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Non-existence of points rational over
number fields on Shimura curves

by

Keisuke Arai (Tokyo)

1. Introduction. Let B be an indefinite quaternion division algebra
over Q, and d(B) its discriminant. Fix a maximal order O of B. A QM-
abelian surface with multiplication by O over a field F is a pair (A, i) where
A is a 2-dimensional abelian variety over F , and i : O ↪→ EndF (A) is an
injective ring homomorphism satisfying i(1) = id (cf. [1, p. 591]). Here,
EndF (A) is the ring of endomorphisms of A defined over F . We assume
that A has a left O-action. Let MB be the Shimura curve over Q associated
to B, which parameterizes the isomorphism classes of QM-abelian surfaces
with multiplication by O (cf. [2, p. 93]). We know that MB is a proper
smooth curve over Q, and that its isomorphism type over Q depends only
on d(B), but not on the particular choice of B and O.

For an imaginary quadratic field k, the set MB(k) of k-rational points
on MB is empty under a certain assumption ([2, Theorem 6.3], [4, Theo-
rem 1.1]). We extend this result to the case where k is a number field of
higher degree. The method of proof is based on the strategy in [2], and the
key is to control the field of definition of the QM-abelian surface correspond-
ing to a k-rational point on MB. We also give counterexamples to the Hasse
principle on MB over number fields. We will discuss the relevance to the
Manin obstruction (cf. [6]) in a forthcoming article.

For a prime number q, let B(q) be the set of the isomorphism classes of
indefinite quaternion division algebras B over Q such that

B ⊗Q Q(
√
−q) 6∼= M2(Q(

√
−q)) if q 6= 2,

B ⊗Q Q(
√
−1) 6∼= M2(Q(

√
−1))

and B ⊗Q Q(
√
−2) 6∼= M2(Q(

√
−2)) if q = 2.
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For positive integers N and e, let

C(N, e) := {αe + αe ∈ Z | α ∈ C is a root of T 2 + sT +N

for some s ∈ Z, s2 ≤ 4N},
D(N, e) := {a, a±N e/2, a± 2N e/2, a2 − 3N e ∈ R | a ∈ C(N, e)}.

Here, α is the complex conjugate of α. If e is even, then D(N, e) ⊆ Z. For a
subset D ⊆ Z, let

P(D) :=
{

prime divisors of some of the integers in D \ {0}
}
.

For a number field k and a prime q of k of residue characteristic q, define:

• κ(q): the residue field of q,
• Nq: the cardinality of κ(q),
• eq: the ramification index of q in k/Q,
• fq: the degree of the extension κ(q)/Fq,
• S(k, q): the set of the isomorphism classes of indefinite quaternion

division algebras B over Q such that any prime divisor of d(B) belongs
to {P(D(Nq, eq)) ∪ {q} if B ⊗Q k ∼= M2(k) and eq is even,

P(D(Nq, 2eq)) ∪ {q} if B ⊗Q k 6∼= M2(k).

Note that S(k, q) is a finite set. The main result of this article is:

Theorem 1.1. Let k be a number field of even degree, and q a prime
number such that

• there is a unique prime q of k above q,
• fq is odd (and so eq is even), and
• B ∈ B(q) \ S(k, q).

Then MB(k) = ∅.
Remark 1.2. (1) By [5, Theorem 0], we have MB(R) = ∅.
(2) If k is of odd degree, then k has a real place, and so MB(k) = ∅.

2. Canonical isogeny characters. In this section, we review canonical
isogeny characters associated to QM-abelian surfaces, which were introduced
in [2, §4]. Let K be a number field, K an algebraic closure of K, GK =
Gal(K/K) the absolute Galois group of K, OK the ring of integers of K,
(A, i) a QM-abelian surface with multiplication by O over K, and p a prime
divisor of d(B). The p-torsion subgroup A[p](K) of A has exactly one non-
zero proper left O-submodule, which we shall denote by Cp. It has order p2,
and is stable under the action of GK . Let PO ⊆ O be the unique left ideal
of reduced norm pZ. In fact, PO is a two-sided ideal of O. Then Cp is free
of rank 1 over O/PO. Fix an isomorphism O/PO ∼= Fp2 . The action of GK
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on Cp yields a character

%p : GK → AutO(Cp) ∼= F×
p2
.

Here, AutO(Cp) is the group ofO-linear automorphisms of Cp. The character
%p depends on the choice of the isomorphism O/PO ∼= Fp2 , but the pair
{%p, (%p)p} is independent of this choice. Either of the characters %p, (%p)

p is
called a canonical isogeny character at p. We have an induced character

%abp : Gab
K → F×

p2
,

where Gab
K is the Galois group of the maximal abelian extension Kab/K.

For a prime L of K, let OK,L be the completion of OK at L, and let

rp(L) : O×K,L
ωL−−→ Gab

K

%abp−−→ F×
p2
.

Here, ωL is the Artin map.

Proposition 2.1 ([2, Proposition 4.7(2)]). If L - p, then rp(L)12 = 1.

Fix a prime P of K above p. Then we have an isomorphism κ(P) ∼= F
p
fP

of finite fields. Let tP := gcd(2, fP) ∈ {1, 2}.
Proposition 2.2 ([2, Proposition 4.8]).

(1) There is a unique element cP ∈ Z/(ptP − 1)Z satisfying rp(P)(u) =
Normκ(P)/F

p
tP

(ũ)−cP for any u ∈ O×K,P. Here, ũ ∈ κ(P)× is the

reduction of u modulo P.
(2) 2cP/tP ≡ eP mod (p− 1).

Corollary 2.3. For any prime number l 6= p, we have rp(P)(l−1)2 ≡
lePfP mod p.

Proof. rp(P)(l−1)2 = (Normκ(P)/F
p
tP

(l−1)−cP)2 = NormF
p
fP
/F

p
tP

(l)2cP

≡ l2cPfP/tP = lePfP mod p.

For a prime number l, the action of GK on the l-adic Tate module TlA
yields a representation

Rl : GK → AutO(TlA) ∼= O×l ⊆ B
×
l ,

where AutO(TlA) is the group of O-linear automorphisms of TlA, and
Ol = O ⊗Z Zl, Bl = B ⊗Q Ql. Let NrdBl/Ql

be the reduced norm on Bl.
Let M be a prime of K, and FM ∈ GK a Frobenius element at M. For each
e ≥ 1, there is an integer a(F eM) satisfying

NrdBl/Ql
(T −Rl(F eM)) = T 2 − a(F eM)T + (NM)e ∈ Z[T ]

for any l prime to M.

Proposition 2.4 ([2, Proposition 5.3]).

(1) a(F eM)2 ≤ 4(NM)e for any positive integer e.
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(2) Assume M - p. Then

a(F eM) ≡ %p(F eM) + (NM)e%p(F
e
M)−1 mod p

for any positive integer e.

Let αM, αM ∈ C be the roots of T 2 − a(FM)T + NM. Then αM + αM =
a(FM) and αMαM = NM. We see that the roots of T 2 − a(F eM)T + (NM)e

are αeM, α
e
M. Then αeM + αeM = a(F eM). We have the following corollary to

Proposition 2.4(1):

Corollary 2.5. a(F eM) ∈ C(NM, e) for any positive integer e.

For later use, we give the following lemma:

Lemma 2.6. Let m be the residue characteristic of M. Then the follow-
ing conditions are equivalent:

(i) m | a(FM).
(ii) m | a(F eM) for a positive integer e.

(iii) m | a(F eM) for any positive integer e.

Proof. For each e ≥ 1, there is a polynomial Pe(S, T ) ∈ Z[S, T ]
such that (S + T )e = Se + T e + STPe(S + T, ST ). Then a(FM)e =
a(F eM) + NMPe(a(FM),NM). Since m |NM, we have m | a(FM) if and only if
m | a(F eM).

3. Proof of the main result. Now we prove Theorem 1.1. Suppose
that the assumptions of Theorem 1.1 hold. Assume that there is a point
x ∈ MB(k). When B ⊗Q k 6∼= M2(k), let K0 be a quadratic extension of k
satisfying B ⊗Q K0

∼= M2(K0). Let

K :=

{
k if B ⊗Q k ∼= M2(k),

K0 if B ⊗Q k 6∼= M2(k).

Note that the degree [K : Q] is even. Then x is represented by a QM-abelian
surface (A, i) with multiplication by O over K (see [2, Theorem 1.1]). Recall
that q denotes the unique prime of k above q. Since B 6∈ S(k, q), there is a
prime divisor p of d(B) such that p 6= q and p does not belong to{P(D(Nq, eq)) if B ⊗Q k ∼= M2(k),

P(D(Nq, 2eq)) if B ⊗Q k 6∼= M2(k).

Fix such a p, and let %p : GK → F×
p2

be a canonical isogeny character at p

associated to (A, i).
By Proposition 2.1, the character %12p is unramified outside p. Hence it

can be identified with a character IK(p) → F×
p2

, where IK(p) is the group

of fractional ideals of K prime to p. When B⊗Q k 6∼= M2(k), we may assume
that q is ramified in K/k by replacing K0 if necessary. In any case, let Q
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be the unique prime of K above q. Note that Q is the unique prime of
K above q, and so qOK = QeQ and (NQ)eQ = (qfQ)eQ = q[K:Q]. Then by
Corollary 2.3, we have

%12p (F eQQ ) = %12p (QeQ) = %12p (qOK) = %12p (1, . . . , 1, q, . . . , q, . . .)

= %12p (q−1, . . . , q−1, 1, . . . , 1, . . .) =
∏
P|p

rp(P)12(q−1) ≡
∏
P|p

q6ePfP

= q6[K:Q] mod p.

Here, (1, . . . , 1, q, . . . , q, . . .) (resp. (q−1, . . . , q−1, 1, . . . , 1, . . .)) is the idèle of
K where the components above p are 1 and the others are q (resp. where
the components above p are q−1 and the others are 1), and P runs through
the primes of K above p. On the other hand,

a(F eQQ ) ≡ %p(F eQQ ) + (NQ)eQ%p(F
eQ
Q )−1 = %p(F

eQ
Q ) + q[K:Q]%p(F

eQ
Q )−1 mod p

by Proposition 2.4(2). Let ε := q−[K:Q]/2%p(F
eQ
Q ) ∈ F×

p2
. Then

ε12 = 1 and a(F eQQ ) ≡ (ε+ ε−1)q[K:Q]/2 mod p.

Therefore

a(F eQQ ) ≡ 0,±q[K:Q]/2,±2q[K:Q]/2 mod p or a(F eQQ )2 ≡ 3q[K:Q] mod p.

By Corollary 2.5, we have a(F eQQ ) ∈ C(NQ, eQ). Moreover,

NQ = Nq and eQ =

{
eq if B ⊗Q k ∼= M2(k),

2eq if B ⊗Q k 6∼= M2(k).

Then

a(F eQQ ), a(F eQQ )±q[K:Q]/2, a(F eQQ )±2q[K:Q]/2, a(F eQQ )2−3q[K:Q] ∈ D(NQ, eQ).

Since p 6∈ P(D(Nq, eQ)), we have

(1) a(F eQQ ) = 0,±q[K:Q]/2,±2q[K:Q]/2, or

(2) a(F eQQ )2 = 3q[K:Q].

Case (1). In this case, we have q | a(F eQQ ). Then q | a(FQ) by Lemma 2.6.
Since fQ (= fq) is odd, we obtain B ⊗Q Q(

√
−q) ∼= M2(Q(

√
−q)) or (q = 2

and B ⊗Q Q(
√
−1) ∼= M2(Q(

√
−1))) (see [2, Theorem 2.1, Propositions 2.3

and 5.1(1)]). This contradicts B ∈ B(q).

Case (2). In this case, q = 3 and [K : Q] is odd, a contradiction.

Therefore we conclude MB(k) = ∅.

4. Counterexamples to the Hasse principle. We have computed
the sets C(N, e),D(N, e),P(D(N, e)) in several cases as seen in Table 1.
Then we obtain the following counterexamples to the Hasse principle on
MB over number fields:



248 K. Arai

Table 1. Examples of P(D(N, e))

(N, e) C(N, e) D(N, e) P(D(N, e))

(2, 2) 0,−3,−4 0, ±1, ±2, −3, ±4, −5, −6, −7, −8, −12 2, 3, 5, 7

(2, 4) 1, ±8 0, 1, −3, ±4, 5, −7, ±8, 9, ±12, ±16, −47 2, 3, 5, 7, 47

(2, 6) 0, 9, −16
0, 1, −7, ±8, 9, ±16, 17, −24, 25, −32,
64, −111, −192

2, 3, 5, 7, 17, 37

(2, 8) −31, 32
0, 1, −15, 16, −31, 32, −47, 48, −63, 64,
193, 256

2, 3, 5, 7, 31, 47, 193

(2, 10) 0, 57, −64
0, −7, 25, ±32, 57, ±64, 89, −96, 121,
−128, 177, 1024, −3072

2, 3, 5, 7, 11, 19, 59,
89

(2, 12)
−47,
±128

0, 17, −47, ±64, 81, −111, ±128, −175,
±192, ±256, 4096, −10079

2, 3, 5, 7, 17, 37, 47,
10079

(2, 14)
0, −87,
−256

0, 41, −87, ±128, 169, −215, ±256, −343,
−384, −512, 16384, −41583, −49152

2, 3, 5, 7, 13, 29, 41,
43, 83, 167

(2, 16) 449, 512
0, −63, 193, 256, 449, 512, 705, 768, 961,
1024, 4993, 65536

2, 3, 5, 7, 31, 47,
193, 449, 4993

(3, 2)
−2, 3, −5,
−6

0, 1, −2, ±3, 4, −5, ±6, −8, ±9, −11,
−12, −18, −23

2, 3, 5, 11, 23

(3, 4)
7, −9,
−14, 18

0, −2, 4, −5, 7, ±9, −11, −14, 16, ±18,
−23, 25, ±27, −32, 36, −47, 81, −162,
−194

2, 3, 5, 7, 11, 23, 47,
97

(3, 6)
10, 46,
−54

0, −8, 10, −17, 19, −27, 37, −44, 46, −54,
64, −71, 73, −81, 100, −108, 729, −2087

2, 3, 5, 11, 17, 19,
23, 37, 71, 73, 2087

(3, 8)
34, −81,
−113, 162

0, −32, 34, −47, 49, ±81, −113, 115,
−128, ±162, −194, 196, ±243, −275, 324,
6561, −6914, −13122, −18527

2, 3, 5, 7, 11, 17, 23,
47, 97, 113, 191,
3457

(3, 10)
243, 475,
−482,
−486

0, 4, −11, 232, −239, ±243, 475, −482,
±486, 718, −725, ±729, 961, −968, −972,
48478, 55177, 59049, −118098

2, 3, 5, 11, 19, 23,
29, 31, 239, 241, 359,
2399, 24239

(3, 12)
658,
−1358,
1458

0, −71, 100, −629, 658, 729, −800,
−1358, 1387, 1458, −2087, 2116, 2187,
−2816, 2916, 249841, 531441, −1161359

2, 3, 5, 7, 11, 17, 19,
23, 37, 47, 71, 73,
97, 433, 577, 1009,
1151, 2087

(3, 14)

2187,
2515,
3022,
−4374

0, 328, 835, −1352, −1859, ±2187, 2515,
3022, ±4374, 4702, 5209, ±6561, 6889,
7396, −8748, 4782969, −5216423,
−8023682, −9565938

2, 3, 5, 11, 13, 23,
41, 43, 83, 167, 337,
503, 673, 1511, 2351,
5209, 24023

(3, 16)

−353,
−6561,
−11966,
13122

0, −353, 1156, −5405, 6208, ±6561,
−6914, −11966, 12769, ±13122, −13475,
−18527, ±19683, −25088, 26244,
14044993, 43046721, −86093442,
−129015554

2, 3, 5, 7, 11, 17, 23,
31, 47, 97, 113, 191,
193, 353, 383, 2113,
3457, 30529, 36671
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Proposition 4.1.

(1) Assume d(B) = 39, and let k = Q(
√

2,
√
−13) or Q(

√
−2,
√
−13).

Then B ⊗Q k ∼= M2(k), MB(k) = ∅ and MB(kv) 6= ∅ for any place
v of k. Here, kv is the completion of k at v.

(2) Let L be the subfield of Q(ζ9) satisfying [L : Q] = 3, where ζ9 is
a primitive 9th root of unity. Assume (d(B), k) = (62, L(

√
−39)) or

(86, L(
√
−15)). Then B⊗Qk 6∼= M2(k), MB(k) = ∅ and MB(kv) 6= ∅

for any place v of k.

Proof. (1) The prime number 3 (resp. 13) is inert (resp. ramified) in
Q(
√
−13). Thus B ⊗Q Q(

√
−13) ∼= M2(Q(

√
−13)), and so B ⊗Q k ∼= M2(k).

Applying Theorem 1.1 with q = 2, we obtain MB(k) = ∅. In fact,
(eq, fq) = (4, 1) where q is the unique prime of k above q = 2, and the
prime divisor 13 of d(B) does not belong to P(D(2, 4)) ∪ {2} (see Table 1).
Since 3 (resp. 13) splits in Q(

√
−2) (resp. Q(

√
−1)), we have B⊗QQ(

√
−2) 6∼=

M2(Q(
√
−2)) (resp. B ⊗Q Q(

√
−1) 6∼= M2(Q(

√
−1))).

By [2, p. 94], we have MB(Q(
√
−13)w) 6= ∅ for any place w of Q(

√
−13)

(cf. [3]). Therefore MB(kv) 6= ∅ for any place v of k.
(2) Assume (d(B), k) = (62, L(

√
−39)) (resp. (86, L(

√
−15))). First, we

prove B ⊗Q k 6∼= M2(k). The prime number 2 splits in k as a product of
two distinct primes with inertial degree 3. Then we let v be the place corre-
sponding to one of these primes. By [7, Chapitre II, Théorème 1.3], we have
B ⊗Q kv 6∼= M2(kv). Therefore B ⊗Q k 6∼= M2(k).

Applying Theorem 1.1 with q = 3, we obtain MB(k) = ∅. In fact,
(eq, fq) = (6, 1) where q is the unique prime of k above q = 3, and the
prime divisor 31 (resp. 43) of d(B) does not belong to P(D(3, 12)) ∪ {3}.
Since 31 (resp. 43) splits in Q(

√
−3), we have B⊗QQ(

√
−3) 6∼= M2(Q(

√
−3)).

By [4, Table 1], we haveMB(Q(
√
−39)w) 6= ∅ (resp.MB(Q(

√
−15)w) 6= ∅)

for any place w of Q(
√
−39) (resp. Q(

√
−15)). Therefore MB(kv) 6= ∅ for

any place v of k.
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