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A note on small gaps between primes
in arithmetic progressions

by

Denı̇z A. Kaptan (Budapest)

1. Introduction. A long standing problem concerning the distribu-
tion of prime numbers is the prime k-tuples conjecture. We call a set H =
{h1, . . . , hk} an admissible k-tuple if the hi do not cover all residue classes
modulo p for any prime p. The prime k-tuples conjecture then states that
there are infinitely many integers n such that all of the numbers n + hi,
i = 1, . . . , k, are simultaneously prime. Recently, there have been break-
through developments towards proving this conjecture. First Zhang [8], re-
fining a method of Goldston, Pintz and Yıldırım [3], proved that for k large
enough, the sets n + H contain two primes infinitely often, thus settling
the bounded gaps conjecture. Then Maynard [5] and Tao (unpublished) in-
dependently devised another modification of the Goldston–Pintz–Yıldırım
method which could detect m primes in k-tuples for any m, provided k is
large enough.

In this paper we present an implementation of the Maynard–Tao method
to yield a corresponding result concerning primes in an arithmetic progres-
sion, with a bound that is uniform in the modulus of the progression. The
proof goes along the same lines, after tweaking the set-up to pick out only
the primes in the arithmetic progression under consideration. The key in-
gredient will be a Bombieri–Vinogradov type theorem that is tailored to the
case at hand; see Section 4.

The author would like to thank Roger Baker and Liangyi Zhao for calling
his attention to a result of theirs [1] which precedes the present work and is
of a similar nature. The similarities and differences between the two works
will be briefly discussed at the end of the paper.
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2. Notation and setup. Throughout, the letters c and C will denote
constants which need not be the same at every instance. When we need to
track constants, we employ subscripts or superscripts.

The method requires that we restrict ourselves to arithmetic progressions
in which primes are reasonably well-distributed, i.e. progressions to moduli
whose associated Dirichlet L-functions do not vanish too close to s = 1.

For the imaginary part γ of a zero of an L-function, we shall denote
|γ|+1 by γ̃ for the sake of brevity. We first recall some basic facts concerning
zero-free regions of L-functions [2, §14]. There is a constant c0 (the bounds
cited below are known in fact for different constants, but we take c0 to be
the minimum of those to simplify notation) such that an L-function L(s, χ)
to the modulus q has no zero β + iγ in the region

(2.1) β ≥ 1− c0
log qγ̃

,

except possibly a single real zero, which can exist for at most one real char-
acter χ (mod q). We call a modulus to which there is such a primitive char-
acter an exceptional modulus, and the corresponding zero an exceptional
zero. Exceptional moduli are of the form q = 2νp1 . . . pm, where ν ≤ 3 and
p1 < · · · < pm are distinct odd primes, whence, by the Prime Number The-
orem, we have pm �

∑
p≤pm log p � log q. On the other hand we have, for

the real zeros, the unconditional bound

(2.2) β < 1− c0

q1/2(log q)2
.

Also, if χ1 and χ2 are distinct real primitive characters to moduli q1 and q2
respectively and the corresponding L-functions have real zeros β1 and β2,
then the Landau–Page theorem states that these zeros must satisfy

(2.3) min(β1, β2) < 1− c0
log q1q2

.

We shall have to confine ourselves to L-functions which do not have a
zero in the region

(2.4) β ≥ 1− c∗ log logX

logX
, γ̃ ≤ exp(c]

√
logX)

for a parameter X and given constants c∗ and c]. This is a consequence of
(2.2) when q � (logX/(log logX)2)2. We suppose that X is large enough
in terms of c] and c∗ such that

(2.5) c] ≤ c0
4c∗

√
logX

log logX
,

and argue that there is at most one modulus ≤ exp(2c]
√

logX) to which
there is a primitive character whose L-function vanishes in the region (2.4).
By (2.1), no non-exceptional zeros exist in the region stated, so we only need
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to consider real zeros. Suppose there are two such moduli q1 and q2, with
corresponding real zeros β1 and β2. Then using (2.3) we have

(2.6) 1− c∗ log logX

logX
< 1− c0

log q1q2
≤ 1− c0

4c]
√

logX
,

which is impossible by (2.5). We denote this possibly existing unique mod-
ulus by q0 and the greatest prime dividing q0 by p0, or set p0 = 1 in
case q0 does not exist. We note that q0 � (logX/(log logX)2)2, whence
p0 � log logX.

Our main parameter X is large enough and f(X) is a given increasing
function of X with f(X) � X5/12−5ϑ/6 for some positive number ϑ < 1/2.
The modulus M of the arithmetic progression does not exceed f(X) and is
not a multiple of any number in a set Z of exceptions whose size Zf satisfies

(2.7) Zf =


0 if f(X)� (logX)C ,

1 if f(X)� exp(c
√

logX),

O((log logX)C) otherwise.

We denote characters modulo q, M , and qM by ψ, ξ, and χ respectively.
A summation

∑∗
χ over characters with an asterisk in the superscript denotes

that the summation is over primitive characters only.

Set x = X/M and let W =
∏
p≤D0

p be the product of primes not

exceeding D0 = log log logX, and in turn set W ′ = W/(W,PfM) and V =
W ′M , where

(2.8) Pf =

{
1 if f(X)� (logX)C ,

p0 otherwise.

Furthermore set R = Nϑ/2−δ for some small positive δ. LetH = {h1, . . . , hk}
be an admissible k-tuple with diam(H) < D0M such that hi ≡ a (mod M),
i = 1, . . . , k, for a given residue class a (mod M) coprime to M . The weights
λd1,...,dk are supported on (

∏
i di, V Pf ) = 1,

∏
i di < R, and µ(

∏
i di)

2 = 1
(the last condition implies, of course, that (di, dj) = 1). We also choose ν0
such that (Mν0 + hi,W

′) = 1 for i = 1, . . . , k (this is possible because H is
admissible).

With these, we will consider the sum

(2.9) S(ρ) =
∑

x≤n<2x
n≡ν0 (modW ′)

( k∑
i=1

χP(nM + hi)− ρ
)( ∑

di|nM+hi

λd1,...,dk

)2
,

where χP is the characteristic function of the primes. Clearly, the positivity
of S(ρ) implies that for at least one n ∈ [x, 2x) the inner sum is positive, and
this establishes the existence of at least bρ+ 1c primes among the numbers
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nM+hi, i = 1, . . . , k, but nM lies in [X, 2X) and each nM+hi is congruent
to a (mod M) by the condition on H.

3. Results. Our main theorem is the following.

Theorem 1. Let k be a given integer, ϑ < 1/2, and f(X)� X5/12−5ϑ/6

an increasing function of X. Further, let Sk be the set of all piecewise dif-
ferentiable functions Rk → R supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :∑k

i=1 xi ≤ 1}, and define

(3.1) Mk = sup
F∈Sk

∑k
m=1 J

(m)
k (F )

Ik(F )
,

where

Ik(F ) =

1�

0

· · ·
1�

0

F (t1, . . . , tk)
2 dt1 . . . dtk,(3.2)

J
(m)
k (F ) =

1�

0

· · ·
1�

0

(1�
0

F (t1, . . . , tk) dtm

)2
dt1 . . . dtm−1 dtm+1 dtk.(3.3)

If X is large enough, then for all M ≤ f(X) except multiples of num-
bers in a set of size Zf , all residue classes a (mod M) coprime to M ,
and all admissible k-tuples H = {h1, . . . , hk} such that hi ≡ a (mod M),
i = 1, . . . , k, there is a multiple nM of M with nM ∈ [X, 2X] such that at
least rk = dϑMk/2e of the numbers nM + hi, i = 1, . . . , k, are primes.

We can instantiate this to some concrete cases to deduce certain facts.
We denote by p′n the nth prime that is congruent to a (mod M). First note
that if f(X) ≤ exp(c

√
logX) for some c, we can apply the theorem with ϑ as

close to 1/2 as we like, and the set of exceptions will be empty or a singleton
according as f(X) � (logX)C for some C or not. In either case, taking
k = 105 suffices to produce two primes, by Proposition 4.3 of Maynard
[5], and if we use the refinement M54 > 4.002 from the Polymath Project
[7, Theorem 23], then an admissible 54-tuple, which exists with diameter
270 [7, Theorem 17], is sufficient. To produce r primes with arbitrary r, we
use the bound Mk > log k+O(1) [7, Theorem 23] to see that a de4r+Ce-tuple
suffices. From any admissible tuple {hi}i we can obtain a tuple {Mhi + a}i
whose members are all congruent to a (modM), with diameter dilated byM .
Using the admissible tuple {Mpπ(k)+1 + a, . . . ,Mpπ(k)+k + a} of diameter
�Mk log k when r is large, we have the following theorems.

Theorem 2. Let C be a given positive constant. If X is sufficiently
large, then for all M � (logX)C and all a with (a,M) = 1, there is a
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p′n ∈ [X, 2X] such that

(3.4) p′n+1 − p′n ≤ 270M.

Theorem 3. Let c be a given positive constant. If X is sufficiently large,
then for all M � exp(c

√
logX) except multiples of a single number, and all

a with (a,M) = 1, there is a p′n ∈ [X, 2X] such that

(3.5) p′n+1 − p′n ≤ 270M.

Theorem 4. Let r be a positive integer and C be a given positive con-
stant. If X is sufficiently large, then for all M � (logX)C and all a with
(a,M) = 1, there is a p′n ∈ [X, 2X] such that

(3.6) p′n+r − p′n � re4rM.

Theorem 5. Let r be a positive integer and c be a given positive con-
stant. If X is sufficiently large, then for all M � exp(c

√
logX) except mul-

tiples of a single number, and all a with (a,M) = 1, there is a p′n ∈ [X, 2X]
such that

(3.7) p′n+r − p′n � re4rM.

When M is allowed to grow as large as a power of X, our tuple lengths
have to grow and our bounds get much weaker. Suppose M � X5/12−η for
some positive η. In that case Theorem 1 applies with ϑ = 6η/5, so that to
find r + 1 primes we need k such that

(3.8)
3ηMk

5
> r.

We again use the fact that

(3.9) Mk > log k +O(1)

when k is sufficiently large to see that if k ≥ Ce5r/(3η) for some absolute
constant C, (3.8) is satisfied. We take k = dCe5r/(3η)e, take the admissible
tuple {Mpπ(k)+1 + a, . . . ,Mpπ(k)+k + a} of diameter Mk log k, and obtain

Theorem 6. Let η be given with 0 < η < 5/12, and let r be a positive
integer. If X is sufficiently large, then for all M � X5/12−η except multiples
of numbers in a set of size � (logX)C , and all a with (a,M) = 1, there is
a p′n ∈ [X, 2X] such that

(3.10) p′n+r − p′n �
r

η
e5r/(3η)M.

In order to prove Theorem 1, we write

(3.11) S(ρ) = S2 − ρS1,
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where

S1 =
∑

x≤n<2x
n≡ν0 (modW ′)

( ∑
di|nM+hi

λd1,...,dk

)2
,(3.12)

S2 =

k∑
m=1

S
(m)
2(3.13)

=
k∑

m=1

∑
x≤n<2x

n≡ν0 (modW ′)

χP(nM + hm)
( ∑
di|nM+hi

λd1,...,dk

)2
,

so that we can estimate S(ρ) by using the following proposition.

Proposition 1. Let k be a given integer and let X be a parameter
that is large enough. Let λd1,...,dk be defined in terms of a fixed piecewise
differentiable function F by

(3.14) λd1,...,dk =
( k∏
i=1

µ(di)di

) ∑
r1,...,rk
di|ri ∀i

(ri,V )=1 ∀i

µ
(∏k

i=1 ri
)2∏k

i=1 ϕ(ri)
F

(
log r1
logR

, . . . ,
log rk
logR

)

whenever (
∏k
i=1 di, V Pf ) = 1, and let λd1,...,dk = 0 otherwise. Moreover, let

F be supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1}. Then

S1 = (1 + o(1))
ϕ(V Pf )kX(logR)k

V (V Pf )k
Ik(F ),(3.15)

S2 = (1 + o(1))
ϕ(V Pf )kX(logR)k+1

V (V Pf )k logX

k∑
m=1

J
(m)
k (F ),(3.16)

provided Ik(F ) 6= 0 and J
(m)
k (F ) 6= 0 for each m, where Ik(F ) and J

(m)
k (F )

are given by (3.2) and (3.3) respectively.

Proof of Theorem 1. Let Sk and Mk be as in Theorem 1. Then for any

δ > 0, we can find F0 ∈ Sk such that
∑k

m=1 J
(m)
k (F0) > (Mk − δ)Ik(F0).

With this F0, by (3.11) and Proposition 1 we have

S(ρ) =
ϕ(V Pf )kX(logR)k

V (V Pf )k

(
logR

logN

k∑
m=1

J
(m)
k (F0)− ρIk(F0) + o(1)

)
≥
ϕ(V Pf )kX(logR)k

V (V Pf )k
Ik(F )

((
ϑ

2
− δ
)

(Mk − δ)− ρ+ o(1)

)
.

If ρ = ϑMk/2 − δ′, then with δ sufficiently small, we have S(ρ) > 0 for all
large enough X, implying that at least bρ + 1c of the nM + hi are prime.
Since bρ+ 1c = dϑMk/2e for δ′ small enough, we obtain our result.
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4. A Bombieri–Vinogradov type theorem. Recall that a summa-
tion

∑∗
χ over characters with an asterisk in the superscript denotes that the

sum runs over primitive characters only. We quote here a zero-density result
[4, Theorem 10.4 and the following Remark] which we will need in our proof.

Theorem 7. Let m be given and N(1− δ, T, χ) be the number of zeros
β + iγ of L(s, χ) in the region 1− δ ≤ β, |γ| ≤ T . Set

(4.1) N(1− δ,m,Q, T ) =
∑
q≤Q

(q,m)=1

∑∗

ψ (mod q)

∑
ξ (modm)

N(1− δ, T, ψξ).

Then for δ < 1/2 and any ε > 0 we have

(4.2) N(1− δ,m,Q, T )�
(
(mQT )2δ + (mQ2T )c(δ)δ

)
(logmQT )A

for some constant A, where

(4.3) c(δ) = min

(
3

1 + δ
,

3

2− 3δ

)
.

We estimate the number of the moduli we will have to exclude in the
following proposition.

Proposition 2. Let c∗ and c] be given constants. There is a set Z
of exceptions with |Z| � (logX)C such that if X is large enough, then
for any M ≤ f(X) that is not a multiple of any number in Z and all
q ≤ exp(c]

√
logX) with (q,Mp0) = 1, the L-functions L(s, ψξ), where ψ

(mod q) is primitive and ξ is any character modulo M , have no zeros in
the region 1 − c∗ log logX/logX ≤ β ≤ 1, |γ| ≤ exp(c]

√
logX). The set Z

can have elements ≤ exp(c]
√

logX) only if q0 exists, in which case those
elements are all multiples of p0.

Proof. Suppose M is a modulus such that for some character ξ (mod M)
and a primitive character ψ modulo q, L(s, ψξ) has a zero in the region
indicated. Then ψξ must be induced by a character of the form ψξ∗, where
ξ∗ (mod m) is a primitive character modulo m |M . We estimate the number
of such m. Let

(4.4) Z =

{
m ≤ f(X) : there exist q ≤ exp(c]

√
logX) and χ (mod mq)

with (q,mp0) = 1 and χ primitive such that L(β + iγ, χ) = 0

for some β > 1− c∗ log logX

logX

}
be the set of exceptions whose size we wish to bound. We divide the ranges
1 ≤ m ≤ f(X), 1 ≤ q ≤ exp(c]

√
logX), and γ̃ ≤ exp(c]

√
logX) into dyadic
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segments [Mλ/2,Mλ) [Qµ/2, Qµ) and [Tν/2, Tν) respectively. Then

(4.5) #Z ≤
∑
λ,µ,ν

∑
m≤Mλ

∑
q≤Qµ

(q,mp0)=1

∑∗

χ (mod qm)

N

(
1− c∗ log logX

logX
,Tν , χ

)
.

Using Theorem 7 with m = 1 and MλQµ in place of Q shows the above is

(4.6) �
∑
λ,µ,ν

(M2
λQ

2
µTν)12c

∗ log logX/(5 logX)(logQµTν)C � (logX)C ,

where C and the implicit constant depend on c∗ and c]. Now suppose that X
is large enough to satisfy (2.5). If m ∈ Z with m ≤ exp(c]

√
logX), so that

mq ≤ exp(2c]
√

logX), then by the discussion in Section 2, L(s, χ) = 0 with
primitive χ (mod mq) implies mq = q0, and since p0 - q we have p0 |m.

Remark 1. If f(X) ≤ exp(c
√

logX) for some constant c, then choosing
c] to be such a constant one sees that Z can be taken to be at most a
singleton.

Remark 2. We see that asymptotically almost all moduli remain after
exceptions, because the excluded moduli number at most� f(X)/log logX,
since p0 ≥ log logX.

Using Proposition 2, we prove the following

Theorem 8. Let A be a given positive number. Then there exists a pos-
itive number B such that for all M ≤ f(X) except multiples of numbers in
a set of size Zf , we have

(4.7)
∑

q≤X1/2

M6/5
(logX)−B

(q,Mp0)=1

max
(a,qM)=1

∣∣∣∣ψ(X; qM, a)− ψ(X)

ϕ(qM)

∣∣∣∣� X

ϕ(M)
(logX)−A,

where the implicit constants depend on A.

Proof. Let c∗ be a constant to be specified later in terms of A, and pick c]

arbitrarily (or, in case f(X) ≤ exp(c
√

logX) for some c, pick c] according
to Remark 1), so that Proposition 2 furnishes us with a set Z of size Zf .
Then if M is not a multiple of any number in Z, q ≤ exp(c]

√
logX) and

(q,Mp0) = 1, then no L(s, ψξ) with ψ primitive has a zero in the region β ≥
1−c∗ log logX/logX, γ̃≤exp(c]

√
logX).We writeΩ=X1/2M−6/5(logX)−B

for brevity. We have

(4.8) ψ(X; qM, a) =
1

ϕ(qM)

∑
χ (mod qM)

χ(a)ψ(X,χ)
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and

(4.9) |ψ(X,χ0)− ψ(X)| ≤
∑
n≤X

(n,qM)>1

Λ(n)� (log qM)(logX),

so it suffices to consider, within acceptable error,

(4.10)
∑
q≤Ω

(q,Mp0)=1

max
(a,qM)=1

∣∣∣∣ 1

ϕ(qM)

∑
χ (mod qM)

χ 6=χ0

χ(a)ψ(X,χ)

∣∣∣∣.
Since (M, q) = 1, we can factorize χ as ψξ, where ψ and ξ are characters to
the moduli q and M respectively (there is no danger of confusing ψ(n) with
ψ(X; q, a), nor with ψ(X,χ)), so that (4.10) is

(4.11)
∑
q≤Ω

(q,Mp0)=1

max
(a,qM)=1

∣∣∣∣ 1

ϕ(qM)

∑
ψ (mod q)
ξ (modM)
ψξ 6=χ0

ψξ(a)ψ(X,ψξ)

∣∣∣∣.

We replace each character ψ with the primitive character ψ∗ inducing it.
This leads to an error of

(4.12)
∑
q≤Ω

(q,Mp0)=1

1

ϕ(qM)

∑
ψ (mod q)
ξ (modM)

∑
n≤X

(n,q)>1

Λ(n)

� X1/2

M6/5
exp(−c]

√
logX)(logX)2,

and this is acceptable. Using the explicit formula for ψ(X,χ) in the form

(4.13) ψ(X,χ) = −
∑

|γχ|≤X1/2

βχ>1/2

Xρχ

ρχ
+O(X1/2(logX)2),

we are left to bound

(4.14)
1

ϕ(M)

∑
q≤Ω

(q,Mp0)=1

1

ϕ(q)

∑
ξ (modM)

∑
ψ (mod q)

∑
|γψ∗ξ|≤X1/2

βψ∗ξ>1/2

Xβψ∗ξ

|ρψ∗ξ|
.

We rearrange the sum according to the moduli of the primitive characters
ψ∗ that occur, hence after relabelling the dummy variables so that q is now
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the modulus of ψ∗, we have

(4.15)
X

ϕ(M)

∑
q≤Ω

(q,Mp0)=1

∑
ξ (modM)

∑∗

ψ (mod q)

∑
|γψξ|≤X1/2

βψξ>1/2

X−(1−βψξ)

|ρψξ|
∑
k≤Ω/q

(k,Mp0)=1

1

ϕ(kq)

� X(logX)2

ϕ(M)

∑
q≤Ω

(q,Mp0)=1

∑
ξ (modM)

∑∗

ψ (mod q)

∑
|γψξ|≤X1/2

βψξ>1/2

X−(1−βψξ)

q|ρψξ|
.

We divide the ranges for q and γ̃ into dyadic segments, and the range for β
into segments of length (logX)−1 as follows:

(4.16) q ∈ [Qµ/2, Qµ), γ̃ ∈ [Tν/2, Tν), 1− β ∈ [δλ − (logX)−1, δλ),

where 2 ≤ Qµ = 2µ < 2Ω, 2 ≤ Tν = 2ν < 2X1/2 and (logX)−1 ≤ δλ =
λ(logX)−1 ≤ 1/2. So our expression is

(4.17) � X(logX)5

ϕ(M)
sup

(λ,µ,ν)

N∗(1− δλ,M,Qµ, Tν)

QµTν
X−δλ ,

where

(4.18) N∗(1−δλ,M,Qµ, Tν) =
∑

Qµ/2<q≤Qµ
(q,Mp0)=1

∑∗

ψ (mod q)

∑
ξ (modM)

N(1−δλ, Tν , ψξ).

Thus we need to show, for all triples (λ, µ, ν), dropping the subscripts for
economy of notation, the upper bound

(4.19) N∗(1− δ,M,Q, T )� QTXδ(logX)−A−5.

To this end we use Theorem 7, which for our ranges of Q and T yields

(4.20) N∗(1− δ,M,R, T )� ((MQT )2δ + (MQ2T )c(δ)δ)(logX)C
′
,

where C ′ is an absolute constant.
Since for 0 ≤ δ ≤ 1/2 we have

(4.21)
(MQT )2δ

QT
(logX)C

′ �M2δ(logX)C
′
,

the contribution of the first term on the right hand side of (4.20) is accept-
able if δ ≥ 2/15, say. So we only need to show

(4.22)
(MQ2T )c(δ)δ

QT
� Xδ(logX)−(A+C

′+5)

for 0 ≤ δ ≤ 1/2, and

(4.23)
(MQT )2δ

QT
� Xδ(logX)−(A+C

′+5)

for 0 ≤ δ ≤ 2/15.
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If 1/4 ≤ δ ≤ 1/2, we have c(δ) = 3/(1 + δ). Here 6δ/(1 + δ) − 1 ≤ 2δ,
3δ/(1 + δ)− 1 ≤ 0 and 3δ/(1 + δ) ≤ 12δ/5, so

(MQ2T )3δ/(1+δ)

QT
� (MQ2)3δ/(1+δ)

Q
�M12δ/5

(
X1/2

M6/5(logX)B

)2δ

(4.24)

� Xδ(logX)−2δB � Xδ(logX)−(A+C
′+5)

for B ≥ 2(A+ C ′ + 5).

If 2/15 ≤ δ ≤ 1/4, we have c(δ) = 3/(2 − 3δ). Here also 3δ/(2 − 3δ) ≤
12/5δ, 0 ≤ 6δ/(2− 3δ)− 1 ≤ 4δ/5 and 3δ/(2− 3δ)− 1 ≤ 0, so

(MQ2T )3δ/(2−3δ)

QT
� (MQ2)3δ/(2−3δ)

Q
�M12δ/5

(
X1/2

M6/5(logX)B

)4δ/5
(4.25)

�M36δ/25X2δ/5(logX)−4δB/5,

and this is � Xδ(logX)−(A+C
′+5) if M � X5/12 and B ≥ 75

8 (A+ C ′ + 5).

Now suppose δ ≤ 2/15. Then 6δ/(2−3δ)−1 ≤ −1/2 and 3δ/(2−3δ) ≤ 2δ,
hence

(4.26)
(MQ2T )3δ/(2−3δ)

QT
�M2δ(QT )−1/2,

as well as

(4.27)
(MQT )2δ

QT
�M2δ(QT )−1/2 =: (∗).

Now if M � X5/12 and QT ≥ exp(c]
√

logX), then

(4.28) (∗) ≤M2δ exp

(
−c

]

2

√
logX

)
� Xδ(logX)−(A+C

′+5).

Otherwise, if QT ≤exp(c]
√

logX), we use the fact that δ≥c∗ log logX/logX
by our assumption on M , and so

(4.29) (∗) ≤
(
M2

X

)δ
≤ exp

(
−c
∗

5
log logX

)
≤ (logX)−(A+C

′+5),

provided c∗ ≥ 5(A+ C ′ + 5).

Remark. Note that when M indeed reaches X5/12, the sum is vacuous
and the theorem is trivial. We will apply it with M � X5/12−5ϑ/6 for some
positive ϑ to get the “level of distribution” ϑ.

For the shorter range M ≤ (logX)C , we can simply use the classical
Bombieri–Vinogradov theorem (see, for instance, [2, §28]) with A + C in
place of A, and gain a factor of φ(M) without any further modifications.
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Theorem 9. Let A be a given positive number and let M � (logX)C

be an integer. Then there is a positive number B such that

(4.30)
∑

q≤X1/2(logX)−B

(q,M)=1

max
(a,qM)=1

∣∣∣∣ψ(X; qM, a)− ψ(X)

ϕ(qM)

∣∣∣∣� X

ϕ(M)
(logX)−A,

where the implicit constant depends on A and C.

We would like to express these results in a unified fashion. To that end,
given an increasing function f(X) of X such that f(X)� X5/12−5ϑ/6 with
ϑ > 0, we introduce the following notation:

(4.31) ef =

{
1/2 if f(X) ≤ exp(C

√
logX),

ϑ otherwise.

With this we have

Theorem 10. Let A be a given positive number and f(X) an increasing
function of X satisfying f(X) � XC with C < 5/12. Then for all M ≤
f(X) except multiples of numbers in a set of size at most Zf , and all δ > 0,
we have

(4.32)
∑

q≤Xef−δ

(q,MPf )=1

max
(a,qM)=1

∣∣∣∣ψ(X; qM, a)− ψ(X)

ϕ(qM)

∣∣∣∣� X

ϕ(M)
(logX)−A.

Now we are in a position to prove our main proposition.

5. Proof of Proposition 1. This section consists of lemmata that
establish Proposition 1. They follow the corresponding results in [5] mutatis
mutandis. In [5], the parameter W features in a dual role: first in that the
weights λd1,...,dk are supported for (

∏
di,W ) = 1, and second in the “W -

trick”, i.e. in restricting n to n ≡ ν0 (mod W ). In our case we have V Pf in
the first role and W ′ in the second.

Lemma 1. Let

(5.1) yr1,...,rk =
( k∏
i=1

µ(ri)ϕ(ri)
) ∑
d1,...,dk
ri|di ∀i

λd1,...,dk∏k
i=1 di

,

and let ymax = supr1,...,rk |yr1,...,rk |. Then

(5.2) S1 =
X

V

∑
u1,...,uk

y2u1,...,uk∏k
i=1 ϕ(ui)

+O

(
y2maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
.
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Proof. We start by rearranging the sum on the right hand side of (3.12)
to obtain

(5.3) S1 =
∑

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

x≤n<2x
n≡ν0 (modW ′)
[di,ei]|nM+hi

1.

Now whenW ′, [d1, e1], . . . , [dk, ek] are pairwise coprime, the inner sum is over
a single residue class modulo q = W ′

∏
i[di, ei] by the Chinese Remainder

Theorem; otherwise it is empty, in the case p | (W ′, [di, ei]) because of the
condition (W ′,Mν0 + hi) = 1, and in the case p | ([di, ei], [dj , ej ]) because
it being non-empty would imply p |hi − hj , but hi − hj = fM for some
f < D0 since hi and hj lie in the same residue class modulo M , and p - M
and p cannot be a prime less than D0 by the support of λ. Since f <
D0 by the diameter of H, we deduce that there is no contribution when
([di, ei], [dj , ej ]) > 1.

Thus the inner sum is x/q +O(1), and we have

(5.4) S1 =
X

V

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek∏k
i=1[di, ei]

+O
( ∑′

d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |
)
,

where
∑′ denotes the coprimality restrictions. The error term is plainly

(5.5) � λ2max

(∑
d<R

τk(d)
)2
� λ2maxR

2(logX)2k,

where λmax = supd1,...,dk λd1,...,dk . To deal with the main term, we use the
identity

(5.6)
1

[di, ei]
=

1

diei

∑
ui|di,ei

ϕ(ui)

and rewrite it as

(5.7)
X

V

∑
u1,...,uk

( k∏
i=1

ϕ(ui)
) ∑′

d1,...,dk
e1,...,ek
ui|di,ei ∀i

λd1,...,dkλe1,...,ek∏k
i=1 diei

.

By the support of λ, we may drop the requirement that W ′ is coprime
to [di, ei]. Also by the support of λ, terms with (di, dj) > 1 for i 6= j
have no contribution. Thus our restrictions boil down to (di, ej) = 1 for
i 6= j. We may remove this requirement by multiplying our expression with
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si,j |di,ej µ(si,j) for all i, j. Then our main term becomes

(5.8)

X

V

∑
u1,...,uk

( k∏
i=1

ϕ(ui)
) ∑
s1,2,...,sk−1,k

( ∏
1≤i,j≤k
i 6=j

µ(si,j)
) ∑

d1,...,dk
e1,...,ek
ui|di,ei ∀i

si,j |di,ej ∀i 6=j

λd1,...,dkλe1,...,ek∏k
i=1 diei

.

We may restrict si,j to be coprime to ui, uj , si,a and sb,j for all a 6= i and
b 6= j since these have no contribution by the support of λ. We denote
the summation with these restrictions by

∑∗. We introduce the change of
variable

(5.9) yr1,...,rk =
( k∏
i=1

µ(ri)ϕ(ri)
) ∑
d1,...,dk
ri|di ∀i

λd1,...,dk∏k
i=1 di

.

Thus yr1,...,rk is supported on r =
∏
i ri < R, (r, V Pf ) = 1 and µ(r)2 = 1.

This change is invertible and we have

(5.10)
∑

r1,...,rk
di|ri ∀i

yr1,...,rk∏k
i=1 ϕ(ri)

=
λd1,...,dk∏k
i=1 µ(di)di

.

Hence any choice of yr1,...,rk with the above-mentioned support will yield a
choice of λd1,...,dk . We note here that Maynard’s estimate of λmax in terms
of ymax = supr1,...,rk yr1,...,rk holds verbatim and we have

(5.11) λmax � ymax(logX)k.

So our error term (5.5) is O(y2maxR
2(logX)4k). Using our change of variables

we obtain

(5.12) S1 =
X

V

∑
u1,...,uk

( k∏
i=1

ϕ(ui)
) ∑∗

s1,2,...,sk−1,k

( ∏
1≤i,j≤k
i 6=j

µ(si,j)
)

×
( k∏
i=1

µ(ai)µ(bi)

ϕ(ai)ϕ(bi)

)
ya1,...,akyb1,...,bk +O(y2maxR

2(logX)4k),

where aj = uj
∏
i 6=j sj,i and bj = uj

∏
i 6=j si,j . Since there is no contribution

when aj or bj are not squarefree, we may rewrite µ(aj) as µ(uj)
∏
i 6=j µ(sj,i),
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and similarly for ϕ(aj), µ(bj) and ϕ(bj). This gives us

S1 =
X

V

∑
u1,...,uk

( k∏
i=1

µ(ui)
2

ϕ(ui)

) ∑∗

s1,2,...,sk,k−1

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

ϕ(si,j)2

)
ya1,...,akyb1,...,bk(5.13)

+O(y2maxR
2(logX)4k).

There is no contribution from si,j with 1 < si,j < D0 because of the re-
stricted support of y. The contribution when si,j > D0 is

� y2maxX

V

( ∑
u<R

(u,V Pf )=1

µ(ui)
2

ϕ(ui)

)k( ∑
si,j>D0

µ(si,j)
2

ϕ(si,j)2

)(∑
s>1

µ(s)2

ϕ(s)2

)k2−k−1
(5.14)

�
y2maxϕ(V Pf )kX(logX)k

V (V Pf )kD0
.

Our previous error of y2maxR
2(logX)4k can be absorbed into this error, and

the terms with si,j = 1 give us our desired main term.

Lemma 2. Let S
(m)
2 be as defined in (3.13), and let

(5.15) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1,...,dk
ri|di ∀i
dm=1

λd1,...,dk∏
i ϕ(di)

,

where g is the totally multiplicative function defined on primes by g(p) =

p− 2. Let y
(m)
max = supr1,...,rk |y

(m)
r1,...,rk |. Then for any fixed A > 0,

S
(m)
2 =

X

ϕ(V ) logX

∑
u1,...,uk

(y
(m)
u1,...,uk)2∏k
i=1 g(ui)

(5.16)

+O

(
(y

(m)
max)2ϕ(V Pf )k−1X(logX)k−2

ϕ(V )(V Pf )k−1D0

)
+O

(
y2maxX

ϕ(M)(logX)A

)
.

Proof. We first rearrange the sum to obtain

(5.17) S
(m)
2 =

∑
d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek
∑

x≤n<2x
n≡ν0 (modW ′)
[di,ei]|nM+hi

χP(nM + hm).

In the inner sum, if W ′, [d1, e1], . . . , [dk, ek] are pairwise relatively prime, the
conditions determine n modulo q = W ′

∏
i[di, ei], since (M, [di, ei]) = 1 by

the support of λ. In turn, nM+hm is determined modulo qM = V
∏
i[di, ei].

Note that here (q, Pf ) = 1. Also, if ([di, ei], nM + hm) > 1 with i 6= m, then
p | |hi − hm| = fM for some p | [di, ei] and f < D0 by the diameter of H;
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since di and ei are relatively prime to both M and W by the support of λ,
this is not possible. So nM + hm is relatively prime to the modulus if and
only if dm = em = 1. Thus we can write

(5.18)
∑

x≤n<2x
n≡ν0 (modW ′)
[di,ei]|nM+hi

χP(nM + hm) =
∑

X+hm≤n<2X+hm
n≡b (mod qM)

χP(n)

=
PX

ϕ(V )
∏
i ϕ([di, ei])

+ E(X, qM) +O(1),

where

(5.19) E(X, qM) =

∣∣∣∣ ∑
X≤n<2X

n≡b (mod qM)

χP(n)− PX
ϕ(qM)

∣∣∣∣,
PX is the number of primes in [X, 2X], and the O(1) term arises from
ignoring the shift by hm in the sum. Thus the main term becomes

(5.20)
PX
ϕ(V )

∑′

d1,...,dk
e1,...,ek

λd1,...,dkλe1,...,ek∏
i ϕ([di, ei])

where
∑′ denotes the constraint that W ′, [d1, e1], . . . , [dk, ek] are pairwise

relatively prime. As before, there is no contribution when (W ′, [di, ei]) > 1
or (di, dj) > 1, and we remove the conditions (di, ej) = 1 by multiplying our
expression by

∑
si,j |di,ej µ(si,j). We also use the identity (valid for squarefree

di and ei)

(5.21)
1

ϕ([di, ei])
=

1

ϕ(di)ϕ(ei)

∑
ui|di,ei

g(ui),

where g is the totally multiplicative function defined on primes by g(p) =
p− 2. The main term then becomes

(5.22)

PX
ϕ(V )

∑
u1,...,uk

( k∏
i=1

g(ui)
) ∑
s1,2,...,sk−1,k

( ∏
1≤i,j≤k
i 6=j

µ(si,j)
) ∑

d1,...,dk
e1,...,ek
ui|di,ei ∀i

si,j |di,ej ∀i 6=j
dm=em=1

λd1,...,dkλe1,...,ek∏
i ϕ(di)ϕ(ei)

.

We again restrict si,j to be coprime to ui, uj , si,a and sb,j for all a 6= i
and b 6= j, and make the change of variable

(5.23) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1,...,dk
ri|di ∀i
dm=1

λd1,...,dk∏
i ϕ(di)

.
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This is invertible, and y
(m)
r1,...,rk is supported on (

∏
i ri, V Pf ) = 1,

∏
i ri < R,

µ(
∏
i ri)

2 = 1 and rm = 1. Then the main term becomes

(5.24)
PX
ϕ(V )

∑
u1,...,uk

( k∏
i=1

µ(ui)
2

g(ui)

) ∑∗

s1,2,...,sk−1,k

( ∏
1≤i,j≤k
i 6=j

µ(si,j)

g(si,j)2

)
y(m)
a1,...,ak

y
(m)
b1,...,bk

,

where aj = uj
∏
i 6=j sj,i and bj = uj

∏
i 6=j si,j for each 1 ≤ j ≤ k. Because

of the restricted support of y, there is no contribution from terms with
(si,j , V Pf ) > 1. So we only need to consider si,j = 1 or si,j > D0. The
contribution when si,j > D0 is

� (y
(m)
max)2X

ϕ(V ) logX

( ∑
u<R

(u,V Pf )=1

µ(u)2

g(u)

)k−1(∑
s

µ(s)2

g(s)2

)k(k−1)−1∑
si,j>D0

µ(si,j)
2

g(si,j)2
(5.25)

�
(y

(m)
max)2ϕ(V Pf )k−1X(logX)k−2

ϕ(V )(V Pf )k−1D0
.

The contribution from si,j = 1 gives us the main term which is

(5.26)
PX
ϕ(V )

∑
u1,...,uk

(y
(m)
u1,...,uk)2∏k
i=1 g(ui)

.

By the prime number theorem, PX = X/logX + O(X/(logX)2), and the
error here contributes

(5.27)
(y

(m)
max)2X

ϕ(V )(logX)2

( ∑
u<R

(u,V Pf )=1

µ(u)2

ϕ(u)

)k−1
�

(y
(m)
max)2ϕ(V Pf )k−1X(logX)k−3

ϕ(V )(V Pf )k−1
,

which can be absorbed in the error term from (5.25).
Now we turn to the contribution of the error terms in (5.18), which is

(5.28) �
∑

d1,...,dk
e1,...,ek

|λd1,...,dkλe1,...,ek |(E(X, qM) + 1).

From the support of λ, we see that we only need to consider squarefree q
with q < W ′R2 and (q,MPf ) = 1. Since for a squarefree integer q there are
at most τ3k(q) choices of d1, . . . , dk, e1, . . . , ek for which q = W ′

∏
i[di, ei],

we see that the error is

(5.29) � λ2max

∑
q<W ′R2

(q,MPf )=1

µ(q)2τ3k(q)E(X, qM) + λ2max

∑
q<W ′R2

(q,MPf )=1

µ(q)2τ3k(q).

Now the second term is � λ2maxW
′R2 log(W ′R2)3k−1. We use the Cauchy–

Schwarz inequality and the trivial bound E(X, qM)� X/ϕ(qM) to see that
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the first term is

(5.30)

� λ2max

ϕ(M)1/2

( ∑
q<W ′R2

(q,MPf )=1

µ(q)2τ3k(q)
2 X

ϕ(q)

)1/2( ∑
q<W ′R2

(q,MPf )=1

µ(q)2E(X, qM)
)1/2

.

The first sum is� X log(W ′R2)3k. Now for X large enough, W ′R2 ≤ Xef−δ,
so that Theorem 10 applies to show that the second sum is� X

ϕ(M)(logX)−A

for A arbitrarily large. Thus the total contribution is

(5.31) � y2maxX

ϕ(M)(logX)A
,

and this completes the proof.

Lemma 3. If rm = 1, then

(5.32) y(m)
r1,...,rk

=
∑
am

yr1,...,rm−1,am,rm+1,...,rk

ϕ(am)
+O

(
ymaxϕ(V Pf ) logX

V PfD0

)
.

Proof. We assume that rm = 1. We substitute (5.10) into (5.23) and
obtain

(5.33) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
d1,...,dk
ri|di ∀i
dm=1

( k∏
i=1

µ(di)di
ϕ(di)

) ∑
a1,...,ak
di|ai ∀i

ya1,...,ak∏k
i=1 ϕ(ai)

.

Swapping summations over d and a, we have

(5.34) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
a1,...,ak
ri|ai ∀i

ya1,...,ak∏k
i=1 ϕ(ai)

∑
d1,...,dk

di|ai, ri|di ∀i
dm=1

k∏
i=1

µ(di)di
ϕ(di)

.

The inner sum can be directly computed when ai is squarefree, which is the
only case that matters by the support of y. We have∑

di|ai, ri|di

µ(di)di
ϕ(di)

=
µ(ri)ri
ϕ(ri)

∑
di|ai/ri

µ(di)di
ϕ(di)

=
µ(ri)ri
ϕ(ri)

∏
p|ai/ri

−1

p− 1
(5.35)

=
µ(ri)ri
ϕ(ri)

µ(ai/ri)

ϕ(ai/ri)
=
µ(ai)ri
ϕ(ai)

.

Hence

(5.36) y(m)
r1,...,rk

=
( k∏
i=1

µ(ri)g(ri)
) ∑
a1,...,ak
ri|ai ∀i

ya1,...,ak∏k
i=1 ϕ(ai)

∏
i 6=m

µ(ai)ri
ϕ(ai)

.
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By the support of y, we need only consider aj with (aj , V Pf ) = 1. This
implies aj = rj or aj > D0rj . The total contribution from aj 6= rj when
j 6= m is

� ymax

( k∏
i=1

g(ri)ri

)( ∑
aj>D0rj

µ(aj)
2

ϕ(aj)2

)
(5.37)

×
( ∑

am<R
(am,V Pf )=1

µ(aj)
2

ϕ(aj)

) ∏
1≤i≤k
i 6=j,m

(∑
ri|ai

µ(ai)
2

ϕ(ai)2

)

�
( k∏
i=1

g(ri)ri
ϕ(ri)2

)
ymaxϕ(V Pf ) logR

V PfD0
�

ymaxϕ(V Pf ) logX

V PfD0
.

Thus we find that

(5.38) y(m)
r1,...,rk

=

( k∏
i=1

g(ri)ri
ϕ(ri)2

)∑
am

yr1,...,rm−1,am,rm+1,...,rk

ϕ(am)
+O

(
ymaxϕ(V Pf ) logX

V PfD0

)
.

Since the product is 1 +O(D−10 ), we have the result.

Lemma 4. Let yr1,...,rk be given in terms of a piecewise differentiable

function F supported on Rk = {(x1, . . . , xk) ∈ [0, 1]k :
∑k

i=1 xi ≤ 1} by

(5.39) yr1,...,rk = F

(
log r1
logR

, . . . ,
log rk
logR

)
whenever r =

∏
i ri is squarefree and satisfies (r, V Pf ) = 1. Set

(5.40) Fmax = sup
(t1,...,tk)∈[0,1]k

|F (t1, . . . , tk)|+
k∑
i=1

∣∣∣∣∂F∂ti (t1, . . . , tk)

∣∣∣∣.
Then

S1 =
ϕ(V Pf )kX(logR)k

V (V Pf )k
Ik(F )(5.41)

+O

(
F 2
maxϕ(V Pf )kX(logX)k−1 log logX

V (V Pf )kD0

)
,

where

(5.42) Ik(F ) =

1�

0

· · ·
1�

0

F (t1, . . . , tk)
2 dt1 . . . dtk.
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Proof. We substitute (5.39) into our expression for S1 from Lemma 1
and obtain

S1 =
X

V

∑
u1,...,uk

(ui,uj)=1∀i 6=j
(ui,V Pf )=1 ∀i

( k∏
i=1

µ(ui)
2

ϕ(ui)

)
F

(
log u1
logR

, . . . ,
log uk
logR

)2

(5.43)

+O

(
F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
.

Now if (ui, uj) > 1 for some i 6= j and (ui, V Pf ) = (uj , V Pf ) = 1, then there
is a prime p | (ui, uj) with p - V Pf , so a fortiori p - W and p > D0. Thus
the cost of dropping the condition (ui, uj) = 1 is an error of size

� F 2
maxX

V

∑
p>D0

∑
u1,...,uk<R
p|ui,uj

(ui,V Pf )=1 ∀i

k∏
i=1

µ(ui)
2

ϕ(ui)
(5.44)

� F 2
maxX

V

∑
p>D0

1

(p− 1)2

( ∑
u<R

(u,V Pf )=1

µ(u)2

ϕ(u)

)k

�
F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0
.

Thus we are left to evaluate

(5.45)
∑

u1,...,uk
(ui,V Pf )=1 ∀i

( k∏
i=1

µ(ui)
2

ϕ(ui)

)
F

(
log u1
logR

, . . . ,
log uk
logR

)2

.

This differs from the corresponding sum in Maynard’s work only in that we
have a V Pf , which does not have as small prime factors, in place of W . Let

(5.46) γ(p) =

{
1 if p - V Pf ,
0 otherwise.

Then we can use Lemma 6.1 of [5] with κ = 1,

L� 1 +
∑
p|V Pf

log p

p
�
( ∑
p≤logR

+
∑
p|MPf
p>logR

) log p

p
(5.47)

� log logR+
logMPf

logR
� log logX,
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and A1 and A2 suitable constants. The lemma then yields

(5.48)
∑

u1,...,uk
(ui,V Pf )=1∀i

( k∏
i=1

µ(ui)
2

ϕ(ui)

)
F

(
log u1
logR

, . . . ,
log uk
logR

)2

=
ϕ(V Pf )k(logR)k

(V Pf )k
Ik(F ) +O

(
F 2
maxϕ(V Pf )k(logX)k−1 log logX

(V Pf )kD0

)
,

and the proof is complete.

Lemma 5. Let yr1,...,rk , F , and Fmax be as in Lemma 4. Then

S
(m)
2 =

ϕ(V Pf )kX(logR)k+1

V (V Pf )k logX
J
(m)
k (F )(5.49)

+O

(
F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
,

where

(5.50) J
(m)
k (F ) =

1�

0

· · ·
1�

0

(1�
0

F (t1, . . . , tk) dtm

)2
dt1 . . . dtm−1 dtm+1 . . . dtk.

Proof. From Lemma 2, we want to evaluate the sum

(5.51)
∑

u1,...,uk

(y
(m)
u1,...,uk)2∏k
i=1 g(ui)

.

First we estimate y
(m)
r1,...,rk . Recall y

(m)
r1,...,rk is supported on (

∏
i ri, V Pf ) = 1,

µ(
∏
i ri)

2 = 1, (ri, rj) = 1 when i 6= j and rm = 1. Then substituting (5.39)

into our expression for y
(m)
r1,...,rk from Lemma 3, we obtain

y(m)
r1,...,rk

=
∑

(u,V Pf
∏
i ri)=1

µ(u)2

ϕ(u)
(5.52)

× F
(

log r1
logR

, . . . ,
log rm−1

logR
,

log u

logR
,
log rm+1

logR
, . . . ,

log rk
logR

)
+O

(
Fmaxϕ(V Pf ) logX

V PfD0

)
.

From this it is plain that

(5.53) y(m)
max �

ϕ(V Pf )

V Pf
Fmax logX.

Now we use [5, Lemma 6.1] again, with κ = 1,

(5.54) γ(p) =

{
1 if p - V Pf

∏k
i=1 ri,

0 otherwise,
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(5.55) L� 1 +
∑

p|V
∏
i ri

log p

p
�
( ∑
p≤logR

+
∑

p|MPf
∏
i ri

p>logR

) log p

p
� log logX,

and A1, A2 suitable constants to obtain

y(m)
r1,...,rk

= (logR)
ϕ(V Pf )

V Pf

( k∏
i=1

ϕ(ri)

ri

)
F (m)
r1,...,rk

(5.56)

+O

(
Fmaxϕ(V Pf ) logX

V PfD0

)
,

where

(5.57) F (m)
r1,...,rk

=

1�

0

F

(
log r1
logR

, . . . ,
log rm−1

logR
, tm,

log rm+1

logR
, . . . ,

log rk
logR

)
dtm.

This is valid if rm = 1, and r =
∏k
i=1 ri satisfies (r, V Pf ) = 1 and µ(r)2 = 1,

otherwise y
(m)
r1,...,rk = 0. Squared, (5.56) gives

(y(m)
r1,...,rk

)2 = (logR)2
ϕ(V Pf )2

(V Pf )2

( k∏
i=1

ϕ(ri)
2

r2i

)
(F (m)

r1,...,rk
)2(5.58)

+O

(
(Fmax)2ϕ(V Pf )2(logX)2

(V Pf )2D0

)
.

Using this in the expression for S
(m)
2 from Lemma 2, we have

S
(m)
2 =

ϕ(V Pf )2X(logR)2

ϕ(V )(V Pf )2 logX

∑
r1,...,rk

(ri,V Pf )=1
(ri,rj)=1 ∀i 6=j

rm=1

( k∏
i=1

µ(ri)
2ϕ(ri)

2

g(ri)r2i

)
(F (m)

r1,...,rk
)2(5.59)

+O

(
F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
.

We drop the condition (ri, rj) = 1 as before, this time introducing an error
of size

�
F 2
maxϕ(V Pf )2X(logR)2

ϕ(V )(V Pf )2 logX

(∑
p>D0

ϕ(p)4

g(p)2p4

)( ∑
r<R

(r,V Pf )=1

ϕ(r)2

g(r)r2

)k−1
(5.60)

�
F 2
maxϕ(V Pf )k+1X(logX)k

ϕ(V )(V Pf )k+1D0
.
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Thus we are left to evaluate

(5.61)
∑

r1,...,rm−1,rm+1,...,rk
(ri,V Pf )=1

( k∏
i=1

µ(ri)
2ϕ(ri)

2

g(ri)r2i

)
(F (m)

r1,...,rk
)2.

Again we apply [5, Lemma 6.1] with κ = 1 and with

(5.62) γ(p) =

 1− p2 − 3p+ 1

p3 − p2 − 2p+ 1
if p - V Pf ,

0 otherwise,

(5.63) L� 1 +
∑
p|V Pf

log p

p
� log logX,

and A1, A2 suitable constants. The singular series in this case is

(5.64) S =
ϕ(V Pf )

V Pf

(
1 +O

(
1

D0

))
,

and we obtain

S
(m)
2 =

ϕ(V Pf )k+1X(logR)k+1

ϕ(V )(V Pf )k+1 logX
J
(m)
k (F )(5.65)

+O

(
F 2
maxϕ(V Pf )k+1X(logX)k

ϕ(V )(V Pf )k+1D0

)
.

Now in the main term we have

ϕ(V Pf )

ϕ(V )(V Pf )
=

1

V
· V

ϕ(V )
·
ϕ(V Pf )

(V Pf )
(5.66)

=
1

V

∏
p|V

p

p− 1

∏
p|V Pf

p− 1

p
=

1

V

∏
p|Pf
p-V

p− 1

p
.

This last product is either vacuous, or consists of a single factor 1 − p−10 ,
which is 1+O((log logX)−1). Thus we may replace (5.65), within acceptable
error, with

S
(m)
2 =

ϕ(V Pf )kX(logR)k+1

V (V Pf )k logX
J
(m)
k (F )(5.67)

+O

(
F 2
maxϕ(V Pf )kX(logX)k

V (V Pf )kD0

)
,

where we have replaced
ϕ(V Pf )

ϕ(V )(V Pf )
with 1/V in the error term as well.

6. Discussion. Baker and Zhao also consider primes in arithmetic pro-
gressions, except they prove their result for certain smooth moduli (recall
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that a number is called y-smooth if it has no prime factor exceeding y). The
techniques they employ involve estimating Dirichlet polynomials and ap-
pealing to a zero-free region described in terms of the largest prime and the
squarefree kernel of M to obtain the required Bombieri–Vinogradov type
theorem. Their result [1, Theorem 1] reads as follows (with the notation
adapted where applicable to avoid confusion).

Theorem (Baker–Zhao). Let η > 0, r ≥ 1, and let M = Xθ with
0 < θ ≤ 5/12− η, (a,M) = 1. Let

K(θ) =

{
4/(1− 2θ) if θ < 2/5− ε,
40/(9− 20θ) if θ ≥ 2/5− ε.

Suppose that M satisfies

max{p : p |M} < exp

(
logX

B log logX

)
,

∏
p|M

p < Xδ, w -M

with

B =
C1

η
exp

(
4(r + 1)

K(θ)

)
, δ =

C3η

r + log(1/η)
exp

(
−4(r + 1)

K(θ)

)
for suitable absolute positive constants C1 and C3, and w denotes the possibly
existing unique exceptional modulus to which there is a Dirichlet L-function
with a zero in the region β > c1/logX. There are primes pn < · · · < pn+r
in (X/2, X] with pi ≡ a (mod M) such that

pn+r − pn < C2Mr exp(K(θ)r).

Here C2 is a positive absolute constant.

Recalling our Theorem 6, i.e.

pn+r − pn �
(
r

η

)
exp

(
5r

3η

)
M,

one immediately sees that the Baker–Zhao bound is stronger as r grows,
and also has the advantage of describing the moduli for which it holds
(apart from the possibility of being a multiple of the exceptional modulus
if it exists). On the other hand, as per Remark 2 following Proposition 2,
the result of the present work holds for X5/12−η(1 − c/log logX) moduli
up to X5/12−η, while by Dickman’s theorem (see, for instance, [6, Theo-
rem 7.2]), there are o(X5/12−η) integers with no prime divisors exceeding

exp
( logX
B log logX

)
for which the Baker–Zhao result holds. Hence the present

result is valid for a much larger class of arithmetic progressions. With these
considerations the two can be regarded as complementary results concerning
uniform small gaps between primes in arithmetic progressions over a range
of moduli.
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