)⇔(iii)⇔(iv) follow from Theorem 2.47, since Ste is a

category with nodal decomposition. Proposition 4.68 implies the equivalences (i)⇔(i)′

and (ii)⇔(ii)′.

The dual proposition is proved by analogy:

Theorem 4.105. In Ste, for a morphism ε : Z → X the following conditions are equiv-

alent:

(i) ε is an immediate epimorphism;

(i)′ in diagram (4.67) the space Y is an immediate quotient space for X;

(ii) ε is a strong epimorphism;

(ii)′ in diagram (4.67) the morphism π is a strong epimorphism;

(iii) ε ∼= coim∞ ε;

(iv) im∞ µ and red∞ µ are isomorphisms.

4.7.5. Envelope and refinement in Ste. Since the category Ste is complete, well-

powered, co-well-powered and has nodal decomposition, this implies the existence of some

envelopes and refinements in Ste.

Theorem 4.106. In Ste:

(a) Each space X has envelopes in the classes Epi of all epimorphisms and SEpi of all

strong epimorphisms with respect to an arbitrary class Φ of morphisms among which

there is at least one going from X. In addition:

(i) if Φ separates morphisms on the outside in Ste, then

envEpiΦ X = envBimΦ X;

(ii) if Φ separates morphisms on the outside and is an ideal in Ste, then for any

class Ω ⊇ Bim,

envEpiΦ X = envBimΦ X = envΩΦ X = envΦX.
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(b) each space X has refinements in the classes Mono of all monomorphisms and SMono

of all strong monomorphisms by means of an arbitrary class Φ of morphisms among

which there is at least one coming to X. In addition:

(i) if Φ separates morphisms on the inside in Ste, then

refMono
Φ X = refBimΦ X.

(ii) if Φ separates morphisms on the inside and is a left ideal in Ste, then for any

class Ω ⊇ Bim,

refMono
Φ X = refBimΦ X = refΩΦ X = refΦX.

Proof. By duality it is sufficient to prove (a). Let X be a stereotype space, and Φ a class

of morphisms which contains at least one going from X. Then envEpiΦ X and envSEpiΦ X

exist by 5◦ on p. 64. Suppose now that Φ separates morphisms on the outside in Ste.

Then by Theorem 3.6 the existence of envEpiΦ X automatically implies the existence of

envBimΦ X and their equality. Finally, suppose that Φ separates morphisms on the outside

in Ste and in addition is a right ideal. Then by Theorem 3.7 the existence of envBimΦ X

(which is already proved) implies that for any class Ω ⊇ Bim the envelope envΩΦ X also

exists, and these envelopes coincide.

Theorem 4.107. The envelope EnvXM of a set M in a stereotype space X coincides

with the envelope of the space (17) CM in the class Epi of all epimorphisms of the category

Ste with respect to the morphism ϕ : CM → X, ϕ(α) =
∑
x∈M αx · x:

EnvXM = EnvEpiϕ CM .

Proof. This follows from 1◦ on p. 63 and from Theorem 4.102:

EnvEpiϕ CM
(3.56)
= Im∞ ϕ

(4.85)
= EnvX ϕ(CM ) = EnvX spanM = EnvXM.

Theorem 4.108. The refinement RefX F of a set F of functionals on a stereotype space

X coincides with the refinement of the space (18) CF in the class Mono of all monomor-

phisms in Ste by means of the morphism ϕ : X → CF , ϕ(x)f = f(x), f ∈ F :

RefX F = RefMono
ϕ CF .

Proof. This follows from 1◦ on p. 64 and from Theorem 4.102:

RefMono
ϕ CF (3.58)

= Coim∞ ϕ
(4.86)
= RefX ϕ?(Y ?) = RefX spanF = RefX F.

4.8. On homology in Ste. As is known, in homology theory, in opposition to the

well-established methods of abelian categories, there have always been attempts to find

alternative approaches, where it is considered desirable to get rid of the abelian property

and even of the additivity with the aim to cover the widest spectrum of situations (one

can see this from [34], [30], [50], [17], [15], [14], [39], [23], [36], [8], [12], [21], [41], [20]). We

hope that the following effect will be interesting in this connection: in the (non-abelian,

but pre-abelian) category Ste of stereotype spaces the standard definition of homology

(17) We use here the notation of [3, p. 478].
(18) The notation of [3, p. 477] is used here.
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breaks up into two non-equivalent notions. Let us start with the following definition

(taken from [20]):

• Suppose in a pre-abelian category K we have a pair of morphisms X
ϕ→ Y

ψ→ Z which

form a complex:

ψ ◦ ϕ = 0.

By the definitions of kernel and cokernel, this equality defines two natural morphisms

X
ϕKerψ

−−−→ Kerψ and Cokerϕ
ψCokerϕ−−−−→ Z such that the following diagram is commutative:

X
ϕ

//

ϕKerψ

��

Y
ψ

//

cokerϕ
%%

Z

Kerψ

kerψ

::

Cokerϕ

ψCokerϕ

OO

The cokernel of ϕKerψ is called the left homology of the pair (ϕ,ψ) and is denoted by

H−(ψ : ϕ) = Coker(ϕKerψ). (4.87)

The kernel of ψCokerϕ is called the right homology of the pair (ϕ,ψ) and is denoted by

H+(ψ : ϕ) = Ker(ψCokerϕ). (4.88)

The following observation belongs to folklore:

Proposition 4.109. In a pre-abelian category K for any pair of morphisms X
ϕ→ Y

ψ→ Z

forming a complex, ψ ◦ ϕ = 0, there exists a unique morphism h(ψ : ϕ) : H−(ψ : ϕ) →
H+(ψ : ϕ) such that

X
ϕ

//

ϕKerψ

��

Y
ψ

//

cokerϕ
''

Z

Kerψ

kerψ

77

coker(ϕKerψ)
��

Cokerϕ

ψCokerϕ

OO

Coker(ϕKerψ)
h(ψ:ϕ)

// Ker(ψCokerϕ)

ker(ψCokerϕ)

OO

H−(ψ : ϕ) H+(ψ : ϕ)

(4.89)

In each autodual category (for instance, in Ste) a purely categorical duality reasoning

gives the following identities:

H+(ψ : ϕ)? ∼= H−(ϕ? : ψ?), H−(ψ : ϕ)? ∼= H+(ϕ? : ψ?). (4.90)

Example 4.110. In Ste, the morphism

H−(ψ : ϕ)
h(ψ:ϕ)−−−−→ H+(ψ : ϕ)

is not always an epimorphism.
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Proof. Let E be the space from Example 4.41, i.e. a complete locally convex space with

a discontinuous linear functional f : E → C which is continuous in the topology of the

pseudosaturation EM. Then F = Ker f is a dense subspace of E, but in the space EM it is

a closed subspace, different from EM (since f 6= 0). As a corollary, the natural inclusion

σ : F → E is dense (i.e. has a dense image in E), but its pseudosaturation σM : FM → EM

does not have this property.

Let us represent E as a closed subspace in a stereotype space Y (with the topology

inherited from Y ; for example, we can consider the system of Banach quotient spaces

of E and say that Y is the direct product of these spaces). Let

ϕ : FM → EM → Y

be the corresponding composition of monomorphisms, and

ψ : Y → (Y/EM)O

the corresponding epimorphism. Then, first,

Kerψ = EM

⇓

ImϕKerψ = (ϕ(F )
EM

)M = (F
EM

)M = FM

⇓
Coker(ϕKerψ) = (EM/FM)O ∼= CO = C.

And second,

Imϕ = (ϕ(F )
Y

)M = (F
Y

)M = EM,

⇓
Cokerϕ = (Y/EM)O

⇓
ψCokerϕ = 1(Y/EM)O

⇓
Ker(ψCokerϕ) = 0.

As a result, diagram (4.89) takes the form

FM ϕ
//

ϕKerψ

��

Y
ψ
//

cokerϕ
&&

(Y/EM)O

EM

kerψ

77

coker(ϕKerψ)

��

(Y/EM)O

ψCokerϕ

OO

(EM/FM)O ∼= C
h(ψ:ϕ)

// 0

ker(ψCokerϕ)

OO

H−(ψ : ϕ) H+(ψ : ϕ)

and clearly h(ψ : ϕ) cannot be an isomorphism.
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5.1. Stereotype algebras and stereotype modules

5.1.1. Stereotype algebras. A stereotype space A over C is called a stereotype algebra

if A is endowed with a structure of unital associative algebra over C, and multiplication

is a continuous bilinear form in the sense of the definition on p. 123: for any compact set

K in A and for any zero neighborhood U in A there exists a zero neighborhood V in A

such that

K · V ⊆ U and V ·K ⊆ U.

This is equivalent to A being a monoid in the category Ste of stereotype spaces with

respect to the tensor product ~ (defined in (4.36)). Clearly, each stereotype algebra A is

a topological algebra (but not vice versa). The class of all stereotype algebras is denoted

by Ste~. It is a category, where the morphisms are the linear, continuous, multiplicative

and unit-preserving maps ϕ : A→ B.

In contrast to Ste, the category Ste~ of stereotype algebras is not additive. In ad-

dition, in Ste~ an asymmetry arises between monomorphisms and epimorphisms, since

epimorphisms are not inherited from Ste:

– A morphism ϕ : A→ B of stereotype algebras is a monomorphism iff ϕ is an injective

map (i.e. a monomorphism of stereotype spaces).

– On the other hand, an epimorphism ϕ : A→ B of stereotype algebras not necessarily

has dense image in B (i.e., not necessarily is an epimorphism of stereotype spaces).

A counterexample is the inclusion of the algebra P(C) of polynomials on C into the

algebra P(C×) of Laurent polynomials on C× = C \ {0} (both endowed with the

strongest locally convex topology).

The following lemma will be useful:

Lemma 5.1. Let A and B be topological algebras (with separately continuous multipica-

tion), and ϕ : A→ B be a continuous linear map such that

ϕ(x · y) = ϕ(x) · ϕ(y), x, y ∈ A0,

for some dense subalgebra A0 in A. Then

ϕ(x · y) = ϕ(x) · ϕ(y), x, y ∈ A.

Proof. For any x, y ∈ A we find nets xi, yj ∈ A0 such that

xi
i→∞−−−→ x, yj

j→∞−−−→ y.

[147]
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Then we have

ϕ(x · y) ←−
∞←j

ϕ(x · yj) ←−
∞←i

ϕ(xi · yj) = ϕ(xi) · ϕ(yj) −→
i→∞

ϕ(xi) · ϕ(y) −→
j→∞

ϕ(x) · ϕ(y).

Let us give some examples of stereotype algebras. First, two abstract examples.

Example 5.2 (Fréchet algebras). For a Fréchet space A, being a stereotype algebra is

equivalent to the joint continuity of multiplication. Hence, each unital Fréchet algebra is

a stereotype algebra.

Example 5.3 (The operator algebra L(X)). Theorem 4.54 implies that for any stereo-

type space X the space L(X) = X � X of continuous linear maps ϕ : X → X is a

stereotype algebra with respect to composition.

Next, we give a series of function algebras.

Example 5.4 (The algebra C(M) of continuous functions on a paracompact locally com-

pact space M). Let us recall that a topological space M is said to be σ-compact if it is

the union of a countable system of compact sets. For a locally compact spaces M this

condition is equivalent to the Lindelöf property: every open covering of M has a count-

able subcovering (cf. [13, 3.8.C(b)]). As a corollary, if M is a Lindelöf space (i.e. has the

Lindelöf property) and is locally compact, then the space C(M) of continuous functions

u : M → C is a Fréchet space with the topology of uniform convergence on compact sets

S ⊆M .

Consider a more general class of topological spaces. Let M be a paracompact locally

compact topological space. Then it can be decomposed into a direct sum

M =
∐
i∈I

Mi

of Lindelöf locally compact spaces Mi (see [13, Theorem 5.1.27]). Therefore, C(M) (with

the topology of uniform convergence on compact sets) is a stereotype space, as a direct

product of Fréchet spaces:

C(M) =
∏
i∈I
C(Mi).

Clearly, C(M) is an algebra with respect to pointwise multiplication, which is easily

checked to be a continuous bilinear map. Hence, C(M) is a stereotype algebra.

Example 5.5. The algebra E(M) of smooth functions on a smooth manifold M (with

the usual topology of uniform convergence on compact sets with all derivatives) is a

stereotype algebra (with the usual pointwise multiplication).

Example 5.6. The algebra O(M) of holomorphic functions on a Stein manifold M (with

the topology of uniform convergence on compact sets in M) is a stereotype algebra (with

the pointwise multiplication).

Example 5.7. The algebra P(M) of polynomials (i.e. regular functions) on an affine

algebraic variety M (with the strongest locally convex topology) is a stereotype algebra

(with pointwise multiplication).

Finally, we present a series of group algebras.
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Example 5.8 (The algebra C?(G) of measures on a locally compact group G). As is

known, each locally compact group G is paracompact [18, 2.8.13], hence the space C(G)

of continuous functions on G (with the topology of uniform convergence on compact sets)

can be considered as a special case of Example 5.4, and what is important for us, C(G)

is stereotype. Its dual space C?(G) consists of measures with compact support on G. The

convolution of measures α, β ∈ C?(G) is defined by the formula

α ∗ β(u) = (α⊗ β)(w)|w(s,t)=u(s·t)

=

∫
G

(∫
G

u(s · t) dα(s)

)
dβ(t) =

∫
G

(∫
G

u(s · t) dβ(t)

)
dα(s). (5.1)

This operation is associative and has a unit (the delta-functional δ1G of the unit in G).

In addition, it is continuous as a bilinear map, so the space C?(G) of measures on a

locally compact group G is a stereotype algebra with the convolution (α, β) 7→ α ∗ β as

multiplication (and with δ1G as unit).

Example 5.9 (The algebra E?(G) of distributions on a Lie group G). Let G be a real Lie

group [49, 48]. Consider the space E?(G) of distributions with compact support on G (i.e.

the dual space to E(G) from Example 5.5). The convolution of distributions α, β ∈ E?(G)

is defined by formula (5.1). The space E?(G) of distributions is a stereotype algebra with

the convolution (α, β) 7→ α ∗ β as multiplication (and with δ1G as unit).

Example 5.10 (The algebra O?(G) of analytic functionals on a Stein group G). Let G

be a Stein group, i.e. a complex Lie group [9] which is a Stein manifold [42]. Consider the

space O?(G) of analytic functionals on G (i.e. the dual space to O(G) from Example 5.6).

The convolution of analytic functionals α, β ∈ O?(G) is defined by formula (5.1). The

space O?(G) of analytic functionals is a stereotype algebra with the convolution (α, β) 7→
α ∗ β as multiplication (and with δ1G as unit).

Example 5.11 (The algebra P?(G) of currents on an affine algebraic group G). Recall

some facts from the theory of algebraic groups [48]. The general linear group GL(n,C)

is a basic open subset in the vector space L(n,C), therefore it can be represented as a

closed (in the Zariski topology) subset in some affine algebraic space Cm. This means

that GL(n,C) is an affine algebraic variety. Its polynomials (regular functions) have the

form

u(g) = P (g)/D(g)k (5.2)

where D(g) is the determinant of the matrix g ∈ L(n,C), k belongs to N, and P is a

polynomial on L(n,C) [48].

Let now G be an affine algebraic group, i.e. a Zariski closed subgroup in GL(n,C) [48],

or equivalently, the set of common zeroes of a system of functions u : GL(n,C) → C of

the form (5.2), which is closed under the group operation in GL(n,C). Since G is a closed

subset in GL(n,C), it is an affine variety.

Therefore the space P(G) of polynomials on G is a special case of the general

construction from Example 5.7. In this caseP(G) consists of functions v : G→ Cwhich can

be extended to functions u : GL(n,C)→ C of the form (5.2). The dual spaceP?(G) consists

of linear (and automatically continuous) functionals f : P(G)→ C, called currents on G.
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The convolution of currents α, β ∈ P?(G) is defined by (5.1). The space P?(G) of

currents on an affine algebraic group G is a stereotype algebra with the convolution

(α, β) 7→ α ∗ β as multiplication (and δ1G as unit).

5.1.2. Stereotype modules. A stereotype space X over C with a given structure of

left (or right) A-module is called a stereotype A-module if multiplication by elements of

A is a continuous bilinear map in the sense of the definition on p. 123. Theorem 4.58

implies that X is a stereotype (left) module over A if and only if µ can be continuously

factored through the projective stereotype tensor product:

A×X A~X

X

//

$$µ zz

Example 5.12. Each stereotype space X is a stereotype left module over the stereotype

algebra L(X) (from Example 5.3).

Theorem 5.13 (on representation). Let A be a stereotype algebra. A stereotype space X

with the structure of left (respectively right) A-module is a stereotype A-module if and

only if multiplication by elements of A defines a continuous homomorphism (respectively,

antihomomorphism) of A into L(X).

The classes ASte and SteA of left and right stereotype modules over a stereotype

algebra A form categories with continuous A-linear maps as morphisms.

Properties of the categories ASte and SteA.

1◦ ASte and SteA are pre-abelian categories.

2◦ ASte and SteA are complete: each covariant (and each contravariant) system has an

injective and a projective limit.

3◦ ASte and SteA are enriched categories over the monoidal category Ste.

5.2. Subalgebras, quotient algebras, limits and completeness of Ste~

5.2.1. Subalgebras, products and projective limits

• Suppose B is a subset in a stereotype algebra A endowed with a structure of stereotype

algebra in such a way that the set-theoretic inclusion B ⊆ A is a morphism of stereotype

algebras (i.e. a linear, multiplicative and unit-preserving continuous map). Then B is

called a subalgebra of the stereotype algebraA, and the set-theoretic inclusion σ : B ⊆ A
its representing monomorphism.

• We say that a subalgebra B of a stereotype algebra A is closed if its representing

monomorphism σ : B → A is a closed map in the sense of the definition on p. 110.

The following fact was stated in [2, Theorem 10.13]:

Theorem 5.14. Let A be a stereotype algebra and B its subalgebra (in the purely algebraic

sense), and at the same time a closed subspace of the locally convex space A. Then the

pseudosaturation BM is a (stereotype algebra and a) closed subalgebra in A.
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Theorem 5.15. Each family {Ai; i ∈ I} of stereotype algebras has a direct product in the

category Ste~, and as a stereotype space this product is exactly the direct product of the

family {Ai; i ∈ I} of stereotype spaces:

Ste~-
∏
i∈I

Ai = Ste-
∏
i∈I

Ai.

Proof. We have to verify that the direct product is the usual direct product of locally

convex spaces A =
∏
i∈I Ai with coordinatewise multiplication:

(x · y)i = xi · yi, i ∈ I.

By [2, Theorem 4.20], this is a stereotype space, so we only need to prove that multipli-

cation is continuous. Let U be a neighborhood of zero and K a compact set in A. We

must find a zero neighborhood V in A such that

V ·K ⊆ U, K · V ⊆ U.

It is sufficient to consider a base neighborhood U , i.e.

U = {x ∈ A : ∀i ∈ J xi ∈ Ui}

where J ⊆ I is a finite subset in I, and for any i ∈ J the set Ui is a neighborhood of zero

in Ai, and xi is the projection of x ∈ A onto Ai. If U has this form, then for any i ∈ J
we can consider the zero neighborhood Ui in Ai, and (since Ai is a stereotype algebra)

we can choose a zero neighborhood Vi such that

Vi ·Ki ⊆ Ui, Ki · Vi ⊆ Ui
(where Ki is the projection of the compact set K ⊆ A onto Ai). Then we let

V = {x ∈ A : ∀i ∈ J xi ∈ Vi}

and for each x ∈ V and y ∈ K we get

(∀i ∈ J (x · y)i = xi · yi ∈ Vi ·Ki ⊆ Ui) ⇒ x · y ∈ U.

This means that V ·K ⊆ U . Similarly,

(∀i ∈ J (y · x)i = yi · xi ∈ Ki · Vi ⊆ Ui) ⇒ y · x ∈ U,

and this means that K · V ⊆ U .

Theorem 5.16. Each covariant system {Ai; πji } of stereotype algebras has a projective

limit in Ste~, and as a stereotype space this limit is exactly the projective limit of the

covariant system {Ai; πji } of stereotype spaces:

Ste~- lim←−Ai = Ste- lim←−Ai.

Proof. By Theorem 5.15, the direct product A =
∏
i∈I Ai with coordinatewise multipli-

cation is a direct product of the family {Ai} of algebras in Ste~, and by Theorem 5.14,

the subalgebra B in A consisting of all families {xi; i ∈ I} with

xi = πji (xj), i ≤ j ∈ I,

and endowed with the topology of pseudosaturation of the topology inherited from A is

a stereotype algebra. The same reasoning as in the case of stereotype spaces proves that

B is the projective limit in Ste~.
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5.2.2. Quotient algebras, coproducts and injective limits

• Let A be a stereotype algebra, and let

1) I be a two-sided ideal in A (as an algebra), and at the same time a closed set in A

(as a topological space); we will call such ideals closed ideals in A,

2) τ be a locally convex topology on the quotient algebra A/I such that τ is majorized

by the usual quotient topology,

3) B be a subspace in the completion (A/I)H of the locally convex space A/I with

respect to τ such that B contains A/I and is a stereotype algebra with respect to

the algebraic operations and the topology inherited from (A/I)H.

Then we call the stereotype algebra B the quotient algebra of the stereotype algebra A,

and the composition υ = σ ◦ π of the quotient map π : A → A/I and the natural

embedding σ : A/I → B is called the representing epimorphism of B.

• A quotient algebra B of a stereotype algebra A is said to be open if its representing

epimorphism υ : B ← A is an open map in the sense of the definition on p. 109.

The symmetry between projective and injective constructions which was obvious for

stereotype spaces (see [2]) is preserved in some sense for stereotype algebras, but the

difference is that the injective constructions in Ste~ become more complicated and the

proofs more difficult (however, the situation here is the same as for algebras in a purely

algebraic sense). For example, the analog of Theorem 5.14 uses the theory of modules

over algebras (see [2, proof of Theorem 10.14]):

Theorem 5.17. Let A be a stereotype algebra and I a closed ideal in A. Then the pseu-

docompletion (A/I)O is a stereotype algebra (and is called an open quotient algebra of A

by the ideal I).

Remark 5.18. In Theorem 5.17 the unitality requirement (i.e. the existence of identity)

for the algebra A is inessential.

Suppose {Ai; i ∈ I} is a family of stereotype algebras. Let us construct an algebra∐
i∈I Ai in the following way. First let us say that a sequence i = {i1, . . . , in} ∈ I of

indices alternates if

∀k = 1, . . . , n− 1 ik 6= ik+1.

The set of all alternating sequences in I of (various) finite lengths will be denoted as IaltN .

Let us introduce multiplication on IaltN as follows: if ι,κ ∈ IaltN have lengths m and n

respectively, then their product is

ι ∗ κ =

{
(ι1, . . . , ιm,κ1, . . . ,κn) for ιm 6= κ1,

(ι1, . . . , ιm,κ2, . . . ,κn) for ιm = κ1

(the length of ι ∗ κ is m + n if ιm 6= κ1, and m + n − 1 if ιm = κ1). For each sequence

ι ∈ IaltN we set

Aι = Aι1 ~ · · ·~Aιm .
(where ~ is the projective tensor product from (4.36)). Note that for all ι,κ ∈ IaltN the

spaces Aι ~Aκ and Aι∗κ are naturally related through the continuous linear map
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µι,κ : Aι ~Aκ → Aι∗κ ,

µι,κ =

{
1Aι~Aκ , ιm 6= κ1,

1Aι1 ~ · · ·~ 1Aιm−1
~ µιm ~ 1Aκ2

~ · · ·~ 1Aκn
, ιm = κ1,

(5.3)

where µi : Ai ~Ai → Ai is multiplication in Ai.

Consider the stereotype space

A∗ =
⊕
ι∈IaltN

Aι

and note that the formula

(ai1 ~ ai2 ~ · · ·~ aim) · (bj1 ~ bj2 ~ · · ·~ bjn)

=

{
ai1 ~ ai2 ~ · · ·~ aim ~ bj1 ~ bj2 ~ · · ·~ bjn , im 6= j1,

ai1 ~ ai2 ~ · · ·~ (aim · bj1)~ bj2 ~ · · ·~ bjn , im = j1,

defines a multiplication in A∗, which is a continuous bilinear map. This becomes obvious

if we represent this operation as the composition

A∗ ×A∗ → A∗ ~A∗ =
(⊕
ι∈IaltN

Aι

)
~
( ⊕
κ∈IaltN

Aκ

)
→

⊕
ι,κ∈IaltN

Aι ~Aκ →
⊕

ι,κ∈IaltN

Aι∗κ →
⊕
λ∈IaltN

Aλ = A∗.

Here the first arrow is described in Proposition 4.56, the second arrow is the natural

isomorphism (4.52) that connects the direct sum and the projective tensor product, the

third arrow is the direct sum
⊕

ι,κ∈IaltN
µι,κ of the morphisms (5.3), and the final arrow

is the result of identification of each summand of the form Aι∗κ (there can be many of

those) with the space Aλ in the sum
⊕

λ∈IaltN
Aλ (which is unique).

Obviously, this multiplication in A∗ is associative. If we take the quotient algebra of

the (non-unital) algebra A∗ by the closed ideal M (here we use Remark 5.18) generated

by the elements of the form

1Ai − 1Aj , i, j ∈ I,
then the quotient algebra (A∗/M)O will be a stereotype algebra with identity

1(A∗/M)O = π(1Ai)

(here the right side is the image under the quotient map π : A∗ → (A∗/M)O).

• Following [29] we call (A∗/M)O the free product of {Ai; i ∈ I} and we denote it by

Ste~-
∐
i∈I

Ai = (A∗/M)O.

This is justified by the following theorem.

Theorem 5.19. For each family {Ai; i ∈ I} of stereotype algebras its free product

Ste~-
∐
i∈I Ai is a coproduct in Ste~.

Theorem 5.20. Each covariant system {Ai; ιji} of stereotype algebras has an injective

limit in Ste~.
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Proof. The limit is the open quotient algebra
(
(
∐
i∈I Ai)/N

)O
of the free product

∐
i∈I Ai

by the closed ideal N generated by elements of the form

ιi(x)− ιj(ιji (x)), x ∈ Ai,

where ιk : Ak →
∐
i∈I Ai are natural embeddings.

As an illustration of the difference between projective and injective constructions in

Ste~, note that injective limits in Ste~ do not necessarily coincide as stereotype spaces

with injective limits in Ste. For instance, for coproducts we have

Ste~-
∐
i∈I

Ai 6= Ste-
∐
i∈I

Ai

(although there is a natural map from right to left). This asymmetry, however, diasppears

when the index set I is directed:

Theorem 5.21. If {Ai; ιji} is a covariant system of stereotype algebras over a directed

set I, then the natural map

Ste- lim−→Ai → Ste~- lim−→Ai

is an isomorphism of stereotype spaces.

Proof. Write A = Ste- lim−→Ai, and let ρi : Ai → A be the corresponding morphisms of

stereotype spaces:

A

Ai Aj//
ιji

??
ρi

__ ρj
(5.4)

We will show that A has a natural structure of stereotype algebra, and with this structure

A is an injective limit of the covariant system {Ai; ιji} of stereotype algebras.

Step 1. Take i ∈ I and note that for any j ≥ i the homomorphism ιji : Ai → Aj induces

on Aj a structure of left Ai-module by the formula

a ·
i
b = ιji (a) ·

Aj
b, a ∈ Ai, b ∈ Aj . (5.5)

(here ·
i
means left multiplication by elements ofAi, and ·

Aj
multiplication inAj). Moreover,

for i ≤ j ≤ k the maps ιkj : Aj → Ak are morphisms of left Ai-modules:

ιkj (a ·
i
b)

(5.5)
= ιkj (ιji (a) ·

Aj
b) = ιkj (ιji (a)) ·

Ak
ιkj (b) = ιki (a) ·

Ak
ιkj (b)

(5.5)
= a ·

i
ιkj (b), a ∈ Ai, b ∈ Aj .

This means that {Aj ; j ≥ i} can be considered as a covariant system of left stereotype

Ai-modules. By [2, Theorem 11.17], it has an injective limit, which as a stereotype space

coincides with the injective limit of {Ai; j ≥ i}. And the latter coincides with the injective

limit of the whole system {Ai; ιji}, since I is directed:

AiSte- lim
i≤j→∞

Aj = Ste- lim
i≤j→∞

Aj = Ste- lim
j→∞

Aj = A.
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An important conclusion is that for any i ∈ I the space A has the structure of a stereotype

Ai-module, and under this structure the maps in diagram (5.4) become morphisms of

Ai-modules; in particular,

ρj(a ·
i
b) = a ·

i
ρj(b), i ≤ j, a ∈ Ai, b ∈ Aj . (5.6)

Step 2. For i ≤ j the structures of left Ai-module and of left Aj-module on A are

coherent via the identity

ιji (a) ·
j
x = a ·

i
x, a ∈ Ai, x ∈ A. (5.7)

To prove this we first consider the special case when x = ρk(b), b ∈ Ak, k ≥ j. In this

situation

ιji (a) ·
j
x = ιji (a) ·

j
ρk(b)

(5.6)
= ρk(ιji (a) ·

j
b)

(5.5)
= ρk

(
ιkj (ιji (a)) ·

Ak
b
)

= ρk
(
ιki (a) ·

Ak
b
) (5.5)

= ρk(a ·
i
b)

(5.6)
= a ·

i
ρk(b) = a ·

i
x.

Next recall that the family of the spaces Ak is dense in its injective limit A (use the left

formula of [2, (4.15)] and the fact that I is directed). This means that for any x ∈ A

there is a net xk ∈ ρk(Ak) tending to x in A. Since for any xk the equality (5.7) is already

proved, we obtain a relation which proves (5.7) for x:

ιji (a) ·
j
x

A←−−−−
∞←k

ιji (a) ·
j
xk = a ·

i
xk

A−−−−→
k→∞

a ·
i
x

(we can take limits by the continuity of multiplication in a stereotype module).

Step 3. As A is a left Ai-module, by [2, Theorem 11.2] the formula

ϕi(a)(x) = a ·
i
x, a ∈ Ai, x ∈ A,

defines a homomorphism ϕi : Ai → L(A) of stereotype algebras. Since we have the

identity

ϕi(a · b) = ϕi(a) ◦ ϕi(b), a, b ∈ Ai, (5.8)

and the equality

ϕi(1Ai) = idA, (5.9)

formula (5.6) turns into

ϕi(a)(ρi(b)) = a ·
i
ρi(b) = ρi(a ·

Ai
b), a, b ∈ Ai, (5.10)

and formula (5.7) into

ϕj(ι
j
i (a))(x) = ϕi(a)(x), a ∈ Ai, x ∈ A,

which is equivalent to

ϕj ◦ ιji = ϕi, i ≤ j. (5.11)

The latter means that the following diagram in Ste~ is commutative:

L(A)

Ai Aj//
ιji

??
ϕi

__ ϕj
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One can interpret this as an injective cone of the covariant system {Ai; ιji} in Ste. Hence

there exists a continuous linear map ϕ : A = lim−→Ai → L(A) such that for any i the

following diagram is commutative:

A L(A)

Ai

//
ϕ

__

ρi

??

ϕi
(5.12)

Let

x · y = ϕ(x)(y), x, y ∈ A; (5.13)

we will verify that this multiplication turns A into a stereotype algebra.

Step 4. The bilinear form (x, y) 7→ x ·y is continuous. Indeed, if K is a compact set in A,

then ϕ(K) is compact in L(A). Hence, ϕ(K) is compact in the space of operators A : A.

By [2, Theorems 5.1 and 2.5], this means that ϕ(K) is equicontinuous on A. Hence for

every zero neighborhood W in A there is a zero neighborhood V in A such that

K · V = ϕ(K)(V ) ⊆W.

On the other hand, for any compact set K and for any zero neighborhood W in A the

set W �K is a neighborhood of zero in L(A), hence from the continuity of ϕ it follows

that there is a zero neighborhood V in A such that

ϕ(V ) ⊆W �K,

and this is equivalent to the inclusion

V ·K = ϕ(V )(K) ⊆ V.

Step 5. The formula

1A = ρi(1Ai) (5.14)

defines some element of A, so if i ≤ j, then

ρj(1Aj ) = ρj(ι
j
i (1Ai)) = ρi(1Ai).

Furthermore, the chain

ϕ(1A) = ϕ(ρi(1Ai)) = ϕi(1Ai)
(5.9)
= idA (5.15)

implies that this element is the identity for the multiplication (5.13): First, for any y ∈ A,

1A · y = ϕ(1A)(y) = idA(y) = y.

Second, for any x ∈ A we can find a net ak ∈ Ak such that

ρk(ak)
A−−−−→

k→∞
x,

and by the continuity of multiplication in A, we have

x · 1A
A←−−−−
∞←k

ρk(ak) · 1A = ρk(ak) · ρk(1Ak)
(5.13)
= ϕ(ρk(ak))(ρk(1Ak))

= ϕk(ak)(ρk(1Ak))
(5.10)
= ρk(ak ·

Ak
1Ak) = ρk(ak)

A−−−−→
k→∞

x,

Thus, x · 1A = x.



5.2. Subalgebras, quotient algebras, limits and completeness of Ste~ 157

Step 6. The map ρi in (5.12) is a homomorphism of algebras. Indeed, it maps iden-

tity into identity just by the definition of 1A in (5.14). On the other hand, it preserves

multiplication since for all a, b ∈ Ai,

ρi(a ·
Ai
b)

(5.10)
= ϕi(a)(ρi(b))

(5.12)
= ϕ(ρi(a))(ρi(b))

(5.13)
= ρi(a) · ρi(b). (5.16)

Step 7. The same holds for the map ϕ. Preservation of identities was already stated in

(5.14). And to prove multiplicativity we first note that

ϕ(ρi(a) · ρj(b)) = ϕ(ρi(a)) ◦ ϕ(ρj(b)), i, j ∈ I, a ∈ Ai, b ∈ Aj . (5.17)

Indeed, for k ∈ I such that k ≥ i and k ≥ j we have

ϕ(ρi(a) · ρj(b))
(5.4)
= ϕ

(
ρk(ιki (a)) · ρk(ιkj (b))

) (5.16)
= ϕ

(
ρk(ιki (a) · ιkj (b))

)
(5.12)
= ϕk

(
ιki (a) · ιkj (b)

) (5.8)
= ϕk(ιki (a)) ◦ ϕk(ιkj (b))

(5.12)
= ϕ

(
ρk(ιki (a))

)
◦ ϕ
(
ρk(ιkj (b))

) (5.4)
= ϕ(ρi(a)) ◦ ϕ(ρj(b)).

Then we take x, y ∈ A and find ai ∈ Ai and bj ∈ Aj such that

ρi(ai)
A−−−→

i→∞
x, ρj(bj)

A−−−→
j→∞

y.

We obtain

ϕ(x · y)
L(A)←−−−
∞←i

ϕ(ρi(ai) · y)
L(A)←−−−
∞←j

ϕ
(
ρi(ai) · ρj(bj)

)
(5.17)
= ϕ(ρi(ai)) ◦ ϕ(ρj(bj))

L(A)−−−→
j→∞

ϕ(ρi(ai)) ◦ ϕ(y)
L(A)−−−→
i→∞

ϕ(x) ◦ ϕ(y),

hence

ϕ(x · y) = ϕ(x) ◦ ϕ(y).

This formula proves in addition the associativity of multiplication in A,

x · (y · z) = ϕ(x)(y · z) = ϕ(x)(ϕ(y)(z)) =
(
ϕ(x) ◦ ϕ(y)

)
(z) = ϕ(x · y)(z) = (x · y) · z,

completing the proof that A is a stereotype algebra.

Step 8. We only have to verify that the cone {Ai; ρi} of algebras is an injective limit

of the covariant system {Ai; ιji} of algebras. Let {Bi; σi} be another cone of algebras.

Since it is also a cone of stereotype spaces, there exists a unique continuous linear map

σ : A→ B such that

A B

Ai

//σ

__

ρi

??

σi
(5.18)

We must check that σ is a homomorphism of algebras. Preservation of identities follows

from the fact that all σi preserve identity:

σ(1A) = σ(ρi(1Ai)) = σi(1Ai) = 1B .

To prove multiplicativity we first note that

σ(ρi(a) · ρj(b)) = σ(ρi(a)) · σ(ρj(b)), i, j ∈ I, a ∈ Ai, b ∈ Aj , (5.19)
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This can be proved by the same reasoning as (5.17) above: Take k ∈ I such that k ≥ i

and k ≥ j; then

σ(ρi(a) · ρj(b))
(5.4)
= σ

(
ρk(ιki (a)) · ρk(ιkj (b))

) (5.16)
= σ

(
ρk(ιki (a) · ιkj (b))

)
(5.18)
= σk

(
ιki (a) · ιkj (b)

)
= σk(ιki (a)) · σk(ιkj (b))

(5.18)
= σ

(
ρk(ιki (a))

)
· σ
(
ρk(ιkj (b))

) (5.4)
= σ(ρi(a)) · σ(ρj(b)).

Next take x, y ∈ A and choose ai ∈ Ai and bj ∈ Aj such that

ρi(ai)
A−−−→

i→∞
x, ρj(aj)

A−−−→
j→∞

y.

We obtain

σ(x · y)
B←−−−
∞←i

σ(ρi(ai) · y)
B←−−−
∞←j

σ
(
ρi(ai) · ρj(bj)

)
(5.19)
= σ(ρi(ai)) · σ(ρj(bj))

B−−−→
j→∞

σ(ρi(ai)) · σ(y)
B−−−→

i→∞
σ(x) · σ(y),

and thus σ(x · y) = σ(x) · σ(y).

5.2.3. Completeness of Ste~. Theorems 5.16 and 5.20 imply

Theorem 5.22. The category Ste~ is complete.

5.3. Nodal decomposition, envelope and refinement in Ste~

5.3.1. Discerning properties of strong epimorphisms in Ste~.

Theorem 5.23. For a morphism ε : A → B of stereotype algebras the following condi-

tions are equivalent:

(i) ε is an immediate epimorphism in Ste~;

(ii) ε is a strong epimorphism in Ste~;

(iii) ε is an immediate epimorphism in Ste;

(iv) ε is a strong epimorphism in Ste.

Proof. The implications (i)⇐(ii) and (iii)⇔(iv) are already known. So it is sufficient to

prove (i)⇒(iii) and (ii)⇐(iv).

(i)⇒(iii). Let ε : A→ B be an immediate epimorphism in Ste~. Consider its minimal

factorization in Ste, i.e. a diagram with continuous linear maps

A
ε //

coim∞ ε ""

B

Coim∞ ε
µ

<<

where Coim∞ ε is the nodal coimage in Ste. Our aim is to show that Coim∞ ε has

the structure of a stereotype algebra under which coim∞ ε and µ become morphisms

in Ste~—this will mean that the epimorphism coim∞ ε is a mediator for ε in Ste~, and

since ε is an immediate epimorphism, µ must be an isomorphism in Ste~, and hence in

Ste as well. This allows us to conclude that the epimorphism ε is isomorphic in Ste to

the epimorphism Coim∞ ε, which is an immediate epimorphism in Ste, and thus ε is also

an immediate epimorphism in Ste.
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The existence of the structure of a stereotype algebra on Coim∞ ε follows from Theo-

rems 5.17 and 5.21: on the one hand, any operation of the form A′ 7→ (A′/I)O (where I is

a closed two-sided ideal in A′) turns each stereotype algebra A′ into a stereotype algebra,

and on the other hand, the injective limit in Ste of the system of stereotype algebras

that one can form from A in this way is a stereotype algebra. Theorem 5.21 also implies

that the natural map of A into this injective limit Coim∞ ε is a morphism of stereotype

algebras.

It remains to check that µ is a morphism of stereotype algebras as well, i.e. it is

multiplicative and preserves units. The second property follows from the same property

for ε and coim∞ ε(1A):

µ(1C) = µ(coim∞ ε(1A)) = ε(1A) = 1B .

The multiplicativity of µ on coim∞ ε(A) follows from the multiplicativity of ε and

coim∞ ε(1A): for any a, b ∈ A we have

µ(coim∞ ε(a) · coim∞ ε(b)) = µ(coim∞ ε(a · b)) = ε(a · b)
= ε(a) · ε(b) = µ(coim∞ ε(a)) · µ(coim∞ ε(b)).

Now recall that coim∞ ε is an epimorphism in Ste, so the algebra coim∞ ε(A) is dense in

Coim∞ ε. Hence, by Lemma 5.1, µ is multiplicative on Coim∞ ε.

(ii)⇐(iv). Suppose ε : A→ B is a strong epimorphism in Ste. Consider the following

diagram in Ste~:

A B

C D
��

α

//ε

��
β

//
µ

where µ is a monomorphism. It can be considered as a diagram in Ste, and since µ is

a monomorphism in Ste (by Example 5.1.1), and ε a strong epimorphism in Ste, there

must exist a morphism δ in Ste (i.e. a continuous linear map) such that

A B

C D
��

α

//ε

��

β
��

δ

//
µ

It remains to check that δ is a homomorphism of algebras. First, δ preserves units, since

µ does:

µ(1C) = 1D = β(ε(1A)) = µ
(
δ(ε(1A))

)
= µ(δ(1B)) ⇒ 1C = δ(1B).

For the same reason δ is multiplicative on the subalgebra ε(A): for all a, b ∈ A,

µ
(
δ(ε(a·b))

)
= β(ε(a·b)) = β(ε(a))·β(ε(b)) = µ(δ(ε(a)))·µ(δ(ε(b))) = µ

(
δ(ε(a))·δ(ε(b))

)
⇓

δ(ε(a · b)) = δ(ε(a)) · δ(ε(b)).

The multiplicativity of δ on B follows from Lemma 5.1.
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Theorem 5.24. If a morphism ϕ : A→ B of stereotype algebras is not a monomorphism,

then there exists a decomposition ϕ = ϕ′ ◦ ε where ε is a strong epimorphism but not an

isomorphism.

Proof. If ϕ is not a monomorphism, then I = Kerϕ is a non-zero closed ideal in A. By

Theorem 5.17 the quotient space (A/I)O is a stereotype algebra. The homomorphism ϕ

can be lifted to some homomorphism ψ : A/I → B of algebras, which by the definition

of the usual quotient topology is a continuous map:

A

ϕ
##

π // A/I

ψ
��

B

Since B is pseudocomplete, ψ can be extended to a continuous map ϕ′ : (A/I)O → B:

A

ϕ
%%

π // A/I

ψ
��

OA/I
// (A/I)O

ϕ′
ww

B

By Theorem 5.23, υ = OA/I ◦ π : A → (A/I)O is a strong epimorphism of stereotype

algebras, so we only have to verify that ϕ′ is a homomorphism of algebras. It preserves

identities since 1(A/I)O = 1A/I :

ϕ′(1(A/I)O) = ψ(1A/I) = 1B .

Multiplicativity follows from Lemma 5.1, since ψ is multiplicative.

5.3.2. Discerning properties of strong monomorphisms in Ste~

Lemma 5.25. Let A be a stereotype algebra and B a subalgebra in A (in the purely

algebraic sense). Then the envelope EnvAB of B in the stereotype space A is a stereotype

algebra.

Proof. This follows from the completeness of the category Ste~ (Theorem 5.22) and from

the fact that the pseudosaturation of the closure C
M

of any subalgebra C in A is always

a stereotype algebra by Theorem 5.14.

Lemma 5.26. In Ste~ the immediate monomorphisms coincide with the strong monomor-

phisms.

Proof. We already noticed (property 2◦ on p. 18) that each strong monomorphism is an

immediate monomorphism, so we have to verify that in Ste~ the converse is also true. Let

µ : C → D be an immediate monomorphism of stereotype algebras. Consider a diagram

A B

C D
��

α

//ε

��
β

//
µ

where ε is an epimorphism. Consider the subset µ(C)∪ β(B) in D. Let alg(µ(C)∪ β(B))

be the subalgebra (in the purely algebraic sense) in D generated by µ(C) ∪ β(B), and

R = EnvD(alg(µ(C) ∪ β(B))) the envelope in the sense of the definition on p. 130. By
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Lemma 5.25, R is a stereotype algebra. Let σ : R→ D denote its natural inclusion in D.

Since µ(C) ⊆ R, and R is an immediate subspace in D, the morphism µ of stereotype

spaces can be factored through σ,

µ = σ ◦ π.

Here π is multiplicative, since the identities

σ(π(x · y)) = µ(x · y) = µ(x) · µ(y) = σ(π(x)) · σ(π(y)) = σ(π(x) · π(y))

imply by monomorphy of σ the identity

π(x · y) = π(x) · π(y).

So we conclude that π is a morphism of stereotype algebras. Similarly, the inclusion

β(B) ⊆ R implies that β can be factored through σ,

β = σ ◦ ρ,

and again the monomorphy of σ implies that ρ is a morphism of stereotype algebras.

So we obtain a diagram in Ste~:

A B

R

C D
��

α

//ε

��

β

��

ρ

��

σ

//
µ

??
π

Let us show that π is an epimorphism (in Ste~). Let ζ, η : R ⇒ T be two parallel

morphisms of stereotype algebras. Then the equality

ζ ◦ π = η ◦ π

implies, on the one hand, the identity

ζ|π(C) = η|π(C),

and on the other hand, the chain

ζ ◦ ρ ◦ ε = ζ ◦ π ◦ α = η ◦ π ◦ α = η ◦ ρ ◦ ε

3

Epi

⇒ ζ ◦ ρ = η ◦ ρ ⇒ ζ|ρ(B) = η|ρ(B).

Together they give

ζ|π(C)∪ρ(B) = η|π(C)∪ρ(B) ⇒ ζ|alg(π(C)∪ρ(B)) = η|alg(π(C)∪ρ(B)).

Recall that formally R is a subset in B, so alg(π(C) ∪ ρ(B)) formally coincides with

alg(µ(C)∪β(B)). As a corollary, alg(π(C)∪ ρ(B)) = alg(µ(C)∪β(B)) is dense in R, and

we obtain ζ = η.

This proves that π is an epimorphism of stereotype algebras. Thus, µ is a composition

of an epimorphism π and a monomorphism σ. Since µ is an immediate monomorphism,

π, being a mediator, is an isomorphism. Now we can set δ = π−1 ◦ ρ, and obtain the
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required diagram

A B

C D
��

α

//ε

��

β

��

δ

//
µ

Theorem 5.27. If a morphism ϕ : A→ B of stereotype algebras is not an epimorphism,

then there exists a decomposition ϕ = λ◦ϕ′ (in Ste~) where λ is a strong monomorphism

but not an isomorphism.

Proof. Denote

P = EnvB ϕ(A).

By Lemma 5.25, P is a stereotype algebra, and the set-theoretic inclusion ι : P → B is a

monomorphism of stereotype algebras (and an immediate monomorphism of stereotype

spaces). Let Φ be the class of all factorizations of ι in Ste~,

P B

X

//ι

��Epi3π

??

µ∈Mono
(5.20)

where the algebra X as a set lies between P and B:

P ⊆ X ⊆ B. (5.21)

This class is not empty, since it contains the factorization ι = ι ◦ 1, and it is full in the

class of all factorizations (i.e. each factorization of ι is isomorphic to some factorization

from Φ). Every factorization from Φ is uniquely determined by the set X in B and a

topology on X, i.e. by a subspace X in the topological space B. Since all subspaces of a

given topological space form a set, we see that Φ is a set (not just a class). For simplicity

we can view Φ as just a set of subalgebras X in B satisfying (5.21) and endowed with a

topology that turns X’s into stereotype algebras in such a way that the inclusions (5.21)

are continuous maps (this will mean that they are morphisms of stereotype algebras).

For any X ∈ Φ the set-theoretic inclusions P ⊆ X and X ⊆ B will be denoted by πX
and µX . Thus, diagram (5.20) turns into

P B

X

//ι

��πX

??

µX
(5.22)

Set

Y =
⋃
X∈Φ

X;

then Q = EnvB algY and κ and λ are the inclusions P ⊆ Q and Q ⊆ B respectively:

P B

Q

//ι

��κ

??

λ
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By Lemma 5.25, Q is a stereotype algebra, and this means that κ and λ are (mono-)

morphisms of stereotype algebras. For any X ∈ Φ we denote by σX the inclusion X ⊆ Q.

The topology of X majorizes the topology of Q, hence σX is a continuous map, and we

obtain a diagram in Ste~:

P

πX $$

ι //

κ

''

B

X
µX

::

σX
��

Q

λ

NN

(5.23)

Let us now show that κ is (not only a monomorphism, but also) an epimorphism of

stereotype algebras. Indeed, for any two morphisms ζ, η : Q⇒ T we have

ζ ◦ κ = η ◦ κ ⇒ ∀X ∈ Φ ζ ◦ σX ◦ πX = η ◦ σX ◦ πX

3

Epi

⇒ ∀X ∈ Φ ζ ◦ σX = η ◦ σX

⇒ ∀X ∈ Φ ζ|X = η|X ⇒ ζ|Y = ζ|⋃
X∈ΦX

= η|⋃
X∈ΦX

= η|Y
⇒ ζ|alg Y = η|alg Y ⇒ ζ = ζ|Q = η|Q = η

(the last implication follows from the fact that alg Y is dense in its envelope).

Let us show that λ : Q → B is an immediate monomorphism (in Ste~). Suppose

λ = λ′ ◦ ε. Denote by R the range of ε (and the domain of λ′); then we have

P

κ
##

ι //

ε◦κ

''

B

Q
λ

;;

ε
��

R

λ′

NN

(5.24)

The morphism ε ◦ κ is an epimorphism (as a composition of two epimorphisms), so

ι = λ′ ◦ (ε ◦ κ) is a factorization of ι. As a corollary, it is isomorphic to some standard

factorization ι = µX ◦ πX for some X ∈ Φ:

P

κ
!!

ι //

ε◦κ

''πX

++

B

Q

λ

==

ε

��

R

λ′

PP

��

X

µX

YY

(the dashed arrow is some isomorphism of stereotype algebras). So from the very begin-
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ning we can think that in (5.24) some X ∈ Φ stands instead of R:

P

κ
$$

ι //

πX

**

B

Q
λ

::

ε
��

X

µX

PP

Here every arrow is a set-theoretic inclusion, and the topology of the source of the arrow

majorizes the topology of its target. In particular, the arrow ε means that Q is a subset

of X, and the topology of Q majorizes that of X. But on the other hand, the arrow

σX in diagram (5.23) means that X is a subset in Q, and the topology of X majorizes

that of Q. Together this means that X and Q coincide together with their topologies. In

particular, ε is an isomorphism, as desired.

Since λ is an immediate monomorphism, by Lemma 5.26 it is a strong monomorphism.

Note that since ϕ(A) ⊆ P , the morphism ϕ factors through P :

ϕ = ι ◦ θ

for some morphism θ : A→ P . We obtain a diagram in Ste~:

A B

P Q

//
ϕ

��

θ

??

ι

//κ

OO

λ

We now see that λ cannot be an isomorphism, since otherwise ϕ would be an epimorphism,

as a composition of two epimorphisms θ and κ, and an isomorphism λ. So if we set

ϕ′ = κ ◦ θ, we obtain a decomposition ϕ = λ ◦ϕ′ where λ is a strong monomorphism but

not an isomorphism.

5.3.3. Nodal decomposition in Ste~. We record the following two properties of the

category Ste~.

Theorem 5.28. The category Ste~ is well-powered.

Proof. A morphism µ : A→ B in Ste~ is a monomorphism in Ste~ iff it is a monomor-

phism in Ste, and the latter category is well-powered.

Theorem 5.29. The category Ste~ is co-well-powered in strong epimorphisms.

Proof. By Theorem 5.23, a morphism ε : A → B in Ste~ is a strong epimorphism in

Ste~ iff it is a strong epimorphism in Ste, and the latter category is co-well-powered.

On the other hand, Ste~ is complete (by Theorem 5.22), and in Ste~ strong epi-

morphisms discern monomorphisms, and strong monomorphisms discern epimorphisms

(Theorems 5.24 and 5.27). Thus, we can apply Theorem 2.36 to get

Theorem 5.30. In Ste~ each morphism ϕ : X → Y has a nodal decomposition (2.24).
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Remark 5.31. Theorem 5.23 implies in addition that the nodal coimage Coim∞ ϕ in

Ste~ coincides with the nodal coimage in Ste, and as a corollary with the refinement (as

a quotient space of a stereotype space) of ϕ?(Y ?) on X:

Coim∞ ϕ = RefX ϕ?(Y ?). (5.25)

For the nodal image Im∞ ϕ the analogous proposition is not true.

Theorem 5.32. For each morphism ϕ : A → B in Ste~ its nodal decomposition ϕ =

im∞ ϕ ◦ red∞ ϕ ◦ coim∞ ϕ in Ste is a decomposition (not necessarily nodal) in Ste~.

Proof. We need to verify that the stereotype spaces Coim∞ ϕ and Im∞ ϕ have natural

structures of stereotype algebras, and the morphisms of stereotype spaces coim∞ ϕ :

A → Coim∞ ϕ, red∞ ϕ : Coim∞ ϕ → Im∞ ϕ, im∞ ϕ : Im∞ ϕ → B are morphisms of

stereotype algebras (i.e., homomorphisms of algebras). This follows from the construction

of Coim∞ ϕ and Im∞ ϕ: since ϕ : A → B is a morphism of stereotype algebras, so is

ϕ1 = redϕ : Coimϕ → Imϕ (together with coimϕ : A → Coimϕ and imϕ : Imϕ → B).

For the same reason, ϕ2 = redϕ1 is a morphism of stereotype algebras, and so on. By

transfinite induction, Coim∞ ϕ is a stereotype algebra (as injective limit of the stereotype

algebras Coimϕi), Im∞ ϕ is a stereotype algebra (as the projective limit of the stereotype

algebras Imϕi), and the morphisms coim∞ ϕ : A→Coim∞ ϕ, red∞ ϕ : Coim∞ ϕ→ Im∞ ϕ,

im∞ ϕ : Im∞ ϕ→ B are homomorphisms of algebras.

5.3.4. Envelopes and refinements in Ste~. Since it is not clear whether the category

Ste~ is co-well-powered in the class Epi, in the analogue of Theorem 4.106 for the case

of envelopes in Epi one should claim that the class of test morphisms Φ is a set (so that

in the proof property 5◦ on p. 61 could be replaced by 3◦):

Theorem 5.33. In Ste~:

(a) Each algebra A has an envelope in the class Epi of all epimorphisms (respectively, in

the class SEpi of all strong epimorphisms) of Ste~ with respect to an arbitrary set

(respectively, class) Φ of morphisms going from A; in addition,

(i) if Φ separates morphisms on the outside in Ste~, then

envEpiΦ A = envBimΦ A;

(ii) if Φ separates morphisms on the outside and is a right ideal in Ste~, then for

any class Ω ⊇ Bim,

envEpiΦ A = envBimΦ A = envΩΦ A = envΦA.

(b) Each algebra A has a refinement in the class Mono of all monomorphisms (respective-

ly, the class SMono of all strong monomorphisms) in Ste~ by means of an arbitrary

class Φ of morphisms going to A; in addition,

(i) if Φ separates morphisms on the inside in Ste~, then

refMono
Φ A = refBimΦ A;

(ii) if Φ separates morphisms on the inside and is a left ideal in Ste~, then for any
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class Γ ⊇ Bim,

refMono
Φ A = refBimΦ A = refΓΦ A = refΦA.

Proof. Consider the case of envelopes. If Φ is a set, then the existence of env
Epi(Ste~)
Φ A

follows from 3◦ on p. 61. If Φ separates morphisms on the outside, then by Theorem 3.6

the existence of envEpiΦ A implies the existence of envEpi∩Mono
Φ A = envBimΦ A, and envEpiΦ A =

envBimΦ A. If Φ separates morphisms on the outside and is a right ideal, then by Theorem

3.7 the existence of envBimΦ A implies the existence of envΩΦ A for any Ω ⊇ Bim, and

envBimΦ A = envΩΦ A.

From Theorems 3.42 and 3.48 (with Ω = Epi) we have

Theorem 5.34. Let Φ be a class of morphisms in Ste~ which goes from Ste~ and is

a right ideal. Then the classes of morphisms Epi and Φ define in Ste~ a semiregular

envelope EnvEpiΦ , which for each object A in Ste~ is described by the formula

red∞ lim←−N
A ◦ coim∞ lim←−N

A = envEpiΦ A (5.26)

where N is the net of epimorphisms generated by Epi and Φ, and red∞ lim←−N
A and

coim∞ lim←−N
A are elements of the nodal decomposition (2.24) of lim←−N

A : A → AN

in Ste~. If in addition Epi pushes Φ, then EnvEpiΦ is regular (and thus it can be defined as

an idempotent functor).

5.3.5. Dense epimorphisms

• Let us say that a morphism ϕ : A → B of stereotype (or, in general, topological)

algebras is dense if ϕ(A) is dense in B. Clearly, dense morphisms are epimorphisms,

so we also call them dense epimorphisms. The class of all dense epimorphisms in Ste~

(or in TopAlg) will be denoted by DEpi. It is related to the classes Epi and SEpi by the

inclusions

SEpi ⊂ DEpi ⊂ Epi. (5.27)

Remark 5.35. The inclusions (5.27) are not equalities. An example of a dense epimor-

phism which is not strong is the set-theoretic inclusion of the algebra C∞(M) of smooth

functions into the algebra C(M) of continuous functions on a smooth manifold M (this

inclusion is a bimorphism of stereotype algebras, so if it were a strong epimorphism, this

would automatically mean that it is an isomorphism, which is not true). An example of

a non-dense epimorphism is the standard inclusion of the algebra P(C) of polynomials

on C into the algebra P(C×) of Laurent polynomials on C× (we already mentioned this

example on p. 147).

Theorem 5.36. The class DEpi is monomorphically complementable in Ste~.

Proof. The monomorphic complement for DEpi is the class SMonoSte of strong monomor-

phisms in Ste~ which are strong monomorphisms in Ste.

SMonoSte } DEpi = Ste~. (5.28)
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For dense epimorphisms the first part of Theorem 5.33 can be strengthened as follows:

Theorem 5.37. In Ste~ every algebra A has an envelope in DEpi with respect to an

arbitrary class Φ of morphisms going from A. If in addition Φ separates morphisms on

the outside in Ste~, then the envelope in DEpi is also an envelope in the class DBim of

all dense bimorphisms:

envDEpi
Φ A = envDBim

Φ A.

Proof. The existence of env
DEpi(Ste~)
Φ A follows from 5◦ on p. 61. If Φ separates morphisms

on the outside, then by Theorem 3.6 the existence of envDEpi
Φ A implies the existence of

envDEpi∩Mono
Φ A = envDBim

Φ A, and envDEpi
Φ A = envDBim

Φ A. If in addition Φ is a right ideal,

then by Theorem 3.7 the existence of envDEpi
Φ A implies the existence of envDEpi∩Mono

Φ A =

envDBim
Φ A, and envDEpi

Φ A = envDBim
Φ A.

From Theorems 3.42 and 3.48 (with Ω = DEpi) we deduce:

Theorem 5.38. Let Φ be a class of morphisms in Ste~ which goes from Ste~ and is a

right ideal. Then DEpi and Φ define a semiregular envelope EnvDEpi
Φ in Ste~, which for

any object A in Ste~ is described by the formula

envDEpi
Φ A = red∞ lim←−N

A ◦ coim∞ lim←−N
A, (5.29)

where N is the net of epimorphisms generated by DEpi and Φ, and red∞ lim←−N
A and

coim∞ lim←−N
A are elements of the nodal decomposition (2.24) of the morphism lim←−N

A :

A → AN in the category Ste of stereotype spaces (not algebras!). If in addition DEpi

pushes Φ, then the envelope EnvDEpi
Φ is regular (and thus it can be defined as an idempotent

functor).

5.4. Holomorphic envelope. A. Ya. Helemskii introduced in [16] the notion of the

Arens–Michael envelope in the category of topological algebras. The properties of this

construction used in the duality theory for complex Lie groups [3] have different formal

interpretations (while preserving the essential results) than an envelope in the sense of

the definition of Chapter 3 in the category of stereotype algebras. For one of them, which

seems to be most natural, we use the (working) name holomorphic envelope. The choice

of the term is meant to emphasize the connection to complex analysis and the analogy

with the continuous envelope (which we define below on p. 179) and the smooth envelope

from [5].

5.4.1. Net of Banach quotient maps and the stereotype Arens–Michael enve-

lope. Here we define the analogue of the Arens–Michael envelope in the category Ste~

of stereotype algebras. All the definitions and results can be easily transferred to the

category TopAlg of topological algebras.

Recall that an absolutely convex closed neighborhood U of zero in a topological al-

gebra A is said to be submultiplicative if U · U ⊆ U . The set of all submultiplicative

absolutely convex closed neighbourhoods of zero in A is denoted by SU(A). To any such

neighborhood U in A one can assign a two-sided closed ideal KerU =
⋂
ε>0 ε ·U in A and

a quotient algebra A/KerU endowed with (not the quotient topology as one could expect,

but) the topology of a normed space with the unit ball U + KerU . Then the completion
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(A/KerU)H is a Banach algebra, and we denote it by A/U and call the quotient algebra

of A by the zero neighborhood U . The natural map from A into A/U given by

A

ρU

%%
τU // A/KerU

HA/KerU
// (A/KerU)H = A/U

(where τU is a quotient map, and HA/KerU is the completion map) will be called the

Banach quotient map of A by the zero neighborhood U .

Denote by B the class {ρU : A → A/U} of all Banach quotient maps, where A runs

over the class of topological algebras, and U the set of all submultiplicative neighborhoods

of zero in A.

Proposition 5.39. The class B is a net of epimorphisms in Ste~, and the relation →
of pre-order (1) is equivalent to the embedding of the corresponding neighborhoods of zero

up to a positive scalar multiple:

ρV → ρU ⇔ ∃ε > 0 ε · V ⊆ U. (5.30)

Proof. Let us first verify (5.30). Suppose U and V are submultiplicative closed absolutely

convex neighborhoods of zero in A, and ε · V ⊆ U for some ε > 0. Then Ker V ⊆ KerU ,

and the formula

x+ Ker V 7→ x+ KerU

defines a continuous linear map A/Ker V → A/KerU which can be extended by continuity

to an operator

πUV : A/V = (A/Ker V )O → (A/KerU)O = A/U.

Obviously, the following diagram is commutative:

A
ρV

��

ρU

��

A/V
πUV // A/U

(5.31)

In particular, ρV → ρU . Conversely, if for some morphism ι : A/V → A/U we have a

commutative diagram

A
ρV

��

ρU

��

A/V
ι

// A/U

(5.32)

then we can set Ũ = ρU (U) and Ṽ = ρV (V ), and these will be balls centered at the

zeroes in A/U and A/V respectively, so the continuity of ι : A/V → A/U implies that

ε · Ṽ ⊆ ι−1(Ũ)

(1) The pre-order → on the class EpiX of all epimorphisms going from a given object X of
a category K was defined on p. 25.
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for some ε > 0. Therefore,

ε · V = (ρV )−1(ε · Ṽ ) ⊆ (ρV )−1(ι−1(Ũ)) = (ρU )−1(Ũ) = U.

Let us now check axiom (a) of the net of epimorphisms from p. 70. For each topological

algebra A the set BA of its Banach quotient maps is non-empty, since there always exists

at least one submultiplicative zero neighborhood U in A, namely U = A (and the

corresponding quotient map is zero, ρU : A → 0). Furthermore, if U and V are two

submultiplicative closed absolutely convex neighborhoods of zero in A, then clearly U ∩V
is also a submultiplicative (and closed absolutely convex) neighborhood of zero in A.

That is, the submultiplicative absolutely convex neighborhoods of zero form a system

directed to the contraction in A. Together with the rule (5.30) this means that the

system {ρU : A → A/U} of epimorphisms is directed to the left with respect to the

pre-order →.

Next we check axiom (b). For each topological algebra A the system Bind(BA) of

connecting morphisms has a projective limit, since the category Ste~ is complete. This

limit can be defined as a map A 7→ lim←−Bind(BA), since it is directly constructed as a set

in the product of the algebras A/U .

It remains to check axiom (c). Let α : A→ B be a morphism of topological algebras

and ρV : B → B/V a Banach quotient map. The set U = α−1(V ) is a submultiplicative

closed absolutely convex neighborhood of zero in A. The map

x+ KerU 7→ α(x) + Ker V

extends by continuity to a map αVU : A/U → B/V such that

X
α //

ρU

��

Y

ρV

��

A/U
ατσ // B/V

• The net B will be called the net of Banach quotient maps.

• For each algebra A diagram (5.31) means that the family of quotient maps ρU : A →
A/U is a projective cone of the contravariant system Bind(BA) = {πUV }. The projective

limit of this cone in the category Ste~ of stereotype algebras is called the stereotype

Arens–Michael envelope of the algebra A and is denoted by

lim←−BA : A→ AB (5.33)

(this limit exists since Ste~ is projectively complete). The range of this morphism,

AB = Ran lim←−BA = Ste~- lim←−
U∈SU(A)

A/U =
(
TopAlg- lim←−

U∈SU(A)

A/U
)M
, (5.34)

will also be called the stereotype Arens–Michael envelope of A.

If U and V are submultiplicative neighborhoods of zero such that ε · V ⊆ U for some

ε > 0, then we have a commutative diagram
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A

lim←−BA
��

ρV





ρU

��

AB
πV

xx

πU

&&

A/V
πUV // A/U

Theorem 3.36 implies

Theorem 5.40. The Arens–Michael envelope is an envelope in the class of all morphisms

in Ste~ with respect to the system B of Banach quotient maps,

AB = Env
Mor(Ste~)
B A, (5.35)

and to each morphism ϕ : A→ B in Ste~ the formula

ϕB = lim←−
τ∈BB

lim←−
σ∈BA

ϕτσ ◦ σB (5.36)

assigns a morphism ϕB : AB → BB such that

A

ϕ

��

lim←−BA // AB

ϕB

��

B
lim←−BB // BB

(5.37)

and the map (A,ϕ) 7→ (AB, ϕB) can be defined as a functor from Ste~ into Ste~.

5.4.2. Holomorphic envelope of a stereotype algebra. Recall that on p. 166 we

defined dense epimorphisms ϕ : A→ B of topological algebras.

• By the holomorphic envelope of a stereotype algebra A we mean its envelope in the

class DEpi of dense epimorphisms of the category Ste~ with respect to the class BanAlg

of Banach algebras. We use the following notation for this construction:

A♥ = EnvDEpi
BanAlgA, ♥A = envDEpi

BanAlgA. (5.38)

Thus,

(♥A : A→ A♥) = (envDEpi
BanAlgA : A→ EnvDEpi

BanAlgA).

Properties of holomorphic envelopes.

1◦ Each stereotype algebra A has a holomorphic envelope A♥.

2◦ The holomorphic envelope A♥ is connected with the stereotype Arens–Michael envelope

AB through the formulas

♥A = red∞ lim←−BA ◦ coim∞ lim←−BA, A♥ = Dom im∞ lim←−BA (5.39)

where coim∞ lim←−BA, red∞ lim←−BA, im∞ lim←−BA are elements of the nodal decomposition

of the morphism lim←−BA in the category Ste of stereotype spaces (not algebras!).
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3◦ For any morphism ϕ : A→ B of stereotype algebras and for each choice of holomorphic

envelopes ♥A : A → A♥ and ♥B : B → B♥ there exists a unique morphism ϕ♥ :

A♥ → B♥ such that

A

ϕ

��

♥A // A♥

ϕ♥

��

B
♥B // B♥

(5.40)

4◦ The correspondence (X,α) 7→ (X♥, α♥) can be defined as a covariant functor from

Ste~ into Ste~:

(1A)♥ = 1A♥ , (β ◦ α)♥ = β♥ ◦ α♥, (α♥)♥ = α♥. (5.41)

5◦ If an algebra A is dense in its stereotype Arens–Michael envelope AB, i.e.

lim←−BA ∈ DEpi(Ste~),

then the holomorphic envelope of A coincides with its envelope in the class Epi of all

epimorphisms in Ste~ and with the stereotype Arens–Michael envelope:

A♥ = EnvDEpi
BanAlgA = EnvEpiBanAlgA = AB. (5.42)

6◦ The holomorphic envelope is coherent with the projective tensor product ~ in Ste~.

In the proof we shall need the following

Lemma 5.41. In Ste~ the net B of Banach quotient maps consists of dense epimorphisms

and generates on the inside the class Mor(Ste~, BanAlg) of morphisms with values in

Banach algebras:

B ⊆ Mor(Ste~, BanAlg) ⊆ Mor(Ste~) ◦ B. (5.43)

Proof. The class B consists of dense epimorphisms, since the image ρU (A) of any algebra

A is always dense in its Banach quotient algebra A/U = (A/KerU)H. Let us show that

B generates the class of morphisms with values in Banach algebras. We have to verify

the second embedding in the chain (3.13). Let ϕ : A→ B be a morphism into a Banach

algebra B. If V is the unit ball in B, then U = ϕ−1(V ) is a neighborhood of zero in A,

and the condition V · V ⊆ V implies U · U ⊆ U :

x, y ∈ U ⇒ ϕ(x), ϕ(y) ∈ V ⇒ ϕ(x · y) = ϕ(x) · ϕ(y) ∈ V ⇒ x · y ∈ U = ϕ−1(V ).

Consider the normed algebra A/KerU and the quotient map τU : A → A/KerU . From

the obvious equality Kerϕ = KerU it follows that ϕ can be decomposed in the category

Alg of algebras as follows:

A
τU //

ϕ

##

A/KerU

χ

��

B

On the other hand, the equality χ−1(V ) = U + Kerϕ = U + KerU implies the continuity
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of χ. So χ continuously extends to the completion (A/KerU)H = A/U :

A

ρU

((

τU
//

ϕ

&&

A/KerU
HA/KerU

//

χ

��

A/U

χH

xx
B

and since A/KerU is dense in its completion, χH is multiplicative by Lemma 5.1. At the

same time, χH obviously preserves the identity. Hence, χH is a morphism in Ste~.

Proof of properties 1◦–6◦. 1◦ By Lemma 5.41 the net of Banach quotient maps generates

on the inside the class Mor(Ste~, BanAlg) of morphisms with values in Banach algebras.

On the other hand, by Theorem 5.36 the class DEpi is monomorphically complementable

in Ste~. Therefore by Theorem 3.38 each object A in Ste~ has an envelope in DEpi with

respect to Mor(Ste~, BanAlg), and by definition this is the holomorphic envelope of A.

2◦ & 3◦ Formulas (5.39) follow immediately from (3.94), and diagram (5.40) from

diagram (3.95).

4◦ The category Ste~ is projectively complete and co-well-powered in the quotient

objects of the class DEpi, and the class Mor(Ste~, BanAlg) goes from Ste~ (since each

algebra A can be mapped at least into the zero Banach algebra) and is a right ideal.

Therefore, the holomorphic envelope ♥ is semiregular, and by Theorem 3.42 it can be

defined as a functor. Moreover, by Remark 3.44, each class, in particular DEpi, pushes

Mor(Ste~, BanAlg), hence the holomorphic envelope is regular, and by Theorem 3.48 it

can be defined as an idempotent functor.

5◦ Suppose lim←−BA is a dense epimorphism. By Lemma 5.41, the net B generates on

the inside the class of morphisms with values in Banach algebras, hence by Theorem 3.5

(with Ω = DEpi),

♥A = envDEpi
BanAlgA = envDEpi

Mor(Ste~,BanAlg)
A

(3.14)
= envDEpi

B A.

Further, the condition lim←−BA ∈ DEpi implies by Lemma 3.23 that

envDEpi
B A

(3.42)
= lim←−BA.

Again by Lemma 3.23, from lim←−BA ∈ DEpi ⊆ Epi we have

lim←−BA
(3.42)
= envEpiB A.

And again by Theorem 3.5 (now with Ω = Epi),

envEpiB A
(3.14)
= envEpi

Mor(Ste~,BanAlg)
A = envEpiBanAlgA.

6◦ We need to verify that the holomorphic envelope satisfies conditions T.1 and T.2

on p. 94. First, let ρ : A → A′ and σ : B → B′ be two holomorphic extensions. Then

for any Banach algebra C and for any morphism ϕ : A ~ B → C there are morphisms

ϕA : A→ C and ϕB : B → C such that

ϕ(a~ b) = ϕA(a) · ϕB(b) = ϕB(b) · ϕA(a).
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Since ϕA and ϕB are morphisms into the Banach algebra C, they can be extended along

ρ and σ:

ϕA = ϕ′A ◦ ρ, ϕB = ϕ′B ◦ σ.

Set

ϕ′(x~ y) = ϕ′A(x) · ϕ′B(y) = ϕ′B(y) · ϕ′A(x), x ∈ A′, y ∈ B′.

Then

ϕ′((ρ~ σ)(a~ b)) = ϕ′(ρ(a)~ σ(b)) = ϕ′A(ρ(a)) · ϕ′B(σ(b)) = ϕA(a) · ϕB(b) = ϕ(a~ b).

Second, let σ : C → B be a holomorphic extension of the algebra C. It must be a dense

epimorphism, and since C is finite-dimensional, σ is an epimorphism.

• We say that a stereotype algebra A is holomorphic if it is a complete object with respect

to the envelope ♥, i.e. its holomorphic envelope is an isomorphism: ♥A ∈ Iso.

Property 6◦ and Theorems 3.63 and 3.64 give

Theorem 5.42. The formulas

A
♥
~ B = (A~B)♥, ϕ

♥
~ ψ = (ϕ~ ψ)♥ (5.44)

define a monoidal structure on the category of holomorphic algebras, and the functor A 7→
A♥ is monoidal (from Ste~ with ~ as tensor product into the category of holomorphic

algebras with
♥
~ as tensor product).

One can describe the tensor product (5.44) in terms of the net B of Banach quotient

maps as follows. Let A and A′ be two stereotype algebras. If U, V, U ′, V ′ are submulti-

plicative closed absolutely convex neighborhoods of zero such that

V ⊆ U ⊆ A, V ′ ⊆ U ′ ⊆ A′,

then by multiplying the arising pair of diagrams (5.31) we get

A~A′
ρV ~ρV ′

__

ρU~ρU′

��

A/V ~A′/V ′
πUV ~πU

′
V ′ // A/U ~A′/U ′

(5.45)

This means that the system of morphisms ρU~ρU ′ : A~A′ → A/U~A′/U ′, U ∈ SU(A),

U ′ ∈ SU(A′), is a projective cone of the covariant system πUV ~ π
U ′

V ′ . As a corollary, there

exists a unique morphism

ϑ : A~A′ → lim←−
U ∈ SU(A),
U ′ ∈ SU(A′)

A/U ~A′/U ′



174 5. The category Ste~ of stereotype algebras

such that

A~A′

ρV ~ρV ′
''

ϑ // lim←−
U ∈ SU(A),
U ′ ∈ SU(A′)

A/U ~A′/U ′

πV,V ′
tt

A/V ~A′/V ′

where V ∈ SU(A), V ′ ∈ SU(A′), and πV,V ′ is the cone of morphisms from the projective

limit into the covariant system.

Proposition 5.43. For any stereotype algebras A and A′ we have

(A~A′)♥ = Im∞ ϑ (5.46)

where Im∞ is the element of the nodal decomposition in the category Ste of stereotype

spaces (not algebras). In particular, if the algebras A and A′ are holomorphic, then

A
♥
~ A′ = Im∞ ϑ. (5.47)

Proof. We need to verify that the map red∞ ϑ ◦ coim∞ ϑ : A ~ A′ → Ran Im∞ ϑ is a

holomorphic envelope of the algebra A~A′ (where red∞ and coim∞ are elements of the

nodal decomposition in Ste).

Let us show first that this is a holomorphic extension. Take a morphism ϕ : A~A′ → B

into a Banach algebra B. Set

η(x) = ϕ(x~ 1A′), η′(y) = ϕ(1A ~ a
′), x ∈ A, y ∈ A′.

Then

η(x) · η′(y) = η′(y) · η(x), x ∈ A, y ∈ A′. (5.48)

and

ϕ(x~ y) = η(x) · η′(y) = η′(y) · η(x), x ∈ A, y ∈ A′.

Let U be the unit ball in B. Consider its preimages in A and A′,

V = η−1(U), V ′ = (η′)−1(U),

and morphisms ψ and ψ′ such that

A
η

}}

ρV

##

B A/V
ψ

oo

A′

η′

||

ρV ′

$$

B A′/V ′
ψ′

oo

From (5.48) we have the identity

ψ(s) · ψ′(t) = ψ′(t) · ψ(s), s ∈ A/V, t ∈ A′/V ′, (5.49)

which means in turn that

ϕV,V ′ : A/V ~A′/V ′ → B, ϕV,V ′(x~ y) = ψ(x) · ψ′(y),

is a morphism. We have

ϕ(x~ y) = η(x) · η′(y) = ψ(ρV (x)) · ψ′(ρV ′(y))

= ϕV,V ′(ρV (x)~ ρV ′(y)) = ϕV,V ′((ρV ~ ρV ′)(x~ y)),



5.4. Holomorphic envelope 175

hence

A~A′

ϕ

||

ρV ~ρV ′

''

B A/V ~A′/V ′
ϕV,V ′

oo

This can be inserted into the diagram

A~A′

ϕ

||

ρV ~ρV ′

%%

red∞ ϑ◦coim∞ ϑ
// A
♥
~ A′

im∞ ϑ
// lim←−
W ∈ SU(A),
W ′ ∈ SU(A′)

A/W ~A′/W ′

πV,V ′

vv

B A/V ~A′/V ′
ϕV,V ′

oo

which we can transform into

A~A′

ϕ

##

red∞ ϑ◦coim∞ ϑ
// A
♥
~ A′

ϕV,V ′◦πV,V ′◦im∞ ϑ
{{

B

and this means that ϕ extends along red∞ ϑ ◦ coim∞ ϑ.

Let us show now that red∞ ϑ◦ coim∞ ϑ is a holomorphic envelope. Suppose σ : A~A′

→ C is another holomorphic extension. Then for any submultiplicative zero neighbor-

hoods V ⊆ A and V ′ ⊆ A′ the morphism ρV ~ρV ′ : A~A′ → A/V ~A′/V ′ is a morphism

into a Banach algebra, hence there exists a unique morphism ˜ρV ~ ρV ′ such that

A~A′

ρV ~ρV ′ %%

σ // C

˜ρV ~ρV ′{{

A/V ~A′/V ′

At the same time, for a system of submultiplicative neighborhoods W ⊆ V ⊆ A and

W ′ ⊆ V ′ ⊆ A′ we get

A~A′

σ

��

ρW~ρW ′

		

ρV ~ρV ′

��

C
˜ρW~ρW ′

uu

˜ρV ~ρV ′

))

A/W ~A′/W ′
πWV ~πW

′
V ′ // A/V ~A′/V ′

where the perimeter and the two upper triangles are commutative; since σ is an epimor-

phism, this means that the lower triangle is also commutative.

This diagram implies that the system ˜ρV ~ ρV ′ of morphisms forms a projective cone

of the contravariant system πWV ~ π
W ′

V ′ . As a corollary, there exists a unique morphism κ
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such that

C

˜ρV ~ρV ′ !!

κ // lim←−
W,W ′

A/W ~A′/W ′

πV,V ′ww

A/V ~A′/V ′

In the diagrams

A/V ~A′/V ′

ρV ~ρV ′

((

σ //

ϑ

''

C

˜ρV ~ρV ′

ww

κ
zz

lim←−
W,W ′

A/W ~A′/W ′

πV,V ′

��

A/V ~A′/V ′

(5.50)

the perimeter and the two lower triangles are commutative. Hence for all V, V ′,

πV,V ′ ◦ ϑ = ρV ~ ρV ′ , πV,V ′ ◦ κ ◦ σ = ρV ~ ρV ′ ,

and from the uniqueness of ϑ satisfying these equalities it follows that

ϑ = κ ◦ σ,
i.e. (5.50) is commutative. Now we obtain a commutative diagram

A~A′

ϑ

++

σ

,,

red∞ ϑ◦coim∞ ϑ
// A
♥
~ A′

im∞ ϑ
// lim←−
W,W ′

A/W ~A′/W ′

C

κ

88

Here σ ∈ DEpi(Ste~) = Epi(Ste), and im∞ ϑ ∈ SMono(Ste), so there exists a diagonal δ:

A~A′

σ

,,

red∞ ϑ◦coim∞ ϑ
// A
♥
~ A′

im∞ ϑ
// lim←−
W,W ′

A/W ~A′/W ′

C

κ

88

δ

OO

Initially δ is built as a morphism in Ste, but since σ is a dense morphism, δ is a homomor-

phism of algebras, i.e. a morphism in Ste~. We see that every extension σ is subordinated

to red∞ ϑ ◦ coim∞ ϑ, thus red∞ ϑ ◦ coim∞ ϑ is an envelope.

5.4.3. Fourier transform on a commutative Stein group. Let G be a commutative

compactly generated Stein group, O(G) the algebra of holomorphic functions on G, and

O?(G) the algebra of analytic functionals from Examples 5.6 and 5.10. Let G• be the
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dual group of complex characters on G, i.e. continuous homomorphisms χ : G→ C× into

the multiplicative group C× of non-zero complex numbers (G• is endowed with pointwise

multiplication and the topology of uniform convergence on compact sets in G), and let

FG : O?(G)→ O(G•) be the Fourier transform on G, i.e. the homomorphism of algebras

acting by the formula

value of the function FG(α) ∈ O(G•)
at the point χ ∈ G•

↓︷ ︸︸ ︷
FG(α)(χ) = α(χ)︸︷︷︸

↑
action of the functional α ∈ O?(G)
on the function χ ∈ G• ⊆ O(G)

(χ ∈ G•, α ∈ O?(G)).

Theorem 5.44. For a compactly generated commutative Stein group G its Fourier trans-

form FG : O?(G) → O(G•) is a holomorphic envelope of O?(G), and coincides with the

stereotype Arens–Michael envelope and with the envelope with respect to the class of Ba-

nach algebras in the class Epi of all epimorphisms (in the categories TopAlg and Ste~):

FG = ♥O?(G) = envDEpi
BanAlgO?(G) = envEpiBanAlgO?(G) = lim←−BO?(G). (5.51)

Proof. In [3] it was shown that in TopAlg the local limit of the net of Banach quotient

maps on the object O?(G) coincides with O(G•):

O(G•) = lim←−BO?(G). (5.52)

Here O(G•) is a Fréchet algebra, so it coincides with its pseudosaturation, and this

implies that (5.52) holds in the category of stereotype algebras. In addition, the morphism

FG : O?(G) → O(G•), being a local limit in TopAlg, is a dense epimorphism, therefore

it is so in Ste~ as well. Thus, by (5.42) we have (5.51).

5.5. Continuous envelope

• Let us say that a stereotype algebra A is involutive if an involution x 7→ x is defined

on A (in the usual sense, see e.g. [16] or [28]), and this operation is continuous as a

map from A into A. The involutive stereotype algebras form a category InvSte~ where

morphisms are continuous involutive unital homomorphisms ϕ : A→ B:

ϕ(λ · x+ µ · y) = λ · ϕ(x) + µ · ϕ(y), ϕ(x · y) = ϕ(x) · ϕ(y),

ϕ(1) = 1, ϕ(x) = ϕ(x).

All C∗-algebras are obvious examples ([16], [28]). Another example is the algebra C(M)

of continuous functions on a paracompact locally compact topological space M from

Example 5.4.

5.5.1. Net of C∗-quotient-maps and the Kuznetsova envelope

• By a C∗-seminorm on an involutive algebra A we mean any seminorm p : A → R+

satisfying

p(x · x) = p(x)2, x ∈ A. (5.53)
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By the Z. Sebestyén theorem [40], any such seminorm automatically preserves involution

and is submultiplicative:

p(x) = p(x), p(x · y) ≤ p(x) · p(y).

The identity (5.53) implies in particular

p(1) = p(1 · 1) = p(1)2,

hence

p(1) = 1 or p(1) = 0,

and the second of these equalities means that p vanishes, since in this case

p(x) = p(x · 1) ≤ p(x) · p(1) = p(x) · 0 = 0.

Further we will be interested in continuous C∗-seminorms on involutive topological al-

gebras.

• Let us define a C∗-neighborhood in a topological algebra A to be any closed absolutely

convex zero neighborhood U for which the Minkowski functional

p(x) = inf{λ > 0 : λ · x ∈ U}

is a C∗-seminorm on A. For any such U the quotient algebra A/U (defined on p. 168) is a

C∗-algebra; we call it the C∗-quotient algebra of A, and the natural map ρU : A→ A/U

will be called a C∗-quotient map of A. The symbol C∗ will denote the class of all C∗-

quotient maps {ρU : A→ A/U}, where A runs over the class of involutive topological

algebras, and U over the set of all C∗-neighborhoods of zero in A.

The following fact is an analog of Proposition 5.39.

Proposition 5.45. The class C∗ is a net of epimorphisms in the category InvSte~ of

involutive stereotype algebras, and the semiorder → in C∗ is equivalent to the embedding

of the corresponding neighborhoods of zero:

ρV → ρU ⇔ V ⊆ U. (5.54)

Proof. By definition, the relation ρV → ρU means the existence of an involutive con-

tinuous homomorphism ι : A/V → A/U of C∗-algebras such that diagram (5.32) is

commutative. By the well-known property of C∗-algebras [28, Theorem 2.1.7], the homo-

morphism ι cannot increase the C∗-norm: ‖ι(x)‖ ≤ ‖x‖. Applied to C∗-seminorms pU
and pV which correspond to the neighborhoods U and V , this means pU (x) ≤ pV (x),

which in turn is equivalent to V ⊆ U .

• The net C∗ will be called the net of C∗-quotient maps.

• For each involutive stereotype algebra A the family of C∗-quotient maps ρU : A→ A/U

is a projective cone of the covariant system Bind(CA). The projective limit of this cone

in the category InvSte~ of involutive stereotype algebras will be called the Kuznetsova

envelope (2) of A and denoted by

lim←−CA : A→ AC (5.55)

(2) Our terminology and notation differ from those used in [24].
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(this limit exists, since InvSte~ is projectively complete). The range of this morphism,

AC = Ran lim←−BA = InvSte~- lim←−
U∈C∗U(A)

A/U =
(
InvTopAlg- lim←−

U∈C∗U(A)

A/U
)M
, (5.56)

is also called the Kuznetsova envelope of A.

Theorem 3.36 implies

Theorem 5.46. The Kuznetsova envelope is an envelope in the class of all morphisms

in InvSte~ with respect to the system of all C∗-quotient maps C∗,

AC = Env
Mor(InvSte~)
C∗ A, (5.57)

and to each morphism ϕ : A→ B in InvSte~ the formula

ϕC = lim←−
τ∈CB

lim←−
σ∈BA

ϕτσ ◦ σC (5.58)

assigns a morphism ϕC : AC → BC such that

A

ϕ

��

lim←− CA // AC

ϕC

��

B
lim←− CB // BC

(5.59)

and the correspondence (A,ϕ) 7→ (AC , ϕC) can be defined as a functor from InvSte~ into

InvSte~.

5.5.2. Continuous envelope of an involutive stereotype algebra. By a dense

epimorphism of involutive stereotype algebras we mean the same object as for general

(non-involutive) stereotype algebras, i.e. a morphism ϕ : A→ B such that ϕ(A) is dense

in B.

• A continuous envelope of an involutive stereotype algebra A is its envelope in the class

DEpi of dense epimorphisms in the category InvSte~ with respect to the class C∗ of

C∗-algebras. We use the following notation for this construction:

A♦ = EnvDEpi
C∗ A, ♦A = envDEpi

C∗ A. (5.60)

Thus,

(♦A : A→ A♦) = (envDEpi
C∗ A : A→ EnvDEpi

C∗ A).

The following properties are proved by analogy with the properties of holomorphic en-

velopes on p. 170.

Properties of continuous envelopes.

1◦ Each involutive stereotype algebra A has a continuous envelope A♦.

2◦ The continuous envelope A♦ is connected with the Kuznetsova envelope AC through

the formulas

♦A = red∞ lim←−CA ◦ coim∞ lim←−CA, A♦ = Dom im∞ lim←−CA (5.61)
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where coim∞ lim←−CA, red∞ lim←−CA, im∞ lim←−CA are elements of the nodal decomposition

of the morphism lim←−CA in Ste.

3◦ For any morphism ϕ : A → B of involutive stereotype algebras and for each choice

of continuous envelopes ♦A : A → A♦ and ♦B : B → B♦ there exists a unique

morphism ϕ♦ : A♦ → B♦ such that

A

ϕ

��

♦A // A♦

ϕ♦

��

B
♦B // B♦

(5.62)

4◦ The correspondence (X,α) 7→ (X♦, α♦) can be defined as an idempotent functor from

InvSte~ into InvSte~:

(1A)♦ = 1A♦ , (β ◦ α)♦ = β♦ ◦ α♦, (α♦)♦ = α♦. (5.63)

5◦ If an algebra A is dense in its Kuznetsova envelope AC, i.e.

lim←−CA ∈ DEpi(Ste~),

then the continuous envelope of A coincides with its envelope in the class Epi of all

epimorphisms in InvSte~ and with the Kuznetsova envelope:

A♦ = EnvDEpi
C∗ A = EnvEpiC∗ A = AC . (5.64)

6◦ The continuous envelope is coherent with the projective tensor product ~ in InvSte~.

The following lemma is used in the proof:

Lemma 5.47. In InvSte~ the net C of C∗-quotient maps consists of dense epimorphisms

and generates on the inside the class Mor(InvSte~, C∗) of all morphisms with values in

C∗-algebras:

C ⊆ Mor(InvSte~, C∗) ⊆ Mor(InvSte~) ◦ C. (5.65)

Proof. Let ϕ : A → B be a morphism into a C∗-algebra B, and V the unit ball in B.

Set U = ϕ−1(V ). It is a zero neighborhood in A, and its Minkowski functional p is a

composition of ϕ and the norm on B:

p(x) = inf{λ > 0 : λ · x ∈ ϕ−1(V )} = inf{λ > 0 : λ · ϕ(x) ∈ V } = ‖ϕ(x)‖ .

This implies that p is a C∗-seminorm on A:

p(x · x) = ‖ϕ(x · x)‖ = ‖ϕ(x) · ϕ(x)‖ = ‖ϕ(x)‖2 = p(x)2.

That is, U is a C∗-neighborhood of zero in A. Now the proof of Lemma 5.41 works.

• An involutive stereotype algebra A is said to be continuous if it is a complete object

with respect to the envelope ♦, i.e. its continuous envelope is an isomorphism: ♦A ∈ Iso.

Property 6◦ and Theorems 3.63 and 3.64 give

Theorem 5.48. The formulas

A
♦
~ B = (A~B)♦, ϕ

♦
~ ψ = (ϕ~ ψ)♦ (5.66)
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define a monoidal structure on the category of continuous algebras, and the functor

A 7→ A♦ is monoidal (from the category of involutive stereotype algebras with tensor

product ~ into the category of continuous algebras with tensor product
♦
~).

The continuous envelope can be described in terms of the net C of C∗-quotient maps

by formula (5.46) with obvious modifications.

5.5.3. The Gelfand transform as a continuous envelope of a commutative al-

gebra

• By the involutive spectrum Spec(A) of an involutive topological (respectively, stereo-

type) algebra A over C we mean the set of its involutive characters, i.e. homomorphisms

χ : A → C (also continuous, involutive and identity preserving). This set is endowed

with the topology of uniform convergence on totally bounded sets in A.

• By the Gelfand transform of an involutive stereotype algebra A we mean the natural

map GA : A → C(M) of A into the algebra C(M) of functions on the involutive

spectrum M = Spec(A), continuous on each compact set K ⊆M :

GA(x)(t) = t(x), t ∈M = Spec(A), x ∈ A. (5.67)

We endow C(M) with the topology which is the pseudosaturation (3) of the topology

of uniform convergence on compact sets in M ; this turns C(M) into a stereotype

algebra. In the special case when M is a paracompact locally compact space, the

topology of uniform convergence on compact sets in M is already a pseudosaturated

(and complete) topology on C(M), so C(M) becomes a stereotype algebra already

at this step [2, Sec. 8.1] (and the operation of pseudosaturation does not change this

topology anymore).

• For each compact set K ⊆M consider the restriction map

πK : C(M)→ C(K), y 7→ y|K ,

and let GK = πK ◦ GA be the composition

A
GA //

GK
��

C(M)

πK
~~

C(K)

(5.68)

If K and L are two compact sets in M , and K ⊆ L ⊆ M , then πLK denotes the

restriction map

πLK : C(L)→ C(K), y 7→ y|K .

Obviously, the algebra C(M) with the system of projections ρK : C(M) → C(K),

K ⊆M , is a projective limit of the system of binding morphisms πLK : C(L)→ C(K),

K ⊆ L ⊆M (in the category InvSte~):

C(M) = InvSte~- lim←−
K⊆M

C(K).

(3) The operation of pseudosaturation was defined on p. 117.
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Proposition 5.49. For any involutive stereotype algebra A its Gelfand transform GA :

A → C(M) is a morphism of stereotype algebras. If M = Spec(A) is a paracompact

locally compact space, the morphism GA : A→ C(M) is a dense epimorphism.

Proof. In the first assertion only the continuity of GA is not obvious. Take a basic zero

neighborhood U in C(M), i.e. U = {f ∈ C(M) : supt∈T |f(t)| ≤ ε} for some compact set

T ⊆M and some ε > 0. Its preimage under GA : A→ C(M) is {x ∈ A : supt∈T |t(x)| ≤ ε}
= ε · ◦T , the homothety of the polar ◦T . Since A is stereotype, ◦T is a neighborhood of zero

in it. This proves that GA : A→ C(M) is continuous if the space C(M) is endowed with

the topology of uniform convergence on compact sets in M . Since A, being stereotype, is

pseudosaturated, this means that under the pseudosaturation of the topology in C(M)

the map GA : A→ C(M) remains continuous (this follows, for example, from [2, Theorem

1.16]).

Suppose further that M = Spec(A) is a paracompact locally compact space. For

each compact set K ⊆ M the image GK(A) is an involutive subalgebra in C(K), and it

contains the identity (and hence all constant functions) and separates the points of K.

So by the Stone–Weierstrass theorem, GK(A) is dense in C(K). This is true for each

map GK = πK ◦ γ, where K is a compact set in M . Since the topology in C(M) is the

projective topology with respect to the maps πK , we conclude that GA(A) is dense in

C(M).

Theorem 5.50. For each commutative involutive stereotype algebra A the system of mor-

phisms GK : A→ C(K) consists of dense epimorphisms and is isomorphic in EpiA to the

system ρU : A→ A/U of all C∗-quotient maps of A,

{GK : A→ C(K) : K ⊆ Spec(A)} ∼= C∗A. (5.69)

Under this isomorphism:

– the system of restrictions πLK : C(L) → C(K), K ⊆ L ⊆ M , turns into the system

Bind(C∗A) of binding morphisms of the net C∗ on A:

{πLK : C(L)→ C(K) : K ⊆ L ⊆ Spec(A)} ∼= Bind(C∗A); (5.70)

– the Gelfand transform GA : A → C(M) is a local limit of the net C∗ on A (and hence

it coincides with the Kuznetsova envelope of A):

GA = lim←−C
∗
A. (5.71)

Proof. On each compact set K ⊆ M the algebra of functions of the form GA(x), where

x ∈ A, separates the points, contains the constant functions, and is invariant with respect

to involution, so it is dense in C(K) by the Stone–Weierstrass theorem. This implies that

C(M), which contains GA(A), is also dense in C(K), so both GK : A → C(K) and

πK : C(M)→ C(K) are dense epimorphisms (in InvSte~).

The range A/U of each C∗-quotient map ρU : A→ A/U is a commutative C∗-algebra,

hence it is isomorphic to the algebra C(TU ) of continuous functions on its spectrum TU .

Under the dual map ρ?U : Spec(A)← Spec(A/U) this spectrum TU is homeomorphically
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transformed into a compact set KU = ρ?U (TU ) in M = Spec(A), and we get the diagram

A
ρU

}}

GKU
##

A/U
GU // C(KU )

where GU is the Gelfand transform of A/U composed with the dual map to the homeo-

morphism TU ∼= KU .

Conversely, for each compact set K ⊆M the set

UK =
{
a ∈ A : sup

t∈K
|t(a)| ≤ 1

}
is a C∗-neighborhood of zero in A. The corresponding quotient algebra A/UK will be

commutative, hence isomorphic to C(TK), which is in addition homeomorphic to K. If

we denote by GK the composition of the Gelfand transform of A with the dual map to

the homeomorphism TK ∼= K, we obtain a commutative diagram

A
ρUK

||

GK
""

A/UK // C(K)

.

Together this proves (5.69), and (5.70) and (5.71) become its obvious corollaries.

Lemma 5.51. If the spectrum M = Spec(A) of a stereotype algebra A is a k-space, then

for each extension σ : A→ C in the class Mor of all morphisms (in InvSte~) with respect

to the class of C∗-algebras the dual map of spectra

σ? : Spec(C)→ Spec(A) = M, σ(s) = s ◦ σ, s ∈ Spec(C),

is a homeomorphism of topological spaces.

Proof. First, σ? must be an injection, since if some characters s 6= s′ ∈ Spec(C) have the

same image under σ?, i.e.

s ◦ σ = σ?(s) = σ?(s′) = s′ ◦ σ,

then the character s ◦ σ = s′ ◦ σ : A→ C has two different continuations on C:

A
σ //

s◦σ=s′◦σ
��

C
s

�� s′
||

C
This is impossible, as σ is in particular an extension with respect to the C∗-algebra C.

On the other hand, σ? is a covering, i.e. for each compact setK inM there is a compact

set T in Spec(C) such that σ?(T ) ⊇ K. Indeed, if K is a compact set in M = Spec(A),

then, since σ : A→ C is an extension with respect to the class of C∗-algebras, the natural

homomorphism GK : A→ C(K) has a continuation to C:

A
σ //

GK ""

C

τK||

C(K)
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If we now set T = τ?K(K), then

σ?(T ) = σ?(τ?K(K)) = G?K(K) = K.

In addition, as σ? is a covering, it is surjective. Hence σ? : Spec(C) → Spec(A) is a

continuous bijective covering. Since Spec(A) is a k-space, the map σ? is open, and thus

a homeomorphism.

The following result supplements the results of Yu. N. Kuznetsova’s paper [24]:

Theorem 5.52. If A is a commutative involutive stereotype algebra with a paracompact

locally compact involutive spectrum M = Spec(A), then its Gelfand transform GA : A→
C(M) is its continuous envelope, its Kuznetsova envelope, and its envelope in the classes

of all morphisms and all epimorphisms in the category InvSte~ with respect to the class

of C∗-algebras:

C(M) = A♦ = EnvDEpi
C∗ A = EnvEpiC∗ A = EnvMor

C∗ A = lim←−CA.

Proof. The equality C(M) = lim←−CA was already proved in Theorem 5.50. By Proposition

5.49, the morphism GA : A→ C(M) is a dense epimorphism, and by (5.42) we have

C(M) = A♦ = EnvDEpi
C∗ A = EnvEpiC∗ A = lim←−CA.

It remains to prove

EnvMor
C∗ A = C(M),

where Mor is the class of all morphisms in InvSte~. Let us first show that GA : A→ C(M)

is an extension of A with respect to the class of C∗-algebras. Let ϕ : A→ B be a morphism

into a C∗-algebra B. To construct a dashed arrow ϕ′ for (3.3), that is,

A
GA //

ϕ ��

C(M)

ϕ′||
B

it is sufficient to assume that B is commutative and ϕ(A) is dense in B (since otherwise

we can replace B by the closure ϕ(A) in B, and this is a commutative subalgebra in B).

By commutativity, B has the form C(K), and from the density of ϕ(A) in B the compact

space K is injectively embedded in M = Spec(A). Thus our diagram can be represented

in the form

A
GA //

GK !!

C(M)

ϕ′zz

C(K)

where K is a compact set in M , and GK is defined in (5.68). It is clear that ϕ′ can now

be defined as the restriction map πK from M to K, which we considered above:

A
GA //

GK !!

C(M)

πKzz

C(K)

And this dashed arrow is unique since GA is an epimorphism by Proposition 5.49.
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Let us now check that GA : A→ C(M) is a maximal extension, i.e. if we take another

extension σ : A→ C, then there exists a morphism υ : C → C(M) such that

A

GA

""

σ

��

C
υ // C(M)

(5.72)

By Lemma 5.51 the dual map σ? : Spec(C) → Spec(A) = M is a homeomorphism.

Therefore, the following map is defined:

υ : C → C(M), υ(y)(t) = (σ∗)−1(t)︸ ︷︷ ︸

3

Spec(C)

(y), y ∈ C, t ∈M.

It is trivially checked that this is a morphism of involutive stereotype algebras. In addition

(5.72) will be commutative:

υ(σ(x))(t) = (σ∗)−1(t)(σ(x)) = σ∗((σ∗)−1(t))(x) = t(x) = GA(x)(t), x ∈ A, t ∈M,

i.e. υ ◦ σ = GA.

It remains to verify that the dashed arrow in (5.72) is unique. Suppose that υ′ is

another dashed arrow with the same properties:

υ ◦ σ = GA = υ′ ◦ σ. (5.73)

If υ and υ′ are different, they do not coincide on some vector y ∈ C:

υ(y) 6= υ′(y).

Here on both sides there are functions on M , so for some t ∈M ,

υ(y)(t) 6= υ′(y)(t).

Let

s(z) = υ(z)(t), s′(z) = υ′(z)(t), z ∈ C.

Then two different characters on C give the same character after composition with σ:

s(σ(x)) = υ(σ(x))(t)
(5.73)
= υ′(σ(x))(t) = s′(σ(x)), x ∈ A.

By Lemma 5.51 this is impossible, so our initial supposition that υ 6= υ′ is also not true.

5.5.4. Fourier transform on a commutative locally compact group. Let G be a

commutative locally compact group, C(G) the algebra of continuous functions on G, and

C?(G) the algebra of measures with compact support on G (see Examples 5.4 and 5.8). Let

G• be the dual group of characters on G, i.e. continuous homomorphisms χ : G→ T into

the circle T (G• is endowed with the pointwise algebraic operations and the topology

of uniform convergence on compact sets in G), and FG : C?(G) → C(G•) the Fourier
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transform on G, i.e. the homomorphism of algebras acting by the formula

value of the function FG(α) ∈ C(G•)
at the point χ ∈ G•

↓︷ ︸︸ ︷
FG(α)(χ) = α(χ)︸︷︷︸

↑
action of the functional α ∈ C?(G)
on the function χ ∈ G• ⊆ C(G)

(χ ∈ G•, α ∈ C?(G))

The following observation belongs to Yu. N. Kuznetsova [24]:

Theorem 5.53. For each commutative locally compact group G its Fourier transform

FG : C?(G)→ C(G•) is a continuous envelope of the algebra C?(G), and it coincides with

the Kuznetsova envelope and with the envelopes with respect to the class of C∗-algebras in

the classes Mor of all morphisms and Epi of all epimorphisms (in the categories InvTopAlg

and InvSte~):

FG = ♦C?(G) = envDEpi
C∗ C?(G) = envEpiC∗ C?(G) = envMor

C∗ C?(G) = lim←−CC?(G).

Proof. The spectrum of the algebra C?(G) is homeomorphic to G•, so everything follows

from Theorem 5.52.
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[6] V. A. Artamonov, V. N. Salĭı, L. A. Skornyakov, L. N. Shevrin, and E. G. Shul’gĕıfer,
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