INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES

DISSERTATIONES
MATHEMATICAE

EDITORIAL BOARD

ANDRZEJ BIALYNICKI-BIRULA, BOGDAN BOJARSKI,
JANUSZ GRABOWSKI editor, STANISLAW JANECZKO,
LUDOMIR NEWELSKI, JERZY ZABCZYK,
WIESLAW ZELAZKO deputy editor

513

SERGEI S. AKBAROV

Envelopes and refinements in categories,

with applications to functional analysis

WARSZAWA 2016



S. Akbarov

Moscow Aviation Institute

(National Research University)
Volokolamskoye shosse 4

Moscow, A-80, GSP-3, 125993, Russia
E-mail: sergei.akbarov@gmail.com

Published by the Institute of Mathematics, Polish Academy of Sciences
Typeset using TEX at the Institute

Printed and bound in Poland by HermanDruK, Warszawa

Naktad 200 egz.

Abstracted /Indexed in: Mathematical Reviews, Zentralblatt MATH, Science Citation Index
Expanded, Journal Citation Reports/Science Edition, Google Science, Scopus, EBSCO Discovery
Service.

Available online at http://journals.impan.pl
© Copyright by Instytut Matematyczny PAN, Warszawa 2016
DOI: 10.4064/dm702-12-2015

ISSN 0012-3862



Contents

[T T eYa Er e To3 | P U 7
INotations and conventionsl. . . .. ..ottt 9
2. Nodal decomposition and factorizations|................ . . i 11
[2.1. Skeletally small graphs|...... .o o o i 11
2. 1. 1. Graphs| . ..o 11
2.1.2. Partially ordered classes|........... ... . 12
RIBSKEIEEON] - -+« v vvveeet e 12
2.1.4. Transfinite chain conditionl............... 13
[2.2. Some classes of monomorphisms and epimorphisms|............. ... ... ... L. 14
12.2.1. Monomorphisms and epimorphisms|............. ... 15
[2.2.2. Immediate monomorphisms and immediate epimorphisms|.................... 16
2.3, Stong MONOMOTpAISIS ANd SIONE OPIMOTPRISIE, . .- v+« evvveeeeereeennns. 18

2.3. Categories of monomorphisms and epimorphisms| ............... . ... ... 20
[2-3.T. Categories of monomorphisms I x and systems of subobjects|................. 20
2.3.2. Categories of epimorphisms £2* and systems of quotient objects|............. 24

12.4. Nodal decomposition]. ... 26
[2.4.1. Strong decompositions| ............... ... . 26
........................................................ 28
2.4.3. On existence of a nodal decomposition] ............. ... . i L. 30
monnectlon with the basic decomposition in pre-abelian categories|........... 35
[2.5. Factorizations of & CateZOTY] . ... v vnininet ettt e e e et e 38
|2.5.1. Factorizations in a category with nodal decomposition|....................... 38
[2.5.2. Strong morphisms in a category with nodal decomposition................... 39
2.5.3. Factorization of a category|............oo 40

3. Envelope and refinement|. . ... 42
3.1, Envelope]. ... 42
[B-I.1. Envelope in a class of morphisms with respect to a class of morphismsg)....... 42
13.1.2. Envelope 1n a class of objects with respect to a class of objects|............... 49
[3.1.3. Examples of envelopes| ........... ... 50
....................................................................... 52

[3.2.1. Refinement in a class of morphisms by means of a class of morphisms|........ 52
[3:2:2 Refinement in a class of objects by means of a class of objects| ............... 56
[3:2-3 Examples of Tefnements| .. .......ovnininini i 57

13.3. Connection with factorizations and with nodal decomposition|...................... 57
[3.3.1. Connection with projective and injective limits|........................... ... 57
3.3.2. Existence of envelopes and refinements for complementable classes|........... 60

3.3.3. Existence of envelopes and refinements in categories with nodal decomposition| 63
[3-3.4. Existence of nodal decomposition in categories with envelopes and refinements| 65
[3.4. Nets and functoriality|.......... ... i 69

[3-4T. Nets of epIMOIPIISIIE] .« . . v v vttt ettt e e e e e 70
13.4.2. Nets of monomorphisms|............. i 78




4 Contents

13.4.3. Existence of nets of epimorphisms and semiregular envelopes|................. 80
|3.4.4. Existence of nets of monomophisms and semiregular refinements|............. 83
.4.5. Pushing, regular envelope and complete objects|.............. . ... o 84
3.4.6. Pulling, regular refinement and saturated objects|............... .. ... 88
[3:4.7 Functoriality on epimorphisms and monomorphisms] .. .............veenn.n... 89
3.4.8. The case of Envy and Refr|. .. ... 92

[3.5. Envelopes in monoidal categories|................... . ... 94
3.5.1. Envelopes coherent with tensor product|........... ... ... .. il 94
13.5.2. Monoidal structure on the class of complete objects|....................... ... 95
13.5.3. Envelope as a monoidal functor] ......... ... . 103

4. The category Ste of stereotype spaces|............oo oo 107
|4.1. Pseudocomplete and pseudosaturated spaces|........... ... L 107
14.1.1. Totally bounded and capacious sets| ... 107
4.1.2. Pseudocomplete and pseudosaturated spaces|.........................o.oL 108
A4.1.3. THE MAD X : X > X e oo et 109
[4.2. Variations of openness and closure|................... ... 110
[£2.T. Open and closed morphiSms]. . ... .c..vivniiii i 110
[£:2:2” Weakly open and weakly closed morphisms]..............cooviiiiiiiiiia... 111
[£:273 Relatively open and relatively closed morphisms]............................. 113

: .2.4. Connections between the three variations of openness and closure|............ 115
[A275. Embeddings and COVETINES| . ... ...vvntne et 115

|4.3. Pseudocompletion and pseudosaturation|.............. ..o 116
14.3.1. Pseudocompletion]. . ... e 116
4.3.2. Pseudosaturationl ............o.iiii e 117
14.3.3. Duality between pseudocompletion and pseudosaturation|.................... 118

[4.4. SEEreOtYPE SPACES| - « v v vttt ettt 119
14.4.1. Spaces of operators and continuous bilinear maps|......................... ... 122
14.4.2. Tensor products| ... ..ot 124
[4.4.3. The category of stereotype spaces|................ooooiiiiiiiiiiiii .., 126

5. SUDSPACES]. . . o oot 126
[4.5.1. Immediate subspaces|........... ... ... 127
[E5-2 Envelope of a set M of elements 1N & SPACE K] « v vevererenenaaaeeeeenannn. 130
[4.6. Quotient SPaCes|...........iiu i 134
[4.6.7. Tmmediate qUOTIENT SPACES| « « .+« vt vttt e et e e e e e e e e 136
4.6.2. Refinement Ref™ F of a set F of functionals on a space X|................... 138

|4.7. Decompositions, factorizations, envelope and refinement in Ste| .................... 140
4.7.1. Pre-abelian property and basic decomposition in Ste| ........................ 140
14.7.2. Nodal decomposition In Ste|...........oo i 141
14.7.3. Factorizations 1n Stel. ..ot 142
14.7.4. Characterization of strong morphisms in Stef ................. ... ... 143
14.7.5. Envelope and refinement 1n Ste| ............. 143
[4.8.0n homology 1N Ste. ... ... 144
5. The category Ste® Of SLEIEOLYDE ALEEDTAS] - - -+« v v ee et e e e e e e 147
b.1. Stereotype algebras and stereotype modules| .......... .. ...l 147
b.1.1. Stereotype algebras| .........o 147
5.1.2. SEEreOtyPE MOAUIES| . . . o\ et oe ettt et e et e e e e et 150

|5.2. Subalgebras, quotient algebras, limits and completeness of SteEl .................... 150
b.2.1. Subalgebras, products and projective limits|................ .. ... ... 150
5.2.2. Quotient algebras, coproducts and injective limits| ................. . ... ... 152
5.2.3. Completeness of Steéﬁ) ....................................................... 158

[6.3. Nodal decomposition, envelope and refinement in Ste®] . ...oovveeeeeeeeeeeennnnn... 158




Contents 5

5.3.1. Discerning properties of strong epimorphisms in Ste®| ........................ 158
5.3.2. Discerning properties of strong monomorphisms in Stegl ..................... 160
5.3.3. Nodal decomposition in Stegl ................................................ 164
5.3.4. Envelopes and refinements in Stegl .......................................... 165
[5.3.5. Dense epimorphisms| .......... ... ... ... . 166
[5-4. Holomorphic envVelopE]. . . ..ottt ettt e e e e 167
[5.4.17. Net of Banach quotient maps and the stereotype Arens Michael envelope . ... 167
5.4.2. Holomorphic envelope of a stereotype algebral................................ 170
5.4.3. Fourier transform on a commutative Stein group|.................... ... ... 176
[5.5. Contintuous enVEIOPE] . . ...ttt ettt et e e e e e 177
5.5.1. Net o -quotient-maps and the Kuznetsova envelope|....................... 177
5.5.2. Continuous envelope of an involutive stereotype algebral ..................... 179
[F-5-3. The Gelfand transform as a continuous envelope of a commutative algebra... 181
15.5.4. Fourier transtorm on a commutative locally compact group|.................. 185




Abstract

An envelope in a category is a construction that generalizes the operations of “exterior com-
pletion”, like completion of a locally convex space, or the Stone-Cech compactification of a
topological space, or the universal enveloping algebra of a Lie algebra. Dually, a refinement gen-
eralizes the operations of “interior enrichment”, like bornologification (or saturation) of a locally
convex space, or simply connected covering of a Lie group. In this paper we define envelopes
and refinements in abstract categories and discuss conditions under which these constructions
exist and are functors. The aim of the exposition is to lay the foundations for duality theories
of non-commutative groups based on the idea of envelope. The advantage of this approach is
that in the arising theories the analogs of group algebras are Hopf algebras. At the same time
the classical Fourier and Gelfand transforms are interpreted as envelopes with respect to certain
classes of algebras.

Acknowledgements. This research was partially supported by RFBR grant 15-01-08392.

The author thanks A. Blass, S. Buschi, Ya. A. Kopylov, B. V. Novikov and A. Yu. Pirkovskii
for useful consultations. The author also thanks Jerzy Trzeciak for correcting numerous mathe-
matical and linguistic mistakes in the text.

2010 Mathematics Subject Classification: 18-XX, 46-XX.

Key words and phrases: envelope, refinement, nodal decomposition, stereotype space, stereotype
algebra.

Received 3 October 2012; revised 28 July 2015, 17 September 2015 and 21 December 2015.

Published online 15 January 2016.

6]



1. Introduction

In 1972 J. L. Taylor [45] introduced an operation which associates to an arbitrary topo-
logical algebra A a new topological algebra Env A later called by A. Ya. Helemskii [16]
“the Arens—Michael envelope of A”. In his next paper [46] Taylor gave an amusing for-
mula@which suggests an unexpectedly simple way to formalize the heuristically evident
connection between algebraic geometry and complex analysis:

EnvP(C™) = O(C™) (1.1)

(here P(C™) and O(C"™) are the algebras of polynomials and, respectively, of holomor-
phic functions on the complex space C™). Despite this promising application, up to the
end of the century Taylor’s construction did not manifest itself in mathematical liter-
ature, and only recently did the interest in the operation A — Env A appear again in
A. Yu. Pirkovskii’s papers [31], [32] on “holomorphic non-commutative geometry”. In par-
ticular, in [32] formula was generalized to the case of an arbitrary affine algebraic
variety M:

EnvP(M) = O(M). (1.2)

This identity was very soon applied by the author [3] to the construction of a generaliza-
tion of Pontryagin’s duality from the category of commutative compactly generated Stein
groups to the category of arbitrary (not necessarily commutative) compactly generated
Stein groups with the algebraic connected component of identity. The idea of the duality
suggested in [3] is illustrated by the diagram

ox(@) Fs 0% (G)

exp

1 I+ (1.3)

O(G) ™ Oup(G)

where G is a group of the above described class, O(G) the algebra of holomorphic func-
tions on G, Oexp (G) its subalgebra consisting of functions of exponential type, A — Env A
the operation of taking the Arens—Michael envelope, and X — X* the operation of pas-
sage to the dual stereotype space in the sense of [2], i.e. to the space of continuous linear
functionals with the topology of uniform convergence on totally bounded sets (in this
case this is equivalent to uniform convergence on compact sets).

One can call the duality presented in diagram the complex geometry duality,
having in mind the class of objects under consideration. The theory obtained for this

(*) Taylor mentions this fact in passing on pp. 207 and 251 of [46].

(7]



8 1. Introduction

class of groups contrasts with other existing theories in the following two points. First,
its enveloping category (to which the group algebras belong) consists of Hopf algebras.
And second, diagram suggests a natural way for constructing analogous dualities for
“other geometries”, in particular, for differential geometry and for topology: one should
just replace the Arens—Michael envelope in diagrams analogous to with some other
envelopes (and this automatically leads to replacing the constructions in the corners of
the diagram with some proper analogs from analysis).

This alleged connection between different dualities in geometry and different envelopes
of topological algebras was recently supported by other examples:

1) In the work by Yu. N. Kuznetsova [24] the Arens—Michael envelope was replaced by
the envelope generated by the C*-quotient maps @, and this immediately led to a
variant of topological duality where the Stein groups are replaced by the Moore groups,
and the algebras O(G) and Oexp(G), respectively, by the algebra C(G) of continuous
functions on G and the algebra K(G) of coefficients of norm-continuous representations
of G.

2) In the author’s work [5] a notion of smooth envelope Env,, A of a topological algebra A
was introduced. This construction replaces the Arens—Michael envelope in the passage
from complex analysis to differential geometry, and an analogue of the Pirkovskii
theorem was proved in the differential-geometric context: if a subalgebra A of
the algebra C*° (M) of smooth functions on a smooth variety M has the same spectrum
and the same tangent space at each point, then

Enve A =C™°(M).
This result gives hope that a similar duality theory in differential geometry will be

constructed in the near future with a proper class of real Lie groups.

It is interesting (and predictable) that in these theories the classical Fourier and Gelfand
transforms are interpreted as envelopes with respect to some class of algebras (see e.g.

Theorems [5.44] [5.53] and [5.52] below).

It is clear to the author that the results obtained are just first observations in the

field, but they already show the validity of the common philosophical idea which justifies
and guides the investigations in this area: in each standard mathematical discipline where
certain classes of symmetries play a role (classes of groups, including those understood in a
generalized way, like quantum groups), a certain duality theory works (and apparently, is
not unique). This idea was suggested in the author’s work [3], and among such disciplines
the following four were mentioned:

— general topology,

— differential geometry,
— complex analysis,

— algebraic geometry.

This paper is planned as a part of the program described in [3]. We discuss here
the question (which has remained open until recently) how one should define envelopes

(?) On p. [179| we define this construction as the Kuznetsova envelope.
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in general category theory, and under what conditions they exist and are functors. We
suggest a natural definition (from our point of view) and establish some wide necessary
and sufficient conditions for the existence of envelopes and their dual constructions, which
we call refinements. As applications, we show that in the categories Ste of stereotype
spaces and Ste® of stereotype algebras the envelopes and the refinements exist in a very
wide class of situations.

Notations and conventions. Everywhere in category theory we use the terminology
of the textbooks [I1], [47] and of the handbook [6], and as a set-theoretic foundation for
the notion of category we choose the Morse—Kelley theory [19].

Everywhere Mono(X), Epi(K), SMono(K) and SEpi(K) mean the classes of monomor-
phisms, epimorphisms, strong monomorphisms and strong epimorphisms (the last two
are defined on p. respectively in the category K. We say that a category K is

— injectively (projectively) complete if each functor K : M — K from a small category M
(i.e. one where the class of morphisms is a set) has an injective (projective) limit,

— complete if it is injectively and projectively complete,

— finitely injectively (projectively) complete if each functor K : M — K from a finite
category M (i.e. one where the class of morphisms is a finite set) has an injective
(projective) limit,

— finitely complete if it is finitely injectively complete and finitely projectively complete,

— linearly complete if any functor from a linearly ordered set to K has injective and
projective limits.

For any morphism ¢ : X — Y in an arbitrary category the symbols Dom ¢ and Ran ¢
mean respectively the domain and the range of ¢, i.e. Domp = X and Ranp =Y. If L
and M are two classes of objects in K, then Mor(L,M) means the class of morphisms with
domains in L and ranges in M.

Let @ be a class of morphisms and L a class of objects in a category K. We say that:

— @ goes from L if for any object X € L there is a morphism ¢ € ¢ with Dom ¢ = X; in
the special case when L consists of only one object X, we say that & goes from X.

— @ goes to L if for any object X € L there is a morphism ¢ € ¢ with Ran¢ = X; in the
special case when L consists of only one object X, we say that & goes to X.

In the theory of topological vector spaces we follow the textbook [38] by H. H. Schaefer,
and in the theory of stereotype spaces and algebras the author’s papers [2] and [3]. In
particular, following [38] we assume that all locally conver spaces (LCS for short) are
Hausdorff. By a topological algebra we mean a locally convex topological algebra in the
spirit of the textbook [27], i.e. a locally convex space A over the field C, endowed with
associative multiplication which is separately continuous and has a unit.

We also use the following notation. First, for any locally convex space X the symbol
U(X) denotes the system of all neighborhoods of zero in X. Second, for each neighborhood
U of zero in X the set

KerU = ﬂ e-U
e>0
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will be called the kernel of this neighborhood of zero. If U is an absolutely convex neigh-
borhood of zero, then Ker U is a closed subspace in X. And third, if a topological space Y
is imbedded into a topological space X (injectively, but the topology of Y is not neces-
sarily inherited from X), and A is a subset in Y, then to distinguish the closure of A in
Y from its closure in X, we denote the first one by ZY, and the second by a~.

Moreover, we say that a subset M in a locally convex space X is total (in X) if its
linear span, span M, is dense in X.



2. Nodal decomposition and factorizations

2.1. Skeletally small graphs

2.1.1. Graphs. Recall that an oriented graph is a set V with a given subset I' C V x V.
The elements of V' are called vertices, and the elements of I edges of this graph. An
oriented graph is said to be reflexive if (z,x) belongs to I for each x € V, and transitive
if for any two edges (x,y) and (y, z) from I" the pair (x, z) also belongs to I'. Obviously,
every reflexive transitive oriented graph is a (small) category, where the objects and the
morphisms are respectively the vertices and the edges (the composition of edges (z,y)
and (y,z) is (z,z), and the local identities 1, are (z,x)). A characteristic property of
such categories (apart from their being small) is that the sets of morphisms, Mor(A, B),
always contain at most one element. This justifies the following definition.

e A graph is a category K (not necessarily small) where
VA,B € Ob(K) cardMor(A,B) < 1. (2.1)
Clearly, this is equivalent to the structure of (reflexive and transitive) oriented graph

on the class Ob(X) (with the observation that Ob(K) is not necessarily a set, but just a
class).

PROPERTIES OF GRAPHS.

1° In any graph a morphism ¢ : A — B is an isomorphism iff there exists a morphism
in the reverse direction, ¥ : A < B:

Yo € Mor(A4,B) (¢ € lso < 3y € Mor(B, A)). (2.2)

2° In any graph a composition of morphisms is an identity iff the same remains true
after switching the factors:

Yop=1& poyp=1. (2.3)

3° In any graph a composition of morphisms 1 o ¢ is an isomorphism iff both ¢ and ¢
are isomorphisms:

Yop€elso & P elso& p € lso. (2.4)

Proof. 1°If ¢: A — Band v : A< B, then ¢op acts from A into A, so it must coincide
with 14. Similarly, ¢ o ¢ acts from B into B, so it must coincide with 1.

2° From v o ¢ = 1 it follows that Ran ¢ = Dom and Ran = Dom ¢, and we apply
the same reasoning as in part 1°.

3° Ifw=1oyp € Iso, then Ypopow ™ =1, s0 by [2.3), pow o9y =1, hence ¢ € Iso,
and finally ¢ =11 ow € Iso. m

(11]



12 2. Nodal decomposition and factorizations

2.1.2. Partially ordered classes. Every partially ordered set I can be considered as
a category, where the objects are the elements of this set, and the morphisms are the
pairs (i,j) for which ¢ < j. Such categories K are, of course, special cases of graphs,
since every set Mor(A, B) contains at most one element (i.e. holds). But in addition
(and this property distinguishes the partially ordered sets among all graphs), for A # B
the existence of a morphism ¢ : A — B automatically excludes the existence of any
morphisms v : A <— B. This justifies the following definition.

o A partially ordered class is a graph where the existence of opposite morphisms ¢ :
A — B and ¢ : A+ B is possible only if A = B (and then ¢ = ¢ = 14). In other
words,

VA #BeObK) (Mor(A,B)#£0 = Mor(B,A) = 0). (2.5)

Obviously, this is equivalent to the structure of partial order on Ob(K) (as in the
previous definition, with the difference that Ob(K) is not necessarily a set, but just a
class).

EXAMPLE 2.1. Category Ord. The class Ord of all ordinal numbers with its natural order
(see e.g. [19]) is an example of a partially ordered class which is not a set.

PROPOSITION 2.2. In a partially ordered class only local identities are isomorphisms.

Proof. The identity A = B follows from the fact that Mor(A, B) # () and Mor(B, A) # 0,
and the identity ¢ = 14 from the fact that ¢ and 14 are collinear arrows in a graph. =

2.1.3. Skeleton. A class S of objects of a category K is called a skeleton of K if every
object in K is isomorphic to exactly one object of S. In other words, S satisfies the
following two requirements:

1) elements of S are isomorphic only if they coincide;
2) there exists a map G : Ob(K) — S such that

VX € Ob(K) X @ G(X).
The skeleton S is usually endowed with the structure of a full subcategory in K.

PROPERTIES OF SKELETONS.

1° Fach category K has a skeleton.

2° Any two skeletons in K are isomorphic (as categories).

3° FEach category K is equivalent to its skeleton S.

4° Two categories K and L are equivalent if and only if their skeletons are isomorphic (as
categories).

Proof. Only the first property is not obvious. It follows from the fact that the class Set
of all sets can be well-ordered (see [25 V, 4.1]): Ob(K) is a subclass in Set, so it can also
be well-ordered, and we can assign to each X € Ob(K) the minimal among all objects
isomorphic to X in K with respect to this order. m
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e A category K is said to be

— skeletal if any two isomorphic objects coincide in K (equivalently, K is a skeleton for
itself),
— skeletally small if it has a skeleton which is a set.

EXAMPLE 2.3. Each partially ordered class is a skeletal category (since as already noted,
only local identities are isomorphisms), but not vice versa. For instance, the category

of all finite sets of the form {0,...,n}, n € Z,, with arbitrary maps as morphisms, is
skeletal, but it is not a partially ordered class, since {0, ...,n} has many bijections onto
itself.

2.1.4. Transfinite chain condition

e Let us say that a (covariant or contravariant) functor F : 0rd — K stabilizes if it
satisfies the following two equivalent conditions:

(i) there exists k € Ord such that
Vi>k F(kI) € lso;
(ii) there exists k € Ord such that
Vi, m (k <l<m = F(,m) € Iso).
Proof of equivalence. The implication (i)<=(ii) is obvious, so we only need to prove

(i)=(ii). Let F be a covariant functor (the case of a contravariant functor is similar).
If (i) holds, then for k <1 < m we have

F(k,m)=F(l,m)o F(k,1) = F(k,m)oF(k,1)"' =F(,m) = F(l,m) € lso. m
N—_—— N—— N—_——

———
m m m m
Iso Iso Iso Iso

REMARK 2.4. If a category K is a partially ordered class, then by Proposition for a
functor F' : 0Ord — K the isomorphisms in (i) and (ii) become local identities:

(i)’ there exists k € Ord such that
Vi>Fk F(k1)=1paw;
(ii)" there exists k € Ord such that
Yi,m (k <l<m = F(l,m)= 1F(l)).
THEOREM 2.5 (Transfinite chain condition). Every functor F': 0rd — K into an arbitrary
skeletally small graph X stabilizes.
We will need the following
LEMMA 2.6. In the class Ord there is no cofinal subclass which is a set.
Proof. If K is a cofinal subclass in Ord, then

ord= | J{icord:i <k}
keK
Hence if K is a set, then Ord must also be a set, which is not true. m
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COROLLARY 2.7. For any directed set I each monotone map F : I — 0rd has a least
upper bound in Ord.

Proof. Tt is sufficient to note that F'(I) is bounded in Ord: this follows from the fact that
F(I) is a set, and thus cannot be a cofinal subclass in Ord. m

Proof of Theorem . Let F : 0Ord — K be a (covariant or contravariant) functor into a
skeletally small graph K. Suppose that it is not stabilized, i.e. for any i € Ord there is
Jj € Ord such that F(i,7) ¢ Iso. Let us construct a transfinite sequence {k;; ¢ € Ord} C Ord
according to the following rules:

0) We set ko = 0.
1) If for some j € 0rd all the {k;; ¢ < j} are already chosen, then we consider two cases:

— if j is an isolated ordinal, i.e. j =44 1 for some 7 < j, then we take k; with
ki < ki—l—l = kj, F(ki,ki+1) = F(kz,kj) ¢ Iso

(k; exists due to our assumption that F is not stabilized),

— if j is a limit ordinal, i.e. j # i + 1 for any i < j, then we take
ki =limk; =supk;
1—] i<j
(it exists due to Corollary [2.7)).
We obtain a transfinite sequence i € Ord > k; € Ord with the following properties:

(i) Tt is cofinal in 0rd, since i < k; for any ¢ € Ord.

(ii) For i < j we have F(k;, k;) ¢ lso, since
) ] L +1<7 F(ki,k;) = F(kii1,k;) o F(k;, k; = F(k;, k; |
i<j = 1+1<j = F(kikj) = F(kiy1,kj) o F( +1) (ki, kj) & Iso

S
Iso

(we assume here that F' is a covariant functor, but for a contravariant one the rea-
soning is the same).

Now let S C K be a skeleton of K. For any ¢ € Ord we consider G (i) € S such that
G(i) =2 F(k;).

Suppose that G(i) = G(j) for some i < j. Then the morphism F(k;, k;) : G(i) = G(j)
must coincide with the local identity 1g(;) = lg(y), since the category 8 is a graph, and
therefore it cannot have two different collinear morphisms. Thus, F'(k;, k;) must be an
isomorphism, and, by (ii), this is possible only if ¢ = j. So G : 0rd — S is injective. But
Ord is a proper class, while S is a set, and this is impossible. m

2.2. Some classes of monomorphisms and epimorphisms. The notions of mono-
morphism and epimorphism, widely used in category theory, have several variations, and
two of them, immediate and strong mono- and epimorphisms, will be important for us.
As the reader will see, we will stress the analogy between mono/epimorphisms on the
one hand and strong mono/epimorphisms on the other. In the cases where due to this
analogy the proofs become identical (up to the insertion of “strong” in appropriate places,
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as in the results about the categories SMonox and SEpi™ ), as well as in the elementary
propositions, we omit the proofs.

2.2.1. Monomorphisms and epimorphisms. Recall that a morphism ¢ : X — Y is
called

— a monomorphism if poa = po § implies a = f3;
— an epimorphism if a o p = o ¢ implies a = 3;
— a bimorphism if it is a monomorphism and an epimorphism.

EXAMPLE 2.8. In any graph K every morphism is a bimorphism. Indeed, if poa = o3,
then since a and g are collinear, « = 3. So ¢ is a monomorphism. Similarly, it is an
epimorphism.

PROPOSITION 2.9. A composition of monomorphisms (respectively, epimorphisms) is a
monomorphism (respectively, an epimorphism).

PROPERTIES OF MONO- AND EPIMORPHISMS.

1° If p o i is a monomorphism, then so is .

2° If po g is an isomorphism and p a monomorphism, then p and @ are isomorphisms.
3° If e o is an epimorphism, then so is €.

4° If p o€ is an isomorphism and € an epimorphism, then ¢ and € are isomorphisms.

By a covariant system (respectively, contravariant system) in a category K over a
partially ordered set (I, <) we mean an arbitrary covariant (respectively, contravariant)
functor from I into K.

PROPOSITION 2.10. If a covariant system { X7; L{} over a directed set (I, <) has projective
limit {X; 77} and all the morphisms ¢} are monomorphisms, then all the morphisms 7’
are monomorphisms as well.

Proof. Assume that I is decreasingly directed. Take k € I, and let Y % X and YV 2x
be morphisms such that

m*oa=n"0p.

Then for any j < k we have

L?Oﬂ'jOOé:L;?OWjOﬁ.
~—— N——
nk ok

Here Lf is a monomorphism, so we can cancel it:

moa=nlop, j<k.

Set 07 = m o« = 77 o . Then the morphisms ¥ = X and YV A x generate the same
cone of the covariant system {X7;./; i < j <k}:
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(the projective limit of a covariant system over a cofinal interval {j € I; j < k} is the
same as over I, so we substitute X into this place). This implies that oz and 3 coincide
by the uniqueness of the corresponding arrow in the definition of projective limit. m

The dual proposition is the following:

PROPOSITION 2.11. If a covariant system {X7; Lf} over a directed set (I, <) has injective
limit {X; p;} and all the morphisms ] are epimorphisms, then all the morphisms p; are
epimorphisms as well.

REMARK 2.12. If the set I of indices is not directed, then the projective (injective)
limit of a covariant system of monomorphisms (epimorphisms) over I is not necessarily
a cone of monomorphisms (epimorphisms). For example if the order in I is discrete, i.e.
i <j & i=j,then the projective limit of any covariant system {X? LZ} over [ is the
direct product HZ—G 1 X i where the projections

[1x =, x*

i€l
are not monomorphisms in general (although the initial morphisms L:: = 1x: are mono-
morphisms). Similarly, the injective limit of {X*; ¢/} is the coproduct [],.; X;, and the
corresponding injections

X 25 T X

i€l

are not epimorphisms in general (although (¢! = 1, are epimorphisms).
2.2.2. Immediate monomorphisms and immediate epimorphisms

e A factorization of a morphism X —— Y is its representation as a composition of an
epimorphism and a monomorphism, i.e. any commutative diagram

X ———vy

N (2.6)
M

where ¢ is an epimorphism and g a monomorphism.

e A monomorphism p : X — Y is said to be immediate if in any of its factorizations
i = i’ o € the epimorphism ¢ is automatically an isomorphism. Note that for a mono-
morphism g in a factorization y = p’ o & the epimorphism ¢ is automatically a bi-
morphism. As a corollary, the condition of y being an immediate monomorphism is
equivalent to the requirement that, in any decomposition u = p’ o ¢ where ¢ is a bi-
morphism and g/ a monomorphism, € must be an isomorphism. It is natural to call a
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monomorphism p’ in the factorization p = p’ o & a mediator of the monomorphism p;
then the qualifier “immediate” for p will mean that there are no non-trivial mediators
for p (i.e. mediators which are not isomorphic to p in Monoy—see definition
below; here I" = Mono).

e An epimorphism e : X — Y is said to be immediate if € is an immediate monomorphism
in the dual category. In other words, in any factorization e = poe’ the monomorphism
1 must be automatically an isomorphism. Note that for an epimorphism ¢ in any of
its factorizations € = p o €’ the monomorphism g is automatically a bimorphism. As
a corollary, the condition of € being an immediate epimorphism is equivalent to the
requirement that, in any decomposition € = u o ¢’ where p is a bimorphism and €’ an
epimorphism, p must be an isomorphism. It is natural to call an epimorphism &’ in the
factorization e = poe’ a mediator of the epimorphism ¢; then the qualifier “immediate”
for € will mean that there are no non-trivial mediators for € (i.e. mediators which are
not isomorphic to ¢ in EpiX—see definition below; here 2 = Epi).

REMARK 2.13. If in the definition of immediate monomorphism we omit the require-
ment that the morphism p' in the representation p = p’ o € is a monomorphism (i.e. if
we only require that each epimorphism ¢ in such a representation must be an isomor-
phism), then we obtain exactly the definition of extremal monomorphism. Similarly, if in
the definition of immediate epimorphism we omit the requirement that the morphism &’
in e = poe’ is an epimorphism (i.e. if we only require that each monomorphism g in
such a representation must be an isomorphism), then we obtain the definition of extremal
epimorphism [1, Definition 4.3.2]. Clearly, each extremal monomorphism (respectively,
extremal epimorphism) is an immediate monomorphism (respectively, immediate epi-
morphism). But the converse is not true, as the following example shows @ Consider a
monoid {a,b,c | ac = be) (generated by three elements a,b, ¢ with the equality ac = be)
as a category with one object. In this category:

1)
2)
3) cis not an epimorphism (since it cannot be canceled in a- ¢ =10-¢);
4)

a, b, ¢ are monomorphisms (since they can be canceled in equalities like a- P = a - Q);
a,b are epimorphisms (since they can be canceled in equalities like P-a = @ - a);

ac = bc is

— a monomorphism (since it can be canceled in equalities like ac - P = ac- Q),

— an epimorphism (since it can be canceled in equalities like P - ac = Q - ac),

— an immediate epimorphism (since there is only one possibility to write it in the
form (mono) o (epi), namely, ac = 1 - (ac), and 1 is an isomorphism), but

— not an extremal epimorphism (since it can be written in the form (mono) o (...),
namely ac = a - ¢, where the first morphism, i.e. a, is not an isomorphism).

In addition, acac is not an immediate epimorphism, since it can be represented as

acac = (ac) - (ac)
~ —~~

m m
Mono  Epi

(*) This example was suggested to the author by B. V. Novikov.
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where the first morphism is not an isomorphism. This shows that a composition of im-
mediate monomorphisms (respectively, of immediate epimorphisms) is not necessarily an
immediate monomorphism (respectively, an immediate epimorphism).

PROPERTIES OF IMMEDIATE MONO- AND EPIMORPHISMS.

1° If ¢ o i is an immediate monomorphism, then so is .

2° If i is an immediate monomorphism, and at the same time an epimorphism, then
18 an 1somorphism.

3° If € o is an immediate epimorphism, then so is €.

4° If € is an immediate epimorphism, and at the same time a monomorphism, then € is
an isomorphism.

2.2.3. Strong monomorphisms and strong epimorphisms. The following two defi-

nitions are due to M. Sh. Tsalenko and E. G. Shul’geifer [47, Chapter 1, §7] and F. Borceux

[, 4.3].

e A monomorphism C £ D is said to be strong if for any epimorphism A <> B and for
any morphisms A % C and B 5, D such that B oe = poa there exists a (unique)

morphism B % C such that the following diagram is commutative

A+ B
5 7/
al , lﬁ (2.7)
"4
C T> D
e Dually, an epimorphism A =, B is said to be strong if for any monomorphism C' 5D

and for any morphisms A % C and B 2 D such that foe = o there exists a
(unique) morphism B % C such that diagram ([2.7)) is commutative.

REMARK 2.14. The uniqueness of § follows from the monomorphy of p (or from the
epimorphy of €): if ¢’ is another morphism with the same property, then
pod=pF=pod = 6=7¢.
Moreover, the commutativity of the upper triangle in (2.7)) implies the commutativity of
the lower one, and vice versa. For example,
a=0oe = foe =poa=podoec = [=pod. (2.8)
m m
Epi Epi
The following facts are proved in [7, Proposition 4.3.6]:
PROPOSITION 2.15. A composition of strong monomorphisms (respectively, of strong
epimorphisms) is a strong monomorphism (respectively, a strong epimorphism).

PROPERTIES OF STRONG MONO- AND EPIMORPHISMS.

1° If o o i is a strong monomorphism, then so is .
2° Every strong monomorphism u is an immediate monomorphism.

(?) In the following, we will omit in most cases the phrase “the following diagram is commu-
tative” before diagrams.
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3° If e o is a strong epimorphism, then so is €.
4° FEvery strong epimorphism € is an immediate epimorphism.

ProPOSITION 2.16. If in a covariant system {Xj;bg} over a decreasingly directed set
(I, <) the morphisms (!

7 are strong monomorphisms, then in its projective limit {X; 7}
the morphisms m are strong monomorphisms as well.

Proof. Take k € I. By Proposition 7% is a monomorphism, so we need only show
that it is strong. Consider a diagram

A— B
«a lﬂ
k
where ¢ is an epimorphism. For any j < k we can construct a diagram

A—< g

x.] o«
a X7 B
N

X T) Xk
and consider the fragment
A——— B

7l 0(1\5‘

X B

Since ¢ is an epimorphism and L;-C is a strong monomorphism, there exists a (unique)
morphism 7 such that
€
A—— B
\ /
mloa LS

X7 B

In particular,
L§05-7:B, j<k.
As a corollary, if we take a new index i < j, then for the morphisms 67 and §* we get
L?O(S‘j :ﬁ:bio(si:[,.’;obgo(si.

Here ¢* is a monomorphism, so we can cancel it:

j
8 =1l o4
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Thus for any ¢ < j < k the following diagram is commutative:

3 /B
5// /
g /
Xt /.
N 2
J <
k2 X]

(for j = k we have 0% = f3).

This means that the system of morphisms {47 : B — X7; j < k} is a projective cone
of a covariant system {LZ : Xt — XJ: i < j < k}. Hence, there exists a unique morphism
6 : B — X such that all the following diagrams are commutative:

B
/
5 7 ,
/ 57
7/
ij )
X — X7

(the limit along a cofinal interval {j € I : j < k} coincides with the limit along I).
In particular, for j = k we get a commutative diagram

This implies the following chain:

B=7F0d = 7F ca=Poec= 7 0doe = a=doe.
m m

Mono Mono

Thus, the following square is commutative:

A—>B
s 7
ozl s lﬂ
X — Xx* n
The dual proposition is the following:

PROPOSITION 2.17. If in a covariant system {X7; LZ} over an increasingly directed set
J

(I, <) the morphisms ¢] are strong epimorphisms, then in its injective limit {X; p;} the

morphisms p; are strong epimorphisms as well.
2.3. Categories of monomorphisms and epimorphisms

2.3.1. Categories of monomorphisms I'x and systems of subobjects. Let I" be
a class of monomorphisms in a category K, and suppose all local identities belong to it
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(the key examples are the classes I' = Mono and I" = SMono). For each object X in K
let
I'y ={cel:Ranoc =X} (2.9)

It is a category where a morphism p = o from an object p € I'x into an object o € I'x,
i.e. from a monomorphism p: A — X into a monomorphism o : B — X, is an arbitrary
morphism 3 : A — B in K such that

A

X (2.10)

Actually, this diagram in the initial category K can be considered as a morphism p = o

in the category I'y. A composition of such morphisms p = ¢ and o 2 T, i.e. of diagrams

A , B .
;{ \ X AL \
[

. . Aoz . .
is a morphism p —= 7, i.e. a diagram

X

One can view it as a result of splicing the initial diagrams along the common edge o,
adding the arrow s o A, and then throwing away the vertex B together with all the
incident edges:

A P
N
AN
SN

Aoz B— X

x 7 ?
7/
¥

C T

REMARK 2.18. The composition of morphisms in Iy can be defined in two ways. In our
definition this operation is connected with the composition in X through the identity

Ao 2= Ao
Iy K

THEOREM 2.19. For any object X the category I'x is a graph.
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Proof. We should verify that for any two objects p: A — X and ¢ : B — X there exists
at most one morphism p = o. Indeed, a morphism ¢ in diagram (2.10)) is unique, since
the monomorphy of ¢ gives the implication cox =p=cosx = =" »

REMARK 2.20. By Example this means that in the category I'x all morphisms are
bimorphisms. The connection between the properties of a morphism p = ¢ in I'x and
the properties of the same morphism » : A — B in the initial category K is expressed in
the following observations:

1) Ewvery morphism p Zs o in I'x is a monomorphism in K.
2) A morphism p = o in I'x is an isomorphism in I'x iff » is an isomorphism in K.
Proof. 1) A morphism 5 in (2.10) must be a monomorphism due to property 1° on p.

since o o » is a monomorphism.
2) If a morphism » : A — B in (2.10) is an isomorphism in K, then we can set
=x

A ~1: A « B, and the diagrams
A 0 B -
AN AN
AN AN
SN Ay
1a B— X 1p A— X (2.11)
x 7 ’ wx 7 r
/ s
¥
A P B 7

will be commutative, since p and ¢ are monomorphisms. This means that the morphisms
P A . . . P A

p — o and 0 = p in I'x are inverse to each other. Conversely, if p — o and o = p are

inverse to each other in 'y, then diagrams (2.11]) are commutative. Hence, s and A are

inverse to each other in K, and thus s is an isomorphism in K. m

It is convenient to introduce a special notation, —, for the pre-order in I'x:
p—0o < JxxeMor(K) p=ocozn (2.12)
Here the morphism s, if it exists, is unique, and it is a monomorphism (because o is).
As a corollary, there is an operation which to any pair of morphisms p,o € 'y with the
property p — o assigns the morphism s = »J in (2.12)):

p=005x. (2.13)

If p = 0 — 7, then the chain

T g T o
le) = = le) = [e) o]
T %p 1% g %p T O ¥, %P

implies, due to monomorphy of 7, the equality

%, = 3, 0. (2.14)

o A system of subobjects of class I' in an object X of a category K is an arbitrary skeleton
S of the category I'x such that the morphism 1x belongs to S. In other words, a
subclass S in I'x is a system of subobjects in X if

(a) the local identity of X belongs to S;
(b) every monomorphism p € 'y has an isomorphic monomorphism in S;
(¢) in S, isomorphism (in the sense of I'x) is equivalent to equality.



2.3. Categories of monomorphisms and epimorphisms 23

Due to property 1° on p. such a class S always exists. The elements of S are
called subobjects of X (of class I'). The class S is endowed with the structure of a full
subcategory in I'x.

THEOREM 2.21. Any system of subobjects S of an object X is a partially ordered class.

Proof. Let p € S and o € S have mutually inverse morphisms s : A < Band A\: A — B,
ie.
p=003x, T=poA

Then
poldox=p=poly, ocoxold=oc=o00lp,

and since p and o are monomorphisms in K, one can cancel them:
Aox=14, xoA=l1p,
Thus, » and A are isomorphisms. We obtain p & ¢, and by property (¢), p=0. n

THEOREM 2.22. If S is a system of subobjects in X, then for anyo € S, 0:Y — X, the

class of monomorphisms
A={aely:coac S}

is a system of subobjects in Y. If in addition S is a set, then A is a set as well.
Proof. STEP 1: Property (a). This is obvious: since 0 o 1y = o € S, we have 1y € A.

STEP 2: Property (b). Let 8 : B — Y be a monomorphism. The composition oo : B — X
is a monomorphism from [I'x, and since S is a system of subobjects in X, there exists
7 € S such that

T=0of.

This means that
T=0o0foL

for some isomorphism ¢. Now we see that the monomorphism a = o is isomorphic to 3
and lies in A, since coa =71 € S.

STEP 3: Property (c). Let a, 8 € A be isomorphic monomorphisms, i.e.
a=pfot

for some isomorphism ¢. Then, first, the morphisms o o a and o o § are isomorphic as
well, since
coa=o0co0fouL.

And second, they lie in S, since « and 3 lie in A. But S satisfies (c), hence
coa=0c0f.
In addition ¢ is a monomorphism, so a = .

STEP 4: It remains to check that if S is a set, then so is A. This follows from the fact
that the map o € A+ oo« € S is injective. Indeed, if for some «, ' € A we have

/
coa=c0oda,

then, since ¢ is a monomorphism, @ = o/. =
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e We say that a category K is well-powered in the class I' if each object X has a system
of subobjects S of class I" which is a set (i.e. not a proper class); in other words, each
category I'x must be a skeletally small graph.

ExampPLE 2.23. The standard categories frequently used as examples, as the category of
sets, groups, vector spaces, algebras (over a given field), topological spaces, topological
vector spaces, topological algebras etc., are obviously well-powered in the class Mono.

THEOREM 2.24. If a category K is well-powered in a class I', then there is a map X — Sx
which assigns to each object X in K its system of subobjects Sx of class I' (and Sx is a
set).

Proof. The class of all sets can be well-ordered [25, V, 4.1]; this allows us to assign to
each X the system of subobjects S which is minimal with respect to this well-ordering. m

2.3.2. Categories of epimorphisms 2% and systems of quotient objects. Let 2
be a class of epimorphisms in a category K, and suppose all local identities belong to it
(the key examples are {2 = Epi and (2 = SEpi). For each object X in K we denote

2% ={o € :Domo = X}. (2.15)

This class forms a category where a morphism p = o from p € 2% into o € 2%, i.e. from
an epimorphism p : X — A into an epimorphism ¢ : X — B, is an arbitrary morphism
»: A — B in K such that

(2.16)

Actually, this diagram in K can be considered as a morphism p = ¢ in 2%. A composition

. A . .
of such morphisms p = o and o 2 7, i.e. diagrams

One can view it as a result of splicing the initial diagrams along the common edge o,
adding the arrow A o s, and then throwing away the vertex B together with all the
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0 A
v/
v
Y el
Aoz
N
N
N
C

incident edges:

X—J»B

S

Of course, local identities in 2% are diagrams of the form

REMARK 2.25. The composition of morphisms in 2% can be defined in two ways. In our
definition this operation is connected with the composition in K through

Ao x=\oo.
X K

By analogy with I'x the following properties of 2% are proved.
THEOREM 2.26. For any object X the category 2% is a graph.

REMARK 2.27. By Example this means that in the category 2% all morphisms are
bimorphisms. The connection between the properties of a morphism p = ¢ in 2% and
the properties of the same morphism s : A — B in the initial category K is expressed in
the following observations:

. el . X . . . .
— every morphism p — o in 2% is an epimorphism in X;
— a morphism p = o in 2% is an isomorphism in 2% < s« is an isomorphism in K.
It is convenient to introduce a special notation, —, for the pre-order in £2%:
p—o < JueMor(K) o=rop. (2.17)

Here the morphism ¢, if it exists, must be unique, and it is an epimorphism (since p and
o are). As a corollary, there is an operation which to each pair of morphisms p, o € 2%
with the property p — o assigns the morphism ¢ = +J in (2.17):

o=150p. (2.18)
If # — p — o, then the chain
lgOT=0=150p=150Lp0T
implies by epimorphy of 7 the equality
Ly =) 0uh. (2.19)

o A system of quotient objects of class {2 on an object X in a category K is an arbitrary
skeleton @ of the category 2% such that 1x belongs to Q. In other words, a subclass
Q in X is called a system of quotient objects on X if

(a) the local identity of X belongs to Q;
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(b) every epimorphism ¢ € 2% has an isomorphic epimorphism in Q;
(¢) in @, isomorphism (in the sense of 2X) is equivalent to equality.

By property 1° on p. such a class ) always exists. The elements of () are called
quotient objects on X. The class @ is endowed with the structure of a full subcategory
in 2%,

By analogy with Theorems [2.2I] and [2:22] we have:

THEOREM 2.28. Any system Q of quotient objects on an object X is a partially ordered
class.

THEOREM 2.29. IfQ is a system of quotient objects on an object X, then for any quotient
object m € Q, m: X =Y, the class of epimorphisms

A={aec 2V :aorcQ}
is a system of quotient objects on Y. If in addition @ is a set, then A is a set as well.
o We say that a category K is co-well-powered in the class §2 if each object X has a system

of quotient objects @ of class 2 which is a set (i.e. not a proper class); in other words,
each category 2% must be a skeletally small graph.

ExAMPLE 2.30. Among the standard categories—of sets, groups, vector spaces, algebras
over a given field, topological spaces, topological vector spaces, topological algebras—
some are co-well-powered in the class Epi, but sometimes this is not easy to prove (see []).
In contrast, the co-well-poweredness in the class SEpi is much easier to verify.

By analogy with Theorem the following fact is proved:

THEOREM 2.31. If a category K is co-well-powered in a class {2, then there exists a map
X — Qx which assigns to any object X in K a system of its quotient objects Qx of class
2 (and Qx is a set).
2.4. Nodal decomposition
2.4.1. Strong decompositions
e A representation of a morphism ¢ as a composition

p=1L10po7,

where ¢ is a strong monomorphism and 7y a strong epimorphism, will be called a strong
decomposition of .

THEOREM 2.32. If ¢ = v o poy is a strong decomposition of p, then for any other
decomposition
p=poe

we have:
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— the epimorphy of € implies the existence of a unique morphism p' such that
X ———vy
N
¥ M L
N

N
X —r—y

(2.20)

(in this case if p is a monomorphism, then so is p');
— the monomorphy of 1 implies the existence of a unique morphism €' such that

X%Y
Ax /u
vy M 2
e

/
X —t—y

(2.21)

(in this case if € is an epimorphism, then so is €').

Proof. Let € be an epimorphism. Consider the diagram
X Y
Y M 2

X ——y

and transform it into

L

Y —Y

Here ¢ is an epimorphism, and ¢ a strong monomorphism, hence there exists a (unique)
morphism g’ such that

This is the morphism for (2.20)). By property 1° on p. if in addition 4 = to ' is a
monomorphism, then so is p'. The second case is dual. =

Suppose we have two strong decompositions ¢ = topoyand ¢ =/ op’ o+ of a
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morphism ¢:

Xy Xy

Lk T

PpQ Pl;/)Q/
P

If there exist (necessarily unique by Theorem|[2.32)) morphisms o : P — P’ and 7 : Q' — Q
such that

o)

X ,Y

Y R N Q’ (2.22)

then we say that the strong decomposition ¢ = ¢ o p oy is subordinated to the strong
decomposition ¢ =/ o p’ 0/, and we write

(t,p.7) < (Vs 0',7).
If in addition ¢ and 7 are isomorphisms, then we say that the decompositions ¢ = topo~y
and @ = ¢/ o p’ 0o are isomorphic, and we write

(L) = (0 ).

PROPOSITION 2.33. The double inequality

(L,y) < (0 7) < (4 p,7)

is equivalent to the isomorphism of strong decompositions:
(t,p7) = (0, Y).

Proof. The first inequality implies the existence of the (unique) dotted arrows in 7
and the second one means that the reverse arrows exist as well (and again are unique).
In addition the epimorphy of v and +' implies that o and its reverse arrow are mutually
inverse isomorphisms, while the monomorphy of ¢ and " implies that the same is true for
7 and its reverse arrow. m

2.4.2. Nodal decomposition. If in a strong decomposition ¢ = ¢/ o p’ 04’ the middle
morphism p’ is a bimorphism, then we call this a nodal decomposition. We also say that K is
a category with nodal decomposition if every morphism ¢ in X has a nodal decomposition.

PROPOSITION 2.34. Each nodal decomposition ¢ = ' o p’ o' subordinates each strong
decomposition p =topory:

(L, p,y) < (50,7,

As a corollary, a nodal decomposition is unique up to isomorphism.
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Proof. Let ¢ =10 po-y be a strong decomposition. If we transform the diagram

Y P Q) : (2.23)

into

then one can recognize here a quadrangle of the form (2.7)), since ¢ is a strong monomor-
phism, and p’ o4’ an epimorphism (as a composition of an epimorphism 4’ and a bimor-
phism p’). Hence, there is a unique morphism 7 such that

X Y
Q' ‘
AN

poy b

Similarly, one can transform diagram (2.23]) into

X
2l P’

Lop

P

and this is again a quadrangle of the form (2.7)), since v is a strong epimorphism, and
(' o p a monomorphism (as a composition of a bimorphism p’ and a monomorphism ¢’).
Hence, there exists a unique morphism o such that

X
¥ P’
A

P Lop
These two morphisms together give diagram (2.22). m

Y

e From the uniqueness (up to isomorphism) of the nodal decomposition p = ' 0 p’ 04’ it
follows that one can assign symbols to its components. We will further depict a nodal
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decomposition of a morphism ¢ : X — Y as a diagram

X —F——vy

coime SOJ ]mm @ (2.24)

) redoo
Coimyo ¢ —— Imy @

(where elements are defined up to isomorphism). The proof of Theorem below and
Remark [2:43] justify these symbols, since they show that coime, reds and ima, can be
conceived as a sort of “transfinite induction” of the usual operations coim, red and im
in pre-abelian categories:

coimy, = lim coimo.--ocoim, redy = lim redo---ored,
N—5 00 \— o’ N—5 00 \— o’
n factors n factors
iMe = lim imo---oim.
TL—)OO%/_/
n factors

We will call

— imy ¢ the nodal image,
— reds ¢ the nodal reduced part,
— coimy, ¢ the nodal coimage

of the morphism .
REMARK 2.35. By Theorem [2.32

— for any decomposition ¢ = poe where € is an epimorphism, there is a unique morphism
1’ such that

X—*% .y

\/

coiMqo imso ¢ (225)

\
>

Coimge ¢ % Imeo ¢
(and if p is a monomorphism, then so is '),
— for any decomposition ¢ = poe where p is a monomorphism, there is a unique morphism
¢’ such that
X—*% .y

\/

CoiMoo P iMoo (226)

- red

Coimge ¢ BRAG AN Ims
(and if ¢ is an epimorphism, then so is €’).

2.4.3. On existence of a nodal decomposition. Let us note that if p is a monomor-
phism in a category K, then for any decomposition y = p’ og, if € is a strong epimorphism,
then € must be an isomorphism. Indeed, by 1° on p. the equality p = p’ o & means



2.4. Nodal decomposition 31

that e is an monomorphism, and since in addition € is a strong epimorphism, so (by 4°
on p. an immediate epimorphism, we deduce by 4° on p. 18| that € is an isomorphism.

e Let us say that in a category K strong epimorphisms discern monomorphisms if the
converse is true: from the fact that a morphism g is not a monomorphism it follows
that u can be represented as a composition u = p’ o where ¢ is a strong epimorphism
which is not an isomorphism.

Dually, if € is an epimorphism in a category K, then for any decomposition € = poe’,
if p is a strong monomorphism, then g must be an isomorphism.

e Let us say that in a category K strong monomorphisms discern epimorphisms if the
converse is true: from the fact that a morphism ¢ is not an epimorphism it follows that
€ can be represented as a composition € = p o ¢’ where 4 is a strong monomorphism
which is not an isomorphism.

Recall that the notion of linearly complete category was introduced on p. [0

THEOREM 2.36. Let K be a linearly complete category, well-powered in strong monomor-
phisms and co-well-powered in strong epimorphisms, where strong epimorphisms discern
monomorphisms, and dually, strong monomorphisms discern epitmorphisms. Then K is a
category with nodal decomposition.

Before proving this theorem let us introduce the following auxiliary construction.
Take a morphism ¢ : X — Y in a category K. Since K is co-well-powered in strong
epimorphisms, in the category SEpiX of strong epimorphisms going from X there exists
a set of strong quotient objects Q C SEpiX, and in the category SMonoy of strong
monomorphisms coming to Y there exists a set of strong subobjects S C SMonoy. We
fix these sets @ and S.

e A decomposition ¢ = ¢ o p oy of a morphism ¢ is said to be admissible if v € @ and
v € S. Clearly, any strong decomposition ¢ = ¢/ o p’ 04’ of a morphism ¢ is isomorphic
to some admissible decomposition ¢ =10 po~.

e A local basic decomposition of a morphism ¢ in a category K is an arbitrary map
p — (coimp,red p,imp) that to each admissible decomposition (¢, p,v) of ¢ assigns
some strong decomposition (im p, red p, coim p) of p:

X ——y
11
Domp — Ranp (2.27)
coim pl imp
. red p
Coimp — Imp
in such a way that the following conditions are fulfilled:
(a) the decomposition (¢ oim p,red p,coim p o) of ¢ is admissible (i.e. coimpoy € @Q

and toimp € S),
(b) p is a monomorphism < coim p is an isomorphism < coimp = 1,
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(¢c) pis an epimorphism < im p is an epimorphism < imp = 1.

LEMMA 2.37. Let K be a category well-powered in strong monomorphisms and co-well-
powered in strong epimorphisms, where strong epimorphisms discern monomorphisms,
and strong monomorphisms discern epimorphisms. Then each morphism ¢ in K has a
local basic decomposition.

Proof. First of all, it is clear that admissible decompositions always exist, for example
one can take ¢ = lopol. Let us now show that for any admissible decomposition (¢, p, )
of ¢ a diagram satisfying (a)—(c) exists. Let us fix such a decomposition (¢, p,~)
and consider several cases.

1. If p is not a monomorphism, then there exists a decomposition p = p’ o £ where ¢
is a strong epimorphism, but not an isomorphism. Set coimp = ¢ and consider the
morphism p'.

1.1. If p’ is not an epimorphism, then there exists a decomposition p’ = p o p” where
w1 is a strong monomorphism, but not an isomorphism. Then we set im p = pu and
redp=p".

1.2. If p’ is an epimorphism, then we set im p = 1gan, and red p = p/.

2. If p is a monomorphism, then we set coim p = 1pom, and again consider p.

2.1. If p is not an epimorphism, then there exists a decomposition p = pop’ where p is
a strong monomorphism, but not an isomorphism. We set im p = p and red p = p'.
2.2. If p is an epimorphism, then we set imp = 1y and red p = p.

In any case we obtain a decomposition p = im p o red p o coim p where im p is a strong
monomorphism, coimp is a strong epimorphism, and (b) and (c) are fulfilled. Now to
prove (a) we have to replace (if necessary) the epimorphism coim p with an isomorphic
epimorphism 7 o coim p in such a way that 7w ocoimpovy € @, and this can be done due to
Theorem Similarly, the monomorphism im p should be replaced with an isomorphic
monomorphism im p o ¢ in such a way that toimpo o € S, and this can be done due to
Theorem

Thus, for an arbitrary admissible decomposition (¢, p, ) of ¢ a diagram satisfy-
ing (a)—(c) exists. Note now that from [2.29] and it follows that for a given admissible
decomposition (¢, p,7y) of a morphism ¢ the class of decompositions (im p, red p, coim p)
of p which satisfy (a)—(c) is a set. Indeed, every such (im p, red p, coim p) is uniquely de-
fined by the morphisms im p and coim p (since from monomorphy of im p and epimorphy
of coimp it follows that red p, if it exists, is unique). So the class of decompositions
(im p, red p, coim p) can be viewed as a subclass in the cartesian product A x B of sets,
where A = {& € SMonogan, : toa € S} is a class of monomorphisms through which im p
runs, and which is a set by Theorem and B= {3 € SEpiP°™* : Boc e @} is a class
of epimorphisms through which coim p runs, and which is a set by Theorem .

We deduce that for any admissible decomposition (¢, p,v) of ¢ the class of decomposi-
tions (coim p, red p,im p) satisfying and (a)—(c) is a (non-empty) set. Hence we can
apply the axiom of choice and construct a map which to each admissible decomposition
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(¢, p,7y) of @ assigns a decomposition (coim p,red p,im p) satisfying (2.27) and (a)—(c).

This is the required map p + (coim p,red p,im p). =

Proof of Theorem [2.36] Take a morphism ¢ : X — Y, find a set of strong quotient
objects Q C SEpi® and a set of strong subobjects S C SMonoy, and construct a local
basic decomposition as in Lemma The proof consists in constructing a transfinite

system of objects and morphisms, indexed by i € Ord,
i Py i 55y AT
X' =Y, X=X Y'Y (1<),

the idea of which is illustrated by the following diagram (extended infinitely below):

)

X——Y

lx 1Y
0_

XO P =P N YO

sgzcoim ° ,u‘l):im ©°
1_ 0

X1 @ =red ¢ y1 (2.28)
e3=coim @’ pus=im !

X2 p2=red p! Yl
e2=coim ¢? pa=im p?

Here is how we do this.
0) Initially, we set

X=X, Y'=Vv, =¢, ¥ =coimp’, ul=ime® o' =redy’.
1) Then for an arbitrary ordinal k we set
ep=1xe,  pg=1lyx
and:
— If Kk =7+ 1 for some j, then we set
Xk = X7t = Coimy?, YF=Y'*! =Imy/,

g=eja =coimyl,  pl =g, =imed, oF =T =red
and then, for any other ordinal ¢ < j,

i __ 1 _J 7 T 1 1 J
€k = Ej+1 = 41985 M = Mg = B0 Ky

— If k is a limit ordinal, then X% is defined as the injective limit of the covariant sys-
tem {X7 ¢i;i < j < k}, and Y* as the projective limit of the contravariant system

A
Y9, ps0 < j <k}
X* =1lim X7, Y*=IlimY’,
j—k k<+j

the system of morphisms {e%; i < k} is the corresponding injective cone of morphisms
going to X%, and {ut;i < k} is the corresponding projective cone of morphisms going
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from Y*,

e = lim &t i — lim b i < k.

€k v J7 K k}(_H;. /1/]7 [
This automatically implies

52:%05;, ,ufg:u;-o,ui, 1<j<k,

and by Proposition all the morphisms 5}; are strong epimorphisms, while by Propo-
sition all the morphisms ,ui are strong monomorphisms As a corollary, X* can
be chosen in such a way that the epimorphism ak lies in @ (for this we just need to
multiply the system {ei; i < k} from the left by a morphism so that the property of
being an injective cone is preserved); similarly, Y* can be chosen in such a way that the
monomorphism { lies in S (for this we just need to multiply the system {ut; i < k}

from the right so that the property of being a projective cone is preserved). Then "
can be defined by two equivalent formulas:

= lim lim p% o = lim lim ¢’ o E
SO k<ij—k 'uj (p i—k k(—jgp

Here the first double limit should be understood as follows: for a given i < k the family
{M; oty i < j < k}is an injective cone of the covariant system {52; 1 <1l,j <k}, so
the limit

lim M ol
j—k

exists; then {lim;_,, u§owj ; © < k} turns out to be a projective cone of the contravariant
system {ug-; i <1,j <k}, so the limit

lim 1
fim Jim 155 0 "

exists. Similarly, in the second double limit for a given i < k the family {¢’ o 52; 1 <
j < k} is a projective cone of the contravariant system {ué-; i <1,j <k}, so the limit

lim ¢’ o 6
k<j

exists; then {limg; ¢’ o sj—; i < k} turns out to be an injective cone of the covariant
system {e}; i <1,j < k}, so the limit

lim lim ¢’ o 5
i—k k«j

exists. Bach of these double limits gives an arrow from X* into Y* which makes all
the necessary diagrams commutative, and since this arrow is unique (this follows from
the fact that the u}; are monomorphisms and the 5}; are epimorphisms), those double
limits (arrows) coincide.

Eventually we obtain a system of morphisms such that for any i < j the following diagram

is

commutative: o ‘
Xt — Y

J

X Lyj

and for any i < j < k the following diagrams are commutative:
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o X PR
/ e
X7 ek Y?J i
AN AN
“k Xk e k

and moreover the €§ are strong epimorphisms, and the ,u; are strong monomorphisms.
From the last two diagrams it follows that the formulas

{F(i) =& ieord, {G(i) =40, icord,

F(i,j)=¢j, i<jeord, |G(i,j)=pn i<jeo0rd,

define a covariant functor F': Ord — @) and a contravariant functor G : Ord — S. Since
Q@ and S are sets, by Theorem these functors must stabilize, i.e. starting from some
ordinal & (which can be chosen common for F' and G) the morphisms F'(4, j) and G (i, )
become isomorphisms. Since in addition the categories @ and S are partially ordered
classes (and as a corollary, only local identities are isomorphisms, by Proposition [2.2)), we
conclude (following Remark that diagram stabilizes in the sense that, starting
from some k,

— the objects X! become the same, and the morphisms £, become local identities of X*;
— the objects Y! become the same and the morphisms y!, become local identities of Y*.

Now let us consider the diagram

X 2y

sgl k Tug (2.29)

Xk 2 yk

Here &Y is a strong epimorphism, and p) a strong monomorphism. From the equality
sﬁﬂ = coim ¥ = 1y« (which holds since the sequence 5;-’ stabilizes for j > k) it follows
by condition (b) on p. [31|that ©* is a monomorphism. On the other hand, from ,u,’z 1=
im ¢* = 1y (which holds since the sequence u? stabilizes for j > k) it follows by condition
(c) on p. that ¢ is an epimorphism. Thus, ¢* is a bimorphism, hence (2.29) is a nodal
decomposition for ¢. m

2.4.4. Connection with the basic decomposition in pre-abelian categories. Let
us discuss the obvious analogy between nodal decomposition and the decomposition of
a morphism ¢ in a pre-abelian category K into a coimage coim , an image imy and a
morphism between them which we denote by red .

Recall (see definition in [II] or in [6]) that a pre-abelian category is an enriched cate-
gory K over the category Ab of abelian groups, which is finitely complete and has a zero
object. In such a category every morphism ¢ : X — Y has a kernel and a cokernel. Hence
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 can be represented as a composition
X ——y
coim wl Timvﬂ (2.30)
Coim ¢ r—edﬁ Im e
where coim ¢ = coker(ker ) is called the coimage of ¢, imp = ker(coker ) the image
of p, and red ¢ the reduced part of p; its existence and uniqueness are proved separately.
e The representation of ¢ will be called the basic decomposition of .

It is known (see [7, Proposition 4.3.6(4)]) that in a pre-abelian category (in fact, in a
category with zero) every kernel ker ¢ (and thus every image im ) is always a strong
monomorphism, and every cokernel coker ¢ (and thus every coimage coim ¢) is a strong
epimorphism. As a corollary, we have

THEOREM 2.38. In a pre-abelian category every basic decomposition is strong.

This implies that if a category K is abelian, then every basic decomposition in X is
nodal. But if K is not abelian, then these decompositions do not necessarily coincide: see
Example [£.98] below.

The following two propositions are obvious:

PrOPOSITION 2.39. In a pre-abelian category for a morphism ¢ : X — Y the following
conditions are equivalent:

(i) ¢ is a monomorphism,

(ii) the zero morphism 0y x is the kernel for o,
(i)
(iv) coim ¢ is an isomorphism.

the identity morphism 1x is the coimage for v,

PROPOSITION 2.40. In a pre-abelian category for a morphism ¢ : X — Y the following
conditions are equivalent:

(i) ¢ is an epimorphism,
(if) Oy, = coker ¢,
(iii) 1y =imy,
(iv) imy is an isomorphism.
They imply
PROPOSITION 2.41. In a pre-abelian category K strong epimorphisms discern mono-
morphisms and strong monomorphisms discern epimorphisms.
Proof. Consider the basic decomposition of ¢ : X — Y
(p =imy oredp o coim .

If o : X — Y is not a monomorphism, then by Proposition 2:39] coim¢ is not an
isomorphism. On the other hand, by Theorem [2:38] coim ¢ is a strong epimorphism. So,
if we set ¢’ = im pored ¢, then in the decomposition ¢ = ¢’ o coim ¢ the morphism coim ¢
is a strong epimorphism, but not an isomorphism. This means that strong epimorphisms
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discern monomorphisms in K. The statement about strong monomorphisms is proved
similarly. m

Proposition implies that if a pre-abelian category K is well-powered in strong
monomorphisms and co-well-powered in strong epimorphisms, then X has a local basic
decomposition (defined on p. : the map (¢, p,y) — (coim p,red p,im p) that to each
admissible decomposition (¢, p, ) (again see p.[31)) of a given morphism ¢ assigns the basic
decomposition of p, is a local basic decomposition of . Hence, the sufficient condition
for the existence of nodal decomposition (Theorem becomes simpler:

THEOREM 2.42. If a pre-abelian category X is well-powered in strong monomorphisms
and co-well-powered in strong epimorphisms, then every morphism ¢ : X — Y in K has

a nodal decomposition (2.24)).
REMARK 2.43. From Proposition and diagram ([2.28) it follows that:

— the nodal reduced part red., ¢ in diagram can be viewed as a “limit” of the
transfinite sequence of “usual” reduced morphisms ¢! = red ¢*;

— the nodal coimage coim, ¢ is an injective limit of the transfinite sequence of “usual”
coimages coim (o’ of this system of morphisms;

— the nodal image im, ¢ is a projective limit of the transfinite sequence of “usual” images
im * of this system of morphisms.

REMARK 2.44. Since the basic decomposition ¢ = im ¢ o red ¢ o coim ¢ is strong, and
thus, by Proposition is subordinated to the nodal decomposition, there must exist
unique morphisms ¢ and 7 such that

X Y
wtp iW
coim ¢ C0|moogp—> Imoogo im e (231)
> redo ¢ <
-~ ~N
_ Ps /o' T N
Coim ¢ el Ime

At the same time, by Theorem [2.32}

— for any decomposition ¢ = p o€ where € is an epimorphism, there exists a unique
morphism p’ such that

X ‘ Y
\ "
CcoiMqo P iMoo
M
. SO .
coim ¢ ~ N me (232)
Coimy, — Ims
/ e \

Coim ¢ p— Im o

(in addition, if p is a monomorphism, then so is u');
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— for any decomposition ¢ = p o e where p is a monomorphism, there exists a unique
morphism &’ such that

X 4 Y
€ K
’ E
coim ¢ P ime (2.33)

CoiMag p ——————— Imuo

redes
/ x

Coim ¢ p— Im ¢

(in addition, if € is an epimorphism, then so is &’);
— in particular, for any factorization ¢ = p o e of ¢ there exist unique morphisms

Coim ¢ = M oand M 5 Im ¢ such that

©
X Y
\ “w
CcoiMqo P iMoo
M
) g 7 SoH )
coim = <y im (2.34)

Coimpe p ———————— Im

redos
7 S

Coim ¢ p— Im o

and in addition, ¢’ is an epimorphism and p’ a monomorphism.

2.5. Factorizations of a category

2.5.1. Factorizations in a category with nodal decomposition. Recall that the
notion of a factorization of a morphism was defined in (2.6)). From (2.25)) and (2.26]) we
immediately have

PROPOSITION 2.45. If X S M £ Y is a factorization of a morphism X - Y in a
category X with a nodal decomposition, then there are unique morphisms Coimao @ — M

and M - Imyg © such that

X Y

©
\ /
o > M ~_ o iMso ¢ (235)

~ ~

coiMes

~

. redoo 3
Coimgop ———————— Im @

Moreover, €' is an epimorphism and p' a monomorphism.

Let (e,p) and (¢, 1’) be factorizations of ¢. We say that (e,u) is subordinated to
(e, i) (or (¢/, 1) subordinates (e, 1)), and write

(&,1) < (1),
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if there exists a morphism (3 such that
e =Boe, p=op,
that is,
x—% vy
| >

MZ - —5M
B

From properties 1° and 3° on p. [15]it follows that 3, if it exists, must be a bimorphism,
and from the fact that u’ is a monomorphism (or from the fact that  is an epimorphism)
that 3 is unique.

THEOREM 2.46. In a category K with nodal decomposition:

(i) every morphism ¢ has a factorization;
(ii) among all factorizations of ¢ there is a minimal one (Emin, fmin) and a mazimal one
(Emax; fhmax), €. for any other factorization (e, ),

(Emin, fmin) < (€, 4) < (Emaxs Hmax)-
Proof. Part (i) follows from (ii). To prove (ii), let
€min = COIMy, ¥, fhmin = IMeo @ © redo
and
Emax = redeo 0 0COIMy, Y,  Lhmax = My .

Then these will be factorizations of ¢, and from (2.35)) it follows that the first is minimal,
and the second is maximal. m

2.5.2. Strong morphisms in a category with nodal decomposition

THEOREM 2.47. In a category with nodal decomposition:

(a) p is an immediate monomorphism < u is a strong monomorphism < = imy, (1 <
coimy i and reds b are isomorphisms,

(b) € is an immediate epimorphism < € is a strong epimorphism < £ = coimy, £ <
iMoo it and redso p are isomorphisms.

Proof. By the duality principle it is sufficient to prove (a).

If o : X — Y is an immediate monomorphism, then in its maximal factorization
b = lmax © Emax the morphism ep,,x = reds pt © cOimy, p must be an isomorphism. This
implies

1x = (Emax) ! o redes g 0 coimue f,

from which one can conclude that coimy, i is a coretraction. On the other hand, coim,
is an epimorphism, hence an isomorphism. This implies that red. ft = €max 0 (coime 1) 1
is an isomorphism.

If coimy, p and red, i are isomorphisms, then x = red., procoimy, p is an isomorphism
as well, and at the same time g = imy @ o x. This means that g = imq, p.

If 4 =2 imy p, then since imy, @ is a strong monomorphism, so is p.
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If p is a strong monomorphism, then by property 2° on p. 1 is an immediate
monomorphism. =

2.5.3. Factorization of a category

e A pair of morphisms (u,¢) is said to be diagonizable [0, 7] if for all morphisms « :
Dome — Dom p and 8 : Rane — Ran p such that goa = B oe there exists a morphism
0 : B — C such that diagram (2.7) is commutative:

I
Dome —— Rane
/

)4
Dom u SN Ran p

This is denoted by writing u | €.
EXAMPLE 2.48. The following example shows that in contrast to the situation considered
above (in particular on p. the relation p | € does not necessarily mean that p € Mono

and e € Epi: in the category of vector spaces over C the pair of morphisms y=0:C — 0
and € = 0: 0 — C is diagonizable:

0 —% ¢
/
5
|
"4
C——0
pn=0

e For any class A of morphisms in K:

— its epimorphic conjugate class is the class
At = {e €Epi(K): VA€ A X |e}
— its monomorphic conjugate class is the class
YA ={p€Mono(K) : VA€ A pul A}
Clearly, for each class A of morphisms,
Iso C A% C Epi, Iso o A% C AY, (2.36)
Iso C ¥4 C Mono, “YAolso C *A. (2.37)
e Let us say that classes I' and {2 of morphisms define a factorization of the category@
K if:
F.1. 2 is the epimorphic conjugate class for I': IV = (2;
F.2. I is the monomorphic conjugate class for 2: I' = +(2;
F.3. the composition of the classes I" and {2 covers the class of all morphisms: "o {2 =

Mor(K) (this means that each morphism ¢ € Mor(K) can be represented as a
composition g oe where p € I', € € 2).

(®) This construction is also called a bicategory |6, 47].
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If these conditions are fulfilled, we write
K=I0 2. (2.38)
EXAMPLE 2.49. In a category K with nodal decomposition the following classes of mor-
phisms define factorizations:
K = Mono ® SEpi = SMono ® Epi.
The following is proved in [47, Theorem 8.2]:

THEOREM 2.50. Classes I' and §2 define a factorization of X if and only if the following
conditions hold:

(1) I' € Mono(K) and 2 C Epi(K);
(i) Iso(K) C 2N
(iii) for each ¢ € Mor(K) there is a decomposition
©=lpOEp, fp €1 Ep €1 (2.39)
(iv) for any other decomposition with the same properties
p=pyoe, perl e,
there is 0 € Iso(K) such that
W=pp00, £ =0""oe,.
e Let us say that a class {2 of morphisms in K is monomorphically complementable if
K=o n. (2.40)

In other words, {2 must be the epimorphic conjugate to its monomorphic conjugate
class: £2 = (+2)¥, and the composition of *2 and {2 must cover the class of all mor-
phisms: ¥§2 0 £2 = Mor(K). In this case +2 will be called the monomorphic complement
to £2.

REMARK 2.51. From ([2.36) it follows that if a class {2 of morphisms is monomorphically
complementable, then

Iso C 2 C Epi, lIsoof2C 2. (2.41)

e Similarly, we say that a class I' of morphisms in K is epimorphically complementable if

K=I®I". (2.42)

In other words, I' must be the monomorphic conjugate to its epimorphic conjugate

class: I' = +(I'V), and the composition of I" and I'* must cover the class of all mor-

phisms: I" o I'* = Mor(K). In this case I'* will be called the epimorphic complement

to I'.
REMARK 2.52. From ([2.37)) it follows that if I" is epimorphically complementable, then

IsoCI'CMono, IolsoCI. (2.43)



3. Envelope and refinement

3.1. Envelope

3.1.1. Envelope in a class of morphisms with respect to a class of morphisms.

Suppose we have:

a category K called an enveloping category,

a category T called an attracting category,

a covariant functor F' : T — K,

two classes {2 and @ of morphisms in K, taking values in objects of the class F(T), with
2 called the class of realizing morphisms, and @ the class of test morphisms.

Then:

For X € Ob(K) and X’ € Ob(T) a morphism o : X — F(X') is called an extension
of the object X € K over the category T in the class §2 of morphisms with respect to
the class @ of morphisms if ¢ € (2, and for any object B in T and any morphism
¢ : X — F(B) in ¢ there exists a unique morphism ¢’ : X’ — B in T such that

X

w2/ \Z@ (3.1)

rx) - By

An extension p : X — F(FE) of an object X € K over a category T in the class {2 with
respect to the class @ is called an envelope of X over the category T in the class 2 with
respect to the class @ if for each extension ¢ : X — F(X’) (of X over the category T
in the class 2 with respect to the class @) there exists a unique morphism v : X’ — F
in T such that

X
o N (3.2)
FX) -5 F(E)

In what follows, we are almost exclusively interested in the case when T = K and

F : K — Kis the identity functor. It is useful to give the definitions for this case separately:

A morphism ¢ : X — X’ in a category K is called an extension of X € Ob(K) in the
class 2 with respect to the class @ if o € (2, and for any morphism ¢ : X — B in &

(42]
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there exists a unique morphism ¢’ : X’ — B in K such that

()97/5” \Ngaeqf' (3.3)

Xfff

e An extension p : X — E of an object X € Ob(K) in the class {2 with respect to the
class @ is called an envelope of X in {2 with respect to @ if for any other extension
o:X — X’ (of X in 2 with respect to @) there is a unique morphism v : X’ — E in
K such that

N (3.4)

For an envelope p : X — E we use the notation
p=envy X. (3.5)
The very object E is also called an envelope of X (in {2 with respect to @), and we

write

E = Envy X. (3.6)

REMARK 3.1. Clearly, the object Envg X (if it exists) is unique up to isomorphism. The
question when the correspondence X — Envg X can be defined as a functor is discussed
below starting from p.

REMARK 3.2. If 2 = ), then of course neither extensions nor envelopes in 2 exist. So
this construction can be interesting only when (2 is a non-empty class. The following two
situations will be of special interest:

— 2 = Epi(K) (the class of all epimorphisms in K); then we will use the notation
enviP X = enquspi(K) X, EnviPX = EnvEp'(K) X. (3.7)

— 2 = Mor(K) (the class of all morphisms in K); in this case it is convenient to omit
(2 from the formulations and notation, so we will be speaking about the envelope of
X € K in X with respect to the class @, and the notation will be simplified:

envg X = envgor(x) X, EnvgX : = Env:\;or(K) X. (3.8)

REMARK 3.3. Another degenerate, but this time informative case is when & = (. It is
essential that for a given object X, @ does not contain morphisms going from X. Then,
obviously, any morphism o : X — X’ belonging to € is an extension of X (in the class
2 with respect to the class (}). If in addition 2 = Epi, then the envelope of X is the
terminal object in the category Epi (if it exists):

Envg? X = max EpiX

In particular, if K is a category with zero 0, and {2 contains all morphisms going to 0,
then the envelope of any object with respect to the empty class of morphisms is 0.
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REMARK 3.4. Another extreme situation is when ¢ = Mor(K). It is essential that for a
given object X the class @ contains the local identity of X. Then for any extension o the
diagram

X—7— X

Ve
W ¥

implies that o must be a coretraction (moreover, the dashed arrow must be unique).
When (2 C Epi this is possible only if ¢ is an isomorphism. As a corollary, in this case
the envelope of X coincides with X (up to isomorphism).

PROPERTIES OF ENVELOPES.

1° Suppose that X C (2. Then for any object X and any class @ of morphisms:

(a) each extension o : X — X' in X with respect to ® is an extension in 2 with
respect to @;

(b) if there are envelopes env%X and env;g X, then there is a unique morphism p :
Envy X — Envy X such that

envg X X enng
N (3.9)

Envg X - N Enng
(c) if there is env X € X, then env¥ X = envy X.
2° Let X, §2, @ be classes of morphisms, and suppose that, for an object X,

(a) every extension o : X — X' in 2 with respect to @ belongs to X.
Then:

(b) an envelope of X with respect to @ in the class {2 exists if and only if there exists
an envelope of X with respect to @ in the class 2N X, and envqgZ = envgmz;

(c) if X C £2, then an envelope of X with respect to @ in the (narrower) class X exists
if and only if there exists an envelope of X with respect to @ in the (wider) class

2, and env X =envy X.
3° Suppose W C &. Then for any object X and for any class {2 of morphisms:

(a) each extension o : X — X' in  with respect to ® is an extension in 2 with
respect to ¥;

(b) if there are envelopes enng and envg X, then there is a unique morphism o :
Envfw2 X Envg X such that

Q X

envy X env;;fX

(3.10)
Enng ¢ - Enng

4° Suppose that & C Mor(K) o ¥ (i.e. each ¢ € & can be represented as ¢ = x o 1, where
@ € W). Then for any object X and any class §2 of morphisms:
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(a) if an extension o : X — X' in 2 with respect to ¥ is at the same time an
epimorphism in K, then it is an extension in {2 with respect to &;

(b) if there are envelopes envy X and env¥ X, and envy X is at the same time an
epimorphism in K, then there exists a unique morphism (3 : Envw X — Env¢ X

such that
envg X X enng
K 5 N (3.11)
Envg, X-—-- EnvdsX

5° Suppose that 2 and @ are some classes of morphisms, and € : X — 'Y is an epimor-
phism in K such that:

a) there erists an envelope env,_ X (with respect to Poe = {poe; p € B});
Poe

(b) there exists an envelope envy Y;

(c) env¥Yoe e .

Then, there exists a unique morphism v : Envi,_ X < Envy Y such that

X——Y

envgpos Xl WE lenvg5 (312)

EnvmaX === Env¢

Proof. 1° If a morphism o satisfies with X instead of {2, then o satisfies the initial
condition , since X C (2. This proves (a). From this we moreover see that env§, X is
an extension in {2 with respect to @, so there must exist a unique dashed arrow in .
This means that (b) is also true. Finally, if there exists an envelope envy X (in the wider
class), and it lies in X (in the narrower class), then env$ X is an extension in X. On the
other hand, any other extension o : X — X' in X' is an extension in {2 due to (a), hence
there is a unique morphism v into the envelope in (2:

(o]
envg X

X
/U

X —-=-->EngX

This proves that envy X is an envelope in X, and we have proved (c).

2° If an object X has an envelope envq§ X in {2 with respect to @, then by (a) this
will be an extension in the narrower class 2 N X with respect to . Applying 1°(c), we
deduce that env X = env¥"¥ X.

Conversely, suppose there exists an envelope env$"* X. Then by 1°(a), it will be an
envelope with respect to @ in 2. Take another extension o : X — X’ with respect to @
in 2. By (a), o is an extension with respect to @ in 2 N Y. Hence, there exists a unique

morphism v : X' — Envémz X such that
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This proves that env?™* X is (not just an extension, but also) an envelope with respect
to @ in £2. We sce that 2°(b) is true, and 2°(c) is a corollary.

3° Suppose that ¥ C @. Then (a) is obvious: each extension o : X — X’ with respect
to @ is an extension with respect to ¥. For (b) we have: since env X is an extension
with respect to @, it must be an extension with respect to ¥, so there exists a unique
morphism from Envg X into Envg X such that is commutative.

4° Suppose @ C Mor(K) o ¥. For (a) our reasoning is illustrated by the diagram

X g X'
X‘ " |
e /
K /
Y /
® lx //cp’
re
B+x~

If o : X — X’ is an extension of X in {2 with respect to ¥, then for any morphism
¢ : X — Bin @, we take a decomposition ¢ = x o ¢ where 1) € ¥. There is a morphism
1)’ such that ¢ =9’ o o. Set ¢’ = x 09’, and note that

@:XOQZ):XOM/OJ:@/OU.
The uniqueness of ¢’ follows from the epimorphy of o € 2, and thus ¢ is an extension
of X in {2 with respect to @. Once (a) is proved, (b) becomes a corollary: the morphism

env?X : X — Envi X is an extension of X in 2 with respect to ¥, hence, by (a), with
respect to @ as well. So there exists a morphism 3 from Enviy X into Envg X such that

(3.11)) is commutative.

5° For any morphism ¢ : Y — B in @ we have the following diagram:

env Yoe

T, Envgp

Bk

It should be understood as follows. On the one hand, since envéb2 Y is an extension with
respect to @, there exists a morphism ¢’ such that the lower right triangle is commutative,
and as a corollary, the perimeter is commutative as well. On the other hand, if ¢’ is a
morphism such that the perimeter is commutative, i.e.

@ oenviYoe=gpose,
then, since € is an epimorphism, we can cancel it:
¢ o env'g Y =o.

So the lower right triangle is commutative as well. This means that ¢’ is unique (since
by the definition of envelope, the dashed arrow in the lower right triangle is unique).
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We see that the perimeter has a unique dashed arrow ’. This is true for any ¢ € &,
and in addition env Y oe € £2. So we come to the conclusion that envy Y o ¢ is an
extension of X in {2 with respect to @oe. As a corollary, there exists a unique morphism
v from Env;(j2 Y into EnvgOE X @ o¢ such that is commutative. m

e Let us say that in a category K a class @ of morphisms is generated on the inside by a
class ¥ of morphisms if

W C P C Mor(K)o W. (3.13)

THEOREM 3.5. Suppose that in a category K a class @ of morphisms is generated on the
inside by a class W of morphisms. Then for any class 2 of epimorphisms (not necessarily
all) and any object X the existence of envyy X is equivalent to the existence of env¥ X,
and

envig X = env X. (3.14)

Proof. Suppose first that envi X exists. Since it is an extension with respect to ¥, and
at the same time an epimorphism, by 2°(a) we see that it is an extension with respect to
@ as well. If 0 : X — X’ is another extension with respect to @, then by 3°(a) it is an
extension with respect to ¥ as well, so there exists a unique morphism v : Envg X+ X
such that

env:},2 X X

g
£l
Enviy X « ——— — X'
This means that env{? X is an envelope with respect to @, and (3.14)) holds.

Conversely, suppose that enng exists. It is an extension with respect to @, so by
2°(a) it is an extension with respect to ¥ as well. If 0 : X — X’ is another extension in
£2 with respect to ¥, then since o € Epi, by 3°(a) it must be an extension with respect
to @, so there exists a unique morphism v : X’ — Envg X such that

o env;gX
Jlv
X - -=-2EngX

This means that enng is an envelope with respect to ¥, and again we have (3.14). =

e Let us say that a class @ of morphisms in a category K separates morphisms on the
outside if for any two morphisms o« # : X — Y there is a morphism ¢ : Y — M in
@ such that poa # o 5.

THEOREM 3.6. If a class @ of morphisms separates morphisms on the outside, then for
any class £2 of morphisms:

(i) each extension in 2 with respect to @ is a monomorphism;

(ii) an envelope with respect to @ in §2 exists if and only if there exists an envelope with

respect to @ in {2 N Mono; in this case envfgﬁ2 = envgmMm";
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(iil) if 2 contains all monomorphisms, then the existence of an envelope with respect to
@ in Mono automatically implies the existence of an envelope with respect to @ in {2,

0 Mono
and envg = envg

Proof. (i) Suppose that some extension ¢ : X — X’ is not a monomorphism, i.e. there
are parallel morphisms « # §: T — X such that

coa=0cgof. (3.15)

Since @ separates morphisms on the outside, there exists a morphism ¢ : X — M in @
such that

poa# pof. (3.16)
As o : X — X' is an extension with respect to @, there is a continuation ¢’ : X’ — M of

the morphism ¢ : X — M: ¢ = ¢’ o 0. Now we obtain

cpoa:go’oooago'oaoﬁ:gpoﬂ,

and this contradicts (3.16]).

(ii) Suppose for an object X there exists an envelope envq5 X. Then, as already proved,
it is an extension in {2 N Mono with respect to ¢. Applying property 1°(c) on p. [44] we
deduce that env$ X = envZMono X

Conversely, suppose there is an envelope envgﬂM"“X. By 1°(a) on p. it is an
extension with respect to @ in §2. Consider another extension o : X — X' with respect
to @ in £2. By (i), o is an extension with respect to ¢ in 2 N Mono. Hence, there is a
unique morphism v : X’ — EnvZ™°" X such that

.QﬁMono X

/\

77777 S EnV.QﬂMono X

This proves that envgmM°”° X is (not only an extension, but also) an envelope with respect
to @ in the class 2.
(iii) immediately follows from (ii). m

e Let us recall that a class @ of morphisms in a category K is called a right ideal if
@ o Mor(K) C .

THEOREM 3.7. If a class @ of morphisms separates morphisms on the outside and is a
right ideal in the category K, then for any class {2 of morphisms:

(i) each extension in 2 with respect to @ is a bimorphism;

(ii) an envelope with respect to @ in (2 exists if and only if there exists an envelope
with respect to @ in the class £2 N Bim of bimorphisms belonging to {2; in this case
envy = envyMBim;

(iii) if 2 contains all bimorphisms, then an envelope with respect to ® in (2 exists if and
only if there exists an envelope with respect to @ in Bim, and envg =envBim.

Proof. By property 2° on p. [44} (ii) and (iii) follow from (i). To prove (i), let o : X — X’

be an extension in {2 with respect to @. By Theorem [3.6{i), o is a monomorphism.
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Suppose that it is not an epimorphism. This means that there are parallel morphisms
a# f: X" — T such that
aoog=[foo. (3.17)

Since @ separates morphisms on the outside, there is ¢ : T'— M in @ such that
poaF pof.
In addition, by (3.17),

poaoog=gpofoao.

If we now suppose that @ is a right ideal in K, then poa oo = po oo is in @. So we
can interpret this picture as follows: the test (i.e. belonging to @) morphism p o oo =
popfoo : X — M has two different continuations p o v # po f : X’ — M along
0 : X — X’'. This means that o cannot be an extension with respect to @. m

3.1.2. Envelope in a class of objects with respect to a class of objects. A special
case of the construction is when 2 and/or @ are classes of all morphisms into the objects
from some given subclasses of Ob(K). A precise formulation for the case when both {2
and @ are defined in that way is the following. Suppose we have a category K and two
subclasses L and M in Ob(K).

e A morphism ¢ : X — X' is called an extension of the object X € K in the class L with
respect to the class M if X’ € L and for any object B € M and any morphism ¢ : X — B
there exists a unique morphism ¢’ : X’ — B such that

X
7 \\:"
Je’
X --<-+8B
m m
L M

e An extension p: X — F of X € K in L with respect to M is called an envelope of the
object X € K in the class L with respect to the class M, in symbols

p=envy X, (3.18)

if for any other extension o : X — X’ (in L with respect to M) there exists a unique
morphism v : X’ — E such that

X
Vy \f;
v 3.19
JERINE N (3.19)
m m
L L

The object F is also called an envelope of X (in the class L with respect to the class M),
and we will write

FE = Env; X. (3.20)

The following two extreme situations in the choice of L can occur:
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— If L = Ob(K), then we will speak about an envelope of an object X € K in the category
K with respect to the class M of objects, and the notation will be

envy X :=envk X, Envy X := Envy X. (3.21)

— If L = M, then the notions of extension and envelope coincide: each extension of X in
L with respect to L is an envelope of X in L with respect to L (indeed, if p: X — E
and 0 : X — X’ are two extensions in L with respect to L, then in diagram the
morphism v exists and is unique just because o is an extension); for simplicity, in the
case of L =M we speak about the envelope of X in L, and our notation simplifies

envh X :=envk X, Env"X := Envy X. (3.22)

e Let us say that a class M of objects in a category K separates morphisms on the outside,
if the class of morphisms with ranges in M has this property, i.e. for any morphisms
a# fB:X =Y there is a morphism ¢ : Y — M in M such that p o a # @ o 5.

From Theorem [3.7] we have

THEOREM 3.8. If a class M of objects separates morphisms on the outside, then for any
class L of objects:

(i) each envelope in L with respect to M is a bimorphism;
(ii) an envelope in L with respect to M exists if and only if there exists an anvelope in the

class of bimorphisms with values in L with respect to M; in this case envg = eninm(K’L) .

3.1.3. Examples of envelopes

ExXAMPLE 3.9 (Universal enveloping algebra). Let K = LieAlg be the category of Lie
algebras (say, over C), T = Alg the category of associative algebras (again over C) with
identity, and F' : Alg — LieAlg the functor that represents every associative algebra A
as the Lie algebra with Lie bracket

[zyl =z-y—y-x
Then the envelope of a Lie algebra g over Alg in Mor(LieAlg, F'(Alg)) with respect to

Mor(LieAlg, F'(Alg)) is exactly the universal enveloping algebra U(g) (cf. [9]): U(g) =
EnVMor(LieAlg,F(Alg))g.

EXAMPLE 3.10 (Stone-Cech compactification). In the category Tikh of Tikhonov spaces
the Stone—Cech compactification 5 : X — SX is an envelope of the space X in the class
Com of compact spaces with respect to the same class Com: X = Env®X.

Proof. Here one uses [13, Theorem 3.6.1], which states that any continuous map f : X - K
into an arbitrary compact space K can be extended to a continuous map F : X — K.
Since (X)) is dense in SX, this extension F' is unique, and therefore g : X — X is an
extension in Com with respect to Com. By the remark containing , in the case L =M
each extension is an envelope, so § is an envelope. =

EXAMPLE 3.11. The completion XV of a locally convex space X is an envelope of X

in the category LCS of all locally convex spaces with respect to the class Ban of Banach

spaces: XV = Envpes X.
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Proof. Let us denote the natural embedding of X into its completion by ¥x : X — XV
(we use the notation of [2]).

First, each continuous linear map f : X — B into an arbitrary Banach space B
uniquely extends to a continuous linear map F : XY — B (here one can refer, for
instance, to the general theorem for all uniform spaces [I3, Theorem 8.3.10]). Hence, the
completion ¥x : X — XV is an extension of X in LCS with respect to the subclass Ban.

Note that Ban separates morphisms on the outside in LCS. By Theorem [3.8] this means
that any extension o : X — X’ with respect to Ban is a bimorphism in LCS, i.e. o is
injective and o(X) is dense in X’. Let us show that in addition ¢ is an open map: for
any zero neighborhood U C X there is a zero neighborhood V' C X’ such that

o(U) 2 V No(X). (3.23)

We can assume that U is closed and convex. Then KerU = (¢ U is a closed subspace
in X. Consider the quotient space X/KerU and endow it with the topology of normed
space with unit ball U + KerU. Then (X/KerU)Y will be a Banach space, and we will
denote it by A/U. The natural map (the composition of the quotient map X — X/Ker U
and the completion X/KerU — (X/KerU)Y) will be denoted by 7y : X — X/U. Since
o : X — X’ is an extension with respect to Ban, the map ny : X — X/U extends to
some continuous linear map (ny)’ : X' — X/U:

X —2— x

\ 7
/
v ¥ (mv)

X/U

If we denote by W the unit ball in X/U, i.e. the closure of U + KerU in (X/KerU)Y =
X /U, then for the zero neighborhood V = ((717)") =1 (W) we obtain the following chain,

which proves (3.23]):

yeVNnoX) = xeX y=o(x)&yecV

= JreX y=o) & (m7v) (y) = (7v) (o(2)) = 7y () € W

rzeU
= JrxeU y=o(x) = yecal).

Thus, 0 : X — X’ is an open and injective continuous linear map, and o(X) is dense
in X’. This means that X’ can be perceived as a subspace in the completion XV with
the induced topology. That is, there is a unique continuous linear map v : X’ — XY such
that

X
o vx
X// v \+XV

We conclude that ¥y : X — XV is an envelope of X in LCS with respect to Ban. m
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3.2. Refinement

3.2.1. Refinement in a class of morphisms by means of a class of morphisms.
Suppose we have:

— a category K, called the enveloping category,

— a category T, called the repelling category,

— a covariant functor F': T — K,

— two classes I" and @ of morphisms in K whose domains are objects of F(T); I is called
a class of realizing morphisms, and @ a class of test morphisms.

Then:

e For X € Ob(K) and X’ € Ob(T) a morphism ¢ : F(X’) — X is called an enrichment
of the object X € K in the class I' over the category T by means of the class @ if o € I
and for any object B in T and any morphism ¢ : F(B) — X in @ there is a unique
morphism ¢’ : B — X’ in T such that

X
ocel’
V NG (3.24)
(so')% r

(]
F(B) -"7 5 P(x)

e An enrichment p: F(E) — X of X € Kin I" over T by means of ¢ is called a refinement
of the object X € K in the class I' over the category T by means of the class @ if for
any other enrichment o : F(X’) — X (of X € K in I" over T by means of @) there is a
unique morphism v : £ — X’ in T such that

X
7 y (3.25)
F(v
FE) - 25 px)
In what follows, we are almost exclusively interested in the case when T = K and

F : K — K is the identity functor. As in the case of envelopes, we formulate the definitions
for this situation separately.

e A morphism o : X’ — X in K is called an enrichment of the object X € Ob(K) in the
class I' by means of the class @ if o € I' and for any morphism ¢ : B — X in @ there
exists a unique morphism ¢’ : B — X’ in K such that

X
e N 20

B--=->X

e An enrichment p: E — X of X € Ob(K) in I' by means of @ is called a refinement of
X in the class I' by means of @ if for any other enrichment o : X’ — X (of X in I" by
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means of @) there exists a unique morphism v : E — X’ in K such that

X
N (3.27)

E — 7EILU7 EY XI

For a refinement p : F — X we use the notation

p=refh X. (3.28)
The very object F is also called a refinement of X in I" by means of &, and is denoted
by

E = Refl x. (3.29)

REMARK 3.12. As in the case of envelopes, the refinement Ref X (if any) is defined up
to isomorphism. The question when the correspondence X +—» Refg X can be defined as
a functor is discussed below starting from p. [70}

REMARK 3.13. If I = (), then, of course, neither enrichments nor refinements of the
objects of K exist in I'. So this construction is interesting only if I" is a non-empty class.
The following two situations will be of special interest:

— I' = Mono(X) (the class of all monomorphisms of K); then we will use the notation
refor° X := refy°°® X Reflom X := Reflyo® X (3.30)

— I' = Mor(K) (the class of all morphisms of K); in this case it is convenient to omit I’
from the formulations and notation, so we will be speaking about refinements of X € K
i K by means of @, and the notation will be simplified to

refe X := refgor(K) X, RefgX := Refglor(K) X. (3.31)

REMARK 3.14. Another degenerate, but this time informative case is when @ = §). It is
essential that for a given object X, @ does not contain morphisms coming to X:

Py ={ped:Ranp=X}=0.

Then, obviously, any morphism ¢ € I' coming to X, o : X < X' is an enrichment
of X (in I' by means of the class of morphisms (}). If in addition I" = Mono, then the
refinement will be the initial object of the category Monox (if it exists):

Reng = min Monox.

On the other hand, if K is a category with 0, and I" contains all morphisms going from 0,
then the refinement in I" of each object by means of the empty class of morphisms is 0:
refy X = 0.

REMARK 3.15. Another extreme situation is when & = Mor(K). For a given object X the
essential thing here is that @ contains the local identity of X. Then for any enrichment
o the diagram

X+——2 X'

\X g
1 s

B
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implies that ¢ is a coretraction (moreover, the dashed arrow is unique). In the special
case of I' C Mono this is possible only if o is an isomorphism. As a corollary, ref,\FAor(K) X
coincides here with X (up to isomorphism).

PROPERTIES OF REFINEMENTS.

1° Suppose X C I'. Then for any object X and any class ® of morphisms:

(a) every enrichment o : X + X' in X by means of ¢ is an enrichment in I’ by
means of P;
(b) if there are refinements refg X and refg X, then there is a unique morphism p :

Refy X « Refl X such that
X
ref% X refg X
(3.32)

Ref X ¢ —'— — Refl X
(c) if there is refl X € X, then refh X = ref X.
2° Let X, I',® be classes of morphisms, and suppose for an object X that
(a) every enrichment o : X < X' in I' by means of @ belongs to X.
Then:

(b) a refinement of X in I" by means of @ exists if and only if there exists a refinement
of X in I'N X by means of @; in this case refg = refgmx;

(¢) if X C I, then the existence of a refinement of X in X by means of @ automat-
ically implies the existence of a refinement of X in I' by means of ® and their
coincidence.

3° Suppose ¥ C &. Then for any object X and any class of I' morphisms:

(a) every enrichment o : X + X' of X in I" by means of @ is an enrichment of X in
I' by means of ¥;
(b) if there are refinements reff; X and refg X, then there is a unique morphism « :

refl, X — refl X such that
X
refg X refg X
(3.33)

Refl X — —"— =+ Refl X
4° Suppose & C W o Mor(K). Then for any object X and for any class I' of morphisms:

(a) if an enrichment o : X < X' in I' by means of ¥ is at the same time a monomor-
phism in K, then it is an enrichment in I’ by means of ®;

(b) if there are refinements refl, X and refl X, and refl, X is at the same time a
monomorphism in K, then there is a unique morphism (3 : requ; X « refg X such
that
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ref L / W X 530

Rewa < - - - Ref€p

5° Let I',® classes of morphisms and a monomorphism p : X < Y in K satisfy the
following conditions:

(a) there is a refinement Ref50¢X (by means of po® = {poy; ¢ € P});
(b) there is a refinement Refl ¥
(c) porefsy erI.

Then there is a unique morphism v : Reff:ods X — Refg Y such that

X+——2 v
reff:oq;, XT porefy Y Trefg Y (335)
Ref/ s X — '~ S Ref, Y

e Let us say that in a category K a class @ of morphisms is generated on the outside by
a class ¥ of morphisms if
¥ C ¢ CWo Mor(K).

The following fact is dual to Theorem and is proved by analogy:

THEOREM 3.16. Suppose in a category K a class @ of morphisms is generated on the out-
side by a class W of morphisms. Then for any class I' of monomorphisms (not necessarily
all) and any object X the existence of refg X is equivalent to the existence of reffl; X, and

refl, X = refl X. (3.36)

e Let us say that a class @ of morphisms in a category K separates morphisms on the
inside if for any morphisms a # 5 : X — Y there is a morphism ¢ : M — X in @ such
that aop # o .

The following result is dual to Theorem

THEOREM 3.17. If a class @ of morphisms separates morphisms on the inside, then for
any class I' of morphisms:

(i) every enrichment in I by means of @ is an epimorphism;
(ii) a refinement in I' by means of ¢ exists z'f and only if there exists a refinement in
I ' Mono by means of ®; in that case refl = remeEp',
(iii) of I' D Epi, then the existence of a refinement in Epi by means of ¢ automatically
implies the existence of a refinement in I' by means of @, and their coincidence.

e Let us recall that a class @ of morphisms in a category K is called a left ideal if
Mor(K) o @ C .
The following is dual to Theorem [3.7}
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THEOREM 3.18. If a class @ of morphisms separates morphisms on the inside and is a
left ideal in a category K, then for any class I' of morphisms:

(i) every enrichment in I' by means of @ is a bimorphism;

(ii) a refinement in I' by means of @ exists if and only if there exists a refinement in
I' N Bim by means of @; in that case refg = reff;mBim;

(iii) #f I" contains all bimorphisms, then a refinement in I' by means of @ exists if and
only if there exists a refinement in Bim by means of @, and refg = refgim .

3.2.2. Refinement in a class of objects by means of a class of objects. A special

case is when I" and/or & are classes of all morphisms from a given subclass of Ob(K). An

exact formulation for the case when both I" and @ are defined in this way is the following.

Suppose we have a category K and two subclasses L and M of Ob(K).

e A morphism o : X’ — X is called an enrichment of the object X € K in the class L by
means of the class M if for any B € M and any morphism ¢ : B — X there is a unique
morphism ¢’ : B — X’ such that

X
% o
AN

B--=-+X
m m
M L

e An enrichment p : F — X of X € K in L by means of M is called a refinement of the
object X € X in the class L by means of the class M, in symbols

p = refy X, (3.37)

if for any other enrichment o : X’ — X (of X € K in L by means of M) there is a unique
morphism v : £ — X' such that

X
7 VU (3.38)

v

E--"=%X
m m
L L

The very object E is also called a refinement of X € K in L by means of M, and we
write
E = Refy; X. (3.39)

The following two extreme situations in the choice of L can occur:

— If L = Ob(K), then we speak about a refinement of the object X € K in the category K
by means of the class M, and the notation will be
refy X :=refy X,  Refy X := Refy X. (3.40)

— If L =M, then the notions of enrichment and of refinement coincide: every enrichment
of X € K inL by means of L is a refinement of X in L by means of L (sinceif p: E — X
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and o : X' — X are two enrichments of X in L by means of L, then in diagram (3.38])
the morphism v exists and is unique just because o is an enrichment); for simplicity,
in this case we will be speaking about a refinement of X in L, and the notation will be

reff X =:ref" X, Reff X =: Ref" X. (3.41)

e Let us say that a class M of objects in the category K separates morphisms on the inside
if the class of all morphisms going from objects of M has this property, i.e. for any
morphisms « # 8 : X — Y there is a morphism ¢ : M — X such that aop # o .

Theorem |3.18| implies

THEOREM 3.19. If a class M of objects separates morphisms on the inside, then for any
class L of objects:

(i) every enrichment in L by means of M is a bimorphism,
(ii) a refinement in L by means of M exists if and only if there exists a refinement in the

class of bimorphisms going from L by means of M; in that case refy = refﬁim(L’K) .

3.2.3. Examples of refinements

EXAMPLE 3.20. A simply connected covering used in the theory of Lie groups is from the
categorical point of view a refinement in the class of pointed simply connected coverings
by means of the empty class of morphisms in the category of connected locally connected
and semilocally simply connected topological spaces (see definitions in [33]).

EXAMPLE 3.21. The bornologification (see definition in [22]) Xporn of a locally convex
space X is a refinement of X in the category LCS of locally convex spaces by means of

the subcategory Norm of normed spaces: Xporm = Refros X

Proof. This follows from the characterization of bornologification as the strongest locally
convex topology on X for which all the imbeddings Xp — X are continuous, where B
runs over the system of bounded absolutely convex subsets in X, and Xp is a normed
space with unit ball B (see [22, Chapter I, Lemma 4.2]). =

EXAMPLE 3.22. The saturation X* of a pseudocomplete locally convex space X is a
refinement of X in the category LCS of locally convex spaces by means of the subcategory
Smi of Smith spaces (see definitions in [2]): X4 = Refgss X

Smi .

3.3. Connection with factorizations and with nodal decomposition

3.3.1. Connection with projective and injective limits. The similarity between
the notions of envelope and projective limit is formalized in the following

LEMMA 3.23. The projective limit p = Liglpi X — @Xi of any projective cone {p* :
X — X' i e I} from a given object X into a covariant (or contravariant) system {X*; !
is an envelope of X in an arbitrary class {2 containing p with respect to the system

{p'siel}:

p= h&lpi €N = Env?pi;iel} X = 1£1XZ (3.42)
In particular, this is always true for 2 = Mor(K):
M . 3
Envio ) X = lim X", (3.43)
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Proof. First, p is an extension of X with respect to {p'}, since the definition of projective
limit guarantees that for any p’ there exists a unique continuation 77 on l'&lX i

X —— lim X’
’x e (3.44)
Xj

Suppose now that o : X — X’ is another extension. Then for any morphism p’ : X — XJ
there is a unique morphism v’ : X’ — X7 such that

X;}X/

AV v @ (3.45)

the following elements will be commutative: the two upper triangles (each has one dashed
arrow) and the perimeter (without dashed arrows). This together with the uniqueness of
v’ in the upper right triangle implies that the lower triangle (with two dashed arrows) is

commutative as well:
J _J i _J i__
(t]ov')oo=1ulo(vioo)=1lop' =p

o 0yt
i
vioo =p

The commutativity of the triangle with two dashed arrows means in turn that X’ with
the system of morphisms v’ is a projective cone of the covariant system {X*; t1}. So there
exists a unique morphism v such that for any j in the diagram

/ :
X

the lower triangle is commutative. On the other hand, the upper right triangle here
is also commutative since this is diagram turned around, and the perimeter is
commutative since this is diagram turned around. Together with the uniqueness
of p in the system of all those perimeters with different j this implies that the upper left

= ov' =v.
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triangle is also commutative:
fmiovoo=vioo=pl
(W {WjOP—Pj p) Ter=e

We observe that there is a morphism v such that diagram (3.4) is commutative (with
E = lim X*). It remains to verify that such a morphism is unique. Let v’ be another
morphism with the same property: p = v’ o 0. Consider the diagram

X7

)%
ImX'
N A
Here (besides the upper left triangle) the upper right triangle will be commutative (since
this is diagram (3.45)) turned around), and the perimeter as well (since this is diagram
(3.44)) turned around). Together with the uniqueness of the arrow v/ in the upper right
triangle, this implies that the lower triangle is also commutative:
J ! — — ) .
movieo=mlop=p ;i
vioo=pl
This is true for each index j, so v/ must coincide with the morphism v which we con-
structed before. m

LEMMA 3.24. Let §2 be a monomorphically complemented class in a category K, { X L{

a covariant (or contravariant) system, and {p* : X — X*; i € I} a projective cone from a

given object X into {X%; ul}. If p= yani X — @Xi exists, then in its factorization
P = [pOEpy, ,upeiﬂ,speﬁ,

the epimorphism ¢, is an envelope of X with respect to the system {p%; i € I} of mor-

phisms in (2:

Q
Eljm pt = €p = env{gpi;iel} X, Ran Eljm i = Rane, = Envi,i ey X (3.46)

Proof. By definition of projective limit every p’ has an extension 77 to lim X*?. The
restriction of ©/ to Rane,, i.e. the composition 77 = 77 o y,,, is an extension of p’ to
Rane, along €,:

p
X—sp>Ran€p‘u—p>l'£le (347)
Q/Tj _ - -
ol XJ L - —

Such an extension 77 is unique since €, € Epi, and we can say that €, is an extension of
X in 2 with respect to the system {p’}.
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Now, let 0 : X — X’ be another extension of X in {2 with respect to {p’}. As in the
proof of Lemma we find a morphism v such that v oo = p. We have

VOO =p=pOE&p,
and since o € £2, p, € 102, there exists a diagonal morphism § such that
doo =c¢p,.
This morphism is unique since o € 2 C Epi. n
The dual results are as follows.
LEMMA 3.25. The injective limit p = liﬂpi X @Xi of any injective cone {pil :
X «+ X% i € I} into a given object X from a covariant (or contravariant) system {X*; !

is a refinement of X in an arbitrary class I’ of objects containing p by means of the system
{phiel}:

pz@pi el = Reffpi;iel}X:thXi. (3.48)
In particular, this is true for I' = Mor(K):
Mor(K . 1
Refyo ) ) X = lim X", (3.49)

LEMMA 3.26. Let I' be an epimorphically complementable class in a category K, {X°*; Lg
a covariant (or contravariant) system, and {p": X « X% i €I} an injective cone from
{X% ]} into a given object X. If p = hgpi : X ligXi exists, then in its factorization
p=ppoc, pp €l e,€l
the monomorphism p, is a refinement of X in I' by means of the system {p';i € I}:
r r

ref{,isicry X = Hp = Haing Refy,i,;cry X = Dom p, = Dom Haing - (3.50)

3.3.2. Existence of envelopes and refinements for complementable classes

LEMMA 3.27. Let 2 be a monomorphically complementable class in a category K. Then
for each object X and any class @ of morphisms,

envy X = env?%; pear X (3.51)
(this means that if one of these envelopes exists then so does the other and they coincide).

Proof. Let ¢ = p, 0, be a factorization with p, € ¥ and e, € £2. We need to verify
that the extensions with respect to the classes @ and {e,; ¢ € P} are the same. Let
0 : X — X' be an extension of X in {2 with respect to {e,; ¢ € ®}. Then in the diagram

o X,
<
'
a I
K e |
Rane, ,
llhp //@'
-
Yy« ~©

the existence of €’ for which the upper little triangle is commutative implies the existence
of ¢’ for which the lower right triangle is commutative, and since the lower left triangle
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is commutative, we conclude that so is the perimeter. In addition, ¢’ is unique since o is
an epimorphism. Hence, o : X — X’ is an extension of X with respect to @.

Conversely, suppose that o : X — X’ is an extension of X with respect to @. Then
for any ¢ € @ there exists a morphism ¢’ such that in the diagram

X—7 X

Ve
the perimeter is commutative. The lower left triangle is commutative as well due to (2.39)),
hence so is the quadrangle
X—2 X
|
% I
Rane, /
\L/—‘sa _ /Sa/
Y&~
Here o € £2 and p, € 2. Thus, there exists a diagonal ¢’:

X— X
\ <
-
€ Ko I
Rane, /
iﬂ«p _ /@/
Yy« -~
In particular, the upper triangle is commutative, and since this is true for any ¢ € @,
0:X — X'is an extension of X with respect to {e,; p € P}. m

PROPERTIES OF ENVELOPES IN MONOMORPHICALLY COMPLEMENTABLE CLASSES. Let
2 be a monomorphically complementable class in a category K.

1° For each morphism ¢ : X — Y in K the epimorphism €, in the factorization ¢ =
e © € (defined by the classes +02 and £2) is an envelope of X in £2 with respect to p:

envfp2 X =¢,, Envg X =Rane,. (3.52)

2° If K is a category with finite products, then each object X in X has an envelope in (2
with respect to an arbitrary finite set @ of morphisms going from X.

3° If K is a category with products@ then every object X in K has an envelope in 2
with respect to an arbitrary set @ of morphisms going from X.

4° If X is a category with products, then every object X in K has an envelope in {2 with
respect to an arbitrary class @ of morphisms going from X and having a subset which
generates @ on the inside (see p. .

5° If K has products, and is co-well-powered in {2, then every object X in K has an
envelope in 2 with respect to an arbitrary class @ of morphisms going from X.

(*) In 3°-5° we assume that K has products over arbitrary index sets, not necessarily finite.
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Proof. 1° The morphism ¢, is an extension of X in {2 with respect to ¢, as is seen from
the diagram
X —"* 4y Ran €y
\ 7 (3.53)
® v x He
Let 0 : X — N be another extension of X in {2 with respect to ¢:
X—2 3N

\ 7
® ¥ 3
Y

We have a commutative diagram

X 4 Y
x /
N
€ He
Rane,

Here o € {2 and p, € +12, hence there exists a diagonal of the lower quadrangle:

X—*% 4y
XN%
€y ‘ Ko

\VU

Rane,

The morphism v is the one in diagram which connects the extension o with the
envelope €. Its uniqueness follows from the epimorphy of o.

2° Let X be an object and @ a finite set of morphisms. Clearly, it is sufficient to
pick in @ a subset X = {p: X — Y, 0 € @} of morphisms going from X. Then the
envelope with respect to @ is the same as the envelope with respect to . Consider the
product [ ] cgx Y, of objects and the product [ cgx ¢ : X — [ cex Y, of morphisms.
The envelope of X with respect to @ is exactly the envelope of X with respect to one
morphism, HLPE‘15X . We conclude by applying 1°.

3° Let K be a category with products over an arbitrary (not necessarily finite) index
set. Then the above reasoning works in the case when @ is a set (not necessarily finite)
of morphisms.

4° Let ¥ C @ be a subset (not a proper class) generating @ on the inside. By 3°, every
object X has an envelope with respect to ¥. And by this envelope coincides with
the envelope with respect to @.

5° Let X be a category with products (over an arbitrary set of indices), A an object
in K, and @ a class of morphisms (not necessarily a set). The idea of the proof is to replace
the class @ by a set M of morphisms such that the envelope will be the same. As in 2°, we
can assume that @ consists of morphisms going from X. Then for any ¢ € @ we consider
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the morphism e,. By Lemma [3.27, we can replace ¢ by the class {e,; ¢ € ?}:

Epi _ Epi
envg X = eV o) X.

Next we recall that all £, belong to {2, and since our category is co-well-powered in
the class {2, we can choose among €, a set M such that every €, will be isomorphic to
some € € M, ie. €, = ¢t o€ for some isomorphism ¢. The set M now replaces the class
{e4; ¢ € @} (and hence the class @), and so 3° works. =

The dual results for refinements look as follows.

LEMMA 3.28. Let I' be an epimorphically complementable class in a category K. Then for
every object X and every class @ of morphisms,

refh, X = ref{wweds} X (3.54)

(this means that if one of these refinements exists then so does the other and they
coincide).

PROPERTIES OF REFINEMENTS IN EPIMORPHICALLY COMPLEMENTABLE CLASSES. Let I’
be an epimorphically complementable class of morphisms in a category K.

1° For each morphism ¢ : X < Y in K the monomorphism ., in the factorization
@ = i, 0 €, (defined by the classes I' and I'Y) is a refinement of X in I' by means

of p:
ref, X =y,  Ref X = Dom p,. (3.55)

2° If K is a category with finite coproducts, then every object X in K has a refinement in
I' by means of an arbitrary finite set & of morphisms going to X.

3° If K is a category with copmducts@ then every object X in K has a refinement in I’
by means of some set @ of morphisms going to X.

4° If K is a category with coproducts, then every object X in K has a refinement in I’
by means of an arbitrary set @ of morphisms going to X such that there is a set that
generates @ on the inside.

5° If X has coproducts and is well-powered in I", then every object X in X has a refinement
in I’ by means of an arbitrary class @ of morphisms going to X.

3.3.3. Existence of envelopes and refinements in categories with nodal decom-
position. The general properties on p. when applied to {2 = Epi and 2 = SEpi, give
the following;:

PROPERTIES OF ENVELOPES IN Epi AND IN SEpi IN A CATEGORY WITH NODAL DECOM-
POSITION. Let K be a category with nodal decomposition.

1° For each morphism ¢ : X —Y in K:

— the epimorphism reds ¢ © coimy @ in the nodal decomposition of ¢ is an envelope
of X in the class Epi of all epimorphisms with respect to p:

env:ipi X =redy, ¢ 0 coimy, ¢, Envzpi X =Imy p; (3.56)

(?) In 3°-5° we assume that K has coproducts over arbitrary index sets, not necessarily finite.
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— the epimorphism coimy, @ in the nodal decomposition of ¢ is an envelope of X in
the class SEpi of strong epimorphisms with respect to ¢:

envssaEpi X = coime @, EnvssaEpi X = Coimy . (3.57)

2° If K has finite products, then every object X in K has envelopes in Epi and SEpi with
respect to an arbitrary finite set @ of morphisms going from X.

3° If K is a category with products@ then every object X in K has envelopes in Epi and
in SEpi with respect to an arbitrary set @ of morphisms going from X.

4° If K is a category with products, then every object X in X has envelopes in Epi and in
SEpi with respect to an arbitrary class & of morphisms going from X such that there
s a set that generates @ on the inside.

5° If K is a category with products, co-well-powered in Epi (respectively, in SEpi), then
every object X in X has an envelope in Epi (respectively, in SEpi) with respect to an
arbitrary class @ of morphisms going from X.

PrOPOSITION 3.29. IfK is a category with products, with nodal decomposition, and co-
well-powered in Epi, then every object X in K has an envelope in each class {2 O Bim
with respect to an arbitrary right ideal @ of morphisms going from X which separates
morphisms on the outside@ and

, Eoi
env X =envEB™ X = env;” X.

Proof. By property 5°, there exists an envelope envgpp X. By Theorem.( his env_elope
is a monomorphism, and hence a bimorphism. Then by property 1°(c) on p. 4 envq5pl X =
envBm X Now by Theorem [3.7, envB™ X =envy X. m

The dual results for refinements look as follows.

PROPERTIES OF REFINEMENTS IN Mono AND SMono IN A CATEGORY WITH NODAL
DECOMPOSITION. Let K be a category with nodal decomposition.

1° For each morphism ¢ : X <Y inK:

— the monomorphism im., @ o reds, @ in the nodal decomposition of ¢ is a refinement
in the class Mono of all monomorphisms in X by means of p:

ref'\;Iono X = imy @ oredy @, Ref'\;'ono X = Coimy, @ (3.58)

— the monomorphism imy @ in the nodal decomposition of ¢ is a refinement in the
class SMono of strong monomorphisms in X by means of p:

refZMono X =imx o, RefiMono X =Imo . (3.59)

2° If K is a category with finite coproducts, then every object X in K has refinements in
Mono and in SMono by means of an arbitrary finite set @ of morphisms going to X.

3° If K is a category with coproducts @ then every object X in K has refinements in
Mono and in SMono by means of an arbitrary set ® of morphisms going to X.

() Similarly to footnote ().

(*) See definition on p.

(°) In 3°-5° we assume that K has coproducts over arbitrary sets of indices, not necessarily
finite.
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4° If K is a category with coproducts, then every object X in K has refinements in Mono
and in SMono by means of an arbitrary class @ of morphisms coming to X such that
there is a set which generates @ on the outside.

5° If X is a category with coproducts, and well-powered in Mono (respectively, in SMono),
then each object X in K has a refinement in Mono (respectively, in SMono) by means
of an arbitrary class @ of morphisms going to X.

ProprosiTIiON 3.30. If K is a category with coproducts, with nodal decomposition, and
well-powered in Mono, then every object X in K has a refinement in an arbitrary class
I' O Bim by means of an arbitrary left ideal @ of morphisms going to X which separates
morphisms on the inside@, and

refl X = ref8™ X — refy°™ X,

3.3.4. Existence of nodal decomposition in categories with envelopes and re-
finements. By analogy with definitions on p. [3I] we will say that in a category K:

— epimorphisms discern monomorphisms if from the fact that a morphism p is not a
monomorphism it follows that p can be represented as . = u/ oe where ¢ is an epimor-
phism which is not an isomorphism;

— monomorphisms discern epimorphisms if from the fact that a morphism ¢ is not an epi-
morphism it follows that e can be represented as ¢ = poe’ where p is a monomorphism
which is not an isomorphism.

THEOREM 3.31. Suppose that in a category K:

(a) epimorphisms discern monomorphisms, and dually, monomorphisms discern epimor-
phisms;

(b) every immediate monomorphism is a strong monomorphism, and dually, every im-
mediate epitmorphism s a strong epimorphism;

(c) every object X has an envelope in Epi with respect to any morphism starting from
X, and dually, in every object X there is a refinement in Mono by means of any
morphism coming to X.

Then K s a category with nodal decomposition.

Proof. Consider a morphism ¢ : X — Y.

Suppose € : X — N is an envelope of X in Epi with respect to ¢, and denote by (£
the dashed arrow in : p = Boe. Note first that 8 is a monomorphism. Indeed, if not,
then by (a), there exists a decomposition 5 = ' o m where 7 is an epimorphism, but not
an isomorphism. If we denote by N’ the range of 7, then we get a diagram

(3.60)

() See definition on p.
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where by definition ¢/ = 7 o ¢, and this is an epimorphism, as a composition of two
epimorphisms. Thus, ¢’ is another extension of X with respect to . Hence, there exists
a unique morphism v such that

X
7 N
N**B**N/
Here
roe=¢ = vomoe=voe =e=1yo0e = vorm =1y,
voe' = = mowvoe =moe=€& =1y 0 = mov=1p.

That is, 7 is an isomorphism, contrary to our assumption.

Similarly one can prove that £ is an immediate monomorphism. Indeed, any factor-
ization 8 = 8’ o 7 leads again to diagram , and the same reasoning shows that 7 is
an isomorphism.

The fact that 8 is an immediate monomorphism together with condition (b) implies
that g is a strong monomorphism.

Denote by p: M — Y the refinement of Y in Mono by means of ¢, and by a the
dashed arrow in the corresponding diagram , i.e. ¢ = poa. Using the dual reasoning
to the one used when proving that 3 is a strong monomorphism, we can show that « is
a strong epimorphism.

Consider now a diagram

As we already observed, here « is an epimorphism, hence « is an extension of X in Epi
with respect to . At the same time ¢ is an envelope of X in Epi with respect to ¢. Hence

there exists a morphism v such that
J K
(6%

M —— N
As a corollary, the following diagram is commutative as well:
X sy
QJ \ Tﬁ (3.61)
M —— N
Similarly, 8 is a monomorphism, so it is an enrichment of Y in Mono by means of .
At the same time, p is a refinement of Y in Mono by means of ¢. Hence, there exists a
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morphism v’ such that

Y
i
M —— N
As a corollary, we get
X v
o * ; (3.62)
M —— N
From (3.61)) and (3.62)) we have
B ovoa=¢p= f ovoa = v=1,
m m m m
Mono Epi Mono Epi

that is, the following diagram is commutative:

Here ¢ = v o a is an epimorphism, hence so is v. On the other hand, y = fow is a
monomorphism, hence so is v. Thus, v is a bimorphism, and ¢ = o wv o « is a nodal
decomposition of p. m

THEOREM 3.32. Suppose that in a category K:

(a) strong epimorphisms discern monomorphisms and strong monomorphisms discern
epimorphisms m

(b) each object X has an envelope in the class SEpi of all strong epimorphisms with
respect to an arbitrary morphism that goes from X, and dually, in each object X
there is a refinement in the class SMono of all strong monomorphisms by means of
an arbitrary morphism that comes to X.

Then K is a category with nodal decomposition.

Proof. Take a morphism ¢ : X — Y.
By (b), there is an envelope envzEpi X: X - EnviEp' X. Denote by a the morphism
that extends ¢ onto EnvssoEpi X:

X

SEpi
envy; Xl

SEpi v
Envw X

(") See definitions on p.
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Similarly, by (b) there is a refinement ref‘zl\/"’"0 Y: RefﬂwonO Y — Y. Denote by § the
morphism that lifts ¢ to refiM°”° X:

X = - S RefSEY

o lrefi’\’b"" Y

Y

Pasting these triangles together along the common side ¢, and throwing away this
side, we obtain a quadrangle:

X —B> Reff;Epi Y

SEpi SMono
envy, XJ/ Jreﬂp Y

EmP Y — v
» e
Here envzEpi X is a strong epimorphism, and ref2M°"° Y a monomorphism, so there is a
diagonal §:
/8 .
X—— " S RefSEy
>
. ~
enViEpl XJ/ _ — JrefiMonoY (363)
-7
EmvP Y — v
» «

Let us show that  is a bimorphism.

Suppose first that § is not a monomorphism. Then, since strong epimorphisms discern
monomorphisms (by (a)), there is a decomposition § = ¢’ o e where ¢ is a strong epimor-
phism which is not an isomorphism. As a corollary, the following diagram is commutative:

)

X Y
enViEpi XJ \ Trefirwono v
EnvyP X ———— RefP' Y
| b

€| Pl

+ -

Mo-— 9
We see that impiM°"° Y o ¢’ is a continuation of ¢ along € o enviEpi X, which in turn is
a strong epimorphism (as a composition of two strong epimorphisms). This means that
€o envssaEpi X is an extension of X in SEpi with respect to ¢. Hence, there is a morphism

v from M to EnviEpi X such that diagram (3.4) is commutative:

SEpi SEpi
V w‘ X

X
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SEpi SEpi
© @
epimorphism, this implies voe = 1);, which means that ¢ is a coretraction. On the other

We now have voeo envZEP'X = enszp' X = 1p oenv™® X, and since env) ' X is an

hand, ¢ is an epimorphism, and hence an isomorphism. This contradicts the choice of .

Thus, § must be a monomorphism. By analogy we prove that it is an epimorphism.
Let us now add ¢ to diagram (3.63)) and twist it as follows:

X#Y
~

EnvoEP X — 2 RefS™'y

SEpi SMono
envy, X refw Y

We then see that ¢ = ref2M°”° Yodo envfoEpi X is a nodal decomposition of . m

3.4. Nets and functoriality. In general, the operations of taking envelopes and refine-
ments are not functors. But under some assumptions they are, and in the last part of
this section we discuss this. Let us make the following definition. Suppose (2, &, I" are
classes of morphisms in a category K.

e Let us say that the envelope Envg can be defined as a functor if there exist

E.l. amap X — (E(X),ex) that to each object X in K assigns a morphism ex : X —
E(X) in K which is an envelope in 2 with respect to &:
E(X)=Eny X, ex=envyX,
E.2. a map o — E(«) that turns each morphism « : X — Y in K into a morphism
E(a): E(X) — E(Y) in K in such a way that
X —F L E(X)

I
al | E(a) (364)
. <
Yy — S E(Y)

and the following identities hold:
E(lx)=1px), E(Boa)=E(B)oE(x). (3.65)
Clearly, in this case the map (X, a) — (E(X), E(«a)) is a covariant functor from X into K,
and X — ex is a natural transformation of the identity functor (X,a) — (X, «) into
the functor (X, o) — (E(X), E(«)).
e Let us say that the envelope Env;g can be defined as an idempotent functor if in addition
to E.1 and E.2 one can ensure the condition

E.3. for each X € Ob(K) the morphism eg(xy : £(X) — E(£(X)) is the local identity:
E(E(X))=E(X), epx)=1px), X €O0Ob(K). (3.66)

REMARK 3.33. If 2 C Epi, then implies
E(ex) = 1px), X € Ob(K). (3.67)
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Indeed, if we insert o = ey into (3.64)), we obtain

X = E(X
exJ JE(ex
E(X) 1p(x)
E(X) ———— E(E(X)) =

ie. E(ex)oex = lg(x)oex, and since ex € §2 C Epi, we can cancel it: E(ex) = 1p(x).
e Let us say that the refinement Refg can be defined as a functor if there exist
R.1. a map X — (I(X),ix) that to each object X in K assigns a morphism ix :
I(X) — X in K, which is a refinement in I" by means of &:
I(X) =Refs X, ix =refs X
R.2. a map a — I(«) that turns each morphism « : X < Y in K into a morphism

I(a) : I(X) < I(Y) in K in such a way that

XX [(X)

4\
. I
Y 2 I(Y)

and the following identities hold:
I(lx) =11x), I(Boa)=1I(B)ol(a) (3.69)

In this case (X, a) — (I(X),I(«)) is a covariant functor from K into K, and X + ix
is a natural transformation of the identity functor (X,a) — (X, a) into the functor
(X,a) = (I(X), I().

e Let us say that the refinement Refg can be defined as an idempotent functor if in
addition to R.1 and R.2 one can ensure the condition

R.3. for each X € Ob(K) the morphism iy(xy : I(X) <= I(1(X)) is the local identity:

REMARK 3.34. If I" C Mono, then (3.70]) implies
I(ix) =17x), X € Ob(K). (3.71)

REMARK 3.35. For envelopes, in the most important case when {2 C Epi, the identities
(3.65) automatically follow from E.1 and E.2. Dually, for refinements, when I" C Mono,
the identities (3.69) automatically follow from R.1 and R.2.

3.4.1. Nets of epimorphisms. Suppose that to each object X in a category K there is
assigned a subset A% in the class Epi™ of all epimorphisms of K going from X, and the
following three requirements are fulfilled:

(a) for each X the set N is non-empty and is directed to the left with respect to the
pre-order (2.17) inherited from Epi™
Vo, e NX Ipe NX poo&p—o;
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(b) for each X the covariant system of morphisms generated by N'X given by
Bind(N¥) == {¢J; p,o e N¥, p = 0} (3.72)

(the morphisms +§ were defined in ([2.18)); by (2.19) this system is a covariant functor
from AX considered as a full subcategory in EpiX into K) has a projective limit in K;

(c) for each morphism o : X — Y and each 7 € N'Y there is 0 € N and a morphism
al : Rano — Ran 7 such that

X—* v
|

ol J/T (373)
v o

Ranoc — —— 2 RanT

(for given a, o and 7 the morphism «7, if it exists, is unique, since o is an epimor-

phism).
Then:

— We call the family N' = {NVX; X € Ob(K)} a net of epimorphisms in K, and the elements
of the sets NX elements of the net N.

— For each X the system Bind(NX) defined by will be called the system of binding
morphisms of the net N over the vertex X. Its projective limit (which exists by (b)) is
a projective cone whose vertex will be denoted by X/, and the morphisms going from

it by UN:@peNX ty : Xy — Rano:

XN
/y . w (p— o) (3.74)

Ranp ——— Rano

In addition, by (2.18)), the system N'X is also a projective cone of Bind(NX):

X
/ . N (p— o) (3.75)

Ranp ——  Rano

so there exists a natural morphism from X into the vertex X of the projective limit
of the system Bind(NX). We denote this morphism by @NX and call it the local
limit of the net N at the object X:

lim NX
X - - = > XN
\ / (0 € N¥) (3.76)
o oN
Rano

— The element o of the net in diagram (3.73)) will be called a counterfort of the element
7 of the net.

Examples of nets of epimorphisms will be given in Sections [5.4] and [5.5]
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THEOREM 3.36. Let N be a net of epimorphisms in a category K. Then:

(i) for each object X in K the local limit h&lNX : X — X is an envelope envpy X in
K with respect to the class N :
. X _ .
@N = envy X; (3.77)
(ii) for each morphism o : X — Y in K and any choice of local limits @NX and
@N Y the formula

ay = lim lim agooy (3.78)
TENY ceNX

defines a morphism an : Xnr — Y such that

MNX:envN X

X Xy =Envpy X
I
C{ . (3.79)
YLn/\/Y:envNY N
Y Yn = Envpy Y

(iii) the envelope Envypr can be defined as a functor.

Proof. (i) By Lemma @NX = envx X. Here one can replace NX by N, since
NX is exactly the subclass in A consisting of morphisms with X as domain: I&HN X =
envyx X =enva X.

(ii) Let us first explain the meaning of . Take a morphism « : X — Y. For each
7 € NY denote

ol =T1oaq. (3.80)

Clearly, the family {a” : X — Ran7;7 € NY} is a projective cone of the system
Bind(NY) of binding morphisms:

X
a/ \a“ (r — ) (3.81)

Rant ———— Ranv

By (c) for each 7 € N'Y there are 0 € N¥ and a morphism a7 : Rano — Ran T such
that diagram (3.73) is commutative, and we have already denoted by a” the diagonal
there:

o =Toa=aloo. (3.82)
Let
Ay = al oo, (3.83)
Then we obtain a diagram
jm

x Af ! (0 e NY) (3.84)
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Note that for any other p € N'X such that p — o the following equality analogous to

(13.83)) is true:

Q=g opy, p—>o. (3.85)
Indeed, for p — o diagram (3.73)) can be added to the diagram

X —2 Yy

I

[e3%

Rano —G>>I{?an7 (3.86)

— -

Ranp— — - —""a

(here the dashed arrow is initially defined as o o9 o; since such an arrow, if it exists, is

unique, we deduce that this is the morphism « ) So we have

T T C 1 o T
QN =Qp 00N = QpOLly0pN = Q,0pN.

From (3.85) it follows that the definition of aj, in (3.83) does not depend on the
choice of 0 € N'X, since if 0/ € NX is another element such that there exists a morphism
a7, : Ran¢’ — Rant for which diagram (3.73) is commutative (with o replaced by ¢'),
then we can take p € NX standing to the left of o and ¢/, in symbols p — ¢ and p — o’
(at this moment we use property (a) of a net of epimorphisms), and get

T T T _Bs3) 7 /
Ay =Qp 00N = Q0PN == Qg 00y

We can deduce that now formula (3:83) correctly defines a map 7 € N'Y — ;. Let
us show that {a}, : X»» — Ran7; 7 € NV} is a projective cone Bind(NY). We have

/ NM (r—veNY) (3.87)

Ran7'4> Ranwv

For 7 — v diagram ([3.73]) can be added to the diagram

X—* Yy
Ran a — % SRanrt (3.88)
— 3 Ranv

(where the dashed arrow is initially defined as ¥ o a7 ; since such an arrow, if it exists, is
unique, we deduce that this is the morphism o). Using this diagram we have

v r v - > 838) G3D v
ooy = 1loajoony = ajoon e}

)

From diagram (3.87) it now follows that there exists a natural morphism aar from X
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into the projective limit Y of Bind(NY):

a% A (e NY) (3.89)

Recall now that by property (b) of nets the passage from X to I'&HBind(N'X) can be
understood as a map. The further steps of building ajs (the choice of the vertex X
of the cone @ Bind(N %), and then the choice of the arrow s such that all diagrams
are commutative) are also unambiguous, so the correspondence o — anr can also
be treated as a map.

Note further that for the morphisms a s the diagrams of the form are commu-
tative. In the diagram

NX

lim
X = XN
\
x % |

Ran Tt | an
/ N [
LmNY +

all the (small) triangles are commutative: the upper triangle is so because it is the perime-
ter of (3.84), the left triangle because this is a variant of formula (3.80]), the lower triangle
because up to notation it is diagram ([3.76)), and the right triangle because it is a rotated

diagram ([3.89)). Therefore
TNo]'glNyoa:of:TNoaNOI'LnNX (r e NY).

Y

One can interpret this as follows: each of the morphisms im N o a and a,r o 1£1N' X
is a lifting of the projective cone {a” : X — Rant; 7 € NV} for the system of binding
morphisms Bind(Ay ) which we were talking about in diagram to the projective
limit of this system. That is, im N'"Y o & and axr o lim N X are the same dashed arrow in
the definition of projective limit, for which all the diagrams of the form

X-——=--- + Y
Y
N e e
Ran Tt

are commutative. But such an arrow is unique, so
@Nyoa:a/\/ol'&n./\/’x.
This gives diagram ((3.79).

(iii) The theorem on well-ordering of the class of all sets [25] V, 4.1] allows us to define
the operation of taking local limit as a map:

. . X
X — lim Bind(N7)

(i.e. there is a map that assigns to each X € Ob(K) a concrete projective limit of the
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subcategory Bind(NX) among all its projective limits in K). Let us show that in this case
the resulting map (X, &) — (X, an) is a functor, that is,

(Ix)nv =1xy, (Boa)y =pBnoan. (3.90)
Suppose first that « = 1x : X — X. Then

G2 - )

o "= roa=10lx=7 = aloc =o' =7 =" o0
= oL =1Ll = Q=L 00N =TN.
So in diagrams (3.89) we can replace oy, by 7a:
Xfofafo%XN
N (reNY)
TN TN
RanT

These diagrams are commutative for all 7 € NX, and the dashed arrow a is defined
as the lifting of the projective cone {a}, = 7ar : Xnr — RanT} to the projective limit
{a : Xx — Ran7}. Such an arrow is unique, so it must coincide with the morphism
1x,., for which all these diagrams are trivially commutative.

Let us now prove the second identity in (3.90). Consider morphisms X = Y LNy3
Take v € N'Z and, using property (c), choose first 7 € A’Y and a morphism 3Y such that
vo = fYor, and then, again using (c), choose ¢ € N'X and a morphism a7, such that
Toa = o) oo. We get

X 2 Y Z

1T

Ranoc —~—= Ranr

If we remove the middle arrow, then we obtain

X Boa

al JU
B oo
Rano ———— Ranwv

which can be understood as follows: the morphism 8Y o o is exactly the composition
of the dashed arrows from diagram (3.73]), but the difference is that Y is replaced here
by Z, a by B o, and 7 by v. Hence there exists a morphism (8 o a)? such that

BYoaz = (Boa)y. (3.91)
This equality is used in the following chain:

vy ofBn ocany=pBoTnoay = Bloal ocon=(Boa)joon
—— —— —— —_———

[ [ I I
B, ajy (Boa)y (Boa)i
I I
BY oTn ay oonN

—(Boa) B vy o (Boa)y.
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If we omit the intermediate calculations, we arrive at

vy o (Byoay)=(Boa)iy =uvvo(Boa)y.
This is true for each v € N'Z. So this can be treated as if both By o an and (8o 7))y
were liftings of the projective cone {(Boa)y; : Xnv — Ranv; v € N4} for Bind(N?) (and
this family is indeed a projective cone due to diagram where one should replace
Y by Z, and a by 8o «) to the projective limit of this system. Thus, both Sar o apr and
(B o T)ar are exactly the dashed arrow in the definition of projective limit, for which all
the diagrams

Xny———-—--— >IN
\ (veN?)
(Boa) X N
Ranwv

are commutative. But this dashed arrow is unique, so
Brnoax = (BoT)n-
This is the identity (3.90). m

THEOREM 3.37. Let N be a net of epimorphisms in a category K that generates a class @
of morphisms on the inside: N C & C Mor(K) o N. Then for any class 2 of epimorphisms
in K with

{lm V%5 X € Ob(K)} C £2 C Epi(K), (3.92)
the following hold:

(a) for each object X inK,
1&1/\/)‘ =env¥ X; (3.93)
(b) the envelope Env can be defined as a functor.
Proof. By Theorem
@NX =envy X = envxlfor(K) X.
On the other hand, by (i), @NX belongs to a narrower class {2, so by 1°(c) on p.
yinj\/'x —envy X = en ™ X — envid X.

Further, since A generates @ on the inside, and {2 consists of epimorphisms, by (3.14)

we have
@NX =envy X = env/'\\/',‘"(K) X
This proves (3.93). Part (b) follows from Theorem iii). m
One can get rid of the left side of (3.92)) if the class 2 is monomorphically comple-
mentable:

= envf/X =envy X.

THEOREM 3.38. Let N be a net of epimorphisms in a category K that generates a class
& of morphisms on the inside: N C @ C Mor(K) o N. Then for each monomorphically
complementable @ class §2 of epimorphisms the following hold:

(®) See definition on p.
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(a) for each object X in K the morphism EBNX in the factorization (2.39) defined by

the classes Y82 and £2 is an envelope envg X in £2 with respect to ®:

Elim A = env¥ X; (3.94)

(b) for each morphism o : X — Y in K and any choice of env X and envyY there
exists a unique morphism EnvéﬁZ o Env‘q(52 X — Env;;2 Y in K such that

env;g X

X—" SEnvg X
|
al | Envg e (395)
(9]

envg Y -
Y — S EnviY

(¢) ifK is co-well-powered in §2, then Envg can be defined as a functor.
Proof. (a) Since N generates @, and (2 consists of epimorphisms, by (3.14) we have
enviy X = env¥ X. Hence (3-46)) implies (3-94):

envg X = envj?/X = Elim Nx -

(b) The property (3.95)) is proved as follows. First we add diagram (3.79)) by decom-
posing I'&HJ\/‘X and @NY:

jm
= Do e
XTg-X)EnVéX—DOm‘LL@NX Ml'g/\[x XN
aJ/ JOCN
envy Y 0 H@NY
Y ——— Envg Y = Dom ,ur&m/y Y
g

Then we represent the inner quadrangle as

22
env g

X
X— Enng = Domm»&l/\/x

AN OHyim v X
J z
enwvyy H@ NY
Y ——

Env“g Y = Dom /L]'&]NY — Yy

Here the upper horizontal arrow, envg X, belongs to {2, and the second lower horizontal
arrow, m-&n nv, belongs to I' = £2+. Hence there exists a morphism ¢ such that
env;},2 X

X—— Env,“gX = Domuy&n,\/x

QAN OHyim pX
(IJ/ ‘5 &
4 )
envg Y #EN’Y

Y—>EnvgY:Domul-£lNY4>YN

This ¢ will be the vertical arrow in (3.95)) that we need.
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(c) Let X be co-well-powered in {2, i.e. for each object X the category 2% = 2NEpi™
is skeletally small. Let Sy be its skeleton, which is a set. Using Theorem we can fix a
map X — Sx which assigns to each object X a skeleton Sy in £2%. To define the envelope
Env as a functor, we now define (by the axiom of choice) a map X € Ob(K) — env X
€ Sx. Then the object Envé2 X is defined as the domain of the morphism env¥ X, and
the morphism Env a in arises automatically (as the unique possible morphism). m

3.4.2. Nets of monomorphisms. Suppose that to each object X in a category K there
is assigned a subset Ay in the class Monox of all monomorphisms of K coming to X, and
the following three requirements are fulfilled:

(a) for each object X the set Nx is non-empty and is directed to the right with respect
to pre-order (2.12]) inherited from Monox:

Vo, p e Ny o e Ny p—o & p —o;

(b) for each object X the covariant system of morphisms generated by the set Ny given
by

Bind(Nx) := {»); p,oc € Nx, p— 0o} (3.96)
(the morphisms »; were defined in ; according to , this system is a co-
variant functor from Ax considered as a full subcategory in Monox into X) has an
injective limit in K;
(c) for each morphism a : X — Y and each 0 € Nx there is 7 € Ny and a morphism
ol : Domo — Dom 7 such that

X—> Y

E - (3.97)

- \
aa
Domo — — - DomTt

(for given «, o and 7 the morphism a7, if it exists, is unique, since 7 is a monomor-
phism).

Then:

— We call the family /' = {Nx; X € Ob(K)} of sets a net of monomorphisms in K, and
the elements of the sets Nx elements of the net N.

— For each X the system Bind(Nx) defined by will be called a system of binding
morphisms of the net N over the vertex X. Its injective limit (which exists by (b)) is
an injective cone whose vertex will be denoted by X, and the morphisms coming to

it by pN:hﬂaeNx »xy : Xy < Rano:

XN
V . w (p— o) (3.98)

Domp —  Domo
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In addition, by (2.13)), the system ANx is also an injective cone of Bind(Nx):

X
V%ZN (p— o) (3.99)

Dom p ——— Domo

so there exists a natural morphism into X from the vertex X of the injective limit
of Bind(Nx). This morphism will be denoted by lig./\/'x and called a local limit of the
net N at the object X:

g s
Xny——+—- + X
e N 3.100
;N\ / (0 € Nx) ( )
Domo

— The element 7 of the net in diagram (3.97)) will be called a shed for the element o of
the net.

The following results are dual to Theorems [3.36H3.38

THEOREM 3.39. Let N be a net of monomorphisms in a category K. Then:

(i) for each object X in K the local limit liglj\/'x : Xy — X is a refinement refpr X of
X in X by means of the class N':
@NX = refar X; (3.101)
(ii) for each morphism o : X — 'Y inK and for choice of local limits MNX and lig/\/'y
the formula

oy = lim lim 7y oal (3.102)
v ey

defines a morphism an : X — Y such that

YﬂNx:refNX
X Xy = refy X (3.103)
I
lim Ny =refpr Y <
Y Yy = refa Y

(iii) the refinement Refnr can be defined as a functor.

THEOREM 3.40. Let N be a net of monomorphisms in a category K that generates a
class ® of morphisms on the outside: N C & C N o Mor(K). Then for every class I' of
monomorphisms in X that contains all local limits, the following hold:

(a) for each object X inK,
lim N = refg X; (3.104)

(b) the refinement Refl can be defined as a functor.
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THEOREM 3.41. Let N be a net of monomorphisms in a category K that generates the class
& on the outside: N C & C NoMor(K). Then for every epimorphically complementable@
class I' of monomorphisms the following hold:

(a) n X there erists a net N' of monomorphisms such that for any object X in K the
morphism Hing Nx in the factorization is a refinement reng in I' by means
of ¥:

P Nx = refb X, (3.105)

(b) for each morphism o : X — Y in K and any choice of refg X and refg Y there is a
unique morphism Refl o : Reff X — Refl Y in K such that

ref,g X r
X" Refh x

.| rett o (3.106)
refflj Y T
Y<+——Refg YV
(¢) if X is well-powered in I', then Refk can be defined as a functor.

3.4.3. Existence of nets of epimorphisms and semiregular envelopes

THEOREM 3.42. Suppose a category K and classes {2 and © of morphisms in it satisfy
the following conditions:

RE.1. K s projectively complete;

RE.2. 2 is monomorphically complementable;

RE.3. K is co-well-powered in 2;

RE.4. @ goes fromm Ob(K) and is a right ideal in K.

Then:

(a) there is a net N of epimorphisms in K such that for each object X in X the morphism
E@Nx in the factorization (2.39)) is an envelope envg X in 2 with respect to ®:

EmAX = envy X; (3.107)

(b) for each morphism o : X — Y in K and any choice of envy X and envyY there
exists a unique morphism Envy o : Enviy X — Envy Y in K such that

envg X 0
X —Envg X
OCJ iEnvg « (3108)
env Y

y — ™ EnvlY
(c) the envelope Envy can be defined as a functor.

o If RE.1-RE.4 are fulfilled, then we say that the classes {2 and @ define a semireqular
envelope in K, or the envelope Envg is semiregular.

() See definition on p.
(*%) In the sense of the definition on p. @
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Proof of Theorem. (a) By RE.3, for each X the category 2% = 2NEpi~ is skeletally
small. Let Sx be its skeleton (which is a set). Using Theorem we can choose a map
X +— Sx that to each object X assigns a skeleton Sx in £2¥.

For every object X in K set X = {¢ € & Domp = X} (from RE.4 it follows that
&X £ ()) and denote by 24x the class of finite subsets in #X. To each object X in K and
each morphism ¥ € 24x we assign a morphism

U= ]]v:X— ]]Ranv,

pew pev

and morphisms py € I' and ey € Sx such that
U =y oy (3.109)

(since Sx is a skeleton in 2%, such morphisms are unique). Let NX = {ey; ¥ € 24x }.
Since N'¥ C Sy, this is a set, and since the correspondence X + Sy is a map, we obtain
amap X — NX.

(b) Let us check that A satisfies the axioms of a net of epimorphisms (p. [70). First,
we show that N is directed to the left with respect to the pre-order inherited
from EpiX. For any ¥, ¥’ € 24x consider the diagram

’

Ran¥ «+—" —Ran¥V U¥ — " Ran¥’
II Ranv Il Rany IT Rany
Yew YEFUW! Yew

where m and 7’ are natural projections. Let us decompose the arrows going from X by

using (3.109):
Ey X Egr

Raney Ran gy Raneg/ (3.110)

U«J/l Jﬂ\puzp’ l%p’

’

Ran¥ +—" RanP UW¥W —C 3 Ran¥’

We represent the left side as a quadrangle:

Ew X
/ lswuq/’

Raneyg Ranegyy-

]

Ranv¥ TOLy g/
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Here eyyys is an epimorphism, and py a strong monomorphism, hence there exists a

/ [

leftward horizontal arrow:

Raney ¢« — — — Ranegyu
/Jq/l
Ran@ TO Ly !

For the same reason there is a rightward arrow in (3.110f), and we obtain a diagram

ST

Raneg « — — —Ranegug — — — > Raney
This means that in the category 02X the morphism gy’ majorizes ey and ey-:
Eguw’ — Ew, Epuw! —> Epr.

The second condition in the definition of the net of epimorphisms is fulfilled automat-
ically: since K is projectively complete, the system Bind(NX), defined in (3.72)), always
has a projective limit.

Let us check the third condition. Let o : X — Y be a morphism in ¥ € 24, . By

RE.4, @ is a right ideal, hence for each ¢ € ¥ C @ the composition ¥ o a belongs to @,
and we can consider the set ¥ o a € 2gx. We obtain the diagram

X—* Yy
\\ lu'f I1 v
YEW
w@ﬂ"“):%“ Ran¥ =——— [ Ranv

pew

Let us represent the morphisms coming to Ran¥ as their factorizations (3.109)):

X—* Y
5&[/oal \L51P
Ranegoq Raney

S
Hoa Ran¥

This diagram can be represented as a quadrangle

X Eg o
E&T/oal \

Raneyoq Raney

\ Iz
Koo Ran¥
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2. So there must exist a rightward horizontal arrow:

Eg ot
Elpoal

Ranegoq — — — > Raney

\ Iz
Horoa Ran¥

This will be the horizontal arrow that we need in (3.73)):

where egoq € 2 and py € I' =

X—2 Yy

ElPoal lE\I/

5
Ranegon — — - Raney

(c¢) Note further that

envy X =env 2 x & nv{w ve2p} X fenvNX

Now the proof of Theorem [3.38] can be applied. =

3.4.4. Existence of nets of monomophisms and semiregular refinements. The
dual result for refinements look as follows:

THEOREM 3.43. Suppose a category K and classes I' and @ of morphisms satisfy the
following conditions:

RR.1. X is injectively complete;

RR.2. I' is epimorphically complementable in X;

RR.3. X is well-powered in I';
RR.4. @ goes to m Ob(K) and is a left ideal in K.

Then:

(a) there exists a net N of monomorphisms m K such that for each object X in K the
morphism /,L]ENX in the factorization (2 is a refinement refg X in I' by means

®:
of g N = refg X (3.111)

(b) for each morphism o : X — Y in K and any choice of refh X and refL Y there is a
unique morphism Refl o : Refl X — RefL Y in K such that

ref(II: X r
X2 Refl X
o RefL o (3.112)
‘L refl v

Y
Y 2 Refl Yy

(c) the refinement Refl can be defined as a functor.

e If RR.1-RR.4 are fulfilled, then we say that the classes I' and ¢ define a semiregular
refinement Refg in K, or the refinement Refg s semireqular.

(*) In the sense of the definition on p. @
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3.4.5. Pushing, regular envelope and complete objects
e Let us say that a class £2 of morphisms pushes a class @ of morphisms if
Vi) € Mor(K) Vo € 2 (Yoo € P =1 ed). (3.113)

REMARK 3.44. Obviously, (3.113) holds if & = {¢ € Mor(K); Ran¢ € M} for some class M
of objects in K.

LEMMA 3.45. If £2 pushes @, then the composition cop: X — X" of any two extensions
p: X =X ando: X' — X" (in 2 with respect to @) is an extension (in 2 with respect
to P).

Proof. This is seen from the diagram

X2 ox 2 x"

I /
| o /
1 v

® M & R

Since p is an extension, for any ¢ € @ there exists ¢’, and since {2 pushes @, we have
¢ € @. Then since ¢ is an extension, there exists ¢”. This way every next arrow is
uniquely defined by the previous one. =

PROPOSITION 3.46. Suppose 2 C Epi. Then for each A € Ob(K) the following conditions
are equivalent:

(i) each extension o : A — A’ in (2 with respect to ® is an isomorphism;
(ii) the local identity 14 : A — A is an envelope of A in {2 with respect to @;
(iii) there ewists env A € lso.

If in addition {2 pushes @, then these conditions are equivalent to:
(iv) A= Envy X for some X € Ob(K).

e We will say that an object A in K is complete in a class {2 C Epi with respect to a class
& if it satisfies the above properties (i)—(iii).

Proof of Proposition [3.46 (i)=-(ii). It follows from (i) that for the local identity 1, :
A — A (which is also an extension) we have the diagram

A
N
AT A
which can be considered as the special case of , and this means that 14 is an envelope.

(ii)=-(iii) is obvious.

(iii)=-(i). Let p : A — E be an envelope and at the same time an isomorphism. Then
for any extension o : A — A’ we can take a morphism v in and we get voo = p € Iso,
hence o is a coretraction. On the other hand, o € §2 C Epi, hence o € Iso.

(iii)=(iv) is also obvious: if env A € Iso, then A 22 Env A.

It is sufficient to prove (iv)=-(i) in the case when (2 pushes ®. Suppose that A =
Envi X for some X € Ob(K). Then A can be considered as an envelope of X, i.e. there
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exists a morphism p : X — A which is an envelope. Take any extension o : A — A’
of A. By Lemma |3.45| the composition oo p: X — A’ is an extension of X, so there is a
morphism v such that (3.4]) is commutative:

Now we have
vooop=p=1lg0p = voo=14.
Ei
In the last equality, v is unique, since ¢ is an epimorphism. We observe that the extension

o is subordinated to the extension 14, and since this is true for each o, the morphism p
is an envelope of A. m

Let us denote by L the class of complete objects in K (in {2 with respect to @). We
consider L as a full subcategory in K.

PRrROPOSITION 3.47. Under the conditions of Theorem the functor of envelope (X, @)
— (E(X), E(a)) on L CK is isomorphic to the identity functor:
VAeL E(A)=A VYa:A— A FE(a)=eaoaoey’. (3.114)
m m
L L
Proof. Take an arbitrary morphism « : A — A’ in L, i.e. a morphism in K whose domain
and range belong to L. Then in diagram (3.64]) the horizontal arrows are isomorphisms, so

—1

A2 4

| [0

’ €a’ ’
A—— A n

o We say that classes 2 and @ define a regular envelope in a category K, or the envelope
Envg is reqular, if in addition to conditions RE.1-RE.4 of Theorem the class 2
pushes @.

THEOREM 3.48. If 2 and & define a regular envelope in K, then Envé2 can be defined as

an idempotent functor.

Proof. Consider the functor of envelope E built in Theorem [3.42] and denote by Ly the
class of all objects which are values of the map X — E(X):

Aely & 3X € Ob(K) A= FE(X). (3.115)
Define a system of isomorphisms

lx, X ¢Lo,
VX €Ob(K) (x=9 . # Lo
ex X el
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(this definition is correct by Proposition [3.46)). Now consider the maps X — F(X),
X — fx, a— F(a), defined by

VX € Ob(K) F(X)= {E(X)’ Xélo o _ {ex, X ¢ Lo,

B X, X € Ly, lx, X €L,
Vo € Mor(K)  F(a) = (ran B(a) © E(a) 0 CI;olm E(a)

The connection with the functor F is reflected in the diagram

X
a‘/ E(a) F(o) (3116)
Y

For any X the morphism fx : X — F(X) is an envelope of X, since fx and ey are
connected by the isomorphism (x. The map (X, a) — (F(X), F(«)) is a functor, since,
first,

F(Boa)= CRan B oE(foa) Ocsolma = (Ran 8 o E(B) o E(a) Oclgolma
= CRanﬁ OE(ﬁ) OC501m5 o CRana OE(Q) OCEOIma = F(ﬁ) OF(a)a

and, second, for X ¢ Ly diagram (3.116]) has the form

aJ 1e(x) E(1x)

hence

F(lx)=(xoE(lx)o(x' = 13%}() olpwx)olpx) =1lpx) =lrx),
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and for X € Ly diagram (3.116)) turns into

1xl JIE(X) F(lx)

If we replace F'(1x) by 1x, then the perimeter will still be a commutative diagram. Since
this arrow is unique we have

F(lx) =1x = 1px).
Condition holds for F' by definition: since always F'(X) € Lo, we have fpx) =
lrx) =
THEOREM 3.49 (description of envelope in terms of complete objects). Suppose that 2

and @ define a regular envelope in XK. Then a given morphism p : X — A is an envelope
(in 2 with respect to ®) if and only if the following conditions are fulfilled:

(i) p: X — A is an epimorphism;
(ii) A is a complete object (in 2 with respect to P);
(iil) for any complete object B (in §2 with respect to ®) and for any morphism & : X — B
there is a unique morphism &£ : A — B such that

X—" a4

\ L7 (3.117)
1 v ¢

B
Proof. Let p: X — A be an envelope. Then, first, this is an epimorphism, since {2 C Epi.
Second, by Proposition A Enng is a complete object. Third, if £ : X — B is a
morphism to a complete object B, then we can consider diagram (3.108]) which in this

situation has the form
p:enng

x T L A—EnviX

13 JEnvg 13

2
envg B

p—"7 L EngB

In this case envg B is an isomorphism, and as a corollary, there exists a morphism
¢ = (envB)~' o Envie.

It is the dashed arrow in (3.117)).
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Conversely, suppose (i)—(iii) hold. In our circumstances Theorem applies, so we
can consider diagram ([3.108]), now in the form

(9]
envg X
X —2 SEnvEX

4 Envgp

2
envg A

A—"0 B A

Here enng is an isomorphism (since A is a complete object). Hence if we take ¢ =
env? A~ o Env(p), we obtain

e}
envg X

X —"" L EnviX

-
-
-~
P
- 7¢

A<
On the other hand, by Proposition Enng is a complete object, so by (iii), there

exists a morphism 7 such that

X —" SEnvEX

In these diagrams both p and env X are epimorphisms, so ¢ and 7 are mutually inverse
morphisms. Thus, p = ¢ o env? X, where ( € Iso. By (2.41]), we see that p € £2, and thus
it is an envelope. m

3.4.6. Pulling, regular refinement and saturated objects
e Let us say that a class I' of morphisms pulls a class ¢ of morphisms if
Vip € Mor(K) Vo e I' (cotp e D= € D). (3.118)

REMARK 3.50. Obviously, (3.118)) holds if @ is the class of morphisms with domains in
a subclass M of objects in K.

LEMMA 3.51. If I" pulls @, then the composition cop: X < X" of any two enrichments
c: X« X" and p: X' + X" (in I by means of @) is an enrichment (in I" by means

of ®).

Proof. This is seen from the diagram




3.4. Nets and functoriality 89

PROPOSITION 3.52. Suppose I' C Mono. Then for A € Ob(K) the following conditions
are equivalent:

(i) every enrichment o : A< A" in I" by means of @ is an isomorphism;
(ii) 14 : A — A is a refinement of A in I' by means of ®;
(iii) there exists refl A € lso.

If in addition I' pulls @, then these conditions are equivalent to:

(iv) A is isomorphic to a refinement of some X € Ob(K).

e We say that an object A in K is saturated in I" C Mono by means of @ if it satisfies the
above conditions (i)—(iii).

Denote by L the class of all saturated objects in K (in I" € Mono by means of @). We
consider L as a full subcategory in K.

PrOPOSITION 3.53. Under the conditions of Theorem the functor of refinement
(X,a) = (I(X),I(«)) on L CK is isomorphic to the identity functor:

VAeL I(A)=A, VYa:A« A Ela)=i, oaois. (3.119)
m m

L L

o We say that classes I' and & define a regular refinement in K, or the refinement Refg
is regular, if in addition to conditions RR.1-RR.4 of Theorem the class I" pulls @.

THEOREM 3.54. If I and & define a regular refinement in K, then Refg can be defined
as an idempotent functor.

THEOREM 3.55 (description of refinement in terms of saturated objects). Suppose I' and
@ define a reqular refinement in K. Then a given morphism p : X < A is a refinement
(in I’ by means of @) if and only if the following conditions hold:

(i) p: X < A is a monomorphism;
(ii) A is a saturated object (in I' by means of P);
(iil) for any saturated object B (in I' by means of ®) and for any morphism & : X < B
there is a unique morphism &' : A < B such that

A
7 (3.120)
¢ e

3.4.7. Functoriality on epimorphisms and monomorphisms. Denote by KEP' the
subcategory in K with the same class of objects as in K, but with epimorphisms from K
as morphisms: Ob(KEP') = Ob(K), Mor(KEP') = Epi(K).

THEOREM 3.56. LetK be a category with products (over arbitrary index sets), and suppose
classes 2 and @ of morphisms in K satisfy the following conditions:
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— 2 is monomorphically complementable in K;
— K is co-well-powered in the class §2;

- @ goes from@K;
~@PoCP.

Then:

(a) each object X in K has an envelope Envg X in 2 with respect to d;
(b) for each epimorphism 7 : X — Y there is a unique epimorphism

Envgg2 ™ Env;},2 X — Envg Y

such that

2
envg X
X—" JEnvgX
I
I
m | Envy

Ie] +
envg Y

Yy — L EnvlY

(3.121)

(c) the envelope Envg can be defined as a functor from KEP' into KEP!,
We will need

LEMMA 3.57. If K is a category with products (over arbitrary index sets), co-well-powered
in §2, and 2 is monomorphically complementable in K, then for any class @ of morphisms
and any epimorphism w: X — Y we have

Envi,, X = EnvyY. (3.122)

Proof. Note first that the existence of the envelopes in (3.122)) is guaranteed by prop-
erty 5° on p. In addition, by 5° on p. there exists a morphism v such that (3.12])
is commutative:

X
enVV W‘X
0 v n
Envgy - — — — — = — — — -+ Envg, . X

Let us show that there is an inverse morphism. Consider the envelope envgpZ Y:Y >
Envg Y and represent it as an envelope with respect to a set M of morphisms, as in the
proof of property 5° on p. Then, as in the proof of 3° on p. replace M by a unique
morphism ¢ = erM X- By property 1° on p. the envelope with respect to ¢ will be
described as an epimorphism € in the factorization of 1:

envgf,Z Y = env]% Y = envqi2 Y =¢gy.

(*?) In the sense of definition on p. @
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We obtain a diagram

envgoﬂ_ X
Y
X Envy X
2 e -
\lnvq) Yor=eyom s,
Ve
2 “ /
m Envg Y Raney (Yom)

/ean Y=ey
Y

where (¢ o)’ is an extension of ¢) o m € @ o 7 along the envelope envgwr X. Here the
existence of the morphism § follows from the fact that env, X € £2, and p,, € 2. We
now have the diagram

(4

X
envy )‘7 w{m X
2 g 2
Envg YV ¢ - — — — — — Envg,, X

It remains to verify that v and ¢ are mutually inverse. First,

SovoenvYor=doenv, X =enviYor = 1Envgyoenv“gY07r = dov=lg,2y.
—_———

—_——
m m
Epi Epi
And second,

vodoenvy, X =voenvy Yor =env, X = lenve, xoenvy X = vod = lene, x-®
— " — T

m m
Epi Epi

Proof of Theorem [3.56] Part (a) follows from property 5° on p. Let us prove (b).
By Lemma m Envg Y = Envgmr X, and by property 3° on p. when we pass to a
narrower class of morphisms ®onw C @, a dashed arrow arises in the upper triangle of the

diagram
2
envg X
X Envy X
|
I
Envy 7
e} I
envy Yo v
™ Env“go7T X
v envg Y
Y EnvyY

It will be the dashed arrow in (3.121]), but we need to verify that it is an epimorphism
(so that it will be a morphism in KEP'). This follows from property 3° on p. since
Env;;2 T o envqﬂ2 X = envj;2 Y om € Epi, we have Envg w € Epi.
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As (a) and (b) are proven, (c) becomes a corollary due to Theorem K is co-
well-powered in {2, hence we can choose a map X — Sx, which assigns to each object
a skeleton Sx in the category 2N EpiX. Then it becomes possible to choose a map
X +— envy X, and for any epimorphism 7 : X — Y the arrow Envg 7 automatically

appears from diagram (3.121]). =

The dual results for refinements look as follows. Denote by KM°"® the subcategory in
K with the same class of objects as in K, but with monomorphisms from K as morphisms.

THEOREM 3.58. Let K be a category with coproducts (over arbitrary index sets), and
suppose classes I' and © of morphisms in K satisfy the following conditions:

— I is epimorphically complementable in K;
- K is well-powered in the class I';

- & goes tol@K;

~-T'o®d C .
Then:

(a) each object X in K has a refinement Refg X in I' by means of ®;
(b) for each monomorphism 7 : X — Y there exists a unique monomorphism Refgﬂ :
Refl X — RefL Y such that

RefL X
ud Refl X
|
T : Refg T (3123)

refg Y 4}‘
——Refg YV
(c) the refinement Refg can be defined as a functor from KMo jnto KMono,

The following lemma is used in the proof:

LEMMA 3.59. IfK is a category with coproducts, well-powered in I', and I" is epimorphi-
cally complemented in K, then for each class @ of morphisms and each monomorphism
m: X <Y we have

Refl X = Refl ;v (3.124)

(here mo® = {mop; p € P}).

3.4.8. The case of Env and Ref;. Theorem has important corollaries in the case
when the classes of test morphisms and realizing morphisms coincide, i.e. @ = (2, and
are the class of all morphisms with ranges in a given class L of objects (this is the special
case of the situation described on p. when L = M).

THEOREM 3.60. Suppose a category K and a class L of objects have the following proper-
ties:

(i) K is projectively complete;
(ii) K has nodal decomposition;

me sense of the definition on p. @
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(iii) K 4s co-well-powered in Epi;
(iv) Mor(K,L) goes from K;
(v) L separates morphisms on the outside;
(vi) L is closed with respect to passage to projective limits;
(vil) L is closed with respect to passage from the range of a morphism to its nodal image:
if Rana € L, then Imy, o € L.

Then:

(a) each object X has an envelope envk X ;

(b) each envelope envt X is a bimorphism;

(c) the envelope Envy can be defined as a functor.

Proof. Conditions (i)—(v) mean that the classes Epi and @ = Mor(K, L) satisfy the premises
of Theorem [3.42 i.e. define a semiregular envelope Envgpi = EnvEpi. In the proof of
Theorem @I this envelope is constructed by passing from the spaces Ranp € L (p € &)
to their projective limits, which belong to K by (vi), and then to the nodal images, which

belong to L by (vii). Therefore, Envfpi € L, hence by property 1° on p.

i Epi(K,L
EnvEP' = EnyEPIEL)

By construction, the class @ is a right ideal, and by (v), ¢ separates morphisms on the
outside. So by Theorem

EnvEpi(K’L) = Eninm(K’L) .

Still by Theorem an envelope in the class Bim(K,L) = Mor(K,L) N Bim exists if and
only if there exist the envelope in the class Mor(K,L), and EnvLB'm(K’L) = Env]'i/lor(K’L) . We

obtain the following logical chain:
EnvEP' = EnvEPIEL) — EpBimL)  ppMer(®L) _ ppy L
This proves (a) and (c), and incidentally (b). m
The dual result is as follows:

THEOREM 3.61. Suppose a category K and a class L of objects satisfy the following con-
ditions:

(i) X is injectively complete;
(ii) X has nodal decomposition;

(iil) K 4s well-powered in Mono;

(iv) Mor(L,K) goes to K;

(v) L separates morphisms on the inside;

(vi) L is closed with respect to the operation of taking injective limits;

(vil) L is closed with respect to passage from the domain of a morphism to its nodal

coimage: if Doma € L, then Coimy, v € L.
Then:

(a) each object X has a refinement refy X ;
(b) each refinement reft X is a bimorphism;
(c) the refinement Refy can be defined as a functor.
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3.5. Envelopes in monoidal categories

3.5.1. Envelopes coherent with tensor product. Let X be a monoidal category [26]
with tensor product ® and unit object I.

e Let us say that the envelope Envg2 is coherent with the tensor product ® in K if the
following conditions are fulfilled:

T.1. The tensor product p Q0o : X ®Y — X' ® Y’ of any two extensions p: X — X’
and 0 : Y =Y’ (in £2 with respect to @) is an extension (in {2 with respect to @).
T.2. The local identity 17 : I — I is an envelope (in {2 with respect to ®):

env 1 =1j. (3.125)
In this section we consider the case when (2 and @ define a regular envelope in K. By
Theorem this means that Envg can be defined as an idempotent functor. We denote
it by E : K — K, and the natural transformation of the identity functor into F is denoted
by e:
E(X):=Envg X, E(p):=Envyep, ex:=envyX.

The class of all complete objects in K (in 2 with respect to @) is denoted by L.

LEMMA 3.62. Let Envg be a reqular envelope coherent with the tensor product in X. Then:
(i) For any objects A € L and X € Ob(K) the envelope E(14 ® ex) of the morphism

la®ex : A® X —» A® E(X) is an isomorphism (in K and in L):
E(la®ex) € Iso. (3.126)

(ii) For any X,Y € Ob(K) the envelope E(ex ® ey) of the morphism ex ey : X QY —
E(X)® E(Y) is an isomorphism (in K and in L):

E(ex ® ey) € Iso. (3.127)

Proof. (i) Take A € L and X € Ob(K). The product of the morphisms 14 : A — A and
ex : X 52 EX)isla®ex : A®X — A® E(X). If we insert it instead of « into (3.64)),
we obtain

AR X — 2% L, B(A®X)
1A®exl lE(lA@)ex) (3.128)
A® BE(X) 2229, p(Ae B(X))
From the diagram
A X — 2%, 4g B(X) —225% |, B(A® B(X))
® + — T
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it is seen that e gp(x) 014 ® ex is an extension of A ® X (here in the left triangle we
use T.1). Hence eqgp(x) © 14 ® ex is subordinated to the envelope of A ® X:

A X — 2% L\ B(A®X)

/h
La®ex v (3.129)
|

CAQE(X)

A® E(X) E(A® E(X))

for some (unique) v. In addition, £2 C Epi, hence eagp(x) 0 1a ® ex and esgx, being
extensions, are epimorphisms. As a corollary, (3.128) and (3.129) together give

v = E(lA ® 6)()71.

(ii) For any two objects X and Y the product ofex : X — E(X) and ey : Y — E(Y)
isex®ey : XQ®Y = E(X)® E(Y). If we insert it instead of « into (3.64)), we get

EXQRY

X®Y
ex®ey‘ J{E(ex®ey) (3130)

CE(X)®E(Y)

E(X®Y)

EX)® E(Y) E(E(X)® E(Y))
From the diagram
XoV —2FY L pX)eBY) —22%Y L p(E(X) @ B(Y))
\ 7
Lo’ - g
® 4 - T

B+ -~

we see that ep(x)gr(y) ©ex @ ey is an extension of X ® Y (again in the left triangle we
use T.1). Hence eg(x)gr(y) © ex ® ey is subordinated to X ® Y

EXQ®Y

Xev E(X®Y)
+~
3X®€Y‘/ :v (3131)
B(X) ® B(Y) 225, p(p(x) o B(Y))

for some (unique) v. And as in the previous case, eR(X)®E(Y)°ex ®ey and exgy, being

extensions, are epimorphisms, so (3.130) and (3.131]) together give

v=FElex ®@ey) ' =

3.5.2. Monoidal structure on the class of complete objects. Let EnvéZ be a regular
envelope coherent with the tensor product in K, ¥ = Envg the idempotent functor built
in Theorem and L the (full) subcategory of complete objects in K. For any objects
A, B € L and any morphisms ¢, € L we define

AGB:=E(A®B), ¢ovi=E@o). (3.132)
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Notice the identity

E(X) @ E(Y) = E(E(X)® E(Y)), X,Y € Ob(K) (3.133)
(this is an equality of objects, since by Proposition always F(X),E(Y) € L).

THEOREM 3.63. Suppose Env;2 is a regular envelope coherent with the temsor product

E
in XK. Then the formulas (3.132) define a structure of monoidal category on L (with @ as
tensor product and I as unit object).

Proof. The tensor product of local identities is a local identity. Insert 14¢p instead of «
into (3.64):

e(A®B) E

ARB———FFAR®B
1A®B J{ 1A®B)
AoB—UP 8B

If we replace here E(lagp) by lA . then the diagram will remain commutative. But
®

this arrow is unique (since e(A ® B) is an epimorphism), so these arrows must coincide,
and this is used in the last equality of the following chain:

1a®1s =P B1,015) = E(lags) =1 » .
A®B

The tensor product of commutative diagrams is a commutative diagram. Suppose we
have two commutative diagrams in L:

B
¥ X / \
PN
A — C A/ —> C/
If we multiply them in K, we obtain a commutative diagram

B® B’

N

Ao A e, Cec
Then we apply the functor E and again obtain a commutative diagram:

E(B® B')

E(ga@V \x®x 9)

E(A® A) Ewey) E(C®C)
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By (3.132)) this is the diagram that we need:

E
B B’
B !’ E ’
E ’
YvRY

E
AR A

Notice that from what we already proved it follows that the tensor product of iso-
morphisms in L is also an isomorphism:

E
Y Elso = Y :=E(pR1) € lso. (3.134)
Indeed,
(p@P)o(p ' @Y™ =(pop @ (Woy ) =101=1,
s0
B 1E —1 -1
(p@Y)o(p @Y7 ) =E(p@y)oE(p” @¢~)
=B((pev)o(p @y =E(1)=1.
And similarly,
L E E
(P @Y )o(py) =1
If aupc:(A®B)®C - A® (B ® C) is the associativity transform in K, then

E __E E _E
the associativity transform o p 1 (A® B)® C - A® (B® C) in L is defined by the

diagram

E(aa,B,c)

E(A®B)® () E(A® (B®(C))

E(eA®B®lc)_1I JE(1A®€B®C)

E(E(A® B)® () E(A® E(B®(C))
(3.135)
E(A®B)&C AGEB®C)
E E A,B,C E E
(ADB)&C il A& (B&C)

(here we use (3.133) and Lemma which implies that the morphism E(eagp ® 1¢)

is invertible).

E

Let us show that the transform o is natural with respect to the tensor product:

E __E E _E
a”: ((A,B,0)—~ (A®B)®C) — ((4,B,C) » A® (B® ()).
Take morphisms ¢ : A - A’, x: B— B’, ¢ : C — C’ in L, and consider the diagram of



98 3. Envelope and refinement

naturality for a:

(A®B)@C —2° L A®(B®0)
(s0®x)®¢l ls@@(x@)w) (3.136)
(A'®B) o0 — 22 4 (B )
After applying the functor E we have
E(aa,B,c)

E(A®B)® ()
E((w®x)®w)l
E(A e B)®C)

E(A® (B C))
J/E(¢®(X®w))
E(A ® (B ©C")

E(O‘A/,B’,C/)

Let us extend this diagram as follows:

YA,B,C
e 5 -~ Blea,B,0) \\\3 E E
(A®B)®C™ — — = — — = FE(A®B)®0O) T 7EA®BEC)T — — — — = A®(B®C)
\ E(eagB®1c)™ E(la®epgc) |
| |
l (o8x)8w B((»®X)®) B(e®(x®)) o (x8w) |
| |
B + B E(eA/®B’®IC’)_1 E<1A’®eB/®C’) B + B
A’eBHYeo! —— — — — — >EB(A'®9BYec)—————EMA'®9B'gc)— — — — — — A" ®(B'®C)
- - _ E(eqr gr o) o
YA, B’ C’!
If we remove the inner vertices, we obtain the diagram of naturality for a®:
E E ol go E E
(AR B)® C A®(B®C)
E E E E
(p@x) @Y PR(x®Y)
, E , E , O413/,5110/ , E , E ,
(A@B)YeC A'®(B'@C")

Let us show that o satisfies the associativity conditions. For a they look as the
pentagon

QA,BRC,D

(A®(BeC)®D Ae(BeC)@ D)

OCAYW W‘C,D

(A®B)®@C)® D A® (B® (C® D))
(A®B)® (C® D)
(3.137)
Let us apply E and add the diagram to the following prism:
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(@a®0)®da)®Vv
a”aa

2Q®Ovm~®mvm%<
(A®0s @ MZQW Vi

2Q®Dv®mvmm<

((a®o)®a)g @v)a

((a@®o)®d, @ Vi)g

(((a®o)®4g)®v)a

(a'D'do @ Vi)g

avwos'g'v
oa

a‘o'gaev
c
c

0

(@®o)a ®@(agv)ad

(A®0s @ d®Va)g

q° g
a‘oeg'v
e 0
(@®ea)ev il a® (L) V)
g - d aq 3 q q
AQ®AD®m§vm~%< (@®0)®(@®v))a Q%ZD@EM@SN

(a®o'd'voyy

(A1 @ O®do)y w Vi

(a@®Oeag))a®v
aq

(@a®(O®ag)Na @v)a

(a®O©®d)s @ Vi)g

(A'D'dRVw)y
aq W (0O®ds @ Vi)g

a® (o®g)®v)a
a

a®MOe(gdev))
a " a d

a m (O®(g@v)a)a
[egy W (01 ® d@Va)g

QWG@E@Q:M

(@® O (g@’v)a)a

(a1 ® D®AM®<vmvm

(@a® O (g@’v))a

(@® ((o®g)®v)a)a

(d1® AQ®mV®<mvm

(@® (Oo®a)’v)a

(@® ((o®g)®v)a

(A'0Rd'Vo)g

(1@ O'd'Vo)g

(3.138)

The upper base of this prism is commutative, since this is the action of the functor E

on the diagram (3.137)), and the commutativity of the lateral sides can be verified by

changing the vertical arrows in an equivalent way:.

For example, the commutativity of the near side becomes obvious if we represent it

as the perimeter of the following diagram:
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(@eo)ae@ev)a)d

(A®0s @ G@Va)g

a
(A®2>¢ 4 nDg

(@®0)®

(@) ®

(@®0)®

(91 ®

Icd a‘n'alv

(

(deVv)d)d

(A1 ® O1) @ d9Va)g

o

0)d

(a0 d®V o)y

m
D®Am®$ \%
® (g

Gev)d+——— (a® (O

(a@®@Oe@ev)ad)a

(A1 ® (P1® d9Va))g

G@ev)d—— (@ ® O (g@ev)d

ase Oe@ev)ad

ay W (D1 @ @Va)y

Qﬂwﬁgm@ivm

(@eOeE@ev)d)d

(1 @ OR(E®V)o) g



3.5. Envelopes in monoidal categories 101

Here the upper inner triangle (or quadrangle) is the result of applying E to the diagram

XAQB,C,D

((A@B)@C)@D (A@B)@(C@D)
(6A®B®1C)®1DJ/ l6A®B®(1c®1D)

(B(A® By® C)® D E(A® B)® (C® D)

XE(A®B),C,D

(this is a corollary of (3.136])). The lower inner hexagon is diagram (3.135]) for a on the
E
components A ® B, C';, D. The big octagon can be represented as a rhombus

E((A®B)® C)® D)

E(E(W W‘ng)

E(E(A®B)® C) @ D) E(A® B)®C)® D)

E(eagp®lc)®1p) Amc@lfv)

E(A®B)®C)® D)

which is a result of applying F to the rhombus

(AeB)®(C)®
EW WD
E(A®B)®C)® F(A®B)eC)e

eA@M w@ng

E(A®B)®C)®D
which in turn results from multiplying by D on the right the diagram

(A B)®C

E(A® B)®C) E(A® B)®C

E(eAm) %)@O

E(A® B)® C)

and it can be viewed as diagram (3.64) where « is replaced by eagpp ® 1¢. Finally, the
upper right pentagon is the triangle

E((A® B)® (C® D))

E(eagB®eceD)
E(€A®B®(1C®1D))J

E(E(A® B)® (C ® D))

E(lage®eceD)

E(E(A® B)® E(C® D))
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which is a result of applying E to the triangle

(A® B)® (C® D)
€A®B®(1c®1D)J eapBR®eCceD

E(A® B)® (C ® D)

lagB®ecgD

E(A® B)® E(C ® D)

The same reasoning works for the other vertical sides of (3.138)). In addition, the
vertical arrows are isomorphisms (by Lemma and property (3.134)), so we deduce
that the lower base of this prism is commutative as well, and this is the diagram that we

need for of.

Let Ax : I® X — X be the left identity in the monoidal category K, and px : X[ —
X the right identity. For any A € Ob(L) we set

- B _
Mi=E(Oa): 10 A=E(I®A4) - E(4) = 4, (3.139)

E
ph =FE(pa): AR T =E(A®1) — E(A) = A,

and these will be the left and the right identities for L. Indeed, for any morphism ¢ :
A — A’ in L the diagrams

T@A—24 4 Al —2 4
11®s{ ls@ ¢®11l }; (3.140)
ToA — 2 g Neol—2 L u
give
E__
I&A E(I @A) —AZE00 )
11@%@—E(11®w){ ‘ga
E AE =B\,
I®A’7E(I®A’)A—(A)>A’
E pE=E(pa)
AT EA®I) ——— A
wélz—E(w@Oh)k l‘p
E E —E(pa
NG —— B 1) L2204

Moreover, the identity A; = py implies AP = E(\;) = E(p;) = p¥, and the diagram

X&A,I,B

(Ael)®@ B—21"  , A®(I®B)

P& ‘/A®/\B

A® B
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gives the upper base of the prism

E(aa1,B)

E((A®I)® B) E(A® (I® B))

E(pa®1p) E(1A®AB
E(eagi®lp) E(laQergB)

E(E(A®I)® B) ————— E(A® B) «+———— E(A@ E(I® B))
H E(PA®1B) E(1A®>‘g) H

XA 1,B

(AT & & (I B)

k%

The commutativity of its lateral sides is obvious, and the vertical arrows are isomor-

phisms, so the lower base is also commutative. m
3.5.3. Envelope as a monoidal functor

THEOREM 3.64. Let Envé2 be a regular envelope coherent with the tensor product in X.
Then the functor of envelope E : K — L built in Theorem is monoidal.

Proof. To be monoidal the functor E : K — L must define a morphism of bifunctors

E®

(X.Y) s E(X) & E(Y)) 5 (X,Y) = E(X @ Y)).

In this case this is a family of morphisms

ESy = Blex ®ey)™ : B(X) & BE(Y) = B(E(X) ® E(Y)) = E(X @)

(by Lemma all morphisms F(ex ® ey) are isomorphisms, so E(ex ® ey )~ ! exists)
and a morphism E! in L that turns the identity object I of L into the image E(I) in K;
in this situation this will be the local identity:

E'=1;:1— 1% p1).

Let us check the axioms of monoidal functor for these components. The diagram of
coherence with associativity:

E(ax,y,z)

E(X®Y)® Z) E(X®(Y®Z)

E%@y,z E?y@z
E E
EX®Y)w E(Z) EX)® E(Y © Z) (3.141)
Ef?,yglmm 1E<X><§E§,z

CE(x),B(v),B(2)

(E(X)® E(Y)) ® E(Z) E(X) & (BE(Y) & B(2))
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is translated here as follows:

E(ax,v,z)

E(XoY)®Z)

EX®(Y®Z)

E(exgy®ez) E(ex®eygz)
E(E(X@Y)@E(Z)) E(E(X)@E(Y@Z))
E(E(ex®ey)®1E(z)) E(lpx)®RE(ey ®ez))

E
YE(X),E(Y),E(Z)

E(E(E(X)® E(Y))® E(Z))

E(E(X)® E(E(Y) ® E(Z)))

To see that it is commutative, let us represent it as the perimeter of the following diagram:

Elax v,z)
BE(X®@Y)®2Z) — 7 E(X® (Y ® 7))

Elexgy ®ez) Elex @eygz)
E((ex ®ey)®egz) E(ex @ (ey ® ez))

Elep(x),B(Y),B(2))
B(E(X ®Y) ® B(2)) B(E(X)® B(Y)) ® B(2)) — B(B(X) ® (E(Y) ® BE(2))) B(B(X) ® BE(Y ® 2))

Eleg(x)®E(Y) ®1E(Z)) E(lp(x) ® ¢E(Y)QE(Z))

E(E(ex ®Cy)®1E(Z))

E(lE(X) ® E(ey ®egz))

E(E(E(X)® BE(Y)) ® E(2)) — E(E(X) ® E(E(Y) ® E(2)))

oFE
B(X),E(Y),E(Z)

(3.142)
Here the left inner triangle can be represented in the form
E((ex®ey)®ez)
E(X®Y)®2) E(E(X)® E(Y))® E(Z))
E(exoy®ez) Blepx)orv)®laz)

E(E(ex®ey)®1p(z))

E(E(X®Y)® E(Z)) E(E(E(X)® E(Y))® E(Z))
This is the result of applying F to the diagram

(exRey)Rez

XeY)oZ (E(X)®E(Y))® E(Z)

exey®ez er(x)eE(Y)®lE(2)

E(ex®ey)®1E(z)

E(X®Y)® E(Z) E(E(X)® E(Y))® E(Z)
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which in turn is the product of the two diagrams
(ex®ey)
XY EX)®E(Y) 24>E(Z)
8X®yJ leE(X)®E(Y) J llE(Z)
E(ex®ey) 1E(z)

EX®Y) E(E(X)® E(Y)) E(Z)——— E(2)

The left one is trivial, and the right one is diagram (|3.130)) transposed.
Further, the upper inner quadrangle in (3.142)):
E(ax
E(X®Y)® Z) (0xvz) E(X® (Y ® Z))
E((6X®GY)®62)J( J{ (ex®(ey®ez))
E(x

B((B(X) @ E(Y)) ® B(Z)) 22205, p(p(x) o (B(Y) © B(2))

is the result of applying E to the diagram
(X®Y)®Z axns X®(Y®2)
(GX®5Y)®GZ\L lex®(ey®ez)
(B(X)® E(Y)) ® B(Z) ——=—""— E(X) ® (E(Y) ® E(2))
and the latter is a special case of (3.136)).
Then, the lower inner quadrangle in ((3.142]):
E(apx),B(Y),EB(2))

E((E(X)® E(Y)) ® E(Z)) E(EX) o (E(Y)® E(Z)))

E(eE(X)®E(Y)®1E(Z))J/ J/E(lE(X)[@eE(Y)@E(Z))

a§<x>,E(y>,E(z>

E(E(E(X)® E(Y)) ® E(Z))

is a special case of (3.135)).

E(B(X)® E(E(Y)® E(Z)))

Finally, it is useful to represent the right inner quadrangle in (3.142) in the form

E(ex®eygz)

EXe (Y ®2) EEX)®E(Y ® Z))

E(ex ®(EY®8Z))J/
E(lpx)®ep(v)oE(2))

E(E(X)® (E(YY)® E(Z))) E(E(X)® E(E(Y)® E(Z)))

This is the result of applying F to the diagram

ex®eypz

XY ®2) EX)®E(Y ®Z)

5X®(5Y®3Z)J/ J{h;(x)@E(eY@ez)

1g(x)®ep(v)0E(2Z)

EX)® (EY)® E(Z)) EX)®EEY)® E(Z))

J/E(lE(X)(@E(eY@eZ))
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which in turn is the product of the two diagrams

ey @z

X —F S E(X) Y®Z E(YY ® Z)
€XJ JlE(X) 3Y®ezl JE(6Y®€Z)
B(X) 22, p(x) E(Y)® BE(Z2) —220 | B(E(Y) @ E(Z))

The left one here is trivial, and the right one is (3.130f) changed a little.
It remains to verify the commutativity of the diagrams for the left and for the right

identities:
EleX)—2% L pix) EXol) —2) | px)
E?XT }"E(X) E%J LEOO
& E(X) Ly I'é E(X) E(X) &1+ 185" E(X)®
In our situation they have the form
E(I®X) EO) E(X)
E(el®ex)J/ IE(AE(X))
B(I @ B(X)) L2000 | g BX))
| |
| |
E(X®n Elex) B(Y)
E(eX®1)J IE(pE(X))
BE(E(X) @ I) 2 0%E0) | popixy e 1)

and this is the result of applying F to (3.140) with X' = F(X) and p = ex. m

COROLLARY 3.65. Suppose Env;g is a regular envelope coherent with the tensor prod-
uct in K. The operation Envg turns each algebra (respectively, coalgebra, bialgebra, Hopf
algebra) A in K into an algebra (respectively, coalgebra, bialgebra, Hopf algebra) Enng
in L.

Proof. For the case of algebras and general monoidal functors this fact is pointed out
in [37]. =



4. The category Ste of stereotype spaces

In this section we discuss applications of the above results to the theory of stereotype
spaces. To make the exposition more self-contained we give a brief summary of the sim-
plest facts of the theory (for details see [2] and [3]).

4.1. Pseudocomplete and pseudosaturated spaces

4.1.1. Totally bounded and capacious sets. A set S in a locally convex space X
is said to be totally bounded (or precompact) [38] if for each zero neighborhood U in X
there is a finite set A such that the shifts of U by elements of A cover S, i.e. S CU + A.
This is equivalent to S being totally bounded in the sense of the uniform structure [I3]
induced from X (i.e. A can be chosen as a subset in S).

A set D C X is said to be capacious if for any totally bounded set S C X there is a
finite set A C X such that the shifts of D by elements of A cover S. (If D is convex, then
A can be chosen to be a subset in S.)

Let X be a locally convex space over the field C of complex numbers. Denote by X*
the set of continuous linear functionals f : X — C endowed with the topology of uniform
convergence on totally bounded sets in X. We call X* the dual space of X.

If BC X and F C X* are arbitrary sets, then we denote by B° and °F their (direct
and inverse) polars (in X* and in X):

B ={feX i |flp=swlf@| <1}, °F={oeX:|alr=sw|f@) <1},
z€B feF
Similarly, the annihilators of B and F are the sets
Bt ={feX*:VoeeB f(x)=0}, *F={zreX:VfeF f(x)=0}

LEMMA 4.1. For each locally convex space X :

(a) if B C X is totally bounded, then B® C X* is capacious;
(b) if B C X is capacious, then B® C X* is totally bounded;
(¢) if F C X* is totally bounded, then °F C X is capacious;
(d) if F C X* is capacious, then °F C X is totally bounded.

LEMMA 4.2. For each LCS X, every set A C X and every subspace E C X,
A°NEt = (A+E)°. (4.1)

[107]
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Proof. When A = () or E = 0 there is nothing to prove, so we assume that A # () and
E # 0. Then

fEANE = sup|f(a)| <1 & Vz e E f(z)=0
acA

= sup |[fla+2)[= sup |[f(a)+f(z)|<1 = fe(A+E)
acA,z€E acA,zcE ~—~~
!)\
and
fE(A+E° = sup |fla+az) <1
a€Ax€FE
= sup|f(a)l= sup |f(a+2)|<1&JacAVzeFE |flat+x)<1
acA acA,xz=0
= sup|f(a)]| <1 &V2€E f()=0 = f€A°NE". u
a€EA

4.1.2. Pseudocomplete and pseudosaturated spaces

e A locally convex space X is said to be pseudocomplete if every totally bounded Cauchy
net in X converges. This is equivalent to every closed totally bounded set in X being
compact.

This notion is connected with the usual completeness and quasicompleteness @ by the
implications

X is complete = X is quasicomplete = X is pseudocomplete.

In the metrizable case these properties are equivalent.

e A locally convex space X is said to be pseudosaturated if each closed convex balanced
capacious set D in X is a neighborhood of zero.

ExXaMPLE 4.3. Every barreled space is pseudosaturated.
EXAMPLE 4.4. Every metrizable (not necessarily complete) space is pseudosaturated.

THEOREM 4.5 (Criterion for being pseudosaturated). For a locally conver space X the
following conditions are equivalent:

(i) X is pseudosaturated;
(ii) if a set F C X' of continuous linear functionals is equicontinuous on each totally
bounded set S C X, then I is equicontinuous on X ;
(iil) if Y is a locally convex space and P is a set of continuous linear maps ¢ : X =Y,
equicontinuous on each totally bounded set S C X, then @ is equicontinuous on X.

THEOREM 4.6. For an arbitrary locally convex space X :

—if X is pseudocomplete, then X* is pseudosaturated;
—if X is pseudosaturated, then X* is pseudocomplete.

(*) A locally convex space X is said to be quasicomplete if every bounded Cauchy net in X
converges.
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LEMMA 4.7. Let ¢ : X =Y be a morphism of LCS. Then
VACX @AY = (¢) 7 (A%),

_ _ 4.2
(@) 7H0) = (X)), (¢")H0)F = p(X), 2

and if X is pseudocomplete, then
VBCY ¢ '(B)% =¢*(By.), (43)

eH0) = (e (Y*)h, @ HO)T =R (V).
4.1.3. The map ix : X — X**. The second dual space X** of a locally convex space
X is the space dual to the first dual:

X** — (X*)*
(each star x means that we take the topology of uniform convergence on totally bounded
sets). The formula

defines a natural map ix : X — X**.

e Let us say that a linear map ¢ : X — Y of locally convex spaces is open@ if the
image ¢(U) of any zero neighborhood U C X is a zero neighborhood in ¢(X) (with
the topology inherited from Y'):

YU e U(X) IV eUY) oU) D (X)NV.

Clearly, it is sufficient to claim that U is open and absolutely convex. By the obvious
formula

PpX)NV =p(p™'(V), VY (4.4)
(valid for any map ¢ : X — Y of sets), this condition can be rewritten as follows:
YU eU(X) TV eUY) oU) D (e (V).

THEOREM 4.8. For each LCS X the map ix : X — X** is injective, open and has dense
set of values in X**.

THEOREM 4.9. For an arbitrary LCS X the following conditions are equivalent:

(i) X is pseudocomplete;
(ii) ix : X — X** is surjective (and hence bijective).

THEOREM 4.10. For an arbitrary LCS X the following conditions are equivalent:

(i) X is pseudosaturated;
(ii) ix : X — X** is continuous.

THEOREM 4.11. For an arbitrary LCS X :

— if X is pseudocomplete, then X* is pseudosaturated;
— if X is pseudosaturated, then X* is pseudocomplete.

(?) We use the notion of open map in the sense different from the one used in General
topology [13].
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4.2. Variations of openness and closure
4.2.1. Open and closed morphisms. In the stereotype theory the condition dual to

the openness defined above is:

e A continuous linear map ¢ : X — Y of locally convex spaces is closed if for any totally
bounded set T' C ¢(X) C Y there is a totally bounded set S C X such that T' C ¢(.5).
This means in particular that ¢(X) is closed in Y.

THEOREM 4.12. For a continuous linear map ¢ : X —'Y of locally convex spaces:

(a) if X pseudosaturated, Y is pseudocomplete and ¢ : X — Y is open, then ¢* :
Y* — X* is closed;
(b) if Y is pseudocomplete and ¢ : X — 'Y is closed, then o* : Y* — X* is open.

For the proof we need

LEMMA 4.13. Let X be a closed subspace in a LCSY , T an absolutely convex compact
setinY, and f: X — C a continuous linear functional such that

sup |f(z)] < 1. (4.5)
zeTNX

Then there exists a continuous linear extension g : Y — C of f such that

sup |g(y)| < 1. (4.6)
yeT
Proof. Take € > 0 such that
sup |f(z)] <1—e. (4.7)
zeTNX

Since f is continuous on X, the set Z = {z € X : |f(x)] > 1 — €} is closed in X, and
in Y as well. On the other hand, by , Z is disjoint from T'. As a corollary, there is
an absolutely convex closed zero neighborhood V in Y such that

Zn(T+V)=0.
This means, in particular, that

sup  |f(z)] <1—e.
z€(T+V)NX

If we denote by p the Minkowski functional of 7'+ V' (which is a closed absolutely convex
zero neighborhood in Y'), we obtain

[f@) <A —¢)-plx), zelX.
By the Hahn—Banach theorem there is a continuous linear extension g : Y — C of f such
that

lg(y)l < (1 —¢€)-ply), yeY.

On T + V we have
sup [g(y)| < (1—¢)- sup p(y)=1-ec<1l =
yeT+V yeT+V
Proof of Theorem[{.14 (a) Let ¢ : X — Y be open. Take a totally bounded set F €
BS(¢*(Y*)), i.e. F € BS(X*) and F C o*(Y*). By Lemma |4.1(d), the polar U = °F is
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a capacious set in X, and since X is pseudosaturated, U is a zero neighborhood in X.
Therefore, since ¢ is open, there exists a zero neighborhood V' € BU(Y") such that (U) 2
©(X) NV. By Lemma [L.1|b), the polar G = V° is a totally bounded set in Y*. Let us
show that F' C o*(G).

Take f € F; we will show that there exists g € G such that f = ¢*(g). Since Y is
pseudocomplete, we have F' C ¢*(Y*) = = ¢~ 1(0)%, s0 p71(0) C £71(0). Therefore
f = hop, where h is a (uniquely determined) functional on ¢(X) (and we need to prove
that & is continuous). We have

1 > sup |f(z)| = sup |h(p(x))| = sup [h(y)| = sup [h(y)],
xzeU xzeU yep(U) yEp(X)NV

i.e. h is bounded by 1 on the intersection of the unit ball V' of the seminorm p(y) =
inf{A > 0:y € X\-V} =sup,c[9(y)| with ¢(X) where h is defined. In other words, h is
subordinated to p on ¢(X). By the Hahn—Banach theorem, i can be extended to some
continuous linear functional g € Y*, also subordinated to p, and as a corollary, lying in
V° = @. Since on ¢(X) the functionals h and ¢ coincide, we have

f=hop=gop=9"g), geG.

(b) Suppose Y is pseudocomplete and ¢ : X — Y is closed. Consider a basic open
zero neighborhood V in Y™ i.e. a set of the form

V= {g eY* :suplg(y)| < 1},
yeT

where T is a convex balanced compact set in Y (since Y is pseudocomplete, each closed
totally bounded set in Y is compact). The map ¢ is closed, hence there is a totally
bounded set S € BS(X) such that ¢(S) D T Np(X). Let

U= {feX*:sup|f(x)| < 1}.

zeS

If f e UnNg*(Y™*), then sup,cg|f(z)] <1 and f = ¢*(g) = g o ¢ for some g € Y*. Let
h = g|m. Then

sup__ |h(y)| < sup Ih(y)l::Suplh(w(x))l::igg\f(z)l< L.

yeTNp(X) yep(S) zeS
By Lemma there is an extension h’ € Y* of h such that

sup |R/(y)] < 1.
yeT

This means that A’ € V, and we obtain f = o*(h') € ¢* (V). SoUN*(Y*) C (V).
4.2.2. Weakly open and weakly closed morphisms. Here we consider weakenings

of the properties defined above.

e Let us say that a continuous linear map ¢ : X — Y of locally convex spaces is weakly
open if it satisfies the following equivalent conditions:

(i) each functional f € X* with f|ker, = 0 can be extended along ¢ to a functional
geYr: f=goy;
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(ii) the image ¢(U) of any X*-weak zero neighborhood U C X is a Y*-weak neigh-
borhood of zero in ¢(X) (with the topology induced from Y):

YU € U(X,) IV eUY,) oU) D o(X)NV (4.8)

(here X, denotes X with the X*-weak topology, and similarly Y,,);
(iii) the image ¢(U) of any X*-weak zero neighborhood U C X is a zero neighborhood
(not necessarily Y*-weak) in ¢(X):

VU € U(X,) 3V eUY) oU) 2 o(X)NV. (4.9)

Proof of equivalence. (i)=>(ii). Let U be an X*-weak neighborhood of zero in X. Then
sois U = U + ¢~ 1(0), and in addition

o(U)=p(U), U+ '(0)=0.

From the second equality it follows that U contains the polar °{f1,..., fi} of some finite
sequence of functionals f; € X* such that p~(0) C f;*(0). By (i), each f; can be
extended to some functional g; € Y*:

fi=gioep.
Letting V = °{g1,...,9x}, we have :
yeoU)=0(U) < yeo(*{fi.-... fi}) & Jwe{fi,....fr} y=o)
& dreX y=op(z) & sup|fi(z)| <1
& JreX y=¢p@) & suplgi(p(z)) <1
& JreX y=op() & sup [g(y)| <1
<~

yepX)&yeV & yeep(X)NW.
(ii)=-(iii) is obvious.
(iii)=-(i). Let f € X™* be such that Kero C Ker f. Its polar U = °f is an X*-weak
neighborhood of zero in X, so p(U) D ¢(X )NV for some zero neighborhood V' in Y. This
means that f can be extended to a functional h on ¢(X'), which is bounded on ¢(X)NV:

f=hoy, sup |h(y)| < 1.
yEp(X)NV

Hence, h is a continuous functional on ¢(X) (with respect to the topology induced
from Y). By the Hahn—Banach theorem it can be extended to a functional g € Y™,
and we have f =hop=gop. m

e Let us say that a continuous linear map ¢ : X — Y is weakly closed if ¢(X) is closed
inY.

PROPOSITION 4.14. For a continuous linear map ¢ : X =Y of locally convex spaces:

— if v is open, then it is weakly open;
— if v is closed, then it is weakly closed.
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Proof. The first part follows from condition (iii) in the definition of weak openness on
p- and the second part is obvious, as already noticed when we defined closure on
p- [[10} =

THEOREM 4.15. For a continuous linear map ¢ : X = Y of locally convex spaces:

(a) p: X =Y is weakly open < ©* : Y* — X* is weakly closed;
(b) if Y is pseudosaturated and ¢ : X — Y is weakly closed, then ¢* : Y* — X* is
weakly open.

Proof. The first assertion is exactly the equivalence of (i) and (ii) in the definition of weak
openness. Let us prove the second one. Suppose Y is pseudosaturated and ¢ : X — Y
is weakly closed. By (a), to prove that ¢* : Y* — X* is weakly open, it is sufficient to
verify that ¢** : X** — Y** is closed. Take h € ¢**(X**). Since Y is pseudosaturated,
Y* is pseudocomplete by Theorem Therefore,

S — R 7L
he e (X B ()10 B (p(0) T =iy (C((0))
(the last equality means that the map iy : Y — Y™** bijective by T heorem turns the

annihilator of the space ¢(X) , meant as a subspace in Y, into its annihilator, meant as

a subspace in Y**). This in turn means that there is y € p(X) such that h = iy (y). Since
v is weakly closed, there exists © € X such that y = ¢(z). If we denote g = ix(x), then

h=iy(y) =iy (p(@)) = ™" (iz()) = ¢""(g). =
4.2.3. Relatively open and relatively closed morphisms. Another weakening of
openness and closure of morphisms is the following.
o We say that a continuous linear map ¢ : X — Y of locally convex spaces is

— relatively open if for each zero neighborhood U in X (without loss of generality
we may assume that U is closed and absolutely convex) such that every functional
f € X* bounded on U can be extended along ¢ to some functional g € Y*,

VfeX” (sup|f(33)|<oo = JgeY™ f:gogo), (4.10)
zeU

its image ¢(U) is a neighborhood of zero in ¢(X) (with the topology inherited
from Y');

— relatively closed if for each absolutely convex compact set T C Y, if T C ¢(X), then
there is a compact set S C X such that 7" C ¢(S).

The following is obvious:
PROPOSITION 4.16. For a morphism ¢ : X =Y of locally convex spaces:

— if @ is open, then it is relatively open;
— if ¢ is closed, then it is relatively closed.

THEOREM 4.17. For a continuous linear map ¢ : X — Y of locally convex spaces:
(a) p: X =Y is relatively open < ©* : Y* — X* is relatively closed;

(b) if X is pseudocomplete and ¢ : X — Y is relatively closed, then ¢* : Y* — X* is
relatively open.
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Proof. (a) Suppose ¢ is relatively open, and T is a closed absolutely convex totally
bounded set in X*, contained in ¢*(Y™):

VieT3dgeY* [f=¢ (g)=goep. (4.11)
For the polar U = °T this means condition (4.10]) holds, and, since U is a zero neighbor-
hood in X, ¢(U) is a zero neighborhood in ¢(X) (with the topology induced from Y).
That is, there exists a zero neighborhood V' in Y such that

p(U) 2V Np(X).

Clearly, V' can be chosen to be closed and absolutely convex in Y. Let S = V°; we will
show that T' C ¢*(9), i.e.

VfeU®3heV® f=¢*(h)=hoep. (4.12)
Indeed, take f € T'= U°. Then by (4.11)) one can choose g € Y* such that f = g o ¢.
The restriction g[,(x) is bounded by 1 on the zero neighborhood V N p(X):

sup  |g(y)| < sup [g(y)| < sup [g(e(x))| = sup |f(z)] < 1.
yeVNp(X) yep(U) zeU zeU

In other words, g|,(x) on ¢(X) is subordinated to the seminorm
ply) =inf{A>0:ye -V}

By the Hahn—Banach theorem, g\¢( x) can be extended to some functional h on Y, sub-
ordinated to p:

b <ply) (WeY), hlpx) =9
From the first condition it follows that sup,cy |2 (y)| < sup, ey p(y) < 1,ie. he Ve = 8.
And from the second one, h(p(z)) = g(¢(x)) = f(z). Together this means (4.12]).

Now suppose ¢* : Y* — X* is relatively closed and let U be an absolutely convex
zero neighborhood in X satisfying . The polar T' = U° is a closed absolutely convex
totally bounded set in X*, and for it the condition is equivalent to . This
in turn means T' C ¢*(Y*), and since * is relatively closed, there exists an absolutely
convex totally bounded set S C Y™ such that

T C ¢*(5).
Hence
T={eeX:VfeT [f(x)) <1} 2{zreX:Vge S |g(p(x)) <1}
={z e X :p(x) €S} = '(°9).
Letting V = °S (a zero neighborhood in Y') we obtain
U2¢ (V) = ¢U) 20(p™ (V) = p(X)NV.
(b) Suppose U is an absolutely convex zero neighborhood in Y*, satisfying , ie.

Yu e Y (sup|v(g)|<oo = e X fu:{ogp*).
geU

In particular, for any y € T' = °U there exists £ € X** such that
iy (y) =Eop"
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Since X is pseudocomplete, by Theorem there exists € X such that ix(z) = &.
Then

Vge Y™ g(y) =iv(y)(g) = (ix(x) o ¥")(9) = ix(2)(¢™(9)) = ¢"(9)(x) = g(p(x)),
and therefore y = ¢(x). We have proved that T' C ¢(X), and since ¢ is relatively closed,
there exists an absolutely convex totally bounded set S C X such that

T C ¢(9).
We have
T° 2 ((5)° = (97)71(5°).
Now if we put V = S° (a zero neighborhood in X*), then
U2(¢")7H(V) = ¢"(U) 20" ((¢") 71 (V) = ¢"(Y")N V.
This is what we need. m

4.2.4. Connections between the three variations of openness and closure.
Propositions [£.14) and [£.16] can be strengthened as follows.

THEOREM 4.18. For a morphism ¢ : X — Y of locally convez spaces:

(a) ¢ is open < @ is weakly open and relatively open;
(b) ¢ is closed < ¢ is weakly closed and relatively closed.

Proof. In both cases the direction from left to right was already noticed in Propositions
and so we must check the reverse implications.

(a) For each zero neighborhood U in X the set U +¢~1(0) is also a zero neighborhood
in X. If f € X* is bounded on U + ¢~1(0), then, flo=1(0) = 0, so by the weak openness
of ¢, f can be extended to a functional g € Y*. This means that the zero neighborhood
U + ¢~ 1(0) satisfies (4.10)). Since ¢ is relatively open, we have

p(U) = (U +¢7(0)) 2 p(X) NV

for some zero neighborhood V in Y.

(b) First, ¢(X) = ¢(X), and second, each closed absolutely convex totally bounded
set T C p(X) is the image of some totally bounded set S C X under ¢. Together this
means that T' can be chosen to be a subset in ¢(X). Therefore ¢ is closed. m

4.2.5. Embeddings and coverings
e A continuous linear map ¢ : X — Y of locally convex spaces will be called:

— an embedding (respectively, a weak embedding, a relative embedding) if it is injective
and open (respectively, weakly open, relatively open);

— a dense embeddding (respectively, a dense weak embedding, a dense relative embed-
ding) if in addition ¢(X) is dense in Y

— a covering (respectively, a weak covering, a relative covering) if it is surjective and
closed (respectively, weakly closed, relatively closed);

— an ezxact covering (respectively, an ezact weak covering, an exact relative covering) if
in addition it is injective.
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REMARK 4.19. If a LCS X is pseudocomplete and ¢ : X — Y is an exact covering, then
for any totally bounded set S C X the restriction ¢|s : S — ¢(S) is a homeomorphism
of topological spaces.

ExAMPLE 4.20. If a locally convex space X is pseudocomplete, then the (continuous and
bijective) map i)_(l : X** — X is defined, and it is an exact covering.

EXAMPLE 4.21. If a locally convex space X is pseudosaturated, then ix : X — X** is a
dense embedding.

The following is proved in [2, Theorems 3.2, 3.1].
THEOREM 4.22. For a continuous linear map ¢ : X =Y of locally convex spaces:

- if X is pseudosaturated and ¢ : X — Y is a dense embedding, then ¢* : Y* — X* is
an ezxact covering;

- if X is pseudocomplete and ¢ : X — Y is an exact covering, then p* : Y* — X* is a
dense embedding.

4.3. Pseudocompletion and pseudosaturation

4.3.1. Pseudocompletion. As in the case of completeness, each locally convex space
X has a pseudocompletion, i.e. the “outward-nearest” pseudocomplete space. Formally
this construction is described in the following

THEOREM 4.23. There exists a map X — Vx that assigns to each locally convex space X
a continuous linear map Vx : X — XV into a pseudocomplete locally convex space XV
in such a way that:

(i) X is pseudocomplete if and only if Vx : X — XV is an isomorphism;
(ii) for any continuous linear map ¢ : X — 'Y of locally convex spaces there is a unique
continuous linear map ¢¥ : XV — YV such that

X&)Xv

|
J " (4.13)
Vy +
Yy ——=yv

From (i), (ii) it follows that for any continuous linear map ¢ : X — Y into a pseu-
docomplete space Y there exists a unique continuous linear map XV — Y such that

XL}XV

«:\_4 K/ (4.14)

Y

This means that Vx : X — XV is an extension of X in Ob(LCS) with respect to the ob-
ject C. Since C separates morphisms on the outside in LCS, by Theorem|[3.8] Vx : X — XV
is a bimorphism. This in turn implies that the morphism Vx : X — XV is unique up to
an isomorphism in Epi~.



4.3. Pseudocompletion and pseudosaturation 117

e The space XV is called the pseudocompletion, and the map Vx : X — XV the pseudo-
completion map, of the locally convex space X. From (ii) it also follows that ¢ — ¢V
is a covariant functor from the category LCS into itself: (1) o )V =¥V o p¥. We call it
the pseudocompletion functor.

THEOREM 4.24. For any locally convex space X the pseudocompletion map Vx : X — XV
is a dense embedding.

Like the usual completion, the pseudocompletion operation X — XV adds new ele-
ments to X, but does not change the topology of X.

4.3.2. Pseudosaturation. It is remarkable that there exists a dual construction, which
assigns to each locally convex space X an “inward-nearest” pseudosaturated locally con-
vex space X2:

THEOREM 4.25. There exists a map X —Ax that assigns to each locally convex space X
a continuous linear map Ax: X® — X from a pseudosaturated locally conver space X*
in such a way that:

(i) X is pseudosaturated if and only if Ax: X® — X is an isomorphism;
(ii) for any continuous linear map ¢ :' Y — X of locally convex spaces there is a unique
continuous linear map ¢* : Y% — X% such that
X <A7X XA
4\
wT I p? (4.15)
[
Y (Aiy YA

From (i), (ii) it follows that for any continuous linear map ¢ : ¥ — X from a
pseudosaturated locally convex space Y there is a unique continuous linear map ¥ — X2
such that

Ax
X —— x°
b
N (4.16)

Y

This means that Ax: X* — X is an enrichment of X in the class Ob(LCS) by means
of the object C. Since C separates morphisms on the inside in LCS, by Theorem [3.19
Ax: X% — X is a bimorphism. This implies that the morphism Ax: X% — X is unique
up to an isomorphism in Monox.

e The space X2 is called the pseudosaturation, and the map Ax: X2 — X the pseu-
dosaturation map, of X. From (ii) it follows that ¢ +— ©® is a covariant functor from
the category LCS into itself: (pop)® = 12 op”®. We call it the pseudosaturation functor.

THEOREM 4.26. For any locally convex space X the pseudosaturation map Ax: X — X
18 an ezxact covering.

The pseudosaturation X2 can be viewed as a new, stronger topologization of X, which
preserves the system of totally bounded sets in X and the topology on each of them.
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Each of the operations X — XV and X — X2 preserves the properties of being
pseudocomplete and pseudosaturated:

THEOREM 4.27. For a locally convex space X :

— if X is pseudocomplete, then so is its pseudosaturation X°;
— if X is pseudosaturated, then so is its pseudocompletion XV.

The following examples show that pseudocompletion and psudosaturation are inde-
pendent.

EXAMPLE 4.28. Let X be an infinite-dimensional Banach space, and Y = X! its dual
space with the X-weak topology. Then Y is pseudocomplete, but not pseudosaturated.

EXAMPLE 4.29. An arbitrary non-complete metrizable locally convex space is pseudosat-
urated, but not pseudocomplete.

4.3.3. Duality between pseudocompletion and pseudosaturation. The passage
to the dual space X — X* interchanges pseudocompleteness and pseudosaturatedness:

THEOREM 4.30. Let X be a pseudocomplete LCS. Then:
(a) there is a unique isomorphism of locally convex spaces
(X2)* ~m—s (X)) (4.17)

such that
(XA)* o (X*)v

(Axr)\ X+ /V{X* (418)

(b) for any continuous linear map ¢ : X =Y of locally convex spaces we have
(X8)* ~» (X*)Y
(wA)*T T(%*)V (4.19)
(Y2)* ~s (Y)Y
THEOREM 4.31. Let X be a pseudosaturated LCS. Then:
(a) there is a unique isomorphism of locally convex spaces
(XV)* e (X2 (4.20)

such that
(XV)* SUNPNPNAPAY (X*)A

o 21

(b) for any continuous linear map ¢ : X =Y of locally convex spaces we have
(XV)* o (X*)2
(¢V)*T T(w*)A (4.22)
(Y=)*

(Y7)*
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4.4. Stereotype spaces

e A locally convex space X is said to be stereotype if its natural map to the second dual
space
ix : X = (X7)" ix(@)(f) = f(z), zeX, feX,

is an isomorphism of locally convex spaces (both *’s means the dual space in the sense
of the definition on p. [107)).

Clearly, if X is a stereotype space, then so is X*. Theorems and imply the
following criterion:

THEOREM 4.32. A locally convex space X is stereotype if and only if it is pseudocomplete
and pseudosaturated.

This means in particular that there are non-stereotype locally convex spaces (since
there are non-pesudocomplete and non-pseudosaturated spaces: see Examples and
. Nevertheless, the class Ste of stereotype spaces turns out to be amazingly wide.
This is seen from the following series of examples, generalizing each other.

ExAMPLE 4.33. All Banach spaces are stereotype.
ExXAMPLE 4.34. All Fréchet spaces are stereotype.
ExAMPLE 4.35. All quasicomplete barreled spaces are stereotype.

As a corollary, the place of stereotype spaces among other frequently used classes of
spaces can be illustrated by the following diagram:

/ STEREOTYPE SPACES

4 N

quasicomplete barreled spaces

(4.23)
Fréchet spaces

CBanach spaces ) reflexive

spaces

- -

This picture is supplemented by the examples of spaces, dual to the already mentioned,

and having quite unwonted @ properties:

(3) Because of the non-standard notion of dual space.
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EXAMPLE 4.36. A locally convex space X is called a Smith space @ if it is a complete
k-space @ and has a universal compact set, i.e. a compact set K C X that absorbs any
other compact set T' C X: T C MK for some A € C. It is known that a locally convex
space X is a Smith space if and only if it is stereotype and its dual space X* is a Banach
space.

ExAMPLE 4.37. A locally convex space X is called a Brauner space@ if it is a complete
k-space and has a countable fundamental system of compact sets, i.e. a sequence of com-
pact sets K,, C X such that every compact set T' C X is contained in some K,,. A locally
convex space X is a Brauner space if and only if it is stereotype and its dual space X* is
a Fréchet space.

The connections between the spaces of Fréchet, Brauner, Banach, and Smith are
illustrated in the following diagram (where the turnover corresponds to the passage to
the dual class):

Fréchet spaces

finite-dimensional

Banach spaces spaces

Smith spaces

Brauner spaces

It is clear from the definition that each stereotype space X can be recovered from
its dual space X*. So different properties of X have their dual analogs in X*. The most
obvious facts of that type are listed in the following

THEOREM 4.38. Let X be a stereotype space. Then:

(a) X is normable < X is a Banach space < X* is a Smith space;

(b) X is metrizable & X is a Fréchet space < X* is a Brauner space;

(¢) X is barreled < X* has the Heine—Borel psoperty;

(d) X is quasibarreled < in X* each subset absorbed by any barrel is totally bounded;

(e) X is a Mackey space < in X* each (X*)*-weak compact set is compact;

(f) X is a Montel space < X is barreled and has the Heine—Borel property < X* is a
Montel space;

(g) X has a weak topology < in X* every compact set is finite-dimensional;

(h) X is separable (i.e. has a countable everywhere dense set) < in X* there is a sequence

of closed subspaces Ly, of finite codimension with [\, L, = {0};

(*) After M. F. Smith [43].

(5) A topological space X is called a k-space or a Kelley space if every set M C X having
closed trace M N K on each compact set K C X is closed in X.

(°) After K. Brauner [10].
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(i) X has the (classical) approzimation property < X* has the approximation property;

(G) X is complete & X* cocompletem & X* is saturated @

(k) X is a Ptdk space@ < in X* a subspace L is closed if it leaves a closed trace LN K
on each compact set K C X*;

(1) X is hypercomplete @ < in X* an absolutely convex set B is closed if it leaves a
closed trace BN K on each compact set K C X*.

PROPOSITION 4.39. Let E be a closed subspace in a locally conver space X, considered
as a locally convex space with the topology induced from X, and let the annihilator E+
be also endowed with the topology induced from X*. Then:
(a) there is a natural isomorphism of locally convex spaces
E* = X*/E+, (4.24)
and if in addition E is pseudocomplete (for example, if X is pseudocomplete), then
(4.24) generates isomorphisms of stereotype spaces

(B*)" = (X*/E)Y,  E*=[(X*/EY)"]: (4.25)
(b) if X is stereotype, then there is a natural isomorphism of locally convex spaces
(ELy = X/E (4.26)

generating isomorphisms of stereotype spaces
(BH)S) = (X/E)Y, (BY)" =[(X/BE)"]". (4.27)

The following example is due to O. G. Smolyanov [44] and it was mentioned in [2] (as
Example 3.22). We will use it later as an important technical result:

EXAMPLE 4.40. There is a stereotype space Z with the following properties:

(i) Z and Z* are complete and saturated;
(ii) Z has a closed subspace Y such that

(a) the quotient space Z/Y is metrizable, but not complete;
(b) the annihilator Y+ (with the topology induced from Z*) is not a pseudosaturated
space.

Proof. An example is the space Z = D(R) of smooth functions with compact support
on R. It is complete (as the strong inductive limit of a sequence of complete spaces [35])
and saturated (as the inductive limit of a system of saturated spaces). By Theorem

(") A locally convex space X is said to be cocomplete [2] if each linear functional f : X — C
continuous on each totally bounded set S C X is continuous on X.

(®) A locally convex space X is said to be saturated [2] if for an absolutely convex set B,
being a zero neighborhood in X is equivalent to the following: for any totally bounded set S C X
there is a closed zero neighborhood U in X such that BNS ="U.

(°) A locally convex space X is called a Ptdk space [38] or a fully complete space [35] it in the
dual space X* every subspace Q C X* is X-weakly closed when it leaves an X-weakly closed
trace @ NU° on the polar U° of each zero neighborhood U C X.

(*°) A locally convex space X is said to be hypercomplete [35] if in the dual space X* an
absolutely convex set Q@ C X ™ is X-weakly closed when it leaves an X-weakly closed trace QNU°
on the polar U° of each zero neighborhood U C X.
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Z* = D*(R) is also complete and saturated. In [44], O. G. Smolyanov showed that Z
contains a closed subspace Y such that Z/Y is metrizable, but not complete. Hence, Z/Y
is not pseudocomplete.

Set X = Z*, E = Y. By Proposition a), Z)Y = X*/E+ = E*. So if E were
pseudosaturated, then Z/Y would be pseudocomplete by Theorem n
EXAMPLE 4.41. There exists a complete locally convex space E (and thus E can be
represented as a projective limit of Banach spaces in the category LCS) such that E*
is metrizable, but not complete. As a corollary, FE is not pseudosaturated, and there is
a discontinuous linear functional f : E — C which is continuous with respect to the
topology of the pseudosaturation E2.

Proof. An example is the space E = Y+ from Example It is complete, since it is a
closed subspace in the complete space Z* = D*(R). On the other hand, by Proposition
(a), E* =2 X*/E+ = Z/Y, and the last space is metrizable, but not complete. That
is, E* # (E*)V, and this can be extended to

B4 (BT = (B,

which means that there exists f € (E#)* \ E*. (It is important here that E is pseudo-
complete, while E* is not.) =

4.4.1. Spaces of operators and continuous bilinear maps

e Let X and Y be stereotype spaces. Let us denote:

— by Y : X the space of continuous linear maps ¢ : X — Y endowed with the topology
of uniform convergence on totally bounded sets in X;
— by Y @ X the pseudosaturation of the space Y : X,

YoX=(Y:X)" (4.28)
The space Y @ X is stereotype, and we call it the inner space of operators from X

into Y. Again, it consists of all continuous linear maps ¢ : X — Y, but its topology
is formally stronger than the topology of uniform convergence on totally bounded sets

in X [(™1)]
THEOREM 4.42. Let X and Y be locally convexr spaces. A set of morphisms ® CY : X
is totally bounded in 'Y : X if and only if it satisfies the following two conditions:

(a) equicontinuity on totally bounded sets:

VSeS(X)VYW eld(Y) U eU(X) Va,be S
a—belU = Voed pla)— ) eV,
(b) uniform total boundedness on totally bounded sets:
VS eS(X) &(S)={plx);z€S, pcd}eSY).

(*Y) Thus, Y : X and Y @ X coincide as linear spaces, but may have different topologies.
So far, however, it is not clear whether Y : X and Y @ X are indeed different, since examples
of non-pseudosaturated spaces of the form Y : X (with stereotype X and Y) have not been
constructed yet.
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Condition (b) can be replaced by the weakened condition
(¢) pointwise total boundedness:
Vee X &(z)={p(x); p e P} eSY).
Moreover,
- if Y is a Heine-Borel space, then (a) = (b) & (c);
—if X is barreled, then (c) = (a) & (b).
For any continuous linear map ¢ : X — Y its dual map ¢* : Y* — X* is defined by
e (f)=fop, [feY
THEOREM 4.43. The map ¢ — ©* is an isomorphism of stereotype spaces:
X*oY*2YoX.
EXAMPLE 4.44. If X is a Smith space and Y a Banach space, then Y @ X =Y : X is a
Banach space.

EXAMPLE 4.45. If X is a Banach space and Y a Smith space, then Y o X =Y : X is a
Smith space.

ExXAMPLE 4.46. If X is a Brauner space and Y a Fréchet space, then Y 0 X =Y : X is
a Fréchet space.

EXAMPLE 4.47. If X is a Fréchet space and Y a Brauner space, then Y 9 X =Y : X is
a Brauner space.
o Let XY, Z be stereotype spaces. Then:

— we say that a bilinear map 8: X XY — Z is continuaus@ if
(1) for each compact set K in X and for each zero neighborhood W in Z there is a
zero neighborhood V in Y such that
PK, V) C W,
(2) for each compact set L in Y and for each zero neighborhood W in Z there is a
zero neighborhood U in X such that
B, L) CW;

— we denote by Z : (X,Y) the space of continuous bilinear maps 8 : X xY — Z
endowed with the topology of uniform convergence on compact sets in X x Y/;
— we denote by Z @ (X,Y) the pseudosaturation of Z : (X,Y),

Z0(X,Y)=(Z:(X,Y))>. (4.29)

The space Z @ (X,Y) is stereotype, and we call it the inner space of bilinear maps from
X xY into Z. Like Z : (X,Y), it consists of continuous bilinear maps §: X XY — Z,
but the topologies of Z : (X,Y) and Z © (X,Y’) may be different @

(*2) This type of continuity is sometimes called (K(X), K(Y))-hypocontinuity (cf. [38]), where
K(X) and K(Y) are systems of compact sets in X and Y respectively.
(13) Cf. footnote (); the situation with Z : (X,Y) and Z @ (X,Y) is the same.
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EXAMPLE 4.48. If X and Y are Smith spaces, and Z a Banach space, then Z @ (X,Y) =
Z : (X,Y) is a Banach space.

EXAMPLE 4.49. If X and Y are Banach spaces, and Z a Smith space, then Z 2 (X,Y) =
Z : (X,Y) is a Smith space.

EXAMPLE 4.50. If X and Y are Brauner spaces, and Z a Fréchet space, then Z0(X,Y) =
7 : (X,Y) is a Fréchet space.

ExXAMPLE 4.51. If X and Y are Fréchet spaces, and Z a Brauner space, then Z2(X,Y) =
Z :(X,Y) is a Brauner space.

THEOREM 4.52. If X,Y, Z are stereotype spaces, then the formula

Bla,y) = ¢(y)(2) (4.30)
defines an isomorphism of stereotype spaces
ZoX,)Y)=(ZoX)oY. (4.31)
REMARK 4.53. In the special case when Z = C we have
CoX,Y)=X"0Y, (4.32)
YoX=Co (YY" X). (4.33)

THEOREM 4.54. For all stereotype spaces X,Y, Z the composition map
B,a)e(ZoY)x(YoX)— BoaceZ0X
is a continuous bilinear map.

e Let «: F— F and 5 : G — H be continuous linear maps of stereotype spaces. Define
boa:GoF — HoEFE by

(Boa)(y)=PFopoa. (4.34)
THEOREM 4.55. For all stereotype spaces X,Y,Z the bilinear map
B,a) e(HoG)Xx (FOE)— oac(HOE)2(GOF) (4.35)

15 continuous.

4.4.2. Tensor products. A projective (stereotype) tensor product X ® Y of stereotype
spaces X and Y is defined by

XY =(X"0Y), (4.36)
or equivalently, due to ,
X®Y=(Co (X, Y))" (4.37)
For x € X and y € Y the elementary tensor z ® y € X ® Y is defined by
(z®y)(p) =ey)(@) (4.38)
(where p € X* @Y, and x ®y is considered as an element of (X* @ Y)*), or equivalently,
(z®y)(B) = B(z,y) (4.39)

(where f € Co (X,Y), and = ® y is considered as an element of C @ (X,Y)*).
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PROPOSITION 4.56. The map ¢: (z,y) € X XY = z®y € X®Y is a continuous bilinear
map.

PropPOSITION 4.57. The algebraic tensor product X ® Y is injectively and densely em-
bedded into the projective tensor product X ® Y by
TRY—>T®Y.

THEOREM 4.58 (Universality of projective tensor product). For any stereotype spaces
XY, Z andfor any continuous bilinear form B : X XY — Z there is a unique continuous
linear map B: X ®Y — Z such that

XxY —— X®Y
N
7z

where ¢ is defined in Proposition , Moreover, 3 +— 5 s an isomorphism of stereotype
spaces
ZoX,Y)=Zo(X®Y). (4.40)

An injective (stereotype) tensor product X @Y of stereotype spaces X and Y is defined
by the formula

XoY=Y0oX", (4.41)
or equivalently, due to , by
XY =Co (X*,Y*. (4.42)
For x € X and y € Y the elementary operator z ®y € X ®Y is defined by
(zoy)(f)=f)y, [feX” (4.43)
(if z ® y is considered as an element of Y @ X*), or by
(zoy)(f,9) = f2)gly), feX geY” (4.44)

(if z ® y is considered as an element of C @ (X*,Y™)).

PROPOSITION 4.59. The map ¢ : (z,y) € X xY = 20y € XOY is a continuous bilinear
map.

PROPOSITION 4.60. The algebraic tensor product X Y is injectively (but not necessarily
densely) embedded into the injective tensor product X ©Y by

TRY—~xTOyY.
EXAMPLE 4.61. If X and Y are Banach spaces, then so are X ® Y and X O Y.
EXAMPLE 4.62. If X and Y are Smith spaces, then so are X ® Y and X © Y.
EXAMPLE 4.63. If X and Y are Fréchet spaces, then so are X ® Y and X O Y.
EXAMPLE 4.64. If X and Y are Brauner spaces, then so are X ® Y and X O Y.
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4.4.3. The category of stereotype spaces. The class Ste of stereotype spaces forms
a category with continuous linear maps as morphisms.

PROPERTIES OF THE CATEGORY Ste.

1° Ste is pre-abelian.

2° Ste is complete: each covariant (and each contravariant) system has injective and
projective limits. In the case of direct coproducts and direct products these construc-
tions coincide with the standard ones in the category LCS of locally convex spaces,
while in the general case the difference is that the injective limits in LCS must be
pseudocomplete, while the projective limits must be pseudosaturated:

ste-EP X; = Lcs-EP X, ste-] [ Xi =Lcs-[[ X3, (4.45)

i€l iel i€l il
v A
Ste—ligl X, = (LCS—@ XZ-) , Ste—@ X, = (LCS— im Xi> . (4.46)
1—00 1—00 1—00 1—00

3° The tensor products ® and © and the fraction @ are related through the following
isomorphisms of functors:

(X®Y) " 2Y* o X7, (XoY) 2y e X" (4.47)
Zo(XeY)2(ZoX)oY, (XeoY)oZ=Xo(Yo2Z). (4.48)
4° Ste is a symmetric monoidal category with respect to each of ® and ©:
CoX=2X=2X®C, CoXxX=X=2XoC, (4.49)
XeY=2vYeX, XoY2YoX (4.50)
XeY)eZ=2X®(Y®Z), XoY)oZ=2Xo((Yo2). (4.51)

5° The projective tensor product in Ste commutes with injective limits, and the injective
product commutes with projective limits:

(EBXi)®(EB59) = P xey), (4.52)

jedJ iel,jeJd

(HXi) © (HYJ') = [ xioy, (4.53)
iel jeJ iel,jeJ

(tim x;) @ (1l ¥;) = lm (i@ Y)), (4.54)

( km Xi) ® ( im YJ‘) > lim (X;0Y)), (4.55)

4.5. Subspaces

e Let Y be a subset in a stereotype space X endowed with the structure of stereotype
space in such a way that the set-theoretic inclusion Y C X is a morphism of stereotype
spaces (i.e. a continuous linear map). Then Y is called a subspace of X, and the set-
theoretic inclusion o : Y C X its representing monomorphism. We then write

YCX or XDY.
In this context, Y = X means that the stereotype spaces Y and X coincide not only
as sets but also with their algebraic and topological structure.



4.5. Subspaces 127

e The system of subspaces of a stereotype space X will be denoted by Sub(X).

PROPOSITION 4.65. For a morphism p : Z — X in Ste the following conditions are
equivalent:

(i) p is a monomorphism;
(ii) there exists a subspace Y in X with representing monomorphism o : Y G X and an
isomorphism 60 : Z — 'Y of stereotype spaces such that

VA

COROLLARY 4.66. For any stereotype space X the system Sub(X) is a system of subob-
jects in X (in the sense of the definition on p. .

Clearly, for a stereotype space P the relation C is a partial order on Sub(P).
4.5.1. Immediate subspaces
e Suppose
Z Y G X,

and Z C Y is a bimorphism of stereotype spaces, i.e. in addition to the other require-
ments, Z is dense in Y (with respect to the topology of Y'). Then we will say that YV
is a mediator for Z in X.

e We call a subspace Z of a stereotype space X an immediate subspace in X if it has
no non-isomorphic mediators, i.e. for any mediator Y in X the inclusion Z C Y is an
isomorphism. In this case we use the notation Z C X:

ZEX oV (ZQYCX&Z =Y) = Z2=Y).

REMARK 4.67. In LCS the same construction gives a widely used object: immediate sub-

spaces in a locally convex space X are exactly closed subspaces in X with the topology
inherited from X. In Examples and below we will see that in Ste the situation
more complicated.

Recall that immediate monomorphisms were defined on p.

PROPOSITION 4.68. For a morphism p : Z — X in Ste the following conditions are
equivalent:

(i) p is an immediate monomorphism;
(ii) there exists an immediate subspace Y of X with representing monomorphism o :'Y
G X and an isomorphism 0 : Z =Y such that

eé \“ X (4.56)

Here Y and 6 are uniquely determined by Z and p.
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Proof. The implication (i)<=(ii) is obvious, so we only need to prove (i)=-(ii). Set ¥ =
w(Z), and denote by 6 : Z — Y the corestriction of p into Y, i.e.  is the same map as
but viewed as acting into Y. Since p is injective, 6 is bijective. Let us endow Y with the
topology under which 6 is an isomorphism of locally convex spaces. Then Y becomes a
subspace of X, since for any zero neighborhood U in X, u~1(U) is a zero neighborhood
in Z, and thus Y NU = 0(u~*(U)) is a zero neighborhood in Y. =

PROPOSITION 4.69. @ For an immediate subspace Y of a stereotype space X with
representing monomorphism o 1Y C X the following conditions are equivalent:

(i) o is a closed map;
(ii) o is a weakly closed map;
(iil) Y as a set is a closed subspace in the locally convex space X, and the topology of Y
s a pseudosaturation of the topology inherited from X.

e If the above conditions (i)—(iii) are fulfilled, we say that the immediate subspace Y of
X is closed.

Proof of Proposition[{.69 (i)=(ii) is a special case of the situation in Proposition

(ii)=(iii). Let ¢ : ¥ C X be a weakly closed map, i.e. Y as a set is closed in X.
Denote by F the space Y with the topology inherited from X. Clearly, Y is continuously
embedded into E, and since Y is pseudosaturated, this inclusion preserves its continuity
after passage from F to its pseudosaturation F* (we use here the reasoning presented in
[2, diagram (1.26)]). Thus, we obtain a sequence of subspaces

Y G E* CX,

and since Y and E* coincide as sets, the first of these monomorphisms is a bimorphism.
Hence, E# is a mediator for Y, and we obtain Y = E*.

(iii)=(i) follows from the fact that pseudosaturation does not change the system of
totally bounded subsets. =

ExaMPLE 4.70. There exists a stereotype space P with a closed immediate subspace
@@ whose topology is not inherited from P, and moreover some continuous functionals
g € Q* cannot be continuously extended on P (in the formal language this means that
the representing monomorphism @ C P is closed, but not weakly open).

Proof. Consider the space E from Example It is complete, so it can be represented
as a complete subspace in some stereotype space P with the topology inherited from P
(for example, one can take as P the direct product of all Banach quotient spaces E/F).
The space Q = E* has the required properties. Indeed, it is closed in P, since E is
closed in P. On the other hand, the functional f : () — C described in Example is
continuous on @ = E*, but it cannot be continuously extended on P, since otherwise it
would be continuous on E. u

ExAMPLE 4.71. There exists a stereotype space X with an immediate subspace Z which
is not closed as a subset in X . Hence the inclusion Z C X is not a weakly closed morphism

(**) [2, Theorem 4.14], which is equivalent to Proposition [4.69] here, and the more general
2l, Theorem 11.7|, contain an inaccuracy: the requirement of closure of ¢ is omitted there.
Yy
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in the sense of definition on p. [112| (in particular, the inclusion Z C X is not isomorphic
in Monox to the kernel of any other morphism ¢ : X — A in Ste).

Proof. Let E and f be as in Example Endow F = {x € E* : f(z) = 0} with the
topology inherited from E% (as a locally convex space, F' is a closed subspace in E%).
By [2| Proposition 3.19], E* is complete, hence so is F, and again by [2, Proposition
3.19], the pseudosaturation Z = F* is complete. In addition, Z is pseudosaturated, and
thus stereotype. Note that since E is complete, it can be represented (as a locally convex
space) as a closed subspace in a direct product X of some Banach spaces (in such a
way that the topology of E is inherited from X). We will show that Z is an immediate
subspace, but not a closed set, in X.

First let us show that Z is not closed in X. As a set, Z coincides with F', which is
dense in E (in the topology of E, which is inherited from X). Hence,

ZX-F =E+F=2z

—X
(here means closure in X ). Now let us show that Z is an immediate subspace in X.
Let Y be a mediator of Z in X. Since Z is dense in Y, we obtain

7' —vy

Y CFE.

The latter is an inclusion of sets. Note that since Y is a subspace in X, the topology of
Y majorizes the topology inherited from X, or, what is the same, the topology inherited
from E. Hence the inclusion Y C F is continuous, and therefore Y is a subspace in E.
This implies that the pseudosaturation of Y is a subspace in the pseudosaturation of F,
and since Y is pseudosaturated, we obtain a continuous inclusion

Y=YV CEV.

Thus, Y is a subspace in EV.
Let us now forget about X and consider the following chain of subspaces:

ZCY CEV.

Since Z is a dense subspace in Y, we obtain a new logical chain:

7 =y

¢

v jEv v
vyei =7" =7 =F

¢
Y CF.

Again the latter is an inclusion of sets. Note that since Y is a subspace in EY, the
topology of Y majorizes the topology inherited from EV, or, what is the same, the
topology inherited from F'. Thus the inclusion Y C F' is continuous, so Y is a subspace
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in F. This implies that the pseudosaturation of Y is a subspace in the pseudosaturation
of F', and since Y is pseudosaturated, we obtain a continuous inclusion

Y=YVCF'=27Z

Thus, Y is a subspace in Z. On the other hand, from the very beginning Z was a subspace
inY. Hence, Z=Y. n

4.5.2. Envelope of a set M of elements in a space X. Theorem [£.107] below justifies
the following definition.

e The envelope of a set M C X in a stereotype space X is a subspace in X, denoted by
Env® M or Env M, and defined as the projective limit in Ste

Env® M = Env M = Ste- lim E; (4.57)

of a contravariant system {E;; ¢ € Ord} of subspaces in X, indexed by ordinals and
defined by the following inductive rules:

0) Eo = (span MX)A.
1) Suppose that for some j € 0rd all the spaces {E;; i < j} are already defined; then
E; is defined as follows:

— if j =i+ 1 for some i, then
E] = Ei+1 = (mEl)A,

— if j is a limit ordinal, then

Ej = lim E;
J1
in Ste; this means that, as a set,
E; = () E;
i<j

and the topology in Ej; is the weakest stereotype locally convex topology under
which all the inclusions F; C F; are continuous.

Since the transfinite sequence {E;; i € Ord} cannot be an injective map from 0Ord to
Sub(X), it stabilizes, i.e. for some k € 0rd,

Vi>k E =FE. (4.58)

This implies that the contravariant system {E;; i € Ord} indeed has a projective limit,
and this is exactly the subspace Ej in X.

EXAMPLE 4.72. If span M~ = X, then Env M = X.

Proof. The equality spaWX = X implies Ey = (spaWX)A = X, and consequently
X=Ey=E =,

Hence, EnvM = X. =

EXAMPLE 4.73. If span M~ = M, then Env M = M?*.
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Proof. From span M = M we have Ey = (span MX)A = M?*, then F; = (span MEO)A =
M?* = Ej, and all the other spaces E; coincide with Ey. Thus, EnvM = Eg = M%. u

THEOREM 4.74. The envelope Env® M of each set M C X is an immediate subspace
in X, containing M as a total subset:

—— an
M CEnw® M X, span M — e M (4.59)

Proof. First let us verify that M is total in Env® M. Suppose (4.58)) holds. Then Env M =
E}), and if M were not total in Ej, then we would have a contradiction with (4.58)):

FExy1 = span MEk %+ F.

Next let us show that Env M is an immediate subspace in X. Suppose Y is a subspace
in X such that
EnvM CY C X,

and Env M is dense in Y. Since, as already established, spanM is dense in Env M, we

have v
Y =spanM . (4.60)

Now by induction we see that Y is continuously embedded into each FE;:

0) For i = 0 we have

YCoX =Y spanMY QSpanMX
= Y =Y (span ) = Ey.
1) Suppose that we have proved Y C E; for all i less that some j. Then:
— if j =4+ 1 for some %, then

YGE;, = YspanMY C,spanMEi

= Y =Y*C(spanM ")* = E; 1 = Ej;
— if j is a limit ordinal, then from the continuous inclusions Y C, E; for i < j we
obtain a continuous inclusion of locally convex spaces
Y G LCS-lim F;,
Jj1
and this implies a continuous inclusion of stereotype spaces

A
Y=Y%q (LCS—I_im_ E) = Ste-lim E; = E;.

j(*’L ]%Z
Since Y is continuously embedded into each E;, we obtain a continuous inclusion Y C,
Env M. Together with the initial inclusion Env M G Y this means that Env M =Y (with
topologies). m
The following theorem shows that in an immediate subspace the topology is automat-
ically defined by the set of its elements:

THEOREM 4.75. Fvery subspace Y in a stereotype space X is a subspace in its envelope
Env¥Y:
YCSX = YgEWYY, (4.61)
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and Y is an immediate subspace in X iff it coincides (topologically) with its envelope
mn X:
Y X & Y=Env'Y. (4.62)

Proof. The continuity of Y C Env® Y is proved by induction:

0) We have a continuous inclusion of locally convex spaces
Y GspanY =Y,
which implies a continuous inclusion of stereotype spaces
Y=Y (Y = K.
1) Suppose that the continuous inclusion Y C E; is proved for all 7 less than some j.

Then:

— if j = i+1 for some 4, then we obtain a continuous inclusion of locally convex spaces
Y Cspany " =Y,
which implies a continuous inclusion of stereotype spaces
Y=v2C(¥") =Ei = B3
— if j is a limit ordinal, then from the continuous inclusions Y C FE; for all i < j we
obtain a continuous inclusion of locally convex spaces

Y C LCS-lim E;,

J
which implies a continuous inclusion of stereotype spaces

A
Y =v2C (LCS—I_im_ E) = Ste-lim E; = B;.
J1i

]

Let us now consider the special case when Y is an immediate subspace in X. Then by
Theorem [£.74] Y is dense in EnvY’, hence in the chain of inclusions

YCEnwY CX
the second space is a mediator. Therefore, it coincides with the first one: Y = EnvY. m

COROLLARY 4.76. The representing monomorphism o 1Y C X of an immediate subspace
Y in a stereotype space X is always relatively closed.

Proof. By Theorem [£.75]

Y=En*Y = lim E; = [ Es
1€0rd i€0rd

Let T be an absolutely convex compact set in X, lying in Y as a set. Then T lies in
FEy = (YX)A7 and since in passing from the topology of X to the topology of Ejy the
system of compact sets (as well as the topology on each compact set) is inherited from X
(this is one of the fundamental properties of the pseudosaturation A, [2, Theorem 1.17]),
we see that T is a compact set in Fy. With the same technique we show that T is compact
in F4, and more generally, in passing from each ordinal ¢ to its successor ¢ + 1. When we
need to pass to a limit ordinal j, we come to the situation where T is a compact set in
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each E; with ¢ < j. As a corollary, T is compact in yili<j Ei =N« ; . When we come
to an ordinal large enough, we conclude that T is compact in Y. =

THEOREM 4.77. If ¢ : Y — X is a morphism of stereotype spaces mapping a set N CY
into a set M C X,

@(N) € M,
then ¢ continuously maps Env’ N into Env™ M:

y —% X
Envy N — 5 Env® M
In the special cases:
YCoX
U Uy = Env' N G Env® M, (4.63)
NCM
Y X
U Uy = Env' N Env® M, (4.64)
NCM
Y 3 X
U Uy = Env’ M = Env" M. (4.65)
N=M

Proof. Let ¢ be as in the statement. If we denote by {F;; i € 0rd} and {E;; ¢ € 0rd} the
sequences of subspaces in Y and X which define Env N and Env M respectively,

EnvN:@Fi, EnvM:]'glEi,

then we can prove by induction that ¢ continuously maps each Fj into E;, and hence
Env N into Env M. Let us now consider the special cases.

If N C MandY G X, then we consider the sequences {F;; i € 0rd} and {E;; i € Ord}
of subspaces in X which define Env® N and Env® M. By induction, we obtain an inclusion
of subspaces F; C E; for each 4, and this gives the inclusion Env® N G Env® M.

Suppose that N C M and Y & X. Then, by , Env’ N (at Env® M. Let us show
that in this inclusion, Env’ N is an immediate subspace in Env™® M. Let Z be a mediator
for EnvY’ N in Env M:

—Z
Env' NG Zc EwSM, Enw'N =2

Consider Env¥ (Y U Z). We can include it in a diagram (where all the arrows are set-
theoretic inclusions, and are continuous maps):

Y —— Envf(YUZ) —— X

| | [

Envy NV Z Env® M
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By Theorem N is total in Env?” N, which in turn is total in Z (since Z is a mediator).

Hence, N is total in Z. On the other hand, N C Y, hence Y is dense in Z (in the topology

of Z, and thus in the topology of X as well). From this we deduce that Y is dense in the

subset Y U Z of the space X, and again by Theorem Y is dense in Env¥ (Y U 2).
This means that Env™ (Y U Z) is a mediator for Y in X:

el an
Yo EnYYuz)cx, v " ¥ (yu2).

The condition Y < X implies the equality of stereotype spaces Y = Env™ (Y U Z). This
yields Z G Y, i.e. Z is a mediator for Envy NinY:

Y v

Env: N¢cZcgY, Env N =727
By Theorem 4.74] EnvY N is an immediate subspace in Y, so EnvY’ N = Z.
Suppose finally that N = M CY & X. Then by (4.64]),
Envy M @ Env® M.

On the other hand, by (4.63), M CY & X implies

Env¥ M ¢ En¥y B2y,
Together this gives

Env' M & Env® M Y.

By Theorem M is total in Env™ M, hence Env¥ M is total in Env® M. Thus,

EnvX M is a mediator in this chain, and we obtain Env’ M = Env® M. =

THEOREM 4.78. The envelope Env® M of any set M C X is a minimal subspace among
all the immediate subspaces in X which contain M, and in each of those immediate
subspaces Y & X the space Env™ M is an immediate subspace:
VY (MCYQX = Env*MCY). (4.66)
Proof. We have
En ¥ M E2 EnY M 'S Y. u

ProroSITION 4.79. If Y &3 X and Z C, X, then Z C Y implies Z C, Y. In the special
case whenY & X and Z & X, the condition Z CY implies Z &Y.

Proof. 1Y & X,ZC X,ZCY, then

ZEnVXZEanZY.

IdeX’ZqX7ZgY,then
ZEanZEanZ Y. m

4.6. Quotient spaces
e Let X be a stereotype space, and
1) in X as a locally convex space take a closed subspace F,

2) on the quotient space X/FE consider an arbitrary locally convex topology 7 which is
majorized by the natural quotient topology of X/FE,
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3) in the completion (X/FE)Y of the locally convex space X/E with the topology 7
take a subspace Y which contains X/FE and is a stereotype space with respect to
the topology inherited from (X/E)Y.

Then we call the stereotype space Y a quotient space of the stereotype space X, and
the composition v = oo of the quotient map 7 : X — X/F and the natural inclusion
o: X/E =Y is called the representing epimorphism of the quotient space Y. We then
write

Y+~ X or X~—~Y.

The class of all quotient spaces of X will be denoted by Quot(X). It is clear that
Quot(X) is a set.

The following is evident:

ProPOSITION 4.80. For a morphism € : Z < X in Ste the following conditions are
equivalent:

(i) € is an epimorphism;
(ii) there is a quotient space Y of X with representing epimorphism v :Y < X, and an
isomorphism 6 : Z <Y such that

X (4.67)

COROLLARY 4.81. For a stereotype space X the system Quot(X) is a system of quotient
objects for X.

The formalization of the idea of quotient object we have presented here has a qualita-
tive shortcoming in comparison with the notion of subspace which we considered above:
the problem is that the relation - does not establish a partial order in Quot(P) for a
stereotype space P. In fact, neither reflexivity, antisymmetry or transitivity holds for < .
In particular, the first two axioms do not hold since Y <— X and Y = X is impossible. To
explain this, let us agree for simplicity that we do not take into account the necessity to
pass to a subspace in the completion which was stated in step 3 of our definition—then
Y «+ X (and Y # 0) implies by the axiom of regularity [19, Appendix, Axiom VII]
that there exists an element y € Y such that y N Y = (. But if in addition ¥ = X,
then y, being a coset of X, i.e. a non-empty subset in X, has non-empty intersection
yNY =yNX =y # P with X =Y. As to the transitivity, when Z +~ Y and Y +- X, the
elements of Z are non-empty sets of elements of Y, and each such element is a non-empty
set of elements of X. From the point of view of set theory this is not the same as if
elements of Z were sets of elements of X, so in this situation the relation Z < X is also
impossible. This forces us to introduce a new binary relation.

e Suppose Y < X and Z < X. We will say that the quotient space Y subordinates the
quotient space Z, and we write Z < Y, if there exists a morphism s : Y — Z such
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that

X (4.68)

(here vy and vy are representing epimorphisms for Y and Z). The morphism s, if it
exists, is unique and is an epimorphism.

For any stereotype space P the relation < is a partial order on Quot(P).

4.6.1. Immediate quotient spaces

e Let Y and Z be two quotient spaces of X such that Z <Y and the epimorphism s :
Z <Y in diagram is a monomorphism (and hence a bimorphism) of stereotype
spaces. Then we will say that Y is a mediator for Z. One can notice that in this case
Y is a subset in Z, so we will write Z D Y.

e We call a quotient space Z of a stereotype space X an immediate quotient space in X
if it has no non-isomorphic mediators, i.e. for any mediator Y in X the corresponding
epimorphism Z <~ Y is an isomorphism. We write in this case Z <, X:

Z X &V (Z<Y&Y—X&ZDY) = Z=Y).

e Let us say that an immediate quotient space Y <, X strongly subordinates an imme-
diate quotient space Z < X, and write Z <_Y, if there exists a strong epimorphism
»:Y — Z such that diagram (4.68) is commutative.

REMARK 4.82. In the category LCS of locally convex spaces, immediate quotient spaces
of a locally convex space X are exactly quotient spaces of X by closed subspaces with
the usual quotient topologies. As in the case of subspaces, in Ste the situation becomes

more complicated (see Examples and below).

Recall that the notion of immediate epimorphism was defined on p. The following
statement is dual to Proposition 4.68| and can be proved by the dual reasoning:

PROPOSITION 4.83. For a morphism ¢ : Z < X in Ste the following conditions are
equivalent:

(i) € is an immediate epimorphism;
(ii) there exists an immediate quotient space Y of X with representing morphismv : Y «+
. X and an isomorphism 0 : Z <Y such that

X (4.69)

Here'Y and 6 are uniquely determined by Z and €.
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PROPOSITION 4.84@ For an immediate quotient space Y of a stereotype space X with
representing epimorphism v :Y < X the following conditions are equivalent:

(i) v is an open map;
(ii) v is a weakly open map;
(iii) Y s the pseudocompletion (X/E)Y of the quotient space X/E of the locally convex
space X (with the usual quotient topology) by some closed locally convex subspace E.

e If the above conditions (i)—(iii) are fulfilled, we say that the immediate quotient space
Y of X is open.

Proof of Proposition 4.84. (1)=(ii) is a special case of the situation described in Propo-
sition .14

(ii)=-(iii). Suppose v : Y + X is a weakly open map. Denote by E its kernel. By
definition of stereotype quotient space, Y is a pseudocomplete locally convex subspace in
the completion (X/E)Y of the locally convex space X/FE under some topology 7 which
is majorized by the quotient topology X/E, and X/F lies in Y as a set. Thus, we can
represent v as a diagram

X/E+—"—X

|
0| /
v

3

Y
where 7 : X — X/FE is the usual quotient map of locally convex spaces, and o : X/E — Y
is a natural bimorphism. Since Y is pseudocomplete, o can be extended to some mor-
phism o7 on the pseudocompletion (X/E)Y (use the reasoning in [2] diagram (1.13)]):

Vx/E

(X/E)Y X/E T X
\\ ‘
v\\ o | /
o \ 4
ty

Note that ¢V is not only an epimorphism (this follows from property 3° of epimorphisms
on p. since v = 0V o Vx/p o7 is an epimorphism), but also a monomorphism. This
is proved as follows. The fact that v is weakly open implies that so is ¢. This means
that every continuous linear functional on X/FE can be extended along the map o to
a continuous linear functional on Y. In other words, the dual map ¢’ : Y/ — X' is a
surjection. This implies that the pseudosaturation oV must be an injection m

As a result, we have a chain of epimorphisms

Y < (X/E)” X,
where oV is a bimorphism. Thus, (X/E)Y is a mediator for Y, and Y = (X/FE)".

Vx/EOT
P

(**) In [2, Theorem 4.16], which is equivalent to Proposition 4.84 here, as well as in the more
general |2l Theorem 11.9], there is an inaccuracy: the requirement of openness of v is omitted.
e use here the following obvious property of pseudocompletion: 4 X »>Yisa
16) Wi here the following obvi ty of d letion: if ¢ : X = Y 4
monomorphism of locally convex spaces such that the dual map ¢’ : X' < Y’ is a surjection,
then its pseudocompletion ¢’ : XV — YV is also a monomorphism of locally convex spaces.
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(iii)=-(i). This follows from the fact that pseudocompletion does not change the topol-
ogy. m
The following is dual to Example [Z.70}

ExAMPLE 4.85. There exists a stereotype space P with an immediate quotient space of
the form Y = (P/E)Y which cannot be represented as Y = P/F for a subspace F' C P
(in formal language this means that the representing epimorphism Y <, P is open, but
not closed).

Proof. The space Z from [2] 3.22] is such a space. It contains a closed subspace E such
that the locally convex quotient space Z/E is metrizable, but not complete. As a corollary,
in the stereotype sense the space (Z/FE)" is an immediate quotient space, but it cannot
be represented as Z/F, since F is uniquely determined as the kernel of the map Z — Y,
and hence must coincide with F. =

From Example we have

ExXAMPLE 4.86. There exists a stereotype space P with an immediate quotient space Y
such that the representing epimorphism Y < P is not weakly open (in the sense of the
definition on p. . As a corollary, Y is not representable in the form Y = (P/E)Y for
a subspace E C P (and hence is not isomorphic in EpiP to the cokernel of any morphism
¢:A— P in Ste).

4.6.2. Refinement Ref* F of a set F' of functionals on a space X. Theorem |4.108
below justifies the following definition.

e Let F be a set of continuous linear functionals on a stereotype space X. The refinement
of F on X is a quotient space of X, denoted by Ref* F or by Ref F, and defined as
the injective limit

Ref* F' = Ref F = Ste-lim E; (4.70)

in the category Ste of the covariant system {F;; i € 0rd} of quotient spaces of X
indexed by ordinal numbers and defined by the following inductive rules:

0) The space Fy is the pseudocompletion of the quotient space X/Ker F' (with the
usual quotient topology) where Ker F' = ﬂfeF Ker f:

Ey = (X/Ker F)Y;
the set Fy of continuous linear functionals on Ej is defined as the set of extensions
to Ey of the functionals from F (every f € F vanishes on Ker F', so it can be
uniquely extended to a continuous linear functional on X/Ker F', and then to its
pseudocompletion Ey = (X/Ker F)7).
1) If for some j € Ord all the spaces {E;; i < j} are already defined, then E; is defined
as follows:

—if j = i+ 1 for some ¢, then F; = F;; is defined as the pseudocompletion of
E;/Ker F' (with the usual quotient topology):

E;j=Ei1 = (E;i/Ker F)Y;
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the set F;4q1 of continuous linear functionals on F;y; is defined as the set of
extensions of functionals from Fj;
— if j is a limit ordinal, then Ej; is defined as the injective limit in Ste of the net
{Eii— g} ;
E; = Ste-lim E; = (Lcs- lim Ei) ;
Z*}]

i—J
the set F; of continuous linear functionals on E; is defined as the system of
functionals which when restricted to E; coincide with F;.

Since the transfinite sequence {E;; i € Ord} cannot be an injective map from 0rd into
the set Quot(X) of quotient spaces of X, it stabilizes, i.e. from some i on, all the spaces
E; coincide (together with their topologies). As a corollary, the formula uniquely
determines some quotient space Ref F' of X.

EXAMPLE 4.87. If Ker F = [\ Ker f = 0, then Ref* F = X
Proof. From Ker F = {x € X :Vf € F f(z) = 0} = 0 we have Ey = (X/Ker F)" = X.
As a corollary, all the other spaces F; coincide with X:
X=Ey=FE=---.
Thus, Ref F = X. =
EXAMPLE 4.88. If span P~ = F, then Ref* F = (X/Ker F)".

Proof. In this case

Ey = (X/Ker F)7 = (X/F*)" 227 (F*)",
hence Ker Fy = {y € (F*)*: VfeF f(y)=0}=0,and E; = Ey/0 = Ey. And further
all the spaces E; coincide with Ey. m

The following two theorems are dual to Theorems [£.74] and [I.75 and therefore we
omit the proofs.

THEOREM 4.89. The refinement RefX F of any set F C X* on a stereotype space X is
an immediate quotient space of X to which the functionals from F can be continuously
extended:

RefXF < X, VfecF3ge(RefXF)* f=gou. (4.71)
THEOREM 4.90. FEvery quotient space Y of a stereotype space X is subordinated to the
refinement Ref™ (Y* o v) of the system of functionals Y* o v = {gov;g € Y*} on X,
where v : Y <— X 1is the representing epimorphism of Y :

v:Y X = Y <Ref¥(Y*ou), (4.72)

andY is an immediate quotient subspace of X, iff Y coincides (as a locally convez space)
with this refinement:
v:Y ¢, X & Y =Ref*(Y*ou). (4.73)

COROLLARY 4.91. The representing epimorphism v : Y <—, X of any continuous quotient
space Y of a stereotype space X is always relatively open.

The following theorem is dual to Theorem [£.77]
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THEOREM 4.92. If ¢ : Y + X is a morphism of stereotype spaces that maps a set of
functionals G C Y™* into a set of functionals F C X*, G oy C F, then there exists a
unique morphism ¢ : Ref¥ G + Ref* F such that

Y+—P X
| |
RefY G+ £ —Ref* F

In the special cases:

{%Oi)z?} = ¢ is an epimorphism, (4.74)
{%:wa(zbi_‘(} = ¢ is an immediate epimorphism, (4.75)
{%:oy<p:c;§} = ¢ is an isomorphism. (4.76)

THEOREM 4.93. The refinement RefX F of a set F C X* of functionals on a stereo-
type space X is a minimal quotient space among the immediate quotient spaces of X to
which the functionals F' can be extended. Moreover, every such quotient space Y strongly
subordinates Ref™ F':

VY (FCY*&Y <, X = Ref* F<_Y). (4.77)

PROPOSITION 4.94. If a:Y < X and B : Z +— X, then the condition Z*oa CY* 0 3
implies Z <Y . In the special case whenY G X and Z G X, the condition Z*oa C Y*of3
implies Z < Y.

4.7. Decompositions, factorizations, envelope and refinement in Ste

4.7.1. Pre-abelian property and basic decomposition in Ste. Since any two par-

allel morphisms
]

X 2XY
P

in Ste can be added and subtracted from each other, it is clear that Ste is an additive
category. In [2] it was noticed that this category is pre-abelian:
THEOREM 4.95. In Ste, for each morphism ¢ : X — Y the formulas

Kerp = (¢71(0))", Cokerp = (Y/9(X))",

Coimp = (X/p71(0)", Imp = (p(X))*
define respectively the kernel, cokernel, coimage and image. The operation @ — ©* of
taking the dual map establishes the following connections between these objects:

(4.78)

(ker p)* = coker p*, (cokerp)* = kerp*, (img)* =coimp*, (coimp)* =imp*,
(4.79)

(Kerg)t® =Ime*, (Imp)t? =Kerg*, Kergp=(Imp*)t2,  Imp = (Kerp*)t2.
(4.80)
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The pre-abelian property of Ste implies

THEOREM 4.96. Each morphism ¢ : X — 'Y in Ste has basic decomposition (2.30). The
operation p — ©* of taking the dual map establishes the following identities:

(imp)* =coimp*,  (coimp)* =imp*, (4.81)
(Imp)* = Coimp*, (Coimp)* = Ime*. (4.82)
Formulas (4.78) imply

THEOREM 4.97. For any morphism ¢ : X — Y of stereotype spaces:

— Kery and Im ¢ are closed immediate subspaces (in X and Y respectively);
— Coim ¢ and Cokerp are open immediate quotient spaces (of X and'Y respectively).

ExaMPLE 4.98. There exists a morphism ¢ of stereotype spaces such that the reduced
morphism red ¢ is not a bimorphism.

Proof. Let FE be a space from Example i.e. a complete locally convex space with
a discontinuous linear functional f : F — C which is continuous in the topology of the
pseudosaturation E#. Then F' = Ker f is a closed subspace in E*, different from E%, but
in F the subspace F is dense. Since E is complete, we can embed it as a closed subspace
into a direct product of Banach spaces, say Y. Let ¢ : F* — Y be the composition of
the injections

FACFCE*CECY.

Since F is a closed subspace in the pseudocomplete space E*, it is pseudocomplete
itself. Hence, its pseudosaturation F'® is a stereotype space. On the other hand, Y is a
direct product of Banach spaces, therefore it is stereotype as well. Finally, since ¢ is an
injection, its kernel is zero, hence Coim ¢ = F'*. On the other hand, the image of ¢ is the
pseudosaturation of p(F*) = F in Y, i.e. the pseudosaturation of E:
—Y
Imp = (p(F2) )" =B

Thus, the reduced morphism red ¢ is just the inclusion F* C E*, and it cannot be a
bimorphism, since F'* is closed in E#, but not equal to E*. Diagram (2.30) for ¢ takes
the form

e —sy

coim @J )I\im o]

Fe 5 e .
COROLLARY 4.99. The category Ste is not quasi-abelian in the sense of J.-P. Schneiders
[39].
Proof. Example contradicts [39, Corollary 1.1.5]. m

4.7.2. Nodal decomposition in Ste. In [2] Theorem 4.21] it was noticed that Ste
is complete. On the other hand, from Corollaries [4.66] and it follows that Ste is
well-powered and co-well-powered. Together with the existence of basic decomposition,
this means by Theorem [2.42] that Ste is a category with nodal decomposition:
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THEOREM 4.100. In Ste each morphism ¢ : X — Y has nodal decomposition (12.24]).
The operation @ — * of taking the dual map establishes the following identities:

(ims )™ = coims ©*,  (coimes v)* = ims ¢, (4.83)
(Imoo ) = Coimeo ™, (Coimuo ©)* = Imyo ™. (4.84)

As we noticed above, the basic and the nodal decompositions are connected with each
other through diagram (2.31)):

X Y
. redos ¢
coim ¢ C0|mooap4>|moocp im e
P ~
~ ~
~ ~
~ o T~
X - red p >
Coim ¢ Im

where the morphisms o and 7 are uniquely determined (by ¢).

ExAaMPLE 4.101. For the morphism described in Example diagram (2.31) has the

form
]

X4 Y
. A redes A .
coim ¢ Xt —— X img
P ~
- ~N
- ~N
-1 T~
XA/ XA red ¢ \JEA

This shows that 7 is not necessarily an isomorphism. If we consider the dual map ¢*, we
can conclude that o is not necessarily an isomorphism either.

THEOREM 4.102. For any morphism ¢ : X — 'Y of stereotype spaces:

— the nodal image Imy, @ coincides with the envelope in' Y of o(X):
Imee @ = EnvY p(X); (4.85)
— the nodal coimage Coims, ¢ coincides with the refinement of ¢*(Y*) on X:
Coim, ¢ = Ref* ©* (V™). (4.86)

Proof. By Remark [2:43] Imo ¢ is the projective limit of the sequence of the “usual”
images Im ¢? of the transfinite system of morphisms defined by ¢'*! = red ¢*. And each
Im ¢ precisely coincides with the space E; from the definition of EnvY M for M = »(X).

Similarly, Coim ¢ is the injective limit of the transfinite system of the “usual” coim-
ages Coim ¢’, and each such space coincides with the space F; from the definition of
Ref* F for F = ¢*(Y*). m

4.7.3. Factorizations in Ste. Recall that by definition on p. a factorization of a
morphism X 5 Y is its representation as a composition ¢ = p o of an epimorphism &
and a monomorphism p. Theorem implies

THEOREM 4.103. In the category Ste:

(i) each morphism ¢ has a factorization;
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(ii) among all factorizations of ¢ there is a minimal one (Emin, fmin) ond a mazimal one
(Emax; fhmax), €. for each factorization (g, p),

(gmina,ulmin> S (57/'6) S (gmaxalu/max)~
4.7.4. Characterization of strong morphisms in Ste

THEOREM 4.104. In Ste, for a morphism u: Z — X the following conditions are equiv-
alent:

(i) w is an immediate monomorphism;

(1)’ in diagram the space Y is an immediate subspace in X ;

(ii) w is a strong monomorphism;
(ii)" in diagram the morphism o is a strong monomorphism;
(iii) g 2 imo 117
(iv) coimeo i and redoo i are isomorphisms.
Proof. The equivalences (i)« (ii)< (ili)<(iv) follow from Theorem since Ste is a
category with nodal decomposition. Proposition implies the equivalences (1)< (i)
and (ii)<(ii)’. =

The dual proposition is proved by analogy:

THEOREM 4.105. In Ste, for a morphism ¢ : Z — X the following conditions are equiv-
alent:

(i) € is an immediate epimorphism;
(i)' in diagram the space Y is an immediate quotient space for X ;
(ii) € is a strong epimorphism;
(i1)" in diagram the morphism m is a strong epimorphism;
ii) € & coimy €;
) iMgo pt and reds p are isomorphisms.

(iii
(iv
4.7.5. Envelope and refinement in Ste. Since the category Ste is complete, well-

powered, co-well-powered and has nodal decomposition, this implies the existence of some
envelopes and refinements in Ste.

THEOREM 4.106. In Ste:

(a) Fach space X has envelopes in the classes Epi of all epimorphisms and SEpi of all
strong epimorphisms with respect to an arbitrary class @ of morphisms among which
there is at least one going from X. In addition:

(i) if @ separates morphisms on the outside in Ste, then
enviP X = envB™ X;

(ii) if @ separates morphisms on the outside and is an ideal in Ste, then for any
class £2 O Bim,

Eoi :
envg” X = envE™ X = envy X = envg X.
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(b) each space X has refinements in the classes Mono of all monomorphisms and SMono
of all strong monomorphisms by means of an arbitrary class @ of morphisms among
which there is at least one coming to X. In addition:

(i) if @ separates morphisms on the inside in Ste, then
refylone X — ref3m X

(ii) if & separates morphisms on the inside and is a left ideal in Ste, then for any
class £2 O Bim,
refy°m® X = ref3™ X = reff X = refy X

Proof. By duality it is sufficient to prove (a). Let X be a stereotype space, and @ a class
of morphisms which contains at least one going from X. Then env5” X and envSEpI X
exist by 5° on p. [64l Suppose now that @ separates morphisms on the outside in Ste.
Then by Theorem the existence of envgpi X automatically implies the existence of
nvB™ X and their equality. Finally, suppose that @ separates morphisms on the outside
in Ste and in addition is a right ideal. Then by Theorem the existence of enqu;m X
(which is already proved) implies that for any class 2 D Blm the envelope envds X also
exists, and these envelopes coincide. m

THEOREM 4.107. The envelope Env M of a set M in a stereotype space X coincides
with the envelope of the spacem Cypr in the class Epi of all epimorphisms of the category
Ste with respect to the morphism ¢ : Cyp — X, @(a) = > 0 - 2

Env™ M = Envi? Cyy.
Proof. This follows from 1° on p. [63] and from Theorem [£.102}
nvipi Cum Imy @ Env™ o(Cur) = Env™ spanM = Env® M.

THEOREM 4.108. The refinement RefX F of a set F of functionals on a stereotype space
X coincides with the refinement of the space CF in the class Mono of all monomor-
phisms in Ste by means of the morphism ¢ : X — CF, o(x)f = f(x), f € F:

Ref* F = Ref)>" C"".
Proof. This follows from 1° on p. [64] and from Theorem [£.102}
Ref:\;lono c*F Coim, Ref™ o*(Y*) = Ref™ span FF = Ref* F. m

4.8. On homology in Ste. As is known, in homology theory, in opposition to the
well-established methods of abelian categories, there have always been attempts to find
alternative approaches, where it is considered desirable to get rid of the abelian property
and even of the additivity with the aim to cover the widest spectrum of situations (one
can see this from [34], [30], [50], [I7], [15], [14], [39], [23], [36], [8], [12], [21], [41], [20]). We
hope that the following effect will be interesting in this connection: in the (non-abelian,
but pre-abelian) category Ste of stereotype spaces the standard definition of homology

(*") We use here the notation of [3, p. 478].
(*®) The notation of [3} p. 477] is used here.
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breaks up into two non-equivalent notions. Let us start with the following definition
(taken from [20]):

e Suppose in a pre-abelian category K we have a pair of morphisms X 2y 4 Z which
form a complex:
Yop=0.

By the definitions of kernel and cokernel, this equality defines two natural morphisms

oK
er PCokerp

X £ Kert and Cokerp —<%, Z such that the following diagram is commutative:

@ P
X Y Z
I ~
I I
Ker ¢ w oker
¢ ‘ kery coker ¢ | FCotere
N I

Ker Cokerp
The cokernel of K ¥ is called the left homology of the pair (p,%) and is denoted by
_ (¢ : @) = Coker(gKer¥). (4.87)
The kernel of tcoker,, is called the right homology of the pair (p,v) and is denoted by
Hi (¢ 1 ) = Ker(Ycokery)- (4.88)

The following observation belongs to folklore:

PROPOSITION 4.109. In a pre-abelian category K for any pair of morphisms X %Y %y
forming a complex, 1 o @ = 0, there exists a unique morphism h(v : p) : H_(¢ : ) —
Hy (v : @) such that

X z Y - 4
| ™~

LpKer wi % m : PCokery

Ker Cokerp
coker(tpKe'w)J( Tker(d’cokerw) (489)
h(4:
Coker Kerdz) o (j)f)f - — = Ker(wCokergo)
Hy(v: )

In each autodual category (for instance, in Ste) a purely categorical duality reasoning
gives the following identities:

He(h:o)" = H (" :9%),  H_(¥:9)" = H(p": 7). (4.90)
ExXAMPLE 4.110. In Ste, the morphism
h(y:¢)
Ho(t:p) =

) — = Hi(¥ 1 )
is not always an epimorphism.
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Proof. Let E be the space from Example i.e. a complete locally convex space with
a discontinuous linear functional f : E — C which is continuous in the topology of the
pseudosaturation E#. Then F' = Ker f is a dense subspace of E, but in the space E* it is
a closed subspace, different from E2 (since f # 0). As a corollary, the natural inclusion
o : F — FE is dense (i.e. has a dense image in E), but its pseudosaturation 2 : F4 — E*
does not have this property.

Let us represent E as a closed subspace in a stereotype space Y (with the topology
inherited from Y'; for example, we can consider the system of Banach quotient spaces
of F and say that Y is the direct product of these spaces). Let

p:F* - E* =Y
be the corresponding composition of monomorphisms, and
Y — (Y/E®)Y
the corresponding epimorphism. Then, first,
Kery = E*
4
im Kt = (p(F)" )> = (F )% = F*
4
Coker(@Ke¥y = (B2 /F*)Y = CY = C.
And second,
ime = ((F) )2 = (F")" = B®,
4
Coker o = (Y/E*)Y
4
Yeoker o = Ly E8)7
4
Ker(¢coker ») = 0.
As a result, diagram takes the form

® P

F;A Y (Y/EA)V
/r
o | | Ycoker
1 ker ¢ coker ¢ |
EA (Y/EA)V
coker (K" “’)J Tker(www)
(EA/FA)Vwcfffi(lﬁwl 77777 >0
H_(¢: ) Hi(y: )

and clearly h(¢ : ¢) cannot be an isomorphism. m



5. The category Ste® of stereotype algebras

5.1. Stereotype algebras and stereotype modules

5.1.1. Stereotype algebras. A stereotype space A over C is called a stereotype algebra
if A is endowed with a structure of unital associative algebra over C, and multiplication
is a continuous bilinear form in the sense of the definition on p.[123} for any compact set
K in A and for any zero neighborhood U in A there exists a zero neighborhood V in A
such that

K- VCU and V-KCU.

This is equivalent to A being a monoid in the category Ste of stereotype spaces with
respect to the tensor product ® (defined in ) Clearly, each stereotype algebra A is
a topological algebra (but not vice versa). The class of all stereotype algebras is denoted
by Ste®. It is a category, where the morphisms are the linear, continuous, multiplicative
and unit-preserving maps ¢ : A — B.

In contrast to Ste, the category Ste® of stereotype algebras is not additive. In ad-
dition, in Ste® an asymmetry arises between monomorphisms and epimorphisms, since
epimorphisms are not inherited from Ste:

— A morphism ¢ : A — B of stereotype algebras is a monomorphism iff ¢ is an injective
map (i.e. a monomorphism of stereotype spaces).

— On the other hand, an epimorphism ¢ : A — B of stereotype algebras not necessarily
has dense image in B (i.e., not necessarily is an epimorphism of stereotype spaces).
A counterexample is the inclusion of the algebra P(C) of polynomials on C into the
algebra P(C*) of Laurent polynomials on C* = C\ {0} (both endowed with the
strongest locally convex topology).

The following lemma will be useful:

LEMMA 5.1. Let A and B be topological algebras (with separately continuous multipica-
tion), and ¢ : A — B be a continuous linear map such that

ez y) =px)-»ly), x,y€ A,
for some dense subalgebra Ay in A. Then
ez y) =e(x)-0y), zyeA
Proof. For any x,y € A we find nets x;,y; € Ag such that
7 A T,  yj EimiaN Y.

[147]
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Then we have
px-y) «— @(@-y;) «— @i y;) = o(xi) - y;) — o(@i) - ely) — o) - o(y).
c04—j 0041 i—00 j—oo
Let us give some examples of stereotype algebras. First, two abstract examples.

EXAMPLE 5.2 (Fréchet algebras). For a Fréchet space A, being a stereotype algebra is
equivalent to the joint continuity of multiplication. Hence, each unital Fréchet algebra is
a stereotype algebra.

EXAMPLE 5.3 (The operator algebra £(X)). Theorem implies that for any stereo-
type space X the space £L(X) = X © X of continuous linear maps ¢ : X — X is a
stereotype algebra with respect to composition.

Next, we give a series of function algebras.

EXAMPLE 5.4 (The algebra C(M) of continuous functions on a paracompact locally com-
pact space M). Let us recall that a topological space M is said to be o-compact if it is
the union of a countable system of compact sets. For a locally compact spaces M this
condition is equivalent to the Lindeldf property: every open covering of M has a count-
able subcovering (cf. [I3] 3.8.C(b)]). As a corollary, if M is a Lindeldf space (i.e. has the
Lindel6f property) and is locally compact, then the space C(M) of continuous functions
u: M — C is a Fréchet space with the topology of uniform convergence on compact sets
SCM.
Consider a more general class of topological spaces. Let M be a paracompact locally
compact topological space. Then it can be decomposed into a direct sum
M= ]_[ M;

i€l
of Lindel6f locally compact spaces M; (see [I3}, Theorem 5.1.27]). Therefore, C(M) (with
the topology of uniform convergence on compact sets) is a stereotype space, as a direct
product of Fréchet spaces:

c(M) = [Jeun).

iel
Clearly, C(M) is an algebra with respect to pointwise multiplication, which is easily
checked to be a continuous bilinear map. Hence, C(M) is a stereotype algebra.

EXAMPLE 5.5. The algebra £(M) of smooth functions on a smooth manifold M (with
the usual topology of uniform convergence on compact sets with all derivatives) is a
stereotype algebra (with the usual pointwise multiplication).

EXAMPLE 5.6. The algebra O(M) of holomorphic functions on a Stein manifold M (with
the topology of uniform convergence on compact sets in M) is a stereotype algebra (with
the pointwise multiplication).

EXAMPLE 5.7. The algebra P(M) of polynomials (i.e. regular functions) on an affine
algebraic variety M (with the strongest locally convex topology) is a stereotype algebra
(with pointwise multiplication).

Finally, we present a series of group algebras.
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EXAMPLE 5.8 (The algebra C*(G) of measures on a locally compact group G). As is
known, each locally compact group G is paracompact [I8, 2.8.13], hence the space C(G)
of continuous functions on G (with the topology of uniform convergence on compact sets)
can be considered as a special case of Example and what is important for us, C(G)
is stereotype. Its dual space C*(G) consists of measures with compact support on G. The
convolution of measures «, 5 € C*(G) is defined by the formula

Q * ﬁ(u) = (a ® ﬁ)(w”w(s,t):u(si)

:/G(/Gu(s~t)da(s)) dﬁ(t):/G(/Gu(s~t)d[3(t)> da(s). (5.1)

This operation is associative and has a unit (the delta-functional ¢ of the unit in G).
In addition, it is continuous as a bilinear map, so the space C*(G) of measures on a
locally compact group G is a stereotype algebra with the convolution (o, ) — a3 as
multiplication (and with 6*¢ as unit).

EXAMPLE 5.9 (The algebra £*(G) of distributions on a Lie group G). Let G be a real Lie
group [49] [48]. Consider the space £*(G) of distributions with compact support on G (i.e.
the dual space to £(G) from Example |5.5). The convolution of distributions o, 8 € £*(Q)
is defined by formula . The space E*(G) of distributions is a stereotype algebra with
the convolution (v, ) — a x 3 as multiplication (and with §'¢ as unit).

EXAMPLE 5.10 (The algebra O*(G) of analytic functionals on a Stein group G). Let G
be a Stein group, i.e. a complex Lie group [9] which is a Stein manifold [42]. Consider the
space O*(G) of analytic functionals on G (i.e. the dual space to O(G) from Example 5.6).
The convolution of analytic functionals o, B € O*(G) is defined by formula . The
space O*(G) of analytic functionals is a stereotype algebra with the convolution (o, B) —
a* 3 as multiplication (and with 61¢ as unit).

EXAMPLE 5.11 (The algebra P*(G) of currents on an affine algebraic group G). Recall
some facts from the theory of algebraic groups [48]. The general linear group GL(n,C)
is a basic open subset in the vector space L(n,C), therefore it can be represented as a
closed (in the Zariski topology) subset in some affine algebraic space C™. This means
that GL(n,C) is an affine algebraic variety. Its polynomials (regular functions) have the
form

u(g) = P(9)/D(9)" (5.2)
where D(g) is the determinant of the matrix g € L(n,C), k belongs to N, and P is a
polynomial on L(n,C) [4§].

Let now G be an affine algebraic group, i.e. a Zariski closed subgroup in GL(n,C) [48],
or equivalently, the set of common zeroes of a system of functions u : GL(n,C) — C of
the form , which is closed under the group operation in GL(n, C). Since G is a closed
subset in GL(n,C), it is an affine variety.

Therefore the space P(G) of polynomials on G is a special case of the general
construction from Example[5.7] In this case P(G) consists of functions v : G — C which can
be extended to functions u : GL(n, C) — C of the form (5.2)). The dual space P*(G) consists
of linear (and automatically continuous) functionals f : P(G) — C, called currents on G.
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The convolution of currents o, 8 € P*(G) is defined by (5.1). The space P*(G) of
currents on an affine algebraic group G is a stereotype algebra with the convolution
(o, B) = a* 3 as multiplication (and §'¢ as unit).

5.1.2. Stereotype modules. A stereotype space X over C with a given structure of
left (or right) A-module is called a stereotype A-module if multiplication by elements of
A is a continuous bilinear map in the sense of the definition on p. [I23] Theorem [£.5§|
implies that X is a stereotype (left) module over A if and only if p can be continuously
factored through the projective stereotype tensor product:

AXX —— A® X

u\‘ z/
X

ExaMPLE 5.12. Each stereotype space X is a stereotype left module over the stereotype
algebra £(X) (from Example [5.3).

THEOREM 5.13 (on representation). Let A be a stereotype algebra. A stereotype space X
with the structure of left (respectively right) A-module is a stereotype A-module if and
only if multiplication by elements of A defines a continuous homomorphism (respectively,
antihomomorphism) of A into L(X).

The classes 4Ste and Stea of left and right stereotype modules over a stereotype
algebra A form categories with continuous A-linear maps as morphisms.

PROPERTIES OF THE CATEGORIES 4Ste AND Stey,.

1° 4Ste and Steya are pre-abelian categories.

2° 4Ste and Stey are complete: each covariant (and each contravariant) system has an
injective and a projective limit.

3° ASte and Stey are enriched categories over the monoidal category Ste.

5.2. Subalgebras, quotient algebras, limits and completeness of Ste®

5.2.1. Subalgebras, products and projective limits

e Suppose B is a subset in a stereotype algebra A endowed with a structure of stereotype
algebra in such a way that the set-theoretic inclusion B C A is a morphism of stereotype
algebras (i.e. a linear, multiplicative and unit-preserving continuous map). Then B is
called a subalgebra of the stereotype algebra A, and the set-theoretic inclusiono : B C A
its representing monomorphism.

e We say that a subalgebra B of a stereotype algebra A is closed if its representing
monomorphism o : B — A is a closed map in the sense of the definition on p.

The following fact was stated in [2, Theorem 10.13]:

THEOREM 5.14. Let A be a stereotype algebra and B its subalgebra (in the purely algebraic
sense), and at the same time a closed subspace of the locally convexr space A. Then the
pseudosaturation B® is a (stereotype algebra and a) closed subalgebra in A.
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THEOREM 5.15. Each family {A;;i € I} of stereotype algebras has a direct product in the
category Ste®, and as a stereotype space this product is ezactly the direct product of the
family {A;; i € I} of stereotype spaces:

Ste®- H A; = Ste- H A;.

il iel

Proof. We have to verify that the direct product is the usual direct product of locally
convex spaces A = [],.; A; with coordinatewise multiplication:

(x-y)i=wx; -y, i€l
By [2, Theorem 4.20], this is a stereotype space, so we only need to prove that multipli-
cation is continuous. Let U be a neighborhood of zero and K a compact set in A. We
must find a zero neighborhood V' in A such that

V-KCU K- -VCU.
It is sufficient to consider a base neighborhood U, i.e.

U={ze€A: VieJ x;€U;}

where J C I is a finite subset in I, and for any ¢ € J the set U; is a neighborhood of zero
in A;, and x; is the projection of z € A onto A;. If U has this form, then for any i € J
we can consider the zero neighborhood U; in A;, and (since A; is a stereotype algebra)
we can choose a zero neighborhood V; such that

Vi-K; CU;, K;-V;CU;
(where K; is the projection of the compact set K C A onto A4;). Then we let
V={zreA:VieJ z, €V}
and for each z € V and y € K we get
Mied (zyi=a-y€Vi- K, CU;)) = x-yel.
This means that V' - K C U. Similarly,
Vied (y-zx)i=yi-v, € K;-V;CU;) = y-zel,
and this means that K -V CU. =

THEOREM 5.16. Each covariant system {Aj;; Wf} of stereotype algebras has a projective
limit in Ste®, and as a stereotype space this limit is exactly the projective limit of the
covariant system {A;; 7TZ} of stereotype spaces:

Ste®-@Ai = Ste-l'&nAi.
Proof. By Theorem the direct product A = [],.; A; with coordinatewise multipli-

cation is a direct product of the family {A;} of algebras in Ste®, and by Theorem
the subalgebra B in A consisting of all families {z;; ¢ € I} with

xizwg(xj), i<jel,
and endowed with the topology of pseudosaturation of the topology inherited from A is

a stereotype algebra. The same reasoning as in the case of stereotype spaces proves that
B is the projective limit in Ste®. m
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5.2.2. Quotient algebras, coproducts and injective limits

e Let A be a stereotype algebra, and let

1) I be a two-sided ideal in A (as an algebra), and at the same time a closed set in A
(as a topological space); we will call such ideals closed ideals in A,

2) 7 be a locally convex topology on the quotient algebra A/I such that 7 is majorized
by the usual quotient topology,

3) B be a subspace in the completion (A/I)Y of the locally convex space A/I with
respect to 7 such that B contains A/I and is a stereotype algebra with respect to
the algebraic operations and the topology inherited from (A/I)Y.

Then we call the stereotype algebra B the quotient algebra of the stereotype algebra A,
and the composition v = o o 7 of the quotient map 7 : A — A/I and the natural
embedding o : A/I — B is called the representing epimorphism of B.

e A quotient algebra B of a stereotype algebra A is said to be open if its representing
epimorphism v : B «— A is an open map in the sense of the definition on p.[109

The symmetry between projective and injective constructions which was obvious for
stereotype spaces (see [2]) is preserved in some sense for stereotype algebras, but the
difference is that the injective constructions in Ste® become more complicated and the
proofs more difficult (however, the situation here is the same as for algebras in a purely
algebraic sense). For example, the analog of Theorem uses the theory of modules
over algebras (see [2, proof of Theorem 10.14]):

THEOREM 5.17. Let A be a stereotype algebra and I a closed ideal in A. Then the pseu-

docompletion (A/I)Y is a stereotype algebra (and is called an open quotient algebra of A
by the ideal I).

REMARK 5.18. In Theorem the unitality requirement (i.e. the existence of identity)
for the algebra A is inessential.

Suppose {4;; i € I} is a family of stereotype algebras. Let us construct an algebra
[;c; Ai in the following way. First let us say that a sequence i = {i1,...,i,} € I of
indices alternates if

Vk = 1,...,’17,—1 ik 752']@+1.

The set of all alternating sequences in I of (various) finite lengths will be denoted as I3[
Let us introduce multiplication on I as follows: if ¢, € I3 have lengths m and n
respectively, then their product is

(L1yevesbmy 21,y ooy 2ty)  fOT Ly # 511,
Lx =

(L1ye ey bmy 22y ooy 22)  fOT Ly = 311
(the length of ¢ * > is m + n if ¢, # 51, and m +n — 1 if ¢,,, = 311). For each sequence
L € I we set

A=A, ®  -®A,,.

(where ® is the projective tensor product from (4.36)). Note that for all ¢, > € I3t the
spaces A, ® A,, and A, are naturally related through the continuous linear map
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oy s - AL ® A% — AL*%7

la,@A,., bm 7 31,
[y s = { ® (5.3)

la, ®---®1la,  ®p, la, & ®la, , tm =2,
where u; : A; ® A; — A; is multiplication in A;.
Consider the stereotype space
A, = @ A,

LEI;,“
and note that the formula
(ai, ®as, ® - ®aj,) - (bj, ®bj, ® - ®bj, )
. Qi ® Qi ® - ®a;, Db, ®bj, ®--- @b, im # J1,
ai, ® ag, ®"'®(a’im 'bj1)®bj2 ®...®bjn7 im = J1,

defines a multiplication in A,, which is a continuous bilinear map. This becomes obvious
if we represent this operation as the composition

AcxA s A o =(@a)e (@A)

LEIR Pk
- P A®d. > P A P A=A
L,%EI&“ L7%€I§" AEI;,"

Here the first arrow is described in Proposition the second arrow is the natural
isomorphism that connects the direct sum and the projective tensor product, the
third arrow is the direct sum @L’%e L3t e of the morphisms , and the final arrow
is the result of identification of each summand of the form A,,, (there can be many of
those) with the space A in the sum @, e A (which is unique).

Obviously, this multiplication in A, is associative. If we take the quotient algebra of
the (non-unital) algebra A, by the closed ideal M (here we use Remark generated
by the elements of the form

L, 1, el
then the quotient algebra (A./M)Y will be a stereotype algebra with identity

1(A*/M)V = ﬂ'(lAi)
(here the right side is the image under the quotient map 7 : A, — (A./M)Y).

e Following [29] we call (A./M)V the free product of {A;; i € I} and we denote it by
ste®- [ ] Ai = (A./M)".
icl
This is justified by the following theorem.
THEOREM 5.19. For each family {A;;i € I} of stereotype algebras its free product
Ste®-]1,c; Ai is a coproduct in Ste®.

THEOREM 5.20. Each covariant system {A;; LZ} of stereotype algebras has an injective
limit in Ste®.
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Proof. The limit is the open quotient algebra (([T,c; Ai)/N) ¥ of the free product e Ai
by the closed ideal N generated by elements of the form

LZ(SC) - Lj(Lg("T))a T € A,
where ¢y : Ay — [[;c; Ai are natural embeddings. =

As an illustration of the difference between projective and injective constructions in
Ste®, note that injective limits in Ste® do not necessarily coincide as stereotype spaces
with injective limits in Ste. For instance, for coproducts we have

ste®- [ [ 4; # ste-[ ] A
iel i€l
(although there is a natural map from right to left). This asymmetry, however, diasppears
when the index set [ is directed:

THEOREM 5.21. If {A;; Lj} is a covariant system of stereotype algebras over a directed

i
set I, then the natural map

Ste—ligﬂAi — Ste®—ligAi
is an isomorphism of stereotype spaces.

Proof. Write A = Ste—ligAi, and let p; : A; — A be the corresponding morphisms of
stereotype spaces:

A
ya N\ (5.4)

We will show that A has a natural structure of stereotype algebra, and with this structure
A is an injective limit of the covariant system {A4;; ¢} of stereotype algebras.

STEP 1. Take ¢ € I and note that for any j > ¢ the homomorphism Lg : Ay — Aj induces
on A; a structure of left A;-module by the formula
atb:LZ(a)Abb, GGAi,bEA]‘. (55)

(here - means left multiplication by elements of A;, and ) multiplication in A;). Moreover,
? 3

for i < j < k the maps L? : Aj — Ay are morphisms of left A;-modules:

Bla;n) B U@ ; ) =d@) ; bb)=it@ ; fe)

aZL;C(b), CLGAi,bEAj.
This means that {A;; j > i} can be considered as a covariant system of left stereotype
A;-modules. By [2 Theorem 11.17], it has an injective limit, which as a stereotype space
coincides with the injective limit of {A4;; j > i}. And the latter coincides with the injective
limit of the whole system {A;; ¢/}, since [ is directed:

A4,Ste- lim A; =Ste- lim A; =Ste- lim A4; = A.

i<j—o0 i<j—o0 j—o0
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An important conclusion is that for any ¢ € I the space A has the structure of a stereotype
A;-module, and under this structure the maps in diagram (5.4)) become morphisms of
A;-modules; in particular,

pila-b)=a-p;b), i<j,a€AbeA; (5.6)

STEP 2. For ¢ < j the structures of left A;-module and of left Aj;-module on A are
coherent via the identity

da) z=a-x, acd;,zeA (5.7)

1 .
J %
To prove this we first consider the special case when x = pg(b), b € Ag, k > j. In this
situation

Lg(a) ; T = Lg (a) i pr(b) = Pk(bg(a) p b) = Pk (Léc(d (a)) Ay b)

p) &

=’ Pk(a;b) a- pr(b)

i %

= Pk (Lf (a) AL

Next recall that the family of the spaces Ay is dense in its injective limit A (use the left
formula of [2| (4.15)] and the fact that I is directed). This means that for any z € A
there is a net xy € pr(Ag) tending to x in A. Since for any xj, the equality is already
proved, we obtain a relation which proves for x:

L{(a) ~'x<L L{(a) S XTE = a- T antx
J ook J ) k—o00 7
(we can take limits by the continuity of multiplication in a stereotype module).
STEP 3. As A is a left A;-module, by [2, Theorem 11.2] the formula
pila)(x)=a-z, a€A;,zeA,
defines a homomorphism ¢; : 4; — L(A) of stereotype algebras. Since we have the
identity
vi(a-b) = @;(a)op;i(b), a,be A, (5.8)
and the equality
@i(lAi) =ida, (59)
formula (5.6)) turns into
pi(a)(pi(b)) = a;ﬂi(b) = pi(a N b), abe A, (5.10)
and formula (5.7) into
i(l(a))(@) = pia)(w), a€A; xeA,
which is equivalent to ‘
pjoul =¢;, 1< (5.11)

The latter means that the following diagram in Ste® is commutative:

L(A)
w/ ) 'YJ
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One can interpret this as an injective cone of the covariant system {A;; z} in Ste. Hence
there exists a continuous linear map ¢ : A = lglAl — L(A) such that for any ¢ the
following diagram is commutative:

A—— LA

\\ /” (5.12)

Let
zoy=p@)(y), zy€eL (5.13)
we will verify that this multiplication turns A into a stereotype algebra.
STEP 4. The bilinear form (z,y) — -y is continuous. Indeed, if K is a compact set in A,
then p(K) is compact in £(A). Hence, ¢(K) is compact in the space of operators A : A.

By [2, Theorems 5.1 and 2.5], this means that ¢(K) is equicontinuous on A. Hence for
every zero neighborhood W in A there is a zero neighborhood V' in A such that

K-V =pK)(V)CW.
On the other hand, for any compact set K and for any zero neighborhood W in A the

set W © K is a neighborhood of zero in £(A), hence from the continuity of ¢ it follows
that there is a zero neighborhood V in A such that

p(V)SWOoK,
and this is equivalent to the inclusion
VK =p(V)(K)CV.
STEP 5. The formula
14 =pi(la,) (5.14)
defines some element of A, so if ¢ < j, then
pi(La,) = pi(e](1a,)) = pi(1a,)-
Furthermore, the chain
p(14) = p(pi(1a,)) = @i(1a,) = ida (5.15)
implies that this element is the identity for the multiplication : First, for any y € A,
La-y=¢(1a)(y) =idaly) = v.

Second, for any z € A we can find a net a; € Ay such that
A
Pk (ak) x,
k—o00

and by the continuity of multiplication in A, we have

w1y plan) - La = prlan) - pi(1a) = olon(ar) (r(1,)

= orlar) (pr(la,)) =" pr(a o Lan) = pelar) A,

k k—oco

Thus, z-14 = =z.
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STEP 6. The map p; in (5.12) is a homomorphism of algebras. Indeed, it maps iden-
tity into identity just by the definition of 14 in (5.14)). On the other hand, it preserves
multiplication since for all a,b € A;,

pita ) 00 (0:0) 2 p(pi(@) (i) 2 pi(a) - i) (5.16)

7

STEP 7. The same holds for the map ¢. Preservation of identities was already stated in
(5.14). And to prove multiplicativity we first note that

e(pia) - pj(b)) = w(pi(a)) o p(p; (b)), i,j €I, ac Ay beA; (5.17)
Indeed, for k € I such that £ > ¢ and k > j we have
(pi(a) - pi(0) = o(pr(th(a)) - pr(f (1)) = o(pr(f (a) - 5 (D))
B2 o (b (a) - 5(0) B oilik(a )) o m 5 (0)
B2 o (or (15 (@))) 0 @ (pr (5 (0)) = 0(pia)) o 0lp; (1)

Then we take =,y € A and find a; € A; and b; € A; such that

A
pila;)) — x, Py(b ) —> Y.

We obtain
ol - ) = plpi(a) -y) = o(pilar) - py b))
2 opi@)) 05 (67)) =5 plpilan)) o () =2 ola) 0 o),
hence

ez -y) =)o p(y).
This formula proves in addition the associativity of multiplication in A,
z-(y-2) = @)y - 2) = o(@)(p()(2) = (p(x) 0 p(y))(2) = p(z - y)(2) = (x-y) - 2
completing the proof that A is a stereotype algebra.

STEP 8. We only have to Verify that the cone {4;; p;} of algebras is an injective limit
of the covariant system {A;; ¢]} of algebras. Let {B;; o;} be another cone of algebras.
Since it is also a cone of stereotype spaces, there exists a unique continuous linear map
o : A — B such that

AN (5.18)

We must check that ¢ is a homomorphism of algebras. Preservation of identities follows
from the fact that all o; preserve identity:

o(1la) =0(pi(1a,)) = 0i(1la,) = 15.
To prove multiplicativity we first note that

a(pi(a) - p;i(b)) = a(pi(a)) - a(p;(b)), i, €I, acAibe Ay, (5.19)
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This can be proved by the same reasoning as (5.17) above: Take k € I such that k > i
and k > j; then

a(pi(a) - p; () B o (p( (@) - () B2 o (pr (b (a) - £ (b))
= o1,(5(a) - Lf(b)) =ox(1f(a)) - o (L (0))
2 (0 (1)) - o (o5 (1)) B o (pila) - o (p; (b))

Next take x,y € A and choose a; € A; and b; € A; such that

A A
pi(ai) ——x,  pjla;) ——y
i—00 j—o0o
‘We obtain
B
ol y) e olpila) - y) < o (pilar) s 0)

i(a
B2 o (pi(ai) - olps(b; >>—>a<p2<ai>> a(y) —— a(z) - a(y),

1—00
and thus o(z - y) = o(z) - o(y). =
5.2.3. Completeness of Ste®. Theorems and imply

THEOREM 5.22. The category Ste® is complete.

5.3. Nodal decomposition, envelope and refinement in Ste®
5.3.1. Discerning properties of strong epimorphisms in Ste®.

THEOREM 5.23. For a morphism € : A — B of stereotype algebras the following condi-
tions are equivalent:

(i) € is an immediate epimorphism in Ste®;
(ii) € is a strong epimorphism in Ste®;
(iii) € 4s an immediate epimorphism in Ste;
(iv) € is a strong epimorphism in Ste.

Proof. The implications (i)<=(ii) and (iii)<(iv) are already known. So it is sufficient to
prove (i)=-(iii) and (ii)<(iv).

(i)=(iii). Lete: A — B be an immediate epimorphism in Ste®. Consider its minimal
factorization in Ste, i.e. a diagram with continuous linear maps

A—= B

.

Coimg €

where Coim, ¢ is the nodal coimage in Ste. Our aim is to show that Coim., & has
the structure of a stereotype algebra under which coimy, e and g become morphisms
in Ste®—this will mean that the epimorphism coimy, € is a mediator for € in Ste®, and
since € is an immediate epimorphism, ¢ must be an isomorphism in Ste®, and hence in
Ste as well. This allows us to conclude that the epimorphism ¢ is isomorphic in Ste to
the epimorphism Coim,, €, which is an immediate epimorphism in Ste, and thus ¢ is also
an immediate epimorphism in Ste.
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The existence of the structure of a stereotype algebra on Coimy, € follows from Theo-
rems and[5.21} on the one hand, any operation of the form A"+ (A’/I)¥ (where I is
a closed two-sided ideal in A’) turns each stereotype algebra A’ into a stereotype algebra,
and on the other hand, the injective limit in Ste of the system of stereotype algebras
that one can form from A in this way is a stereotype algebra. Theorem [5.21] also implies
that the natural map of A into this injective limit Coim, € is a morphism of stereotype
algebras.

It remains to check that p is a morphism of stereotype algebras as well, i.e. it is
multiplicative and preserves units. The second property follows from the same property
for € and coime, e(14):

u(le) = p(coimee(la)) =e(la) = 1p.
The multiplicativity of g on coimy, e(A) follows from the multiplicativity of & and
coime, £(14): for any a,b € A we have
p(coime £(a) - coime (b)) = p(coimes £(a - b)) = (a - b)
=¢e(a) - e(b) = p(coimy e(a)) - p(coimas £(b)).
Now recall that coims € is an epimorphism in Ste, so the algebra coimy, €(A) is dense in
Coimy, €. Hence, by Lemma  is multiplicative on Coimg €.
(ii)<(iv). Suppose ¢ : A — B is a strong epimorphism in Ste. Consider the following
diagram in Ste®:
A= B
oLl
C—>D
where p is a monomorphism. It can be considered as a diagram in Ste, and since u is

a monomorphism in Ste (by Example [5.1.1]), and ¢ a strong epimorphism in Ste, there
must exist a morphism ¢ in Ste (i.e. a continuous linear map) such that

A—+ B

v

ai 6/ \Lﬁ
<

C — D

It remains to check that ¢ is a homomorphism of algebras. First, § preserves units, since
u does:

u(le) = 1p = B(e(1a)) = u(d(c(1a))) = u(6(1p)) = lc =4d(1p).

For the same reason ¢ is multiplicative on the subalgebra e(A): for all a,b € A,
1(d(e(a-d))) = B(e(a-b)) = Ble(a))-Be(d) = u(d(c(a)))-u(8((b))) = n(d(c(a))-(e(b)))
.

6(e(a- b)) = d(e(a)) - 6(e(b)).
The multiplicativity of 6 on B follows from Lemma[5.1] =



160 5. The category Ste® of stereotype algebras

THEOREM 5.24. If a morphism ¢ : A — B of stereotype algebras is not a monomorphism,
then there exists a decomposition @ = ¢’ o e where € is a strong epimorphism but not an
isomorphism.

Proof. If ¢ is not a monomorphism, then I = Ker ¢ is a non-zero closed ideal in A. By
Theorem the quotient space (A/I)Y is a stereotype algebra. The homomorphism ¢
can be lifted to some homomorphism ¢ : A/I — B of algebras, which by the definition
of the usual quotient topology is a continuous map:

AT AT
\
® f}
B
Since B is pseudocomplete, 1 can be extended to a continuous map ¢’ : (A/I)¥V — B:
v
A—T" 5 A/ T—2 5 A/
® lw — /ga/
B J(

By Theorem @ v =Vyyon:A— (A/I)7 is a strong epimorphism of stereotype
algebras, so we only have to verify that ¢’ is a homomorphism of algebras. It preserves
identities since 1(A/I)V = 1A/I:

¢ (La/nw) = ¥(lasr) = 1.
Multiplicativity follows from Lemma [5.1} since v is multiplicative. m

5.3.2. Discerning properties of strong monomorphisms in Ste®

LEMMA 5.25. Let A be a stereotype algebra and B a subalgebra in A (in the purely
algebraic sense). Then the envelope Env? B of B in the stereotype space A is a stereotype
algebra.

Proof. This follows from the completeness of the category Ste® (Theorem [5.22) and from
the fact that the pseudosaturation of the closure C" of any subalgebra C in A is always
a stereotype algebra by Theorem m

LEMMA 5.26. In Ste® the immediate monomorphisms coincide with the strong monomor-
phisms.

Proof. We already noticed (property 2° on p. that each strong monomorphism is an
immediate monomorphism, so we have to verify that in Ste® the converse is also true. Let
1 C'— D be an immediate monomorphism of stereotype algebras. Consider a diagram

A—=—B
oL, b
C - D
where ¢ is an epimorphism. Consider the subset u(C)UB(B) in D. Let alg(u(C)U B(B))

be the subalgebra (in the purely algebraic sense) in D generated by u(C) U B(B), and
R = EnvP(alg(u(C) U B(B))) the envelope in the sense of the definition on p. By
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Lemma [5.25] R is a stereotype algebra. Let o : R — D denote its natural inclusion in D.
Since p(C) C R, and R is an immediate subspace in D, the morphism pu of stereotype
spaces can be factored through o,

W=0o0m.
Here 7 is multiplicative, since the identities
o(m(z-y)) = wx-y) = p) - wly) = o(x(x)) - o(r(y)) = o(r(z) - 7(y))
imply by monomorphy of ¢ the identity
m(z-y) =m(z) 7(y).

So we conclude that 7 is a morphism of stereotype algebras. Similarly, the inclusion
B(B) C R implies that 8 can be factored through o,

B=cop,

and again the monomorphy of ¢ implies that p is a morphism of stereotype algebras.

L)

04>D

So we obtain a diagram in Ste®:

4>

Let us show that 7 is an epimorphism (in Ste®). Let ¢,n : R = T be two parallel
morphisms of stereotype algebras. Then the equality

(om=mnom
implies, on the one hand, the identity

Clrey = nlx(c),
and on the other hand, the chain
(opoe=(omoa=nomoa=rnopoe = (op=nop = (| =nlys):
Epi
Together they give

Clreyup) = Mlreyupm) = Clagrc)uar)) = Nalgr(c)up(B)-

Recall that formally R is a subset in B, so alg(w(C) U p(B)) formally coincides with
alg(u(C)UB(B)). As a corollary, alg(n(C) U p(B)) = alg(u(C)UB(B)) is dense in R, and
we obtain ( = .

This proves that 7 is an epimorphism of stereotype algebras. Thus, i is a composition
of an epimorphism 7 and a monomorphism ¢. Since p is an immediate monomorphism,
7, being a mediator, is an isomorphism. Now we can set § = 7! o p, and obtain the
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required diagram

A—— B

7/
|
%4

CLD u

THEOREM 5.27. If a morphism ¢ : A — B of stereotype algebras is not an epimorphism,
then there exists a decomposition ¢ = Moy’ (in Ste®) where \ is a strong monomorphism
but not an isomorphism.

Proof. Denote
P =Env? o(A).
By Lemma [5.25] P is a stereotype algebra, and the set-theoretic inclusion ¢ : P — B is a

monomorphism of stereotype algebras (and an immediate monomorphism of stereotype
spaces). Let @ be the class of all factorizations of ¢ in Ste®

P——— B

Episw\n /uemono (5.20)
X

where the algebra X as a set lies between P and B:
PCXCB. (5.21)

This class is not empty, since it contains the factorization ¢« = ¢ o 1, and it is full in the
class of all factorizations (i.e. each factorization of ¢ is isomorphic to some factorization
from @). Every factorization from & is uniquely determined by the set X in B and a
topology on X, i.e. by a subspace X in the topological space B. Since all subspaces of a
given topological space form a set, we see that @ is a set (not just a class). For simplicity
we can view @ as just a set of subalgebras X in B satisfying and endowed with a
topology that turns X'’s into stereotype algebras in such a way that the inclusions
are continuous maps (this will mean that they are morphisms of stereotype algebras).
For any X € @ the set-theoretic inclusions P C X and X C B will be denoted by 7x
and px. Thus, diagram (5.20) turns into

P———B

\ o (5.22)

Set

Y:UX;

Xed
then Q = Env? algY” and » and X are the inclusions P C Q and Q C B respectively:
P————B

N
Q
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By Lemma Q is a stereotype algebra, and this means that » and A are (mono-)
morphisms of stereotype algebras. For any X € @ we denote by ox the inclusion X C Q.
The topology of X majorizes the topology of @, hence ox is a continuous map, and we
obtain a diagram in Ste®:

P L B
X %
X (5.23)
s ox l A\
Q

Let us now show that s is (not only a monomorphism, but also) an epimorphism of
stereotype algebras. Indeed, for any two morphisms (,n: @ = T we have
(omx=nox = VX €P (ooxomx =nooxonx = VXe€P (oox =noox
m
Epi
= VX €D (Ix =nlx = (v =ClUyepx = MUy x =0ly
= Clagy =nlagy = (=Clo=nlg=mn
(the last implication follows from the fact that algY is dense in its envelope).

Let us show that A\ : Q — B is an immediate monomorphism (in Ste®). Suppose
A= X oe. Denote by R the range of € (and the domain of \'); then we have

P B

13
The morphism € o » is an epimorphism (as a composition of two epimorphisms), so
t = XN o(go0 ) is a factorization of t. As a corollary, it is isomorphic to some standard
factorization ¢ = px o wx for some X € &:

L

T O

P ‘ B
x /
Q
g0 J N\
€
TX R HX
I
I
4
X

(the dashed arrow is some isomorphism of stereotype algebras). So from the very begin-
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ning we can think that in ([5.24) some X € @ stands instead of R:

P L B
N
Q
TX al nx
X

Here every arrow is a set-theoretic inclusion, and the topology of the source of the arrow
majorizes the topology of its target. In particular, the arrow € means that @) is a subset
of X, and the topology of @) majorizes that of X. But on the other hand, the arrow
ox in diagram means that X is a subset in @, and the topology of X majorizes
that of . Together this means that X and ) coincide together with their topologies. In
particular, € is an isomorphism, as desired.

Since A is an immediate monomorphism, by Lemmal5.26|it is a strong monomorphism.

Note that since p(A) C P, the morphism ¢ factors through P:

p=100
for some morphism 6 : A — P. We obtain a diagram in Ste®:
A——B
9J/ / T,\
P—==Q
We now see that A cannot be an isomorphism, since otherwise ¢ would be an epimorphism,
as a composition of two epimorphisms # and 2, and an isomorphism A. So if we set

¢’ = 06, we obtain a decomposition ¢ = Ao’ where ) is a strong monomorphism but
not an isomorphism. m

5.3.3. Nodal decomposition in Ste®. We record the following two properties of the
category Ste®.

THEOREM 5.28. The category Ste® is well-powered.

Proof. A morphism p: A — B in Ste® is a monomorphism in Ste® iff it is a monomor-
phism in Ste, and the latter category is well-powered. =

THEOREM 5.29. The category Ste® is co-well-powered in strong epimorphisms.

Proof. By Theorem a morphism € : A — B in Ste® is a strong epimorphism in
Ste® iff it is a strong epimorphism in Ste, and the latter category is co-well-powered. m

On the other hand, Ste® is complete (by Theorem [5.22), and in Ste® strong epi-
morphisms discern monomorphisms, and strong monomorphisms discern epimorphisms

(Theorems and [5.27). Thus, we can apply Theorem to get
THEOREM 5.30. In Ste® each morphism ¢ : X — Y has a nodal decomposition (2.24]).
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REMARK 5.31. Theorem [5.23| implies in addition that the nodal coimage Coimy, ¢ in
Ste® coincides with the nodal coimage in Ste, and as a corollary with the refinement (as
a quotient space of a stereotype space) of ¢*(Y*) on X:

Coimy ¢ = Ref™ * (V). (5.25)
For the nodal image Im., ¢ the analogous proposition is not true.

THEOREM 5.32. For each morphism ¢ : A — B in Ste® its nodal decomposition @ =
iMoo ¢ 0 redo, 0 COimy, ¢ in Ste is a decomposition (not necessarily nodal) in Ste®.

Proof. We need to verify that the stereotype spaces Coimy, ¢ and Imy, ¢ have natural
structures of stereotype algebras, and the morphisms of stereotype spaces coimy, ¢ :
A — Coimy, ¢, redy p @ Coimy o — Imy 0, img @ @ Imy, ¢ — B are morphisms of
stereotype algebras (i.e., homomorphisms of algebras). This follows from the construction
of Coimy, ¢ and Imy, : since ¢ : A — B is a morphism of stereotype algebras, so is
ol =redp : Coimy — Im ¢ (together with coimp : A — Coimp and imp : Imp — B).
For the same reason, ¢? = red ' is a morphism of stereotype algebras, and so on. By
transfinite induction, Coime, ¢ is a stereotype algebra (as injective limit of the stereotype
algebras Coim '), Im, ¢ is a stereotype algebra (as the projective limit of the stereotype
algebras Im '), and the morphisms coims, ¢ : A— Coimy, ¢, reds ¢ : Coima, 0 — Mmoo,
iMso @ : Imy o — B are homomorphisms of algebras. m

5.3.4. Envelopes and refinements in Ste®. Since it is not clear whether the category
Ste® is co-well-powered in the class Epi, in the analogue of Theorem for the case
of envelopes in Epi one should claim that the class of test morphisms @ is a set (so that
in the proof property 5° on p. [61| could be replaced by 3°):

THEOREM 5.33. In Ste®:

(a) Each algebra A has an envelope in the class Epi of all epimorphisms (respectively, in
the class SEpi of all strong epimorphisms) of Ste® with respect to an arbitrary set
(respectively, class) @ of morphisms going from A; in addition,

(i) if ® separates morphisms on the outside in Ste®, then
enviP' A = envEm 4;

(ii) if @ separates morphisms on the outside and is a right ideal in Ste®, then for
any class 2 2 Bim,

Eoi :
envg” A =envB™m A =env A = envy A.

(b) Each algebra A has a refinement in the class Mono of all monomorphisms (respective-
ly, the class SMono of all strong monomorphisms) in Ste® by means of an arbitrary
class @ of morphisms going to A; in addition,

(i) if ® separates morphisms on the inside in Ste®, then
refy°"® A = refg™ A;

(ii) if @ separates morphisms on the inside and is a left ideal in Ste®, then for any



166 5. The category Ste® of stereotype algebras

class I' O Bim,

refy®™® A = refo™ A = refl A = refg A.
Proof. Consider the case of envelopes. If @ is a set, then the existence of envEp'(S‘Ce ) A
follows from 3° on p . 61] If & separates morphisms on the outside, then by Theorem [3.6]
the existence of envgzs ' A implies the existence of envi’mm\/Iono A =envB™ A and env(is'JI A=
envBim A If & separates morphisms on the outside and is a rlght ideal, then by Theorem
the existence of envB™ A implies the existence of envyy A for any 2 O Bim, and
ean'm A=envi A =

From Theorems and (with 2 = Epi) we have

THEOREM 5.34. Let @ be a class of morphisms in Ste® which goes from Ste® and is
a right ideal. Then the classes of morphisms Epi and @ define in Ste® a semireqular
envelope Envgp', which for each object A in Ste® is described by the formula

redoo @NA 0 COIM oo @NA —envy” A (5.26)

where N is the net of epimorphisms generated by Epi and @ and reds lim N4 and
COoiMyo lgnNA are elements of the nodal decomposition of thA A = Ax
in Ste®. If in addition Epi pushes ®, then Env¢ P s reqular (cmd thus it can be defined as
an idempotent functor).

5.3.5. Dense epimorphisms

e Let us say that a morphism ¢ : A — B of stereotype (or, in general, topological)
algebras is dense if p(A) is dense in B. Clearly, dense morphisms are epimorphisms,
so we also call them dense epimorphisms. The class of all dense epimorphisms in Ste®
(or in TopAlg) will be denoted by DEpi. It is related to the classes Epi and SEpi by the
inclusions

SEpi C DEpi C Epi. (5.27)

REMARK 5.35. The inclusions are not equalities. An example of a dense epimor-
phism which is not strong is the set-theoretic inclusion of the algebra C*°(M) of smooth
functions into the algebra C(M) of continuous functions on a smooth manifold M (this
inclusion is a bimorphism of stereotype algebras, so if it were a strong epimorphism, this
would automatically mean that it is an isomorphism, which is not true). An example of
a non-dense epimorphism is the standard inclusion of the algebra P(C) of polynomials
on C into the algebra P(C*) of Laurent polynomials on C* (we already mentioned this
example on p. [147]).

THEOREM 5.36. The class DEpi is monomorphically complementable in Ste®.

Proof. The monomorphic complement for DEpi is the class SMonog;e of strong monomor-
phisms in Ste® which are strong monomorphisms in Ste.

SMonog;e @ DEpi = Ste®. m (5.28)
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For dense epimorphisms the first part of Theorem |[5.33|can be strengthened as follows:

THEOREM 5.37. In Ste® every algebra A has an envelope in DEpi with respect to an
arbitrary class @ of morphisms going from A. If in addition @ separates morphisms on
the outside in Ste®, then the envelope in DEpi is also an envelope in the class DBim of
all dense bimorphisms:

envh® A = envBBm 4.

Proof. The existence of enngpi(sm@) A follows from 5° on p. If & separates morphisms
on the outside, then by Theorem the existence of envg P' A implies the existence of
envp P MO A — envDBIM 4 and envy ™ A = envDB™ A If in addition @ is a right ideal,
then by Theorem he existence of envgEpi A implies the existence of enngpimM°”° A=
envRB™ A and envp ™ A = envRBM A, w

From Theorems and (with 2 = DEpi) we deduce:

THEOREM 5.38. Let & be a class of morphisms in Ste® which goes from Ste® and is a
right ideal. Then DEpi and & define a semiregular envelope Env ™ in Ste®, which for
any object A in Ste® is described by the formula

envh P A = red., I‘&n./\/A © COiMug @NA, (5.29)

where N is the net of epimorphisms generated by DEpi and @, and red. im N4 and
CoiM o @NA are elements of the nodal decomposition (2.24]) of the morphism @NA :
A — Ay in the category Ste of stereotype spaces (not algebras!). If in addition DEpi

DEpi
@

pushes @, then the envelope Env is reqular (and thus it can be defined as an idempotent

functor).

5.4. Holomorphic envelope. A. Ya. Helemskii introduced in [16] the notion of the
Arens—Michael envelope in the category of topological algebras. The properties of this
construction used in the duality theory for complex Lie groups [3] have different formal
interpretations (while preserving the essential results) than an envelope in the sense of
the definition of Chapter [3]in the category of stereotype algebras. For one of them, which
seems to be most natural, we use the (working) name holomorphic envelope. The choice
of the term is meant to emphasize the connection to complex analysis and the analogy
with the continuous envelope (which we define below on p. and the smooth envelope
from [5].

5.4.1. Net of Banach quotient maps and the stereotype Arens—Michael enve-
lope. Here we define the analogue of the Arens—Michael envelope in the category Ste®
of stereotype algebras. All the definitions and results can be easily transferred to the
category TopAlg of topological algebras.

Recall that an absolutely convex closed neighborhood U of zero in a topological al-
gebra A is said to be submultiplicative if U - U C U. The set of all submultiplicative
absolutely convex closed neighbourhoods of zero in A is denoted by SU(A). To any such
neighborhood U in A one can assign a two-sided closed ideal KerU = [, ,¢-U in A and
a quotient algebra A/Ker U endowed with (not the quotient topology as one could expect,
but) the topology of a normed space with the unit ball U + Ker U. Then the completion
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(A/KerU)Y is a Banach algebra, and we denote it by A/U and call the quotient algebra
of A by the zero neighborhood U. The natural map from A into A/U given by

PU

Y A/KerU

AT— T 5 A/KerU (A/KerU)Y = A/U

(where 7y is a quotient map, and V¥4 /Keru 18 the completion map) will be called the
Banach quotient map of A by the zero neighborhood U.
Denote by B the class {py : A — A/U} of all Banach quotient maps, where A runs

over the class of topological algebras, and U the set of all submultiplicative neighborhoods
of zero in A.

PROPOSITION 5.39. The class B is a net of epimorphisms in Ste®, and the relation —
of pre—order@ 18 equivalent to the embedding of the corresponding neighborhoods of zero
up to a positive scalar multiple:

pv =2 py & Je>0¢e- VU (5.30)

Proof. Let us first verify . Suppose U and V' are submultiplicative closed absolutely
convex neighborhoods of zero in A, and € - V C U for some € > 0. Then KerV C Ker U,
and the formula

xz+KerV i— x+KerU

defines a continuous linear map A/Ker V' — A/Ker U which can be extended by continuity
to an operator
70 AJV = (A/Ker V)V — (A/KerU)" = AJU.

Obviously, the following diagram is commutative:

7N

A/V—>A/U

In particular, py — py. Conversely, if for some morphism ¢ : A/V — A/U we have a

commutative diagram
/ \ (5.32)

AV ———— AJU

then we can set U = py(U) and V = py(V), and these will be balls centered at the
zeroes in A/U and A/V respectively, so the continuity of ¢ : A/V — A/U implies that

eV CuYO)

(*) The pre-order — on the class Epi* of all epimorphisms going from a given object X of
a category K was defined on p.
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for some € > 0. Therefore,
eV ="(pv) " (e-V)C (pv) ' (" (O)) = (pv) " (U) = U,

Let us now check axiom (a) of the net of epimorphisms from p. For each topological
algebra A the set B4 of its Banach quotient maps is non-empty, since there always exists
at least one submultiplicative zero neighborhood U in A, namely U = A (and the
corresponding quotient map is zero, py : A — 0). Furthermore, if U and V are two
submultiplicative closed absolutely convex neighborhoods of zero in A, then clearly UNV
is also a submultiplicative (and closed absolutely convex) neighborhood of zero in A.
That is, the submultiplicative absolutely convex neighborhoods of zero form a system
directed to the contraction in A. Together with the rule this means that the
system {py : A — A/U} of epimorphisms is directed to the left with respect to the
pre-order —.

Next we check axiom (b). For each topological algebra A the system Bind(B4) of
connecting morphisms has a projective limit, since the category Ste® is complete. This
limit can be defined as a map A 1&1 Bind(B4), since it is directly constructed as a set
in the product of the algebras A/U.

It remains to check axiom (c). Let o : A — B be a morphism of topological algebras
and py : B — B/V a Banach quotient map. The set U = a~1(V) is a submultiplicative
closed absolutely convex neighborhood of zero in A. The map

x+ KerU — a(z) + KerV
extends by continuity to a map «}; : A/U — B/V such that

X—* Ly
PUl ‘/PV
AU- -2 - 5B)V .

e The net B will be called the net of Banach quotient maps.

e For each algebra A diagram means that the family of quotient maps py : A —
A/U is a projective cone of the contravariant system Bind(B4) = {n{/}. The projective
limit of this cone in the category Ste® of stereotype algebras is called the stereotype
Arens—Michael envelope of the algebra A and is denoted by

(this limit exists since Ste® is projectively complete). The range of this morphism,
A
Ap = Ranlim By = Ste®- Jim AU = (TopAlg— @A/U) , (5.34)
UEeSU(A) UesSu(A)

will also be called the stereotype Arens—Michael envelope of A.

If U and V are submultiplicative neighborhoods of zero such that € -V C U for some
€ > 0, then we have a commutative diagram
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A
I
pv | @BA pU
1
Ap
™Y U
<U
A)V Y AJU

Theorem [3.36| implies

THEOREM 5.40. The Arens—Michael envelope is an envelope in the class of all morphisms
in Ste® with respect to the system B of Banach quotient maps,

Ap = Envjoreee®) 4 (5.35)
and to each morphism ¢ : A — B in Ste® the formula
ps = lm lim p;oops (5.36)
TEBR 0€EBA

assigns a morphism pp : Ag — B such that
lim B4
A= As
I
S{ s (5.37)
1

im B <
B— =" .p,

and the map (A, @) — (Ag, pp) can be defined as a functor from Ste® into Ste®.

5.4.2. Holomorphic envelope of a stereotype algebra. Recall that on p. we
defined dense epimorphisms ¢ : A — B of topological algebras.

e By the holomorphic envelope of a stereotype algebra A we mean its envelope in the
class DEpi of dense epimorphisms of the category Ste® with respect to the class BanAlg
of Banach algebras. We use the following notation for this construction:

AY = EanDaEl’Zilg A, Qu= eanDaEl'flg A. (5.38)
Thus,

DEpi DEpi
(Va:A— A%) = (enViapnig A A = Envgamye A).
PROPERTIES OF HOLOMORPHIC ENVELOPES.

1° Each stereotype algebra A has a holomorphic envelope A .
2° The holomorphic envelope AV is connected with the stereotype Arens—Michael envelope
Apg through the formulas

O = redo lim By o coimog im Ba,  AY = Domime lim B4 (5.39)

where coimy, lim By, red,, 1'&1[5’,4, imgo l'ngA are elements of the nodal decomposition
of the morphism @BA in the category Ste of stereotype spaces (not algebras!).
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3° For any morphism ¢ : A — B of stereotype algebras and for each choice of holomorphic
envelopes V4 : A — AY and Op : B — BY there exists a unique morphism ¢ :
AY = BY such that
A P4 4o
|
#,l %A (5.40)

3
BLBO

4° The correspondence (X,a) + (XV,a") can be defined as a covariant functor from
Ste® into Ste®:

(1A)® =140, (Bo Ol)@ =p%0a", (ao)v =a". (5.41)
5° If an algebra A is dense in its stereotype Arens—Michael envelope Ag, i.e.
imBa € DEpi(Ste®),

then the holomorphic envelope of A coincides with its envelope in the class Epi of all
epimorphisms in Ste® and with the stereotype Arens—Michael envelope:

AY = Envgahy A = Envgh, A = Ap. (5.42)

6° The holomorphic envelope is coherent with the projective tensor product ® in Ste®.

In the proof we shall need the following

LEMMA 5.41. In Ste® the net B of Banach quotient maps consists of dense epimorphisms
and generates on the inside the class Mor(Ste® BanAlg) of morphisms with values in
Banach algebras:

B C Mor(Ste®,BanAlg) C Mor(Ste®) o B. (5.43)

Proof. The class B consists of dense epimorphisms, since the image py(A) of any algebra
A is always dense in its Banach quotient algebra A/U = (A/KerU)Y. Let us show that
B generates the class of morphisms with values in Banach algebras. We have to verify
the second embedding in the chain . Let ¢ : A — B be a morphism into a Banach
algebra B. If V is the unit ball in B, then U = ¢~1(V) is a neighborhood of zero in A,
and the condition V -V C V implies U - U C U

,yelU = o),p(y) €V = p(z-y)=p@)-py) €V = z-yeU=p (V).

Consider the normed algebra A/KerU and the quotient map 7y : A — A/KerU. From
the obvious equality Ker ¢ = Ker U it follows that ¢ can be decomposed in the category
Alg of algebras as follows:

A—"" 4 A/KerU
\
| X
@
1
B

On the other hand, the equality x~!(V) = U + Ker o = U + Ker U implies the continuity
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of x. So x continuously extends to the completion (A/KerU)Y = A/U:

pPU

T

AT S AJKertU ———3 AJU
TU Ya/keeU

~
-~
X ~
¥ //X'
k/
B

and since A/Ker U is dense in its completion, x¥ is multiplicative by Lemma At the
same time, y¥ obviously preserves the identity. Hence, x¥ is a morphism in Ste®. m

Proof of properties 1°-6°. 1° By Lemma [5.41] the net of Banach quotient maps generates
on the inside the class Mor(Ste®, BanAlg) of morphisms with values in Banach algebras.
On the other hand, by Theorem the class DEpi is monomorphically complementable
in Ste®. Therefore by Theorem each object A in Ste® has an envelope in DEpi with
respect to Mor(Ste®, BanAlg), and by definition this is the holomorphic envelope of A.

2° & 3° Formulas follow immediately from , and diagram from
diagram .

4° The category Ste® is projectively complete and co-well-powered in the quotient
objects of the class DEpi, and the class Mor(Ste®, BanAlg) goes from Ste® (since each
algebra A can be mapped at least into the zero Banach algebra) and is a right ideal.
Therefore, the holomorphic envelope © is semiregular, and by Theorem it can be
defined as a functor. Moreover, by Remark each class, in particular DEpi, pushes
Mor(Ste®,BanAlg), hence the holomorphic envelope is regular, and by Theorem it
can be defined as an idempotent functor.

5° Suppose @15’ A is a dense epimorphism. By Lemma the net B generates on
the inside the class of morphisms with values in Banach algebras, hence by Theorem
(with 2 = DEpi),

DEpi

DEpi EID __ DEpi
Va = envg, A = envy P A= envy " A.

Mor(Ste® BanAlg) B
Further, the condition lim B4 € DEpi implies by Lemma [3.23] that
envgEpi A ].ngA.
Again by Lemma from I'&nBA € DEpi C Epi we have
@BA envgpi A.
And again by Theorem (3.5 (now with {2 = Epi),

Epi Epi
envg A="en Mor(Ste® BanAlg)

A= envgé‘fli1Alg A.

6° We need to verify that the holomorphic envelope satisfies conditions T.1 and T.2
on p. First, let p: A — A’ and 0 : B — B’ be two holomorphic extensions. Then
for any Banach algebra C and for any morphism ¢ : A ® B — C' there are morphisms

wa:A— Cand pp: B— C such that
pla®b) = pala)- v(b) = ¢p(b) - pala).
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Since ¢ 4 and @p are morphisms into the Banach algebra C, they can be extended along

p and o:
pa=¢hop, yp=ygoo.
Set
Pla®y) =¢h(2) BYy) =¢py) Palz), zed yeb
Then

¢ ((p@o)(a®b)) = (pa) ® a(b) = Pa(p(a)) - (0 (b)) = vala) - ¢p(b) = p(a ®b).

Second, let ¢ : C — B be a holomorphic extension of the algebra C. It must be a dense
epimorphism, and since C is finite-dimensional, ¢ is an epimorphism. =

e We say that a stereotype algebra A is holomorphic if it is a complete object with respect
to the envelope ©, i.e. its holomorphic envelope is an isomorphism: © 4 € Iso.

Property 6° and Theorems and give

THEOREM 5.42. The formulas

Q Q
A®B=(A®B)", opav=(pey)° (5.44)

define a monoidal structure on the category of holomorphic algebras, and the functor A —
A% is monoidal (from Ste® with ® as tensor product into the category of holomorphic
V)
algebras with ® as tensor product).
One can describe the tensor product (5.44]) in terms of the net B of Banach quotient

maps as follows. Let A and A’ be two stereotype algebras. If U, V,U’, V' are submulti-
plicative closed absolutely convex neighborhoods of zero such that

VCUCA, V CUCA,

then by multiplying the arising pair of diagrams (5.31) we get

!
PV EPyr 4®4 PUBpyr
7r5®7rg;
AV @AV AJU® AU

This means that the system of morphisms py®py: : A®A" — A/U® A’ /U, U € SU(A),
U’ € SU(A"), is a projective cone of the covariant system 7T‘L/f ® W‘L}: As a corollary, there
exists a unique morphism

V:A® A — Hm AlU® AU’
U € SU(A),
U’ € SU(A")
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such that
TR - > m o AUe A
U € SU(A),
U’ € SU(A")
PV ®pys v’
AV e AV

where V € SU(A), V' € SU(A’), and 7y, is the cone of morphisms from the projective
limit into the covariant system.

PROPOSITION 5.43. For any stereotype algebras A and A’ we have
(A® AN =m0 (5.46)
where Imy, is the element of the nodal decomposition in the category Ste of stereotype
spaces (not algebras). In particular, if the algebras A and A’ are holomorphic, then
Q
A® A =Img V. (5.47)

Proof. We need to verify that the map red,, ¥ o coimyd : A® A’ — Ranlm 9 is a
holomorphic envelope of the algebra A ® A’ (where red,, and coim,, are elements of the
nodal decomposition in Ste).

Let us show first that this is a holomorphic extension. Take a morphism ¢ : A® A’ — B
into a Banach algebra B. Set

n@)=el@®la), 7y =vla®d), zecAyecA.
Then
n(@)-n'(y) =n'y) nx), zedyed. (5.48)
and
ple®y) =n(@) 7'y =n'(y) nx), zcdyecd.
Let U be the unit ball in B. Consider its preimages in A and A’,
V=n"'(U), V'=@)"'0),
and morphisms 1 and v’ such that

T

R — AV ;P A V!
From we have the identity

W(s) ') =9'(t) - Y(s), se€A/V,te AV, (5.49)
which means in turn that

vy tAIV@® AV 5 B, pvvi(@@y) =) ¢ (y),
is a morphism. We have
p(z®@y) =n(x) n'(y) =blpv(z) - ¥ (pv(y))
= v (pv (@) ® pv:(y)) = evv ((pv ® pv/)(z @ y)),
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hence
A® A
/ W’
Pv,v/
B AV @AV

This can be inserted into the diagram

red oo Yocoimys V¥ |moc 9
@ A oo UM U,

: / !
lim AW @AW

W e SU(A),
Py ®py W' e suA)
7\'V v’
Pv, v/

AV ® A’/V’

which we can transform into

red oo Yocoimy, ¥

@
A® A s A® A

x‘ %/owv’vmimwﬂ
B

and this means that ¢ extends along red,, ¥ o coim, ¥.

Let us show now that red,, 9 o coimg, 1 is a holomorphic envelope. Suppose o : A® A’
— (' is another holomorphic extension. Then for any submultiplicative zero neighbor-
hoods V C A and V' C A’ the morphism py ®py: : A®A’ - A/V®A'/V'is a morphism
into a Banach algebra, hence there exists a unique morphism pvf(\@?\// such that

A® A = C
pm A@\&//
AV @ AV

At the same time, for a system of submultiplicative neighborhoods W C V C A and
W' CV'C A we get

WPy lg pv@pyr
Ol
—_— — ~
PWBPyw ~PVBpyr
—
’
71"V,V ®7r‘v/V,

L7 +
AW @ A /W' AV AV

where the perimeter and the two upper triangles are commutative; since ¢ is an epimor-
phism, this means that the lower triangle is also commutative.

This diagram implies that the system pv/_éfvl of morphisms forms a projective cone
of the contravariant system 7} ® 71, . As a corollary, there exists a unique morphism
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such that
C——--- o ***%@A/W@A//W/
W,W
AlVe AV’
In the diagrams
AV @A V! 7 C

K
im A/W @ A'JW'

H
PV @pyr
JWW

w,W’
A/Ve AV

the perimeter and the two lower triangles are commutative. Hence for all V, V",

(5.50)

pvBpys

v,y ol = py ® pyr, Tyyroxo0 = py ® pyr,
and from the uniqueness of ¥ satisfying these equalities it follows that
Y =xo00,
ie. is commutative. Now we obtain a commutative diagram

[

A® A Jim AW @ A /W’

red oo Yocoimys ¥V iMeo 9
\ W W’

Here o € DEpi(Ste®) = Epi(Ste), and im,, ¥ € SMono(Ste), so there exists a diagonal 4:

A® A A@A’ lim A/W e A" /W’

red,. Yocoimee ¥ iMoo 9 <
\ g
\
\
|

Initially § is built as a morphism in Ste, but since o is a dense morphism, ¢ is a homomor-
phism of algebras, i.e. a morphism in Ste®. We see that every extension o is subordinated
to redse ¥ 0 coimg ¢, thus red,, ¥ o coimy, 9 is an envelope. m

5.4.3. Fourier transform on a commutative Stein group. Let G be a commutative
compactly generated Stein group, O(G) the algebra of holomorphic functions on G, and
O*(G) the algebra of analytic functionals from Examples and Let G* be the
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dual group of complex characters on G, i.e. continuous homomorphisms x : G — C* into
the multiplicative group C* of non-zero complex numbers (G* is endowed with pointwise
multiplication and the topology of uniform convergence on compact sets in G), and let
Fe : O*(G) — O(G*) be the Fourier transform on G, i.e. the homomorphism of algebras
acting by the formula

value of the function Fg(a) € O(G*®)
at the point x € G*®
1
. *
Fal@)(x) =alx) (x€G* ac0%(G)).
——

action of the functional a € O*(G)
on the function x € G* C O(G)

THEOREM 5.44. For a compactly generated commutative Stein group G its Fourier trans-
form Fg : O*(G) — O(G®) is a holomorphic envelope of O*(G), and coincides with the
stereotype Arens—Michael envelope and with the envelope with respect to the class of Ba-
nach algebras in the class Epi of all epimorphisms (in the categories TopAlg and Ste®):

F = V0+(G) = eVpaaig O (G) = envgli, 0*(G) = lim Bo- (). (5.51)

Proof. In [3] it was shown that in TopAlg the local limit of the net of Banach quotient
maps on the object O*(G) coincides with O(G*):

O(G.) = @Bo*(g). (552)
Here O(G*®) is a Fréchet algebra, so it coincides with its pseudosaturation, and this
implies that (5.52]) holds in the category of stereotype algebras. In addition, the morphism
Fe : O%(G) — O(G*), being a local limit in TopAlg, is a dense epimorphism, therefore

it is so in Ste® as well. Thus, by (5.42) we have (5.51]). =

5.5. Continuous envelope

e Let us say that a stereotype algebra A is involutive if an involution x +— T is defined
on A (in the usual sense, see e.g. [16] or [28]), and this operation is continuous as a
map from A into A. The involutive stereotype algebras form a category InvSte® where
morphisms are continuous involutive unital homomorphisms ¢ : A — B:

pA -zt p-y)=X-p@) +p-ely),  wlx-y) =) ey),
e(1) =1, o) = ¢().
All C*-algebras are obvious examples ([16], [28]). Another example is the algebra C(M)

of continuous functions on a paracompact locally compact topological space M from
Example

5.5.1. Net of C*-quotient-maps and the Kuznetsova envelope

e By a C*-seminorm on an involutive algebra A we mean any seminorm p : A — R
satisfying
p(z-T) =p(x)?, zcA (5.53)
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By the Z. Sebestyén theorem [40], any such seminorm automatically preserves involution
and is submultiplicative:

p(@) =p(x), pl@-y) <p) p(y).
The identity (5.53)) implies in particular
p(1) =p(1-1) = p(1)?
hence
p(1)=1 or p(1)=0,

and the second of these equalities means that p vanishes, since in this case

p(z) =p(z-1) < p(z)-p(l) =p(x) - 0=0.
Further we will be interested in continuous C*-seminorms on involutive topological al-
gebras.

e Let us define a C*-neighborhood in a topological algebra A to be any closed absolutely
convex zero neighborhood U for which the Minkowski functional

plx)=inf{\>0: X -z €U}

is a C*-seminorm on A. For any such U the quotient algebra A/U (defined on p. isa
C*-algebra; we call it the C*-quotient algebra of A, and the natural map py : A — A/U
will be called a C*-quotient map of A. The symbol C* will denote the class of all C*-
quotient maps {py : A — A/U}, where A runs over the class of involutive topological
algebras, and U over the set of all C*-neighborhoods of zero in A.

The following fact is an analog of Proposition [5.39

PROPOSITION 5.45. The class C* is a net of epimorphisms in the category InvSte® of
involutive stereotype algebras, and the semiorder — in C* is equivalent to the embedding
of the corresponding neighborhoods of zero:

pv = pu & VCU. (5.54)

Proof. By definition, the relation py — py means the existence of an involutive con-
tinuous homomorphism ¢ : A/V — A/U of C*-algebras such that diagram is
commutative. By the well-known property of C*-algebras [28, Theorem 2.1.7], the homo-
morphism ¢ cannot increase the C*-norm: |¢(z)|| < ||z||. Applied to C*-seminorms py
and py which correspond to the neighborhoods U and V, this means py(z) < py(x),
which in turn is equivalent to V C U. n

e The net C* will be called the net of C*-quotient maps.
e For each involutive stereotype algebra A the family of C*-quotient maps py : A — A/U
is a projective cone of the covariant system Bind(C4). The projective limit of this cone

in the category InvSte® of involutive stereotype algebras will be called the Kuznetsova
envelope @ of A and denoted by

LEICA A — AC (555)

(?) Our terminology and notation differ from those used in [24].
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(this limit exists, since InvSte® is projectively complete). The range of this morphism,

A
Ac = Ran ImBy = InvSte®- Jim AU = (IanopAlg— lim A/U) , (5.56)
UeC*U(A) UeCU(A)

is also called the Kuznetsova envelope of A.

Theorem |3.36| implies

THEOREM 5.46. The Kuznetsova envelope is an envelope in the class of all morphisms
in InvSte® with respect to the system of all C*-quotient maps C*,

Ac = EnyMorGmvste®) 4 (5.57)
and to each morphism ¢ : A — B in InvSte® the formula
pe = lim lim @;ooe (5.58)
T€ECB o€EBA

assigns a morphism p¢ : Ac — Be such that

ImC 4
A= 4
I
S{ " (5.59)
imCp <

B—— B¢

and the correspondence (A, @) — (Ac,pc) can be defined as a functor from InvSte® into
InvSte®.

5.5.2. Continuous envelope of an involutive stereotype algebra. By a dense
epimorphism of involutive stereotype algebras we mean the same object as for general
(non-involutive) stereotype algebras, i.e. a morphism ¢ : A — B such that ¢(A) is dense
in B.

e A continuous envelope of an involutive stereotype algebra A is its envelope in the class
DEpi of dense epimorphisms in the category InvSte® with respect to the class C* of
C*-algebras. We use the following notation for this construction:

A —EnvDFP A, O =envprP A (5.60)
Thus,
(Oa:A— A%) = (envdFP A A — EnvDFP 4).

The following properties are proved by analogy with the properties of holomorphic en-
velopes on p. [I70]

PROPERTIES OF CONTINUOUS ENVELOPES.

1° Each involutive stereotype algebra A has a continuous envelope A .
2° The continuous envelope A% is connected with the Kuznetsova envelope Ac through
the formulas

$a = redoo]'gch o coimoo]'gch, A® = Domime 1'£1CA (5.61)
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where coiMgg @CA, redso yLnCA, iMso @CA are elements of the nodal decomposition
of the morphism @CA in Ste.

3° For any morphism ¢ : A — B of involutive stereotype algebras and for each choice
of continuous envelopes $a 0 A — A® and &+ B — B° there exists a unique
morphism ¢® : A® — B¢ such that

A0 g0 (5.62)

|
s{ 1o
+

4° The correspondence (X, a) — (X, a®) can be defined as an idempotent functor from
InvSte® into InvSte®:

(14)¢ =140, (Boa)?=p8%0a% (a®)® =0, (5.63)
5° If an algebra A is dense in its Kuznetsova envelope Ac, i.e.
i : ®
ImCy € DEpi(Ste®),

then the continuous envelope of A coincides with its envelope in the class Epi of all
epimorphisms in InvSte® and with the Kuznetsova envelope:

A = Envgr® A = Envg? A = Ac. (5.64)
6° The continuous envelope is coherent with the projective tensor product ® in InvSte®.

The following lemma is used in the proof:

LEMMA 5.47. In InvSte® the net C of C*-quotient maps consists of dense epimorphisms
and generates on the inside the class Mor(InvSte®, C*) of all morphisms with values in
C*-algebras:

C C Mor(InvSte®, C*) C Mor(InvSte®) o C. (5.65)

Proof. Let ¢ : A — B be a morphism into a C*-algebra B, and V' the unit ball in B.
Set U = o~ 1(V). It is a zero neighborhood in A, and its Minkowski functional p is a
composition of ¢ and the norm on B:

px)=inf{A>0: Az ' (V)}=inf{A>0:\-px) €V} =|p)].
This implies that p is a C*-seminorm on A:
p(z-F) = oz - )| = llp() - p(@)]| = llp@)]* = p(x)?.
That is, U is a C*-neighborhood of zero in A. Now the proof of Lemma [5.41] works. =

e An involutive stereotype algebra A is said to be continuous if it is a complete object
with respect to the envelope ), i.e. its continuous envelope is an isomorphism: {4 € Iso.

Property 6° and Theorems and give

THEOREM 5.48. The formulas

ASB=(A8B)Y, oov=(pov)°® (5.66)
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define a monoidal structure on the category of continuous algebras, and the functor
A — A is monoidal (from the category of involutive stereotype algebras with tensor

<&
product ® into the category of continuous algebras with tensor product ®).

The continuous envelope can be described in terms of the net C of C*-quotient maps
by formula (5.46)) with obvious modifications.

5.5.3. The Gelfand transform as a continuous envelope of a commutative al-
gebra

e By the involutive spectrum Spec(A) of an involutive topological (respectively, stereo-
type) algebra A over C we mean the set of its involutive characters, i.e. homomorphisms
X : A — C (also continuous, involutive and identity preserving). This set is endowed
with the topology of uniform convergence on totally bounded sets in A.

e By the Gelfand transform of an involutive stereotype algebra A we mean the natural
map G4 : A — C(M) of A into the algebra C(M) of functions on the involutive
spectrum M = Spec(A), continuous on each compact set K C M:

Ga(zx)(t) = t(z), te M =Spec(A), z € A. (5.67)

We endow C'(M) with the topology which is the pseudosaturation @ of the topology
of uniform convergence on compact sets in M; this turns C(M) into a stereotype
algebra. In the special case when M is a paracompact locally compact space, the
topology of uniform convergence on compact sets in M is already a pseudosaturated
(and complete) topology on C(M), so C(M) becomes a stereotype algebra already
at this step [2] Sec. 8.1] (and the operation of pseudosaturation does not change this
topology anymore).
e For each compact set K C M consider the restriction map

mr : O(M) = C(K),  y = ylk,

and let G = mx 0 G4 be the composition

A9 C(M (5.68)
~ /

If K and L are two compact sets in M, and K C L C M, then TI'IL( denotes the
restriction map
i O(L) = O(K),  y= ylk.
Obviously, the algebra C'(M) with the system of projections px : C(M) — C(K),
K C M, is a projective limit of the system of binding morphisms 7% : C(L) — C(K),
K C L C M (in the category InvSte®):
C(M) = InvSte®- Jim C(K).
KCM

(3) The operation of pseudosaturation was defined on p. [117



182 5. The category Ste® of stereotype algebras

PROPOSITION 5.49. For any involutive stereotype algebra A its Gelfand transform Ga :
A — C(M) is a morphism of stereotype algebras. If M = Spec(A) is a paracompact
locally compact space, the morphism Ga : A — C(M) is a dense epimorphism.

Proof. In the first assertion only the continuity of G4 is not obvious. Take a basic zero
neighborhood U in C(M),ie. U ={f € C(M) : sup,cr|f(t)] < e} for some compact set
T C M and some ¢ > 0. Its preimage under G4 : A — C(M) is {z € A : sup,p [t(z)| < €}
= ¢-°T, the homothety of the polar °T. Since A is stereotype, °T is a neighborhood of zero
in it. This proves that G4 : A — C(M) is continuous if the space C(M) is endowed with
the topology of uniform convergence on compact sets in M. Since A, being stereotype, is
pseudosaturated, this means that under the pseudosaturation of the topology in C(M)
the map G4 : A — C(M) remains continuous (this follows, for example, from [2, Theorem
1.16)).

Suppose further that M = Spec(A) is a paracompact locally compact space. For
each compact set K C M the image Gk (A) is an involutive subalgebra in C(K), and it
contains the identity (and hence all constant functions) and separates the points of K.
So by the Stone-Weierstrass theorem, Gx (A) is dense in C(K). This is true for each
map G = T o, where K is a compact set in M. Since the topology in C(M) is the
projective topology with respect to the maps mx, we conclude that G4(A) is dense in
C(M).

THEOREM 5.50. For each commutative involutive stereotype algebra A the system of mor-
phisms G : A — C(K) consists of dense epimorphisms and is isomorphic in EpiA to the
system py : A — AJU of all C*-quotient maps of A,

{Gx : A — C(K) : K C Spec(A)} = C%. (5.69)

Under this isomorphism:

— the system of restrictions 7k : C(L) — C(K), K C L C M, turns into the system
Bind(C}) of binding morphisms of the net C* on A:

{rk . C(L) - C(K): K C L C Spec(A)} = Bind(C%); (5.70)

— the Gelfand transform G : A — C(M) is a local limit of the net C* on A (and hence
it coincides with the Kuznetsova envelope of A):

Ga =limCj. (5.71)

Proof. On each compact set K C M the algebra of functions of the form G4(x), where
x € A, separates the points, contains the constant functions, and is invariant with respect
to involution, so it is dense in C(K) by the Stone-Weierstrass theorem. This implies that
C(M), which contains G4(A), is also dense in C(K), so both Gx : A — C(K) and
7r 1 C(M) — C(K) are dense epimorphisms (in InvSte®).

The range A/U of each C*-quotient map py : A — A/U is a commutative C*-algebra,
hence it is isomorphic to the algebra C(Ty) of continuous functions on its spectrum Ty .
Under the dual map pj; : Spec(A) < Spec(A/U) this spectrum Ty is homeomorphically
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transformed into a compact set Ky = pj;(Ty) in M = Spec(A), and we get the diagram
A g
pU Ky
/ gu\
AU ——— C(Ky)

where Gy is the Gelfand transform of A/U composed with the dual map to the homeo-
morphism Ty = Ky.
Conversely, for each compact set K C M the set

Uk = {a € A:suplt(a)| < 1}
teK

is a C*-neighborhood of zero in A. The corresponding quotient algebra A/Uk will be
commutative, hence isomorphic to C(Tk), which is in addition homeomorphic to K. If
we denote by G the composition of the Gelfand transform of A with the dual map to
the homeomorphism Tk =2 K, we obtain a commutative diagram

A
SN
AUy — C(K)
Together this proves (5.69)), and (5.70) and (5.71]) become its obvious corollaries. m

LEMMA 5.51. If the spectrum M = Spec(A) of a stereotype algebra A is a k-space, then
for each extension o : A — C in the class Mor of all morphisms (in InvSte®) with respect
to the class of C*-algebras the dual map of spectra

o” : Spec(C) — Spec(A) =M, o(s)=so0, se€ Spec(C),
is a homeomorphism of topological spaces.

Proof. First, o* must be an injection, since if some characters s # s’ € Spec(C) have the
same image under o*, i.e.

sooc=0"(s)=0"(s') =5 oo,
then the character soo = s’ oo : A — C has two different continuations on C:

A%/>C
C/

This is impossible, as ¢ is in particular an extension with respect to the C*-algebra C.

On the other hand, ¢* is a covering, i.e. for each compact set K in M there is a compact
set T in Spec(C) such that o*(T') O K. Indeed, if K is a compact set in M = Spec(A),
then, since o : A — C'is an extension with respect to the class of C*-algebras, the natural
homomorphism G : A — C(K) has a continuation to C:

A—F——C

s
\ P
Ok X TK

C(K)
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If we now set T = 75 (K), then

o"(T) = o™ (1x(K)) = Gk (K) = K.
In addition, as o* is a covering, it is surjective. Hence o* : Spec(C') — Spec(4) is a
continuous bijective covering. Since Spec(A) is a k-space, the map ¢* is open, and thus
a homeomorphism. =

The following result supplements the results of Yu. N. Kuznetsova’s paper [24]:

THEOREM 5.52. If A is a commutative involutive stereotype algebra with a paracompact
locally compact involutive spectrum M = Spec(A), then its Gelfand transform Ga : A —
C (M) is its continuous envelope, its Kuznetsova envelope, and its envelope in the classes
of all morphisms and all epimorphisms in the category InvSte® with respect to the class
of C*-algebras:

C(M) = AC = Env(l?,kEIDi A= Envgfi A= Envgﬂf’rA = @CA.

Proof. The equality C(M) = @C 4 was already proved in Theorem By Proposition
the morphism G4 : A — C(M) is a dense epimorphism, and by (5.42)) we have

C(M) = A® = Envg™ A = Envg?' A = lim Ca.

It remains to prove
Enviie" A = C(M),

where Mor is the class of all morphisms in InvSte®. Let us first show that G4 : A — C(M)
is an extension of A with respect to the class of C*-algebras. Let ¢ : A — B be a morphism
into a C*-algebra B. To construct a dashed arrow ¢’ for (3.3)), that is,

A9 o)

N
Ve
@ v
B

it is sufficient to assume that B is commutative and ¢(A) is dense in B (since otherwise
we can replace B by the closure p(A) in B, and this is a commutative subalgebra in B).
By commutativity, B has the form C'(K), and from the density of ¢(A) in B the compact
space K is injectively embedded in M = Spec(A). Thus our diagram can be represented

in the form

A9 Lo

\ -
7
Ok K o
C(K)
where K is a compact set in M, and Gk is defined in (5.68)). It is clear that ¢’ can now
be defined as the restriction map wx from M to K, which we considered above:

A9 Lom

\ P
7w
Ok K "

C(K)

And this dashed arrow is unique since G4 is an epimorphism by Proposition [5.49]
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Let us now check that G4 : A — C(M) is a maximal extension, i.e. if we take another
extension ¢ : A — C, then there exists a morphism v : C' — C(M) such that

A
/ & (5.72)
C---"---s0(M)

By Lemma the dual map o* : Spec(C) — Spec(A) = M is a homeomorphism.
Therefore, the following map is defined:

v:C—=C(M), vyt

I
—
Q

*
~—

L
—~

~

~
—~
<
~—

yeC,te M.

Spec(C)

It is trivially checked that this is a morphism of involutive stereotype algebras. In addition

will be commutative:
v(o(x))(t) = ()1 t)(o(x) = o*((0*) 71 (1)(z) = t(z) = Ga(x)(t), z€ A, te M,

le.voo=Gyu.

It remains to verify that the dashed arrow in (5.72) is unique. Suppose that v’ is
another dashed arrow with the same properties:

voo=Gqg =0 o0. (5.73)
If v and v’ are different, they do not coincide on some vector y € C:

v(y) # V' (y).

Here on both sides there are functions on M, so for some t € M,

v(y)(t) # V' (y)(t).
Let

By Lemma this is impossible, so our initial supposition that v # v’ is also not true. m

5.5.4. Fourier transform on a commutative locally compact group. Let G be a
commutative locally compact group, C(G) the algebra of continuous functions on G, and
C*(G) the algebra of measures with compact support on G (see Examples[5.4and[5.8). Let
G* be the dual group of characters on G, i.e. continuous homomorphisms x : G — T into
the circle T (G* is endowed with the pointwise algebraic operations and the topology
of uniform convergence on compact sets in G), and Fg : C*(G) — C(G*) the Fourier
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transform on G, i.e. the homomorphism of algebras acting by the formula

value of the function Fg(a) € C(G*)
at the point x € G*
1

—
Fala)) =alyd (€@ acCi(G)

1
action of the functional o € C*(G)
on the function x € G* C C(G)

The following observation belongs to Yu. N. Kuznetsova [24]:

THEOREM 5.53. For each commutative locally compact group G its Fourier transform
Fa : C*(G) — C(G*®) is a continuous envelope of the algebra C*(G), and it coincides with
the Kuznetsova envelope and with the envelopes with respect to the class of C*-algebras in
the classes Mor of all morphisms and Epi of all epimorphisms (in the categories InvTopAlg
and InvSte®):

Fa = Ger(a) = enver " CH(G) = envg? C*(G) = envg® C*(G) = lim Ce: ().

Proof. The spectrum of the algebra C*(G) is homeomorphic to G*, so everything follows
from Theorem £.52] =
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