
FUNDAMENTA

MATHEMATICAE

235 (2016)
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Abstract. It is shown that Vopěnka’s Principle (VP) can restore almost the en-
tire ZF over a weak fragment of it. Namely, if EST is the theory consisting of the ax-
ioms of Extensionality, Empty Set, Pairing, Union, Cartesian Product, ∆0-Separation
and Induction along ω, then EST + VP proves the axioms of Infinity, Replacement (thus
also Separation) and Powerset. The result was motivated by previous ones (2014), as
well as by H. Friedman’s (2015), where a distinction is made among various forms of
VP. As a corollary, EST + Foundation + VP = ZF + VP and EST + Foundation +
AC + VP = ZFC + VP. Also, it is shown that the Foundation axiom is independent
of ZF − {Foundation} + VP. It is open whether the Axiom of Choice is independent of
ZF + VP. A very weak form of choice follows from VP, and some other similar forms of
choice are introduced.

1. Introduction. Vopěnka’s Principle (henceforth abbreviated VP) is
mainly known as a (very) large cardinal axiom (see [11]). Also, several other
implications of the principle were proved long ago, especially in category the-
ory (see [1]). Recently there has been a revived interest in VP through new
set-theoretic proofs of category-theoretic results (see Bagaria and Brooke-
Taylor [2]). Furthermore, Brooke-Taylor [5] showed the relative consistency
of VP with almost all usual ZFC-independent statements, like GCH and
diamond principles (see the Introduction of [5]).

In all of the above results the underlying theory is ZFC. In contrast, the
aim of the present paper is to reveal a still different capability of VP: the
capability to restore the most basic axioms of ZF, namely Replacement (thus
also Separation) and Powerset, as well as Infinity (if the latter is missing),

2010 Mathematics Subject Classification: Primary 03E30, 03E20; Secondary 03E65.
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when added to a suitable weak set theory. By “weak set theory” we generally
mean the following.

Definition 1.1. A weak set theory is one that does not include the
axioms of Powerset and Replacement.

Various weak systems of set theory have been considered in the literature.
Perhaps the most well-known of them is Kripke–Platek’s theory KP on which
the theory of admissible sets is based (see [6, p. 48]). A system weaker than
KP is Devlin’s Basic Set Theory (BS) used in [6, p. 36]. An extensive and
detailed treatment of an array of weak systems, among them Devlin’s BS,
can be found in [13].

A weak set theory may or may not include Infinity. Also, it may or may
not be a fragment of ZF. For example the theory LZFC (“local ZFC”) of [16]
and [17] is weak, proves Infinity, but is not a fragment of ZFC. On the other
hand, the system EST introduced in Section 2 below, as a ground theory
for VP, is a fragment of ZF but does not include Infinity. Yet EST + VP
proves this axiom. It is worth pointing out that EST, even augmented with
Infinity, is weaker than BS because of lack of Foundation. A fortiori it is
weaker than KP.

Throughout we shall refer to the well-known axioms of ZFC with their
usual names, and without further explanations. These are: Extensionality,
Empty Set, Pairing, Union, Powerset, Infinity, Separation, Foundation, Re-
placement and Choice. Sometimes it is convenient to denote them by ab-
breviations, especially within theorems. Specifically, we often write Ext for
Extensionality, Pair for Pairing, Pow for Powerset, Sep and ∆0-Sep for Sep-
aration and ∆0-Separation, respectively, Rep and ∆0-Rep for Replacement
and ∆0-Replacement, respectively, Found for Foundation, Inf for Infinity
and AC for Choice. Another weak axiom that will be used below is Carte-
sian Product, abbreviated CartProd , which says that for any sets x, y, x×y
is a set.

The capability of VP to restore the axioms of Replacement and Pow-
erset was first noticed in [17]. In that paper we showed that if we add VP
to a strengthened variant of LZFC, then Replacement and Powerset are
recovered. Later on, when we came across Friedman’s [8], where seven vari-
ants of VP are given in apparently decreasing strength but still equivalent
over ZFC, we realized that what was used in [17] was not the full principle
VP but only a weaker form, denoted VP4 in Friedman’s list. Moreover, we
saw that using VP instead of VP4 shows the result of [17] for the theory
LZFC itself rather than a strengthened variant of it. That led us to focus
on what VP can prove over a weak fragment of ZF rather than LZFC.

The content of the paper is as follows. In Section 2.1 we introduce the
variants of VP, especially the general one VP and the weaker one VP4, and
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describe their basic differences. Also, we outline the way in which VP acts
as a set-existence principle. In Section 2.2 we introduce the weak theory
EST. In Section 2.3 we show that VP is expressible in EST. Section 2.4
contains the main results of Section 2, namely that EST+VP proves Infinity,
Replacement and Powerset.

In Section 3 we prove that Foundation is independent of ZF + VP,
that is, if ZF + VP is consistent, then so is ZF0 + VP + ¬Found , where
ZF0 = ZFC− {Found}.

In Section 4 the question whether AC is independent of ZF+VP is raised.
The question remains open. In particular, it is open whether the question
can be settled with the help of symmetric and permutation models. It is
also observed that a very weak form of choice follows from VP. This gives
the chance to introduce some other similar forms of choice whose relative
strength over ZF, as well as over ZF + VP, is also open.

2. Vopěnka’s Principle over some weak set theories

2.1. VP and its variants. Let L = {∈} be the language of set theory.
Given a formula φ(x) of L in one free variable, let Xφ denote the extension
{x : φ(x)} of φ(x). As usual, we refer to Xφ as “classes”. Vopěnka’s Principle
is a statement that quantifies over classes, so cannot be formulated in ZF as
a single axiom; it can be formulated however as an axiom-scheme. Clearly,
for every φ, “Xφ is a proper class” is a first-order sentence. Therefore so also
are the statements

VPφ: If Xφ is a proper class of L-structures, for some first-order lan-
guage L, then there are distinct M,N ∈ Xφ such that M - N .

HereM-N means that there is an elementary embedding f :M→N . Let

VP = {VPφ : φ(x) a formula of L}.

[Notice that, throughout the paper, we refer to the arbitrary first-order
languages mentioned in the statement of VPφ above by the symbol “L”, to
avoid confusion with the fixed language L = {∈} of set theory. Of course L
is one of those L, but a very specific one.]

Let us refer to the above formulation of VPφ as being “direct”. We also
have the contrapositive formulation: “If Xφ is a class of L-structures, for
some first-order language L, and there are no distinctM,N ∈ Xφ such that
M - N , then Xφ is not a proper class”. But “Xφ is not a proper class”
means exactly that Xφ is a set. This latter formulation enables VPφ to act
as a set-existence principle: it says that “if such and such is the case about
φ and Xφ, then Xφ is a set”.



130 A. Tzouvaras

The direct formulation of VP is suitable for ZF and ZFC, where it is
usually easy to decide whether its premise is satisfied, that is, whether a
class Xφ of structures is proper. In contrast, the contrapositive formulation
makes VP suitable for weak set theories. The reason is that such theories
have poorly defined universes, where it is often unclear which classes Xφ are
sets and which are proper ones. So in weak set theories we are more in need of
principles entailing that such and such classes Xφ are sets. For example, in a
weak set theory where Replacement and Powerset are missing, such instances
of VP might be used to establish that the classes {x : (∃y ∈ A)(Fψ(y) = x)},
where Fψ(y) = x is a functional relation, or {x : x ⊆ A} for any set A,
are actually sets, thus proving the aforementioned axioms. As already said
above, we first noticed this fact when working on [17]. Motivated by results
in that paper and also by Friedman’s [8], we pursued the above idea more
systematically and showed that in fact, by the contrapositive action of VP,
the three pillar axioms of ZF, Powerset, Replacement and Infinity, can be
established over a very weak fragment of ZF.

H. Friedman [8] gave seven variants of VP, namely VP above plus six
weaker forms VPi, 1 ≤ i ≤ 6, almost in decreasing strength, each of
them resulting either from a narrowing of the range of first-order languages
that can be engaged in the scheme, or from replacing “elementary embed-
ding” with “embedding”, or from both. Specifically, VP1 results from VP by
restricting the term “first-order language” to “language of finite relational
type”. VP2 results from VP1 by replacing “elementary embedding” by “em-
bedding”. VP3 results from VP2 by replacing “language of finite relational
type” by “language with a single binary operation”. VP4 results from VP3

by replacing “language with a single binary operation” with “language with
a single binary relation”. VP4 is essentially the variant used in [17], so we
omit the other variants of VP. More precisely, let

VP4,φ: If Xφ is a proper class of L-structures of a language L with a
single binary relation R, then there are distinct M,N ∈ Xφ

such that M is embeddable into N .

Let also
VP4 = {VP4,φ : φ(x) is a formula of L}.

As Friedman states in [8], all these seven variants are equivalent over the
theory of classes Neumann–Gödel–Bernays with Choice (NGBC), when VPi
are formulated in the language of the theory of classes. That means that the
above formulations of VPi in ZF, as schemes, are also equivalent over ZFC.
The equivalence of VPi should have been well-known since the start, at least
among category-theorists. Also, as indicated in [1, Historical Remarks, pp.
278–279], the original formulation of Vopěnka’s Principle was VP4 rather
than VP. However, these variants need not be equivalent over weaker the-
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ories, like the one we deal with below (see Corollary 2.16 for the difference
between VP and VP4 over EST, and the comments following that).

Although in this paper we have made the shift from the weak variant VP4

to the most general one VP, in the proofs of our main results below we still do
not need the full generality of VP. To be precise: the main difference between
VP4 and VP, as used below, is that the first-order languages involved in
VP may contain, for our purposes, in contrast to those involved in VP4, an
arbitrary set of constants. On the other hand, for our purposes, the languages
in VP need not contain more than one binary and one unary predicate.
Moreover, for the derivation of Replacement and Powerset it suffices that
VP talks just about embeddings rather than elementary embeddings. (See
Remark 2.17 below.)

Having made the distinction between VP and VP4, we can now describe
the result of [17] that has largely motivated this paper. (Although in [17]
we refer to VP, what we actually use is VP4.) To formulate it we need an
old theorem of P. Vopěnka, A. Pultr and Z. Hedrĺın [18], that we abbreviate
V-P-H, the proof of which was crucial for the result of [17].

Given a set A with a binary relation R ⊆ A×A, we refer to the ordered
pair 〈A,R〉 as a graph. Given a graph 〈A,R〉, a mapping f : A → A is an
endomorphism if for all x, y ∈ A, 〈x, y〉 ∈ R implies 〈f(x), f(y)〉 ∈ R. The
graph 〈A,R〉 is said to be rigid if the only endomorphism of 〈A,R〉 is the
identity.

The V-P-H theorem is the following:

Theorem 2.1 (V-P-H [18]). (ZFC) For every infinite set A, there is a
binary relation R ⊂ A×A such that the graph 〈A,R〉 is rigid.

Obviously, the preceding theorem refers to structures with a single bi-
nary relation only. Also, rigidity is a property that refers to (lack of even)
endomorphisms rather than embeddings (let alone elementary embeddings).
This is why what is proved in [17] is in essence the following.

Theorem 2.2 ([17, Theorem 6.3]). If T is a theory such that LZFC ⊆ T
and T ` V-P-H, then T + VP4 proves Replacement and Powerset, that is,
ZFC ⊆ T + VP4.

[This formulation differs from that of [17] only in that we mention VP4

in place of VP (1).]

(1) The precise definition of the theory LZFC is not needed here. It suffices to say
that it is a weak set theory in the sense of Definition 1.1. It is not a fragment of ZF, but
it satisfies Infinity (in the sense that ω is the least inductive set), AC, Cartesian Product,
and others. For later use we note also that LZFC is much stronger than the theory EST
introduced below.



132 A. Tzouvaras

In Theorem 2.2, the assumption that the theory T proves V-P-H guaran-
tees the existence of a rigid binary relation R on every set A. Then applying
VP4 to structures suitably equipped with such an R, we show that P(A)
and F“A are not proper classes. The variant VP4 suffices for this purpose
since we need to employ a language with a binary relation R only, as well
as just endomorphisms instead of embeddings or elementary embeddings.

The basic observation that led from Theorem 2.2 above to the results
of the present article is that, in the absence of V-P-H, the rigidity property
can be alternatively guaranteed by employing an infinity of constants in the
language of the structure, namely a constant ca for each element a ∈ A.
Such languages are allowed in VP though not in

VP4.

2.2. A weak fragment of ZF for expressing VP. Below we define
the weak fragment of ZF called EST (for Elementary Set Theory). First let
us set

EST0 = {Ext ,Emptyset ,Pair ,Union,CartProd ,∆0-Sep}.
For any sets x, y, the ordered pair 〈x, y〉 is defined in EST0 as usual, that
is, as the set {{x}, {x, y}}. For any given sets M,N , M × N = {〈x, y〉 :
x ∈ M, y ∈ N} is a set by CartProd . Binary relations between M and
N are defined as sets R ⊆ M × N . Functions f : M → N are defined as
special binary relations f ⊆M ×N . Throughout, the symbol f ranges over
functions, so (∃f)(· · · ) abbreviates (∃f)(f is a function ∧ · · · ).

Next we define the class ω of natural numbers, which also need not be a
set. Let Tr(x) denote the predicate “x is a transitive set”. Let us also define
the predicates

Ord(x) := Tr(x) ∧ (∀y, z ∈ x)(y ∈ z ∨ y = z ∨ z ∈ y),

Succ(x) := (∃y ∈ x)(x = y ∪ {y}),
Nat(x) := Ord(x) ∧ (∀y)[(y ∈ x ∨ y = x)→ (y = ∅ ∨ Succ(y))].

Finally let us set

ω = {x : Nat(x)}.
We call ω the class of natural numbers. Throughout, in writing formulas of L,
it is convenient to use the notation x ∈ ω, although ω is a class in general,
as an abbreviation of the predicate Nat(x). In particular, (∃x ∈ ω)φ and
(∀x ∈ ω)φ stand for (∃x)(Nat(x) ∧ φ) and (∀x)(Nat(x) → φ), respectively.
Also, as usual, the letters m and n will range over elements of ω.

Further we need induction to hold along ω, that is, that every non-empty
subclass X ⊆ ω has a least element. For that purpose an additional axiom is
needed. This is the Induction scheme, Ind(ω), given below, which is almost
identical to the Induction scheme of Peano Arithmetic. Namely, for every
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formula φ(x) of L such that Xφ ⊆ ω (that is, (∀x)(φ(x) → Nat(x))), let
Indφ(ω) denote the formula

Indφ(ω): [φ(∅) ∧ (∀x ∈ ω)(φ(x)→ φ(x ∪ {x}))]→ (∀x ∈ ω)φ(x).

Let also
Ind(ω) = {Indφ(ω) : Xφ ⊆ ω}.

[Equivalently, Ind(ω) says that every non-empty Xφ ⊆ ω has a ∈-least
element.] Finally we set

EST = EST0 + Ind(ω).

EST is the weak theory that will be used below as a base theory for VP.

Remark 2.3. The definition of ω above is as in [4, pp. 468ff.] (see
also [3]), except that in [4] the predicate Ord(x) says that “x is well-ordered
with respect to ∈”, while in our definition of Ord(x), “x is linearly ordered
with respect to ∈”. Note the following:

(i) A difference between the two properties is that “linearly ordered” is
∆0 while “well-ordered” is not (it is Π1). This fact will be needed in the
proof of Theorem 2.12 below. On the other hand, with the help of Ind(ω),
one can easily prove that for every x ∈ ω, x is indeed well-ordered with
respect to ∈.

(ii) If Foundation were available, the properties “x is linearly ordered”
and “x is well-ordered” (with respect to ∈) would be equivalent.

(iii) However, even if Foundation were available, EST0 + Found could
not prove Ind(ω). That would need in addition Separation or Replacement.
That is, EST0 + Found + Sep ` Ind(ω).

With the help of Indφ(ω) one can prove all basic facts about natural
numbers. Some of them needed below are the following:

Fact 2.4.

(i) For any x, y ∈ ω, if x ∈ y, then x ( y, and x is an initial segment
of y.

(ii) If x, y ∈ ω and x ( y, then there is no injection f : y → x.
(iii) For any x, y ∈ ω, we have x ∈ y ∨ y ∈ x ∨ x = y.
(iv) If x ∈ ω and x = y ∪ {y}, then y is the greatest element of x.

Having defined ordered pairs and natural numbers, we can define or-
dered n-tuples, for n ∈ ω, as usual by induction. Namely, for every n > 2,
〈x0, . . . , xn+1〉 = 〈〈x0, . . . , xn〉, xn+1〉. Moreover, by the axiom CartProd ,
for n ∈ ω, n > 0, and every n-tuple of sets M0, . . . ,Mn−1, the product
M0 × · · · ×Mn−1 = {〈x0, . . . , xn−1〉 : xi ∈Mi} is a set.

Below we shall also need the set of functions f : n → M , denoted nM ,
for any set M and any n ∈ ω. Since Replacement is not available in EST we
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shall define the elements of nM in a slightly different way. Namely, while an
f ∈ nM typically has the form

f = {〈0, x0〉, . . . , 〈n− 1, xn−1〉},
obviously we can identify the latter set with the n-tuple

〈〈0, x0〉, . . . , 〈n− 1, xn−1〉〉,
which is an element of the Cartesian product

({0} ×M)× · · · × ({n− 1} ×M).

The latter is a set as we saw above, so we can define
nM := ({0} ×M)× · · · × ({n− 1} ×M).

As usual, we shall let letters g, h range over elements of nM and we shall
write h(i) = x to denote the fact that 〈i, x〉 is the ith element of the n-tuple h.

As already mentioned in the Introduction, EST, even augmented with
Infinity, is weaker than Devlin’s system BS. In connection with the defi-
nition of the Sat predicate in EST that will be given in the next section,
the referee kindly informed me that BS, though stronger than EST, is fa-
mously insufficient for the purpose Devlin introduced it, including defining
the satisfaction predicate (2). (The flaws of BS with respect to this point are
discussed and remedied in [13, §10].) The main reason that EST succeeds
where BS fails appears to be the unorthodox definition of the set nM given
above. Unexpectedly enough, this unusual yet legitimate formalization of
nM is all we need to make things work.

2.3. Expressibility of VP in EST. From now on we work in EST,
with language L = {∈}. In this subsection we show how the concepts re-
quired for the formulation of VP can be defined in EST. The formulation of
VP (at least for the needs of the present article) requires the following:

(a) The definition of a language LA, for every set A, that contains at most
one unary and one binary relation symbol, but contains a constant ca for
each a ∈ A and infinitely many variables. Due to the lack of Replacement,
LA need not be a set.

(b) The definition of terms, formulas and sentences of LA, in a way
that these classes of objects are inductive, so that one can prove inductively
the usual facts about these syntactic objects. Again the classes of terms,
formulas and sentences need not be sets.

(c) The definition of LA-structures for every language LA.
(d) The definition of satisfaction relation “M |= σ(x0, . . . , xn−1)” for

any LA-structureM, any formula σ(v0, . . . , vn−1) of LA, with free variables

(2) A discussion on this issue can be found at http://mathoverflow.net/questions/
77734/devlins-constructibility-as-a-resource.
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v0, . . . , vn−1, and any n-tuple of elements x0, . . . , xn−1 of M . In view of this,
the relationM - N of elementary embeddability (or simple embeddability)
between LA-structures is immediately defined.

We show below how definitions (a)–(d) can be implemented in EST. Since
the definability of the satisfaction relation is crucial for the expressibility
of VP in EST, we shall give explicitly the necessary definitions below.

Definition 2.5. For every n ∈ ω, let vn := 〈0, n〉. Then vn is the nth
variable (of every language). For every set a, let ca := 〈1, a〉. The sets ca
are called constants. Also let us identify the (sufficient) logical symbols ≡,
¬, ∧ and ∃ with elements of ω as follows: ≡ := 2, ¬ := 3, ∧ := 4, ∃ := 5.
Finally, let U := 6 and R := 7. The symbols ≡, U and R are referred to as
predicates. The predicates ≡ and R are binary, while U is a unary one. For
every set A, let

LA = {≡,¬,∧, ∃} ∪ {vn : n ∈ ω} ∪ {ca : a ∈ A} ∪ {U,R}.
Also let

V (LA) = {vn : n ∈ ω},
C(LA) = {ca : a ∈ A},

Term(LA) = {vn : n ∈ ω} ∪ {ca : a ∈ A}
be the classes of variables, constants and terms of LA, respectively.

Definition 2.6. Given any set A, define the class AFml(LA) of atomic
formulas of LA as follows:

AFml(LA) = {〈≡, t, s〉 : t, s ∈ Term(LA)} ∪ {〈U, t〉 : t ∈ Term(LA)}
∪ {〈R, t, s〉 : t, s ∈ Term(LA)}.

[The meaning of the above codings is straightforward: 〈≡, t, s〉, 〈U, t〉
and 〈R, t, s〉 represent the formulas t ≡ s, U(t) and R(t, s), respectively.]

Definition 2.7. The class Fml(LA) of formulas of LA is defined as
follows. First let the predicate FmlLA(x, f, n) be given by

FmlLA(x, f, n) :=
[
n 6= 0 ∧ dom(f) = n ∧ f(n− 1) = x

∧(∀k < n)[(f(k) ∈ AFml(LA) ∨ (∃j < k)(f(k) = 〈¬, f(j)〉)
∨(∃j, l < k)(f(k) = 〈∧, f(j), f(l)〉)

∨(∃j < k)(∃m ∈ ω)(f(k) = 〈∃,m, f(j)〉)]
]
.

Then set

Fml(LA) = {x : (∃f)(∃n ∈ ω)FmlLA(x, f, n)}.
The preceding definition of formulas is essentially the one given in

[7, Chapter 3, Definition 5.2]. It goes through smoothly despite the fact that
ω need not be a set. However the above definition of Fml(LA) is not quite
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precise. By writing FmlLA(x, f, n) we intend f to be a function with domain
n that enumerates the subformulas of x and only them. But if, for example,
dom(f) = 3 and f(0), f(1) and f(2) are atomic formulas, and f(2) = x,
then Fml(x, f, 3) holds according to 2.7, although f(0) and f(1) are not sub-
formulas of x. Thus an additional constraint must be added to the definition
of FmlLA(x, f, n) in order to prevent f from enumerating irrelevant atomic
formulas. This is simply the requirement for the domain of f to be minimal,
specifically that dom(f) = |Sub(x)| (the number of subformulas of x). In
the above example the domain of a function enumerating the subformulas
of an atomic formula should be 1 not 3. This requirement can be formally
expressed by a simple modification to the definition of FmlLA(x, f, n), and
hence to that of Fml(LA) (3). Henceforth we assume that this requirement
is implicitly satisfied whenever we write FmlLA(x, f, n).

The crucial thing about 2.7 is its capability to support inductive proofs
and recursive definitions. We let the letters σ, τ denote elements of Fml(LA).
As a first application of 2.7, every σ ∈ Fml(LA) is assigned a length, which
is the domain n of some enumerating function f for the subformulas of σ,
or, since these functions are all minimal, the number of subformulas σ.
More generally, in view of the validity of induction along ω the following
holds.

Lemma 2.8. Let X ⊆ Fml(LA) be a subclass of Fml(LA). If

AFml(LA) ⊆ X
and X is closed with respect to ¬, ∧ and ∃, then X = Fml(LA).

Proof. Assume X is as stated and suppose Fml(LA)−X 6= ∅. Then, by
the inductive properties of ω, there is σ ∈ Fml(LA) −X of least length n.
We immediately obtain a contradiction from the definition of Fml(LA).

Given a language LA as above, LA-structures are defined as follows.

Definition 2.9. For any set A, an LA-structure is a quadruple

M = 〈M,U,R, I〉,
where U ⊆M , R ⊆M×M , and I is a (set) function I : A→M . We refer to
M as the domain ofM, and to I as the constant assignment for LA. If either
U or R is missing from LA, the LA-structures are triplesM = 〈M,R, I〉 or
M = 〈M,U, I〉, respectively. The interpretation of the extra-logical symbols

(3) The modification is this: We set

Fml(LA) = {x : (∃f)(∃n ∈ ω)Fml∗LA
(x, f, n)},

where
Fml∗LA

(x, f, n) := FmlLA(x, f, n) ∧ (∀g)(∀m)[FmlLA(x, g,m)→ n ≤ m].
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of LA in M is defined as follows: UM = U , RM = R, cMa = I(a) for each
a ∈ A. On the other hand, ≡M is the identity.

For every σ ∈ Fml(LA), the (finite) set of free variables of σ, denoted
FV (σ), is defined as usual by induction on the length of σ (that is, along
the steps of 2.7). Also, for every σ, |FV (σ)| ∈ ω. We come to the defini-
tion of the satisfaction relation Sat(M, σ, e) which formalizes the relation
M |= σ(e(0), . . . , e(n−1)), for an LA-structureM = 〈M,U,R, I〉, a formula
σ(v0, . . . , vn−1) with free variables v0, . . . , vn−1, and a mapping e : n→ M ,
that is, e ∈ nM (recall that by the discussion at the end of Section 2.2, nM is
a set). The next definition is an adaptation of [7, Chapter 3, Definition 5.4].
(Recall that the letters f, g always denote functions.) We assume here that
both symbols U and R occur; if some of them is missing, the definition is
modified in the obvious way.

Definition 2.10. Let Sat(M, σ, e) denote the relation

(∃M,U,R, I)(∃f, g)(∃n,m ∈ ω)[M = 〈M,U,R, I〉
∧ FmlLA(σ, f, n) ∧ |FV (σ)| = m ∧ dom(g) = n ∧ e ∈ g(n− 1)

∧ (∀k < n)S(k, f, g,m,M)],

where

S(k, f, g,m,M)

:= (∃i, j)[f(k) = 〈≡, vi, vj〉 ∧ g(k) = {h ∈ mM : h(i) = h(j)}]
∨ (∃i)(∃a ∈ A)[f(k) = 〈≡, vi, ca〉 ∧ g(k) = {h ∈ mM : h(i) = I(a)}]
∨ (∃j)(∃a ∈ A)[f(k) = 〈≡, ca, vj〉 ∧ g(k) = {h ∈ mM : h(j) = I(a)}]
∨ (∃a ∈ A)[f(k) = 〈≡, ca, ca〉 ∧ g(k) = mM ]

∨ (∃a 6= b ∈ A)[f(k) = 〈≡, ca, cb〉 ∧ g(k) = ∅]
∨ (∃i)[f(k) = 〈U, vi〉 ∧ g(k) = {h ∈ mM : h(i) ∈ U}]
∨ (∃a ∈ A)[f(k) = 〈U, ca〉 ∧ I(a) ∈ U ∧ g(k) = mM ]

∨ (∃a ∈ A)[f(k) = 〈U, ca〉 ∧ I(a) /∈ U ∧ g(k) = ∅]
∨ (∃i, j)[f(k) = 〈R, vi, vj〉 ∧ g(k) = {h ∈ mM : 〈h(i), h(j)〉 ∈ R}]
∨ (∃i)(∃a ∈ A)[f(k) = 〈R, vi, ca〉 ∧ g(k) = {h ∈ mM : 〈h(i), I(a)〉 ∈ R}]
∨ (∃j)(∃a ∈ A)[f(k) = 〈R, ca, vj〉 ∧ g(k) = {h ∈ mM : 〈I(a), h(j)〉 ∈ R}]
∨ (∃a, b ∈ A)[f(k) = 〈R, ca, cb〉 ∧ 〈I(a), I(b)〉 ∈ R ∧ g(k) = mM ]

∨ (∃a, b ∈ A)[f(k) = 〈R, ca, cb〉 ∧ 〈I(a), I(b)〉 /∈ R ∧ g(k) = ∅]
∨ (∃i)[f(k) = 〈¬, f(i)〉 ∧ g(k) = mM − g(i)]

∨ (∃i, j)[f(k) = 〈∧, f(i), f(j)〉 ∧ g(k) = g(i) ∩ g(j)]

∨ (∃i, j)[f(k)= 〈∃, i, f(j)〉 ∧ g(k) = {h∈mM : (∃x∈M)(h(i/x)∈ g(j))}];
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in the last clause, h(i/x) is the tuple of mM resulting from h if we replace
〈i, h(i)〉 with 〈i, x〉.

In the preceding definition the function g, that enumerates the sets of
assignments that make true the subformulas of σ, is definable in EST because
on the one hand mM is a set, and on the other hand in each clause of the
definition, g(k) is a ∆0 subclass of mM , therefore a set.

Having defined what M |= σ(x0, . . . , xm−1) means for an LA-structure
M, an LA-formula σ(v0, . . . , vm−1) with its free variables being among
v0, . . . , vm−1, and for x0, . . . , xm−1 ∈ M , we can then define elementary
embeddings from one LA-structure into another as usual.

Given two LA-structures M, N , we say that M is elementarily em-
beddable in N , notation M - N , if there is a 1-1 function f : M → N
such that for every formula σ(v0, . . . , vm−1) of LA with free variables among
v0, . . . , vm−1, and any x0, . . . , xm−1 ∈M ,

M |= σ(x0, . . . , xm−1)↔ N |= σ(f(x0), . . . , f(xm−1)).

Let f : M - N denote the fact that f is an elementary embedding of M
into N . Sometimes, for more precision, we need to specify the language we
refer to. Then we say that f : M → N is an LA-elementary embedding, and
we write

f :M -LA N .
Clearly the last relation is definable in EST. The following simple fact will
be repeatedly used below.

Fact 2.11. Let M = 〈M,U,R, I〉, N = 〈N,Z, S, J〉 be LA-structures
and f : M → N be an LA-elementary embedding (or just an LA-embedding).
Then f ◦ I = J , that is, for every a ∈ A, f(I(a)) = J(a). Equivalently, for
every a ∈ A, f(cMa ) = cNa .

Proof. For every LA-embedding f :M→N , by definition f(cMa ) = cNa .
Also, for every a ∈ A, I(a) = cMa and J(a) = cNa . Therefore f(I(a)) = J(a).

The language L = {∈} of EST is just a particular instance of the lan-
guages LA above, namely one with A = ∅ and with one binary relation
symbol ∈. So the classes of formulas and sentences of L are already defin-
able in EST.

Given a formula φ(x) of L = {∈}, let Xφ denote the extension of φ,
although Xφ needs not be a set in EST. The expression “Xφ is a proper
class” simply stands for the L-sentence

(∀x)(∃y)[(φ(y) ∧ y /∈ x) ∨ (¬φ(y) ∧ y ∈ x)].

[Note that in ZF “Xφ is a proper class” is formulated just as (∀x)(Xφ 6⊆ x)
because of Separation. But in EST, where Separation is missing and Xφ ⊆ x
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does not imply that Xφ is a set, “Xφ is a proper class” has to be formulated
as (∀x)(Xφ 6= x).]

Given any formula φ(x) of L in one free variable, the instance VPφ of
Vopěnka’s Principle is formulated as follows:

VPφ: For every set A, if Xφ is a proper class of LA-structures, then
there are M 6= N ∈ Xφ and f such that f :M -LA N .

Clearly VPφ is an L-sentence, so the class

VP = {x : (∃φ ∈ Fml(L))(x = VPφ)}
is definable in EST. This completes the description of the scheme VP in EST.

2.4. Consequences of EST+VP. We begin with the proof of Infinity
because it does not depend on any form of Replacement or Powerset. We
show that the class ω = {x : Nat(x)}, as defined in Section 2.2, is a set in
EST + VP.

Theorem 2.12. In EST + VP, the class ω = {x : Nat(x)} is a set.
Therefore EST + VP ` Inf .

Proof. To avoid dealing with elementary embeddings of ∅, let ω∗ =
ω − {0}. Obviously in EST ω is a set iff ω∗ is a set. So towards a contra-
diction assume that ω∗ is a proper class. Consider the language L∅ = {R}
with only a binary relation symbol R (that is, L∅ contains no constants ca).
For each x ∈ ω∗, let ∈x = {〈y, z〉 ∈ x×x : y ∈ z} (the restriction of ∈ to x).
Since x×x is a set, by ∆0-Separation so is ∈x. LetMx = 〈x,∈x〉. EachMx

is an L∅-structure by interpreting R by ∈x. Let also

K = {Mx : x ∈ ω∗}.
We claim that K is a proper class when ω∗ is so. Indeed, assume K is a set.
Since

K = {〈x,∈x〉 : x ∈ ω∗} =
{
{{x}, {x,∈x}} : x ∈ ω∗

}
,

clearly ω∗ ⊂
⋃2K =

⋃⋃
K. In particular ω∗ = {x ∈

⋃2K : Nat(x)}. Since⋃2K is a set and Nat(x) is ∆0, ω
∗ is a set by ∆0-Separation, a contradiction.

ThusK is a proper class of L∅-structures. By VP there exist x0 6= x1 ∈ ω∗
and a function f : x0 → x1 such that f :Mx0 -Mx1 .

But one can easily see by the clauses of Fact 2.4 that this is false. Indeed,
since f is 1-1 and x0 6= x1, by 2.4(i)–(iii), x0 ∈ x1, and hence x0 is a proper
initial segment of x1. Also, by elementarity, we can see by induction on x0
that f is the identity. [0 = ∅ is the first element of both x0 and x1, so
f(0) = 0. Inductively, if f(n) = n then the next element of n should be sent
to the next element of f(n), that is, f(n+ 1) = n+ 1.] The elements of ω∗

are all successor ordinals, so let x0 = y0 ∪ {y0} and x1 = y1 ∪ {y1}. Since
x0 6= x1, we have y0 6= y1. By 2.4(iv), y0 is the greatest element of x0 and
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f(y0) = y0, since f is the identity, while, by elementarity, f(y0) should be
the greatest element y1 of x1. But y1 6= y0, a contradiction.

Next we come to the proof of Replacement.

Theorem 2.13.

(i) EST + VP ` ∆0-Rep.
(ii) EST + VP + ∆0-Rep ` Rep.

(iii) Therefore EST + VP ` Rep.

Proof. (i) To prove ∆0-Rep, let φ(x, y) be a ∆0 formula such that
(∀x)(∃!y) φ(x, y). This defines a class mapping Fφ : V → V such that
Fφ(x) = y iff φ(x, y). Fix a set A. It suffices to show that the class B =
Fφ“A = {Fφ(a) : a ∈ A} is a set. Let LA = {U} ∪ {ca : a ∈ A} be the
language with a unary relation symbol U and a constant ca for each a ∈ A.
For every b ∈ B, A×{b} is a set, so for each such b consider the LA-structure

Mb = 〈A× {b}, Ub, Ib〉,

where Ub ⊆ A× {b} is defined as follows: For every a ∈ A,

〈a, b〉 ∈ Ub ⇔ Fφ(a) = b.

We have Ub = {〈a, b〉 ∈ A × {b} : φ(a, b)}. By CartProd , A × {b} is a
set, and since φ is ∆0, Ub is a set, by ∆0-Sep, that interprets U, that
is, UMb = Ub. The constant assignment Ib : A → A × {b} is defined by
Ib(a) = 〈a, b〉 for each a ∈ A. Then Ib is a set too, by ∆0-Sep, because
Ib = {〈x, 〈y, b〉〉 ∈ A× (A× {b}) : x = y} and x = y is ∆0. This means that
for all a ∈ A and b ∈ B, we have cMb

a = 〈a, b〉. Let

S = {Mb : b ∈ B}.

It suffices to show that S is a set. For suppose that this is the case. Then
clearly for some n ∈ ω (actually for n = 7), B ⊂ ∪nS. Moreover

B = {y ∈ ∪nS : (∃x ∈ A)(Fφ(x) = y)} = {y ∈ ∪nS : (∃x ∈ A)φ(x, y)}.

Since ∪nS is a set and the formula (∃x ∈ A)φ(x, y) is ∆0, it follows by
∆0-Separation that B is set.

So let us verify that S is a set. To reach a contradiction assume that S
is a proper class. Then by VP there are b, c ∈ B, b 6= c, and a mapping f :
A×{b} → A×{b} such that f :Mb -Mc. By elementarity, for every a ∈ A,

f(〈a, b〉) = f(cMb
a ) = cMc

a = 〈a, c〉.

On the other hand, by elementarity again, for every a ∈ A,

Fφ(a) = b ⇔ 〈a, b〉 ∈ Ub ⇔ f(〈a, b〉) ∈ Uc ⇔ 〈a, c〉 ∈ Uc ⇔ Fφ(a) = c,

which is a contradiction since b 6= c.
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(ii) Now we work in EST+VP+∆0-Rep, and prove that full Replacement
holds. The proof is for the most part similar to that of clause (i) above. Let
φ(x, y) be a formula such that (∀x)(∃!y)φ(x, y), and let Fφ(x) = y iff φ(x, y).
We fix again a set A, and show that if B = Fφ“A, then B is a set. We define
the structures Mb as before and we set S = {Mb : b ∈ B}. As in (i), it
follows by means of VP that S cannot be a proper class. Thus S is a set.
The only departure from the proof of (i) is at the point of inferring that
B is a set from S being a set. This now can be achieved by the help of
∆0-Replacement: just observe that the mapping S 3Mb 7→ b ∈ B is clearly
∆0-definable and onto. Therefore B is a set.

(iii) This is immediate from (i) and (ii).

Now we come to the proof of Powerset, which is based on a clause of
Theorem 2.13.

Theorem 2.14. EST+VP+∆0-Rep ` Pow. Hence, by Theorem 2.13(i),
EST + VP ` Pow.

Proof. We work in EST + VP + ∆0-Rep. Fix a set A, and let again
LA = {U} ∪ {ca : a ∈ A}, where U is a unary relation symbol. For each
X ∈ P(A) consider the LA-structure

MX = 〈A,X, idA〉,
where for each X ⊆ A, UMX = X and the constant assignment is the
identity mapping idA : A → A. Note that idA is a set in EST, by ∆0-Sep,
since idA = {〈x, y〉 ∈ A × A : x = y}. Thus cMX

a = a for every a ∈ A. To
reach a contradiction, assume that P(A) is a proper class. Let

K = {MX : X ∈ P(A)}.
The mapping K 3 MX 7→ X ∈ P(A) is clearly ∆0, so by ∆0-Replacement,
the class K is proper too. By VP there are X 6= Y ∈ P(A) and an elementary
embedding f :MX →MY . But then f(a) = f(cMX

a ) = cMY
a = a for every

a ∈ A. That is, f = idA. On the other hand, by elementarity, f should
map 1-1 X onto Y , hence X = Y , a contradiction.

Now ZF = EST + {Inf ,Pow ,Rep,Found}. So from Theorems 2.12–2.14
we immediately obtain the following:

Corollary 2.15. EST+ Found +VP = ZF + VP, and EST+ Found +
AC + VP = ZFC + VP.

As mentioned at the beginning of this section, the replacement of VP4

(used in Theorem 2.2) by VP (used in Theorems 2.12–2.14) was necessitated
by the fact that Theorem V-P-H was among the assumptions of 2.2, while
this is not the case for 2.12–2.14. Inspecting the proof of V-P-H in [18], we
see that it relies heavily on AC, as well as on the following two facts:
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(a) For every well-ordered set 〈x,≤〉, there is a (unique) ordinal α such
that 〈x,≤〉 ∼= 〈α,∈〉.

(b) For every ordinal α, there exists the set of ordinals of countable
cofinality below α, {β < α : cf(β) = ω}.

Clause (a) requires ∆1-Replacement, while (b) requires, firstly, that ω is a
set, and secondly, Σ1-Separation. These being available the proof of V-P-H
goes through, so

EST + {AC, “ω is a set”,∆1-Rep,Σ1-Sep} ` V-P-H.

With V-P-H at hand we can work exactly as in the proof of 2.2 with VP4

in place of VP (a rigid binary relation R on any set A does the job that the
constants ca do in VP). Thus we obtain the following.

Corollary 2.16. The theory

EST + {AC, “ω is a set”,∆1-Rep,Σ1-Sep}+ VP4

proves Replacement and Powerset.

Corollary 2.16 is in sharp contrast to the results 2.13 and 2.14 above,
which together show that EST+VP alone proves Replacement and Powerset.
This gives a measure of the difference in apparent strength between the
principles VP4 and VP over EST.

Remark 2.17. It is further worth mentioning that in the proofs of Theo-
rems 2.13 and 2.14 we did not use the full strength of VP. A simple inspection
of the proofs shows that in these results we used the fact that for a given
proper class Xφ of LA-structures there are distinct structures M,N in Xφ

and an embedding only f :M→N , rather than an elementary embedding.
In contrast, in Theorem 2.12 some kind of elementarity for f is required.
Therefore 2.13 and 2.14 can still be established by means of the following
weaker form, VP0, of Vopěnka’s Principle. Let VP0 result from VP if “ele-
mentary embedding” is replaced by “embedding” (while the languages LA
still contain finitely many relations and an arbitrary set of constants). Then
EST + VP0 proves Replacement and Powerset.

Since EST ⊂ LZFC (see footnote 1 after Theorem 2.2), as an immediate
corollary to Theorems 2.13 and 2.14 we obtain the following improvement
to [17, Theorem 6.3]:

Theorem 2.18. LZFC + VP proves Replacement and Powerset, that is,
ZFC ⊆ LZFC + VP.

The improvement is of course that the requirement for T to prove V-P-H
is no longer needed for LZFC.

On the other hand, ZFC + VP implies the existence of a proper class of
extendible cardinals (see [11, Lemma 20.25] and the remark after its proof).
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Since for every extendible cardinal κ, Vκ |= ZFC, we immediately infer
that ZFC + VP ` Loc(ZFC), where Loc(ZFC) is the central axiom of LZFC
saying that “every set belongs to a transitive model of ZFC”. From this we
have:

Lemma 2.19. LZFC ⊂ ZFC + VP.

From Theorem 2.18 and Lemma 2.19 we obtain:

Theorem 2.20. LZFC + VP = ZFC + VP.

3. VP and Foundation. Let ZF0 = ZF− {Found}. In this section we
show that VP does not prove Foundation over ZF0. Namely, the following
holds:

Theorem 3.1. If ZF + VP is consistent, then so is ZF0+VP+¬Found.
Similarly with ZFC in place of ZF.

The proof is by the well-known method of using a non-standard member-
ship relation ∈π in V , produced by a definable permutation of V . Namely,
it is a rather folklore result that if V is the universe of ZFC, π : V → V is
a definable permutation, and ∈π is the binary relation defined by x ∈π y iff
x ∈ π(y), then Vπ |= ZFC0 (see [12, Ch. IV, exercise 18]). For simplicity, let
us abbreviate henceforth 〈V,∈π〉 to Vπ and 〈V,∈〉 to V . In order for Foun-
dation to fail in Vπ it suffices to take π so that x ∈ π(x) for some x. In this
way we shall prove the next theorem, from which Theorem 3.1 follows.

Theorem 3.2. If V |= ZF + VP, then there is a permutation π : V → V
such that Vπ |= VP + ¬Found.

We shall need first some preliminary definitions and lemmas. Given a
definable permutation π : V → V , let us denote by φπ, for every formula
φ of L = {∈}, the formula resulting from φ if we replace every atomic
subformula x ∈ y occurring in φ by x ∈ π(y). The following is easy to check
by induction on the length of φ.

Lemma 3.3.

(i) The mapping φ 7→ φπ commutes with connectives and quantifiers,
that is, (φ→ ψ)π = (φπ → ψπ), (¬φ)π = ¬φπ, and (∀xφ)π = (∀x)φπ.

(ii) For every sentence φ, Vπ |= φ iff V |= φπ.

For every standard notion of V , like singleton, ordered pair, n-tuple, rela-
tion, function, there is a corresponding π-notion for Vπ. For instance a π-pair
is a set z such that Vπ |= “z is an ordered pair”. The latter holds iff for some
x, y we have Vπ |= z = 〈x, y〉. By 3.3(ii), this is equivalent to (z = 〈x, y〉)π
(we often write just φ instead of V |= φ), more conveniently denoted by
z = 〈x, y〉π. Similarly the fact that Q is a π-binary relation between sets
M and N means that (Q ⊆ M × N)π is true. A π-notion expressed by a



144 A. Tzouvaras

sentence φ is said to be absolute if φπ ↔ φ. In the next two lemmas we give
some simple sufficient conditions concerning the permutation π in order for
some key notions to be absolute.

Lemma 3.4. Suppose that π : V → V fixes all finite sets. Then:

(i) π-pairs are absolute, that is, for all x, y, 〈x, y〉π = 〈x, y〉.
(ii) For all M,N,Q, (Q ⊆M ×N)π ↔ π(Q) ⊆ π(M)× π(N).

(iii) [f : M → N is a function]π is equivalent to π(f) : π(M) → π(N)
being a function.

Proof. (i) Assume π fixes all finite sets. Then so also does π−1. Analyzing
the definition of (z = 〈x, y〉)π := (z = {{x}, {x, y}})π, it is easy to see that

(1) z = 〈x, y〉π ↔ z = π−1
(
{π−1({x}), π−1({x, y})}

)
.

All the arguments of π−1 on the right-hand side of (1) are finite, so π−1 fixes
them. Therefore (1) implies

z = 〈x, y〉π ↔ z = {{x}, {x, y}} = 〈x, y〉.

(ii) Analyzing the definition of (Q ⊆M ×N)π we see that

(2) (Q ⊆M ×N)π ↔ π(Q) ⊆ {〈x, y〉π : x ∈ π(M), y ∈ π(N)}.
By (i) above, 〈x, y〉π = 〈x, y〉 for every pair. So (2) gives

(Q ⊆M ×N)π ↔ π(Q) ⊆ {〈x, y〉 : x ∈ π(M), y ∈ π(N)} = π(M)× π(N).

(iii) Easy to check.

Recall that a language LA consists of the symbols R, U and ca for a ∈ A,
and an LA-structure is a quadruple M = 〈M,U,R, I〉, where R ⊆ M ×M ,
U ⊆M and I : A→M is a mapping.

Given an LA-structureM = 〈M,U,R, I〉 and a permutation π : V → V ,
set

Mπ := 〈π(M), π(U), π(R), π(I)〉.

Lemma 3.5. Suppose that π : V → V fixes all finite sets and ω.

(i) Let LA be a first-order language in the sense of Vπ, for some A ∈
Vπ. Then π(LA) = Lπ(A) is a language in V .

(ii) If σ is a formula of LA in the sense of Vπ, then σ is a formula of
Lπ(A) in V .

(iii) If M is an LA-structure in Vπ, thenMπ is an Lπ(A)-structure in V .
(iv) If M is an LA-structure in Vπ, then

Vπ |= [x0, x1 ∈M ∧ (M |= R(x0, x1))]

↔ V |= [x0, x1 ∈ π(M) ∧ (Mπ |= R(x0, x1))],

and similarly for the predicate U.
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Proof. (i) Recall that by Definition 2.5,

Vπ |= LA = {2, 3, 4, 5, 6, 7} ∪ {〈0, n〉 : n ∈ ω} ∪ {〈1, a〉 : a ∈ A}.
In view of Lemma 3.3, this is equivalently written

V |= π(LA) = {2, 3, 4, 5, 6, 7}π ∪ {〈0, n〉π : n ∈ π(ω)} ∪ {〈1, a〉π : a ∈ π(A)}.
Since π fixes all finite sets and ω, π-pairs are absolute by Lemma 3.4,
{2, 3, 4, 5, 6, 7}π = {2, 3, 4, 5, 6, 7} and π(ω) = ω, we have

V |= π(LA) = {2, 3, 4, 5, 6, 7} ∪ {〈0, n〉 : n ∈ π(ω)} ∪ {〈1, a〉 : a ∈ π(A)}.
But the right-hand side of the above equation is clearly the language Lπ(A),
so π(LA) = Lπ(A).

(ii) Since π(ω) = ω and π(n) = n for every n ∈ ω, ω is absolute in Vπ.
Thus the claim follows by a simple induction on σ along the steps of Defi-
nition 2.7.

(iii) ThatM = 〈M,U,R, I〉 is an LA-structure in the sense of Vπ means
that (U ⊆ M)π, (R ⊆ M ×M)π and (I : A → M is a function)π. Since
π fixes all finite sets, these facts are translated into V , according to 3.4, as
π(U) ⊆ π(M), π(R) ⊆ π(M)×π(M) and π(I) : π(A)→ π(M) is a function,
respectively. But this means that 〈π(M), π(U), π(R), π(I)〉, that is, Mπ is
an Lπ(A)-structure.

(iv) Let M = 〈M,U,R, I〉 be an LA-structure in Vπ and let

Vπ |= [x0, x1 ∈M ∧ (M |= R(x0, x1))].

Obviously, this is equivalently written as

Vπ |= [x0, x1 ∈M ∧ 〈x0, x1〉 ∈ R].

Its translation to V is

V |= [x0, x1 ∈ π(M) ∧ 〈x0, x1〉π ∈ π(R)].

Since 〈x0, x1〉π = 〈x0, x1〉 by the condition on π, the latter is also equivalent
to

V |= [x0, x1 ∈ π(M) ∧ (Mπ |= R(x0, x1))].

Lemma 3.6. Let π be a permutation that fixes all finite sets and ω, and
let M = 〈M,U,R, I〉 and N = 〈N,Z, S, J〉 be LA-structures in Vπ. Then
for any f ,

Vπ |= [f :M -LA N ] iff V |= [π(f) :Mπ -Lπ(A)
N π].

Proof. Let us sketch the proof of “→”. The other direction is similar.
Assume that π is as stated, M, N are LA-structures in Vπ and Vπ |= [f :
M -LA N ], that is, f : M → N is an LA-elementary embedding. By
Lemma 3.5,Mπ, N π are Lπ(A)-structures in V . We have to show that π(f) :
π(M) → π(N) is an Lπ(A)-elementary embedding. For this we must show



146 A. Tzouvaras

that for every Lπ(A)-formula σ(v0, . . . , vn−1) and any x0, . . . , xn−1 ∈ π(M),

Mπ |= σ(x0, . . . , xn−1) ↔ N π |= σ
(
π(f)(x0), . . . , π(f)(xn−1)

)
.

This is done by routine induction on the length of σ. Let us just show the
above for the atomic sentences R(x0, x1) of Lπ(A). This amounts to showing
that if x0, x1 ∈ π(M) and y0, y1 ∈ π(N), then (in V ):

(3) 〈x0, y0〉 ∈ π(f) ∧ 〈x1, y1〉 ∈ π(f)

→ (Mπ |= R(x0, x1)↔ N π |= R(y0, y1)).

But by our assumption Vπ |= [f : M -LA N ], for all x0, x1 ∈ M and
y0, y1 ∈ N we have

(4) Vπ |= [〈x0, y0〉 ∈ f ∧ 〈x1, y1〉 ∈ f ]

→ (M |= R(x0, x1)↔ N |= R(y0, y1)).

By Lemmas 3.3 and 3.5(iv) (that hold because of our conditions about π),
(3) is just the translation of (4) to V . The other steps of the induction are
routine.

Proof of Theorem 3.2. Let V |= ZF + VP. Pick a permutation π of V
that fixes all finite sets and ω. Then Lemmas 3.4–3.6 above hold. Suppose
also that for some sets X and Y such that X ∈ Y , π exchanges X and Y ,
that is, π(X) = Y and π(Y ) = X, so Foundation fails in Vπ. It remains to
show that Vπ |= VP.

Let LA be a language in the sense of Vπ. The set A, which essentially
contains the constants of the language, can be arbitrary, so in particular we
may have A = X or A = Y . For that reason in general π(A) 6= A. Let φ(x)
be a formula of L = {∈} such that

(5) Vπ |= “Xφ is a proper class of LA-structures”.

We have to show that

(6) Vπ |= (∃M 6= N ∈ Xφ)(M -LA N ).

Now (5) implies that Xφ is a proper class in Vπ, that is,

(7) Vπ |= (∀x)(∃y)(φ(y) ∧ y /∈ x),

and also

(8) Vπ |= (∀x)[φ(x)→ x is an LA-structure].

From (7) we have

(9) V |= (∀x)(∃y)(φπ(y) ∧ y /∈ π(x)),

that is, Xφπ is a proper class in V . Moreover, ifM∈ Xφπ , then Vπ |= φ(M),
so by (8),M is an LA-structure in Vπ. By Lemma 3.5(iii),Mπ is an Lπ(A)-
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structure in V . Thus

(10) M∈ Xφπ → Mπ is an Lπ(A)-structure.

Consider the formula ψ(x) of L defined by

ψ(x) := (∃M)(x =Mπ ∧ φπ(M)).

Then clearly for every M,

(11) V |= φπ(M) ⇔ Vπ |= φ(M) ⇔ V |= ψ(Mπ).

By (10) and (11) the elements of Xψ are Lπ(A)-structures. Moreover, the
functional correspondence Xφπ 3 M 7→Mπ ∈ Xψ is 1-1, so Xψ is a proper
class since Xφπ is so. Since VP is true in V , we have

(12) V |= (∃x, y)(ψ(x) ∧ ψ(y) ∧ x 6= y ∧ x -Lπ(A)
y).

Pick two distinct structures Mπ, N π of Xψ such that

Mπ -Lπ(A)
N π.

Then, by Lemma 3.6, it follows that Vπ |=M-LA N and alsoM 6=N ∈Xφπ .
Therefore

Vπ |=M 6= N ∈ Xφ ∧M -LA N .
But this is the required conclusion (6).

4. VP and Choice. What still remains open with respect to VP and
the axioms of ZFC is the relationship of VP with AC, namely the following:

Question 4.1. Assume that ZFC+VP is consistent. Is AC independent
of ZF + VP?

Below we make two comments, one concerning the independence of AC
and one concerning the opposite direction.

4.1. VP and symmetric models. We guess that AC is independent
of ZF + VP. To establish this, however, the most natural way seems to be
through the technique of permutation models of ZFA or symmetric generic
models of ZF, which are the standard tools for refuting AC. The technical
details of the method can be found in [11]. Also, for a comprehensive list of
various symmetric models and their applications one can consult [9, Part III].

These methods lead inevitably to the following steps. We start with a
model V of ZFA + AC + VP (or ZFC + VP) and choose a symmetric model
HS ⊂ V for which we intend to show that HS |= VP + ¬AC. Assuming
that already HS |= ¬AC, it remains to establish that HS |= VP. Let Xφ be
a proper class of LA-structures, in the sense of HS , for some A ∈ HS . We
have to show that

(13) HS |= (∃x, y)(φ(x) ∧ φ(y) ∧ x 6= y ∧ x - y).
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Since HS is an inner submodel of V , XφHS is a proper class of LA-structures

in the sense of V , where φHS is the usual relativization of φ to HS . Since
VP holds in V , we have

(14) V |= (∃x, y)(φHS (x) ∧ φHS (y) ∧ x 6= y ∧ x - y).

Thus the proof of the independence of AC amounts to showing that (13)
can be derived from (14).

In fact, proving the derivation (14)→(13) is a challenging problem that
cannot be settled in the “easy way”. The easy way would be the deduction
of (14)→(13) through an implication of the following form: For any language
LA and any LA-structures M, N in HS ,

(15) V |=M - N → HS |=M - N .

Obviously, if (15) were true for every LA, the implication (14)→ (13) would
be true as well. But (15) is false in general. For if we take LA = ∅, the LA-
structures are just sets, and elementary embeddings are simple injections.
So (15) would imply in particular that for all x, y ∈ HS ,

(16) V |= |x| ≤ |y| → HS |= |x| ≤ |y|.

But since V |= AC,

V |= (∀x, y)(|x| ≤ |y| ∨ |y| ≤ |x|).

So by (16),

HS |= (∀x, y)(|x| ≤ |y| ∨ |y| ≤ |x|).

The last sentence says that in HS the cardinalities of all sets are comparable,
and this is well-known to be equivalent to AC (see for example [14, The-
orem 3.1]). Therefore HS |= AC, which is false!

Summing up: Answering Question 4.1 in the affirmative amounts to find-
ing a symmetric model HS and a non-straightforward proof of the implica-
tion (14)→(13), for any LA ∈ HS and any proper class Xφ of LA-structures.

4.2. Weak forms of Choice related to VP. Now let us have a look at
the opposite direction. Despite the fact that ZF+VP is unlikely to prove AC,
weaker forms of AC might be derived.

In the previous subsection we mentioned the well-known equivalence of
AC with the fact that the cardinalities of any two sets are comparable. This
last formulation of AC admits natural weakenings, and one extreme such
weakening is a consequence of VP.

To facilitate discussion let us say that, in ZF, two sets x, y are comparable
if their cardinalities are, that is, if either |x| ≤ |y| or |y| ≤ |x|. Otherwise
they are said to be incomparable. For each formula φ(x) in one free variable,
consider the following comparability axiom:
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Compφ: If Xφ is a proper class of sets, then it contains at least two
comparable elements.

Then the following fact shows a slight dependence of VP with Choice.

Fact 4.2. For every property φ(x), ZF + VP ` Compφ.

Proof. Let Xφ be a proper class of sets. As already mentioned in Sub-
section 4.1 above, Xφ can be thought of as a proper class of L-structures for
L = ∅, for which 1-1 mappings are elementary embeddings. Thus, by VP,
there are x 6= y ∈ Xφ such that |x| ≤ |y|.

Once Compφ are defined, other similar axioms come up naturally. For

every standard cardinal number (4) κ ≥ 2, consider the following compara-
bility axiom:

Compκ: (∀x)[|x| = κ→ (∃y 6= z ∈ x)(y, z are comparable)].

[Compκ says that every set of cardinality κ contains distinct comparable
elements.] Compκ becomes weaker and weaker as κ increases. Moreover,
Compφ look like “weakest limits” of Compκ, although, apart from the im-
plications Compn → Compφ, n ∈ ω, which obviously hold in ZF, it was
unknown for which κ ≥ ω (if any) Compκ → Compφ are also true.

However, quite recently Lefteris Tachtsis [15] proved that Compω im-
plies (over ZF) that finite sets coincide with Dedekind-finite sets (where
X is Dedekind-finite if ℵ0 6≤ |X|, or equivalently, if there is no injection
f : X → X such that f“X ( X). Let F and DF denote the classes of finite
and Dedekind-finite sets, respectively. It is well-known that over ZF we have
F ⊆ DF, while AC implies F = DF.

Theorem 4.3 (Tachtsis [15]). Over ZF, Compω implies F = DF.

By 4.3 one can show the following.

Proposition 4.4. In ZF, the following holds: for every φ, if Xφ is a
proper class, then Compω → Compφ.

Proof. Assume Compω is true and Xφ is a proper class. Let us write X
instead of Xφ. In view of Compω, to show that Compφ is true it suffices to
show that there is a set x ⊂ X such that |x| = ℵ0. Define f : ω → On induc-
tively as follows: f(0) = 0, f(n+ 1) = min{β > f(n) : X ∩ Vf(n) ( X ∩ Vβ}.
Since X is a proper class, f is defined for every n ∈ ω. (Otherwise, there
exists k ∈ ω such that for every β > f(k), X ∩ Vf(k) = X ∩ Vβ. But then
X = X ∩V = X ∩Vf(k), so X is a set.) Let yn = X ∩Vf(n). Each yn is a set
and yn ( yn+1. So clearly

⋃
n yn is an infinite set. By Theorem 4.3,

⋃
n yn is

Dedekind-infinite, thus there is x ⊆
⋃
n yn ⊂ X such that |x| = ℵ0.

(4) By a standard cardinal number we mean an initial ordinal.
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In fact the axioms Compκ are not entirely new. Comp2 is the already
mentioned equivalent of AC, that any two sets are comparable. But also
the axioms Compn, for 2 ≤ n < ω, are considered in [14, p. 22], under the
name T3(n), and are attributed to A. Tarski (1964). Moreover, a significant
result is shown in [14, Theorem 3.4]: Compn is equivalent to AC for every
2 ≤ n < ω (5).

The consistency of ¬Compκ, for every κ ≥ 2, and ¬Compφ, for some φ,
can be shown by using the following result of [10]:

Theorem 4.5 ([10, Thm. 11.1]). Let V be a model of ZFA + AC, with
a set A of atoms, and let 〈I,�〉 be a partially ordered set in V such that
|A| = |I| · ℵ0. Then there is a permutation model HS ⊂ V satisfying the
following: There exists a family of sets {Si : i ∈ I} such that for all i, j ∈ I,

(17) i � j ↔ |Si| ≤ |Sj |.
The method of permutation models also works if the atoms form a proper

class rather than a set (see [10, p. 139]). Starting with such a model it is
not difficult to strengthen 4.5 as follows:

Theorem 4.6. Let V be a model of ZFA + AC, where now A is a proper
class of atoms. Let also 〈I,�〉 be a partially ordered proper class such that
for every i ∈ I, {j : j � i} is a set, and A = {ain : i ∈ I, n ∈ ω}. Then
there is a permutation model HS ⊂ V and a proper class {Si : i ∈ I} ⊂ HS
such that (17) holds.

Sketch of proof. By assumption, for every i ∈ I, î = {j ∈ I : j � i} is a
set and i � j ↔ î ⊆ ĵ. Thus 〈I,�〉 is embedded in 〈P(I),⊆〉, where P(I) is
the class of subsets of I, so it suffices to show that there is a class {Sx : x ⊂ I}
such that x ⊆ y ↔ |Sx| ≤ |Sy| for all x, y ⊂ I. By assumption again,
A = {ain : i ∈ I, n ∈ ω}. For each x ∈ P(I), let Sx = {ain : i ∈ x, n ∈ ω}.
Consider the class-group G of permutations π of A such that π(S{i}) = S{i},
that is, for every i ∈ I and every n ∈ ω there is m ∈ ω such that π(ain) = aim
(G is a class of coded classes). Also let F be the filter of (suitably coded)
subgroups of G generated by the ideal of finite subsets of A. Then the proof
goes as for Theorem 4.5 above.

Now by taking 〈I,�〉 to be an antichain, that is, i � i ↔ i = j, we
obtain as a corollary to the preceding theorems the relative consistency of
¬Compκ, and ¬Compφ for a specific φ.

Corollary 4.7.

(i) Let V |= ZFA + AC, with a set A of atoms, and let κ be a cardinal
number such that |A| = κ · ℵ0. Then there is a permutation model
HS ⊂ V such that HS |= ¬Compκ.

(5) I am indebted to Lefteris Tachtsis for bringing this reference to my attention.
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(ii) Let V |= ZFA + AC, with a proper class of atoms A = {ain : i ∈ I,
n ∈ ω}. Then there is a permutation model HS ⊂ V and a class
Xφ = {Si : i ∈ I} in HS such that HS |= ¬Compφ.

Proof. (i) Taking I to be an antichain such that |I| = κ, we get the claim
immediately from Theorem 4.5.

(ii) Similarly, this follows from Theorem 4.6 for an antichain I which is
a proper class and Xφ = {Si : i ∈ I}.

We close with two questions concerning the relative strength of compa-
rability axioms and their relationship with VP.

Questions 4.8.

(1) Is any of the implications Compκ → Compλ for ω ≤ κ < λ reversible
over ZF, or over ZF + VP?

(2) Does ZF + VP prove Compκ for some κ ≥ 2?

Acknowledgments. Many thanks to the anonymous referee for very
careful checking of the manuscript and the many corrections and valuable
suggestions.
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(2011), 515–529.
[6] K. J. Devlin, Constructibility , Perspect. Math. Logic, Springer, 1984.
[7] F. D. Drake, Set Theory. An Introduction to Large Cardinals, North-Holland, 1974.
[8] H. M. Friedman, Embedding axioms, FOM Archives 251, 2005, http://www.cs.nyu.

edu/pipermail/fom/2005-August/009023.html.
[9] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys

Monogr. 59, Amer. Math. Soc., 1998.
[10] T. Jech, The Axiom of Choice, North-Holland, 1973.
[11] T. Jech, Set Theory , The Third Millennium Edition, Revised and Expanded , Springer,

2003.
[12] K. Kunen, Set Theory. An Introduction to Independence Proofs, North-Holland,

1983.
[13] A. R. D. Mathias, Weak systems of Gandy, Jensen and Devlin, in: Set Theory

(Barcelona, 2003–2004), J. Bagaria and S. Todorcevic (eds.), Trends Math., Birk-
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