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HYPOTHESIS TESTING IN UNBALANCED TWO-FOLD
NESTED RANDOM MODELS

Abstract. In many applications of linear random models to multilevel
data, it is of interest to test whether the random effects variance components
are zero. In this paper we propose approximate tests for testing significance
of variance components in the unbalanced two-fold nested random model in
the presence of non-normality. In the derivations of the asymptotic distribu-
tions of the test statistics, as an intermediate result, the explicit form of the
asymptotic covariance matrix of the vector of mean squares in this model is
obtained. We also study the influence of some special type of designs on the
asymptotic covariance matrix and on the distribution of the proposed test
statistics.

1. Introduction. In many medical, agricultural and biological studies
multilevel data are collected. Multilevel data arise when there is hierarchical
or clustered structure of the data. In [16], an experiment was described in
which the relative effectiveness of two drugs with respect to some specified
criterion was studied. The experiment was designed in such a way that drug
1 was to be administered to n patients from each of hospitals 1, 2, 3, while
drug 2 was to be administered to n patients from hospitals 4, 5, 6. In this
example, the hospital effects were nested under the drug factor. One can
observe that, in the above example, each drug was tested in the same number
of hospitals and in each hospital the drug was administered to the same
number of patients, thus the experiment can be described by a balanced
two-fold nested model. However, if in this example one assumes that drug 1
was administered to n11 patients from hospital 1 and n12 patients from
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hospital 2, while drug 2 was administered to n24, n25 and n26 patients from
hospitals 4, 5 and 6, respectively, then to describe the experiment one should
use an unbalanced two-fold nested model. In general, if we denote by yijk
the kth observation (k = 1, . . . , nij) for the ith level of the nesting factor
(i = 1, . . . , v) measured in the jth level of the nested factor (j = 1, . . . , bi),
then an unbalanced two-fold nested model can be written as

(1.1) yijk = µ+ αi + βij + eijk,

where µ denotes the general mean, αi is the nesting effect, βij is the nested
effect, and eijk is a random error. In this paper, both αi and βij are assumed
to be random. Usually, it is assumed that αi ∼ N(0, σ2a), βij ∼ N(0, σ2b )
and eijk ∼ N(0, σ2e). However, in practice the normality assumption is often
violated. For this reason, in this paper we will assume that αi, βij and eijk are
independent random variables with zero mean and variances σ2a, σ2b and σ2e ,
respectively.

For inference on variance components, many testing procedures have
been proposed in the literature (see e.g. [6, 10, 13]). In recent years, many
tests concerning the significance of variance components in balanced and
unbalanced linear random models in the presence of non-normality were
constructed by using joint distribution of the mean squares. In [1], for bal-
anced data, Arkitras and Arnold showed that the vector of mean squares in a
one-way model and a two-way model converges to a multivariate normal dis-
tribution with mean vector zero and an appropriate covariance matrix. Using
this result they obtained the asymptotic distribution for the F -test in those
two models. A similar result was obtained by Güven [8] for an unbalanced
two-way random model without interaction in the presence of non-normality.
Using the same approach, Güven [7] constructed an asymptotic F -test in a
one-fold nested model. For an unbalanced two-fold nested model, in the nor-
mal case, some test procedures for inference on variance components have
been presented in [10]; however, for non-normal unbalanced two-fold nested
models no such test procedures have been proposed.

For this reason, in this paper we propose approximate tests for the hy-
potheses H0 : σ2b = 0 and H0 : σ2a = 0 in model (1.1). Using the Main
Theorem in [14] and the delta method we obtain the asymptotic distribu-
tions of the test statistics. Additionally, as an intermediate result, we obtain
the explicit form of the asymptotic covariance matrix of the vector of mean
squares in model (1.1). Furthermore, we will study the influence of some spe-
cial type of designs on the asymptotic covariance matrix and the distribution
of the test statistics.

This paper is organized as follows. In Section 2 we introduce some nota-
tion which will be used throughout the paper. Section 3 presents the model,
assumptions and some auxilary results. In Section 4 the main results are
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established. In Section 5, we study the influence of some special type of de-
signs on the asymptotic covariance matrix and asymptotic distribution of
the F -statistics. Simulation studies are given in Section 6. In Section 7 we
provide a discussion. The proofs are postponed until Section 8.

2. Notation. In this section we fix the notation which will be used in
the subsequent sections. Throughout the paper, we will denote matrices and
vectors by bold letters A and a. The notations Jn and 1n stand respectively
for the n × n matrix and n × 1 vector of ones.

⊕
is the symbol of direct

sum of matrices, i.e. for given square matrices Ai (i = 1, . . . ,m),
⊕m

i=1 Ai =
diag(A1, . . . ,Am).

E(·), Cov(·, ·) mean expected value and covariance, respectively. Depend-
ing on the context, Var(·) will denote either the variance of a random variable
or the covariance matrix of a random vector.

Let X be a zero-mean random variable. Then kx will denote the kurtosis
parameter for the distribution of X, defined by kx = E(X4)/σ4 − 3.

Let {Xn} be a sequence of random variables. Then
Xn = op(1) ⇔ Xn

p→ 0, as n→∞.

3. Model and assumptions

3.1. Statistical model. Let us define N , ni· and b· as

N =

v∑
i=1

bi∑
j=1

nij , ni· =

bi∑
j=1

nij , b· =

v∑
i=1

bi.

Then in the matrix notation of [10], model (1.1) can be expressed as
(3.1) y = µ1N + Z1α+ Z2β + e,

where y is a vector of observations, µ denotes the general mean, α and β
are vectors of random effects, and e denotes a vector of random errors. We
assume that the random vectors α, β and e are independent. The matrices
Z1 (N × v) and Z2 (N × b·) are design matrices for α and β, respectively,
and are equal to

Z1 = diag(1n1· , . . . ,1nv·),

Z2 = diag(1n11 , . . . ,1n1b1
,1n21 , . . . ,1n2b2

, . . . ,1nv1 , . . .1nvbv
).

(3.2)

Without loss of generality one may assume that nij ≥ 1 for all i and j,
since if nij = 0 then the corresponding level of nested effect does not occur
in the experiment and hence does not have to be taken into account.

Often in model (3.1) the following hypotheses are of interest:H01 : σ2b = 0
and H02 : σ2a = 0. Alternatively, they can be written in the following way:

H ′01 : ρ2 = 0 and H ′02 : ρ1 = 0,

where ρ1 = σ2a/σ
2
e and ρ2 = σ2b/σ

2
e .
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Usually to test H01 and H02 the test statistics F1 = MSB/MSE and
F2 = MSA/MSB respectively are used, where MSA = SSA/(v− 1), MSB =
SSB/(b·−v) and MSE = SSE/(N−b·). The sums of squares SSA, SSB and
SSE are

(3.3) SSA = y′P1y, SSB = y′P2y, SSE = y′P3y,

where Pi (i = 1, 2, 3) are orthogonal projection matrices and can be written
as (see [10])

P1 =
v⊕
i=1

1

ni·
Jni· −

1

N
JN , P2 =

v⊕
i=1

[ bi⊕
j=1

1

nij
Jnij −

1

ni·
Jni·

]
,

P3 = IN −
v⊕
i=1

bi⊕
j=1

1

nij
Jnij .

(3.4)

3.2. Assumptions and some useful results. In this subsection we
give some assumptions and some general results needed in the subsequent
sections.

The following assumptions will be needed throughout the paper.

(A1) For every ε > 0, we have E|αi|4+ε < ∞, E|βij |4+ε < ∞ and
E|eijk|4+ε <∞ (i = 1, . . . , v; j = 1, . . . , bi; k = 1, . . . , nij).

(A2) The number v of treatments tends to infinity in such a way that
the nij ’s take values from a finite set of distinct positive integers.

(A3) Define lv(t) and mv(t) to be the number of occurrences of mt

in (n1, . . . , nv·) and of rl in (
∑b1

j n
−1
1j , . . . ,

∑bv
j n−1vj ), respectively.

Then lv(t)/v → pt and mv(t)/v → qt.
(A4) There exists M > 1 such that 1 ≤ bi ≤M for each 1 ≤ i ≤ v.

Remark 3.1. As pointed out in [8], assumption (A2) implies that both
ni· and

∑bi
j n
−1
ij (i = 1, . . . , v) take values from finite discrete sets of positive

numbers. Hence, one may assume that ni·, i = 1, . . . , v, take values from a
set

(3.5) S1 = {m1, . . . ,ml},

and
∑bi

j=1 n
−1
ij , i = 1, . . . , v, take values from

(3.6) S2 = {r1, . . . , rl}.

In the proofs of the main results the following lemmas will be needed.
The first two are modifications of Lemmas 3.1 an 3.2 in [8] to the setting of
this paper, and can be proved using similar arguments.
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Lemma 3.2. Let

ψk = lim
v→∞

1

v

v∑
i=1

nki·, k = ∓1,∓2, ω = lim
v→∞

1

v

v∑
i=1

bi∑
j=1

1

nij
.

Then under assumptions (A2)–(A4),

ψk =

l∑
t=1

mk
t pt and ω =

l∑
t=1

rkt qt,

where l is the number of different elements of the sets S1 and S2 defined in
(3.5) and (3.6).

Lemma 3.3. The number v of levels of the nesting factor and the number
N of observations are of the same order, and the limits

ζ = lim
N→∞

v

N
, γk = lim

N→∞

1

N

v∑
i=1

nki· for k = ∓1,∓2,

η = lim
N→∞

1

N

v∑
i=1

bi∑
j=1

1

nij

are positive and finite.

Lemma 3.4. Under assumptions (A2)–(A4) the limits

ϕ = lim
N→∞

b·
N
, δk2 = lim

N→∞

1

N

v∑
i=1

bi∑
j=1

n2ij

nki·
for k = 0, 1, 2,

δl,l+2 = lim
N→∞

1

N

v∑
i=1

bi∑
j=1

nl+2
ij

nli·
for l = 1, 2,

ϑ = lim
N→∞

1

N

v∑
i=1

1

n2i·

( bi∑
j=1

n2ij

)2
, δ = lim

N→∞

1

N

v∑
i=1

bi·
ni·

are finite and positive.

Remark 3.5. In practice the limits in Lemmas 3.2–3.4 are unknown.
Thus, they should be replaced by their finite sample counterparts.

4. Main results. To derive the asymptotic distributions of the
test statistics F1 and F2 (defined in Section 3.1) we will use the delta
method. We first find the asymptotic covariance and the joint distribution
of
√
N [MSA,MSB ,MSE ]′.
Let θ = [MSA,MSB ,MSE ]′.
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Theorem 4.1. Under assumptions (A1)–(A4), the asymptotic covari-
ance matrix of

√
N θ is equal to

Σ = σ4e(Ψ1 + kaρ
2
1Ψ2 + kbρ

2
2Ψ3 + keΨ4),

where

Ψ1 =
2(ρ21γ2+2ρ1ρ2δ02+2ρ1+2ρ2δ12+ρ22ϑ+ζ)

ζ2
2ρ22(δ13−ϑ)
ζ(ϕ−ζ) 0

2ρ22(δ13−ϑ)
ζ(ϕ−ζ)

2(ρ22(δ02−2δ13+ϑ)+2ρ2(1−δ12)+ϕ−ζ)
(ϕ−ζ)2 0

0 0 2
1−ϕ

,

Ψ2 =


γ2
ζ2

0 0

0 0 0

0 0 0

, Ψ3 =


δ24
ζ2

δ13−δ24
ζ(ϕ−ζ) 0

δ13−δ24
ζ(ϕ−ζ)

δ02−2δ13+δ24
(ϕ−ζ)2 0

0 0 0


and

Ψ4 =


γ−1

ζ2
δ−γ−1

ζ(ϕ−ζ)
ϕ−δ
ζ(1−ϕ)

δ−γ−1

ζ(ϕ−ζ)
η+γ−1−2δ
(ϕ−ζ)2

ϕ−η−ζ+δ
(1−ϕ)(ϕ−ζ)

ϕ−δ
ζ(1−ϕ)

ϕ−η−ζ+δ
(1−ϕ)(ϕ−ζ)

1−2ϕ+η
(1−ϕ)2

.
Proposition 4.2. Under assumptions (A1)–(A4),√

N(θ − Γ)
d→ N(0,Σ),

where Γ =
[
σ2e(ρ1ζ

−1 + ρ2δ12ζ
−1 + 1), σ2e

(
1 + ρ2(1− δ12)(ϕ− ζ)−1

)
, σ2e
]′.

Combining Proposition 4.2 with the delta method (see e.g. [12]) we get
the following:

Theorem 4.3. Suppose that assumptions (A1)–(A4) hold.

(i) We have
√
N

(
F1 −

(
1 +

ρ2(1− δ12)
ϕ− ζ

))
d→ N(0, σ2H1

),

as N →∞, where

σ2H1
=

2
(
ρ22(δ02 − 2δ13 + ϑ) + 2ρ2(1− δ12) + ϕ− ζ

)
(ϕ− ζ)2

+
2

1− ϕ

(
1 +

ρ2(1− δ12)
ϕ− ζ

)2

+ kbρ
2
2

δ02 − 2δ13 + δ24
(ϕ− ζ)2

+ ke

[
η + γ−1 − 2δ

(ϕ− ζ)2
−

2
(
1 + ρ2(1−δ12)

ϕ−ζ
)
(ϕ− η − ζ + δ)

(1− ϕ)(ϕ− ζ)

+

(
1 + ρ2(1−δ12)

ϕ−ζ
)2

(1− 2ϕ+ η)

(1− ϕ)2

]
.



Hypothesis testing in nested random models 63

(ii) We have
√
N

(
F2 −

(
1 +

ρ1ζ
−1 + ρ2δ12ζ

−1 − ρ2(1− δ12)(ϕ− ζ)−1

1 + ρ2(1− δ12)(ϕ− ζ)−1

))
d→ N(0, σ2H2

),
as N →∞, where

σ2H2
= a

[
2(ρ21γ2 + 2ρ1ρ2δ02 + ρ22ϑ+ ζ)

ζ2
− 4dρ22(δ13 − ϑ)

cζ

+
2d2
(
ρ22(δ02 − 2δ13 + ϑ) + 2(1− δ12) + (ϕ− ζ)

)
c2

+ kaρ
2
1

γ2
ζ2

+ kbρ
2
2

(
δ24
ζ2
− 2d(δ13 − δ24)

cζ
+
d2(δ02 − 2δ13 + δ24)

c2

)
+ ke

(
γ−1
ζ2
− 2d(δ − γ−1)

cζ
+
d2(η + γ−1 − 2δ)

c2

)]
and c = ϕ−ζ+ρ2(1−δ12), a = (ϕ−ζ)2c−2, d = 1+ρ1ζ

−1+δ12ρ2ζ
−1.

Corollary 4.4. Assume that the assumptions of Theorem 4.3 are sat-
isfied.

(i) Under H01 : ρ2 = 0,
√
N(F1 − 1)

d→ N(0, σ2H01
),

where

σ2H01
=

2

ϕ− ζ
+

2

1− ϕ

+ ke

(
η + γ−1 − 2δ

(ϕ− ζ)2
− 2(ϕ− η − ζ + δ)

(1− ϕ)(ϕ− ζ)
+

1− 2ϕ+ η

(1− ϕ)2

)
.

(ii) Under H02 : ρ1 = 0,
√
N

(
F2 −

(
1 +

ρ2δ12ζ
−1 − ρ2(1− δ12)(ϕ− ζ)−1

1 + ρ2(1− δ12)(ϕ− ζ)−1

))
d→ N(0, σ2H02

),

where

σ2H02
= a

[
2(ρ22ϑ+ ζ)

ζ2
− 4dρ22(δ13 − ϑ)

cζ

+
2d2
(
ρ22(δ02 − 2δ13 + ϑ) + 2(1− δ12) + (ϕ− ζ)

)
c2

+ kbρ
2
2

(
δ24
ζ2
− 2d(δ13 − δ24)

cζ
+
d2(δ02 − 2δ13 + δ24)

c2

)
+ ke

(
γ−1
ζ2
− 2d(δ − γ−1)

cζ
+
d2(η + γ−1 − 2δ)

c2

)]
,

a and c are defined in Theorem 4.3, and d = 1 + ρ2δ12ζ
−1.
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5. Special case. As we have seen in Section 4, the correlations between
the mean squares in the unbalanced two-fold nested random model depend
mainly on kurtoses, and most of the off-diagonal elements of Ψ1 are zero.
However, when one looks at the correlation between MSA and MSB one can
observe that Ψ1,12 6= 0. A similar observation has been made by Cummings
and Gaylor [4] (see also [10, Example 3.5.1]) for unbalanced linear mixed
models under normality.

However in the normal case, for some designs the mean squares MSA and
MSB are uncorrelated. Cummings and Gaylor [4] described several designs
and studied their impact on the correlation between MSA and MSB as well
as on the distribution of the sum of squares. In one of the designs they
assumed that for a given i (i = 1, . . . , v) and j 6= j′ one has nij = nij′ .
In [10], this type of design is called a partially balanced design (PBD).

In the same example, Cummings and Gaylor pointed out that for a par-
tially balanced design, MSA and MSB are independent under normality.
In our case, for a PBD, from Lemma 3.4 it follows that δ13 = ϑ and the
asymptotic covariance matrix Σ given Theorem 4.1 can be written as:

Corollary 5.1. Suppose that the assumptions of Theorem 4.1 hold. Ad-
ditionally, let nij = nij′ for i = 1, . . . , v and j, j′ = 1, . . . , bi, j 6= j′. Then
the asymptotic covariance matrix of

√
N θ is equal to

Σ = σ4e(Ψ̃1 + kaρ
2
1Ψ̃2 + kbρ

2
2Ψ̃3 + keΨ̃4),

where

Ψ̃1 =
2(ρ21γ2+2ρ1ρ2δ02+2ρ1+2ρ2δ12+ρ22ϑ+ζ)

ζ2
0 0

0
2(ρ22(δ02−δ13)+2ρ2(1−δ12)+ϕ−ζ)

(ϕ−ζ)2 0

0 0 2
1−ϕ

,
and Ψ̃2, Ψ̃3 and Ψ̃4 are as in Theorem 4.1.

If, in Theorem 4.3, we assume that the experiment was organized as
a PBD, then we get the following:

Corollary 5.2. Suppose that the assumptions of Theorem 4.1 hold. Ad-
ditionally, let nij = nij′ for i = 1, . . . , v and j, j′ = 1, . . . , bi, j 6= j′.

(i) We have

√
N

(
F1 −

(
1 +

ρ2(1− δ12)
ϕ− ζ

))
d→ N(0, σ2H1

),
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as N →∞, where

σ2H1
=

2
(
ρ22(δ02 − δ13) + 2ρ2(1− δ12) + ϕ− ζ

)
(ϕ− ζ)2

+
2

1− ϕ

(
1 +

ρ2(1− δ12)
ϕ− ζ

)2

+ kbρ
2
2

δ02 − 2δ13 + δ24
(ϕ− ζ)2

+ ke

[
η + γ−1 − 2δ

(ϕ− ζ)2
−

2
(
1 + ρ2(1−δ12)

ϕ−ζ
)
(ϕ− η − ζ + δ)

(1− ϕ)(ϕ− ζ)

+

(
1 + ρ2(1−δ12)

ϕ−ζ
)2

(1− 2ϕ+ η)

(1− ϕ)2

]
.

(ii) We have
√
N

(
F2 −

(
1 +

ρ1ζ
−1 + ρ2δ12ζ

−1 − ρ2(1− δ12)(ϕ− ζ)−1

1 + ρ2(1− δ12)(ϕ− ζ)−1

))
d→ N(0, σ2H2

),

as N →∞, where

σ2H2
= a

[
2(ρ21γ2 + 2ρ1ρ2δ02 + ρ22ϑ+ ζ)

ζ2

+
2d2
(
ρ22(δ02 − δ13) + 2(1− δ12) + (ϕ− ζ)

)
c2

+ kaρ
2
1

γ2
ζ2

+ kbρ
2
2

(
δ24
ζ2
− 2d(δ13 − δ24)

cζ
+
d2(δ02 − 2δ13 + δ24)

c2

)
+ ke

(
γ−1
ζ2
− 2d(δ − γ−1)

cζ
+
d2(η + γ−1 − 2δ)

c2

)]
and a, c, d are defined in Theorem 4.3.

6. Simulation studies. In this section we will study the performance
of the approximate tests described in Section 5.

In the simulation study we will consider a design similar to the one in
[10, Example 3.5.1, Design 3]. Suppose the number nij of observations cor-
responding to the jth level of the nested factor within the ith level of the
nesting factor has the following values: n11 = n21 = n31 = n41 = 1, n22 = 8,
n32 = 10, n42 = 5, n43 = 6, n44 = 7. Thus, N = 40, v = 4, b1 = 1,
b2 = b3 = 2 and b4 = 4. In the simulations, we consider four combinations
of distributions for the random effects and errors:

(i) Normal-Normal-Normal (N-N-N),
(ii) N-N-CE, where CE represents centralized exponential distribution,

i.e. X − 1, where X ∼ Exp(1),
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(iii) CE-CE-CE,
(iv) SN-SN-SN, where SN represents the skew-normal distribution (for

the definition see [2]) with the following parameters:

I [1]′4 for α, where [1]′4 = [1, 1, 1, 1]′, [1]′9 for β and [1]′40 for e;
II [−1, 1/2, 1/3, 1]′, [−1,−1/2, 0, 1, 1, 1, 1, 1, 1]′ and [1]′40;
III [1/2,−1/2, 1/2,−1/2], [1]′9 and [0]′40.

In all cases as a scale matrix K we took the identity matrix of the ap-
propriate order, i.e. K = Il, l = 4, 9, 40.

The kurtoses for the distributions used in the simulations are given in
Table 1, where the kurtoses for skew-normal distributions were calculated
from the formulas in [2, Section 4].

Table 1. Kurtoses of the distributions

Kurtosis N-N-N N-N-CE CE-CE-CE SN-SN-SN
I II III

ka 0 0 6 0.3050 0.1853 0.0617

kb 0 0 6 0.5098 0.4290 0.5098

ke 0 6 6 0.7609 0.7609 0

First, we test the hypothesis H0 : σ2b = 0, or equivalently H0 : ρ2 = 0.
In the simulations we assumed that the true values in model (3.1) are µ =
σ2a = σ2e = 1.

Based on 10000 simulations, the estimated size of test P (F1 > uα | ρ2 = 0)
was calculated as the number of times F1 exceeds the cut-off point uα divided
by 10000, where uα was calculated using Corollary 4.4(i) and it is given by

uα =
σ01√
N
zα + 1,

and zα is the upper 1− α quantile of the standard normal distribution.
The estimated sizes of the test for the nominal levels α = 0.01, 0.05, 0.1

are reported in Table 2.

Table 2. Estimated size

Nominal N-N-N N-N-CE CE-CE-CE SN-SN-SN
level I II III
α = 0.01 0.0466 0.0402 0.0427 0.0373 0.0342 0.0451

α = 0.05 0.0837 0.0614 0.0649 0.0764 0.0736 0.0896

α = 0.1 0.1267 0.0913 0.0927 0.1095 0.1131 0.1256

Next, we look at the approximate powers for the following alternatives
ρ2 = 0.1, 0.25, 0.5, 0.75, 1, 2, 4 for two nominal levels α = 0.01, 0.05. The
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approximate powers were calculated using Theorem 4.3(i) as

P (F1 > uα | ρ2 > 0) ∼= 1− Φ
(
uα −

(
1 + ρ2(1−δ12)

ϕ−ζ
)

σ1

)
and are reported in Tables 3 and 4.

Table 3. Approximate power (nominal level 0.01)

N-N-N N-N-CE CE-CE-CE SN-SN-SN
I II III

ρ2 = 0.1 0.0470 0.0441 0.0468 0.0730 0.0762 0.0885

ρ2 = 0.25 0.2821 0.1362 0.1676 0.2489 0.2491 0.2811

ρ2 = 0.5 0.5189 0.3291 0.3568 0.4785 0.4771 0.5182

ρ2 = 0.75 0.6390 0.4675 0.4758 0.6036 0.6045 0.6321

ρ2 = 1 0.7105 0.5580 0.5427 0.6734 0.6759 0.6995

ρ2 = 2 0.8080 0.7186 0.6531 0.7794 0.7813 0.7929

ρ2 = 4 0.8536 0.7967 0.7094 0.8300 0.8321 0.8378

Table 4. Approximate power (nominal level 0.05)

N-N-N N-N-CE CE-CE-CE SN-SN-SN
I II III

ρ2 = 0.1 0.1962 0.1240 0.1302 0.1776 0.1788 0.1972

ρ2 = 0.25 0.4149 0.2639 0.2870 0.3810 0.3818 0.4201

ρ2 = 0.5 0.6113 0.4506 0.4609 0.5791 0.5785 0.6084

ρ2 = 0.75 0.7038 0.5660 0.5522 0.6730 0.6747 0.6954

ρ2 = 1 0.7541 0.6478 0.6036 0.7241 0.7266 0.7412

ρ2 = 2 0.8276 0.7557 0.6833 0.8026 0.8044 0.8130

ρ2 = 4 0.8628 0.8143 0.7237 0.8405 0.8427 0.8473

Now, for the same design and combinations of distributions we will study
the performance of the approximation test for H0 : ρ1 = 0. We assumed that
the true values of parameters in model (3.1) were µ = σ2e = 1 and σ2b = 1, 4.
Once again, based on 10000 simulations we calculated the estimated size of
the test, but now the cut-off point uα calculated using Corollary 4.4(ii) and
was equal to

uα =
σ02√
N
zα +

(
1 +

ρ2δ12ζ
−1 − ρ2(1− δ12)(ϕ− ζ)−1

1 + ρ2(1− δ12)(ϕ− ζ)−1

)
,

where zα is the upper 1− α quantile of the standard normal distribution.
For the same nominal levels the estimated sizes of the test are reported

in Table 5.
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Table 5. Estimated size

Nominal N-N-N N-N-CE CE-CE-CE SN-SN-SN
level I II III

ρ2 = 1

α = 0.01 0.1327 0.1273 0.0948 0.1123 0.1115 0.1135

α = 0.05 0.1790 0.1815 0.1371 0.1538 0.1541 0.1599

α = 0.1 0.2227 0.2162 0.1629 0.1905 0.1927 0.1925

ρ2 = 4

α = 0.01 0.1114 0.1046 0.0842 0.1008 0.1050 0.1015

α = 0.05 0.1529 0.1534 0.1213 0.1439 0.1445 0.1442

α = 0.1 0.1862 0.1884 0.1497 0.1788 0.1795 0.1815

Because the estimated sizes of this test were rather far from the nominal
levels, we do not give the results on the power of the test.

7. Discussion. In this paper we derived the explicit form of the asymp-
totic covariance matrix of the vector of mean squares in a non-normal un-
balanced two-fold nested random model, and we constructed approximate
procedures for testing the hypotheses H0 : σ2b = 0 and H0 : σ2a = 0. Fur-
thermore, we studied the influence of some special type of designs on the
asymptotic covariance matrix and on the distributions of the test statistics.

All results were obtained under the assumption that the number of levels
of nesting effects goes to infinity. In the proofs of the main results, besides
the standard assumptions, we only required the convergence of some partial
sums of sample sizes. We used similar assumptions to the ones used in [8],
which are equivalent to assumptions (i)–(iii) in [14]. In the proofs of the
main results we did not require assumptions (iv) and (v) of [14], because
they follow from assumptions (A2)–(A4).

Using the covariance matrix of the mean squares, we constructed approx-
imate procedures for testing the hypotheses H0 : σ2a = 0 and H0 : σ2b = 0
in an unbalanced two-fold nested model in the presence of non-normality.
We showed that the test statistics are asymptotically normal. One can see
that the asymptotic variances of the test statistics (see Theorem 4.3 and
Corollary 4.4) as well the covariance matrix of the vector of mean squares
(Theorem 4.1) depend on the kurtoses ka, kb and ke, which in some cases
could be known from some previous studies. However, in general, these pa-
rameters are unknown. To overcome this problem, one may use a similar
approach to that proposed in [9]. We plan to explore this problem in a fu-
ture work.

To check the performance of the proposed test procedures we carried out
simulation studies. As mentioned earlier, all results were developed when the
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sample size N goes to infinity. In practice, one applies the asymptotic results
when N ≥ 30 (see [5, p. 58]). In our simulations, all calculations were carried
out for N = 40.

In the simulation studies the approximate test for testing H0 : σ2b = 0
was performing well. For all combinations the estimated sizes of the test were
close to the nominal levels. The best results in terms of estimated size were
obtained when all random effects and errors follow an exponential distribu-
tion. The results obtained for SN-SN-SN I and II also had the estimated size
close to the nominal levels, but in comparison to CE-CE-CE had higher ap-
proximate power for both nominal levels studied. N-N-N had slightly bigger
values of approximate power for both nominal levels than the skew-normal
combinations. This can be partly explained by the fact that for SN-SN-SN
both I and II had kurtoses close to one (see Table 1).

The results for testing H0 : σ2a = 0 were not as satisfactory as those for
H0 : σ2b = 0. The best results, in terms of the estimated size, were obtained
for CE-CE-CE. This can be partly explained by high values of kurtoses of
random effects. Based on the simulation studies, one can observe that for
bigger values of the nuisance parameter ρ2 the estimated sizes of the test
are closer to the nominal levels. This can be explained by the fact that
the distribution of the test statistics depends on the nuisance parameter.
To eliminate the influence of this parameter one could use the concept of
generalized p-value (see e.g. [10], [13]). A different method of solving this
problem would be to construct other test statistics. We plan to explore this
problem.

Because most of the experiments are organized according to some design,
we also studied the influence of PBD designs on the asymptotic covariance
matrix Σ and on the distribution of the test statistics. It was pointed out
that under the PBD assumption, the matrix Ψ1 is diagonal, which is in
agreement with the results obtained in [10, Example 3.5.1].

Finally, it should be noted that testing significance of variance compo-
nents in random two-fold nested models is only one of several hypothesis
testing problems for which further statistical research is needed. For exam-
ple, the problem of testing the null hypothesis H0 : σ2a = σ2b against the
alternative H1 : σ2a > σ2b should be investigated. Such a test would be very
interesting for practitioners, e.g. for researchers working in agronomy.

8. Proofs. In this section we give the proofs of the statements formu-
lated in Sections 3 and 4.

Proof of Lemma 3.4. We have

v ≤ b· =
v∑
i=1

bi ≤M
v∑
i=1

1 = Mv (by (A3)).
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Thus, by Lemma 3.3 it follows that

lim
N→∞

b·
N
≤Mζ <∞.

Since ζ > 0, one obtains

lim
N→∞

b·
N
≥ ζ > 0.

Now, from 1 ≤ nij ≤ ni· and (A3), for k = 0, 1, 2 one has

1

N

v∑
i=1

1

nki·
≤ 1

N

v∑
i=1

bi∑
j=1

n2ij

nki·
≤ 1

N

v∑
i=1

bi∑
j=1

n2i·
nki·

=



1

N

∑v
i=1 bi·n

2
i· ≤

M

N

∑v
i=1 n

2
i·, k = 0,

1

N

∑v
i=1 bi·ni· ≤

M

N

∑v
i=1 ni·, k = 1,

b·
N
, k = 2.

Thus, finiteness of δ02 follows from γ2, δ12 < ∞ since γ1 < ∞, whereas
finiteness of δ22 follows from ϕ <∞. The positivity of δk2, k = 1, 2, follows
from γk > 0, k = 1, 2 (see Lemma 3.3), while positivity of δ02 follows from
ζ > 0.

Using similar arguments one can show that δ and δl,l+2 are positive finite.
Finally, using the fact that 1 ≤

∑bi
j=1 n

2
ij ≤ n2i· and assumption (A3) one

obtains
1

N

v∑
i=1

n2i· ≤
1

N

v∑
i=1

(
∑bi

j=1 n
2
ij)

2

n2i·
≤ M

N

v∑
i=1

n2i·.

Hence, by Lemma 3.3 it follows that ϑ is positive and finite.

Proof of Theorem 4.1. Denote

θ = [MSA,MSB ,MSE ]′, Θ = [SSA,SSB ,SSE ]′.

Then, √
N θ = ΩnN

−1/2Θ,

and by basic properties of the covariance matrix (see e.g. [3])

Var(
√
N θ) = ΩN

1

N
Var(Θ)ΩN ,

where

(8.1) ΩN =


N
v−1 0 0

0 N
b·−v 0

0 0 N
N−b·

 .
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By Lemmas 3.3 and 3.4,

(8.2) lim
N→∞

ΩN =


1
ζ 0 0

0 1
ϕ−ζ 0

0 0 1
1−ϕ

 = Ω.

Hence, to prove the theorem one has to calculate the asymptotic covariance
matrix ∆ of N−1/2Θ.

Using (3.1), the sums of squares given in (3.3) can be rewritten in terms
of the random vectors α, β, e, as

SSA = [α′,β′, e′]

Z′1P1Z1 Z′1P1Z2 Z′1P1

Z′2P1Z1 Z′2P1Z2 Z′2P1

P1Z1 P1Z2 P1


αβ
e

 ,

SSB = [α′,β′, e′]

0 0 0

0 Z′2P2Z2 Z′2P2

0 P2Z2 P2


αβ
e

 ,

SSE = [α′,β′, e′]

0 0 0

0 0 0

0 0 P3


αβ
e

 ,

(8.3)

where the matrices Zi and Pi, i = 1, 2, 3, are defined in (3.2) and (3.4).
Because [α,β, e]′ is a zero mean random vector, by [15, Lemma 1] one

finds that the variances of SSA, SSB and SSE are
Var(SSA) = σ2e

(
2ρ21 tr(Z′1P1Z1)

2 + 4ρ1ρ2 tr(Z′1P1Z2Z
′
2P1Z1)

+ 4ρ1 tr(Z′1P
2
1Z1) + 2ρ22 tr(Z′2P1Z2)

2 + 4ρ2 tr(Z′2P
2
1Z2)

+ 2 tr(P2
1) + kaρ

2
1 tr(Z′1P1Z1 diag(Z′1P1Z1))

+ ke tr(P1 diag(P1)) + kbρ
2
2 tr(Z′2P1Z2 diag(Z′2P1Z2))

)
,

Var(SSB) = σ2e
(
2ρ22 tr(Z′2P2Z2)

2 + 4ρ2 tr(Z′2P
2
2Z2) + 2σ4e tr(P2

2)

+ kbρ
2
2 tr(Z′2P2Z2 diag(Z′2P2Z2)) + ke tr(P2 diag(P2))

)
,

Var(SSE ) = σ4e(2 tr(P2
3) + ke tr(P3 diag(P3))),

and the covariances (between appropriate sum of squares) are
Cov(SSA,SSB) = σ4e

(
2ρ21 tr(Z′2P1Z2Z

′
2P2Z2) + 2σ4e tr(P1P2)

+ 4ρ2 tr(Z′2P1P2Z2) + kbρ
2
2 tr(Z′2P1Z2 diag(Z′2P2Z2))

+ ke tr(P1 diag(P2))
)
,

Cov(SSA,SSE ) = σ4e(2 tr(P1P3) + ke tr(P1 diag(P3))),

Cov(SSB ,SSE ) = σ4e(2 tr(P2P3) + ke tr(P2 diag(P3))).
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Now, by (3.2) and (3.4) one can easily show that

Z′1P1Z1 = diag(n1·, . . . , nv·)−
1

N
[n1·, . . . , nv·]

′[n1·, . . . , nv·],(8.4)

Z′2P1Z2 =
v⊕
i=1

ni·n
′
i·

ni·
− 1

N
nn′,(8.5)

where ni· = [ni1, . . . , nibi ]
′ and n = [n11, . . . , n1b1 , . . . , nv1, . . . , nvbv ]′.

Hence, by (8.4),

tr(Z′1P1Z1)
2 =

v∑
i=1

n2i· − 2
1

N

v∑
i=1

n3i· +
1

N2

v∑
i=1

v∑
l=1

n2i·n
2
l·,

tr(Z′1P1Z1 diag(Z′1P1Z1)) =

v∑
i=1

n2i·

(
1− 1

N

)2

,

Since the matrix P1 is idempotent, one has

tr(Z′1P
2
1Z1) = tr(Z′1P1Z1) =

v∑
i=1

(
ni· −

ni·
N

)
.

Thus, by Lemma 3.3,

(8.6)
lim
N→∞

1

N
tr(Z′1P1Z1)

2 = γ2 = lim
N→∞

1

N
tr(Z′1P1Z1 diag(Z′1P1Z1)),

lim
N→∞

1

N
tr(Z′1P

2
1Z1) = lim

N→∞

1

N
tr(Z′1P1Z1) = 1.

Using similar arguments, one can show that

tr(Z′2P1Z2)
2 =

v∑
i=1

(
∑bi

j=1 n
2
ij)

2

n2i·
+

1

N2

( v∑
i=1

bi∑
j=1

n2ij

)2
− 2

N
n′
( v⊕
i=1

nin
′
i

ni·

)
n

=

v∑
i=1

(
∑bi

j=1 n
2
ij)

2

n2i·
+

1

N2

( v∑
i=1

bi∑
j=1

n2ij

)2
− 2

N

v∑
i=1

(
∑bi

i=1 n
2
ij)

2

n·
.

Moreover,

tr(Z′2P1Z2 diag(Z′2P1Z2)) =
v∑
i=1

bi∑
j=1

n4ij

(
1

ni·
− 1

N

)2

,

tr(Z′2P
2
1Z2) = tr(Z′2P1Z2) =

v∑
i=1

bi∑
j=1

n2ij

(
1

ni·
− 1

N

)
.
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Thus, by Lemmas 3.3 and 3.4,

(8.7)

lim
N→∞

1

N
tr(Z′2P1Z2)

2 = ϑ,

lim
N→∞

1

N
tr(Z′2P1Z2 diag(Z′2P1Z2)) = δ24,

lim
N→∞

tr(Z′2P
2
1Z2) = lim

N→∞

1

N
tr(Z′2P1Z2) = δ12.

Because the matrix P1 is idempotent, one has

tr P2
1 = tr P1 =

v∑
i=1

ni·

(
1

ni·
− 1

N

)
= v − 1.

Also, one can easily show that

tr(P1 diag(P1)) =

v∑
i=1

ni·

(
1

ni·
− 1

N

)2

.

Hence,

(8.8) lim
N→∞

1

N
tr P2

1 = ζ, lim
N→∞

1

N
tr(P1 diag(P1)) = γ−1.

After some algebra using the properties of matrix trace (see [11]) it follows
that

tr(Z′1P1Z2Z
′
2P1Z1) = tr

(( v⊕
i=1

bi⊕
j=1

Jnij

)
P1

( v⊕
i=1

Jni·

)
P1

)

=
v∑
i=1

bi∑
j=1

n2ij −
1

N

v∑
i=1

n2i·,

and by Lemma 3.4,

(8.9) lim
N→∞

1

N
tr(Z′1P1Z2Z

′
2P1Z1) = δ02.

Thus by (8.6)–(8.9),

(8.10) lim
N→∞

1

N
Var(SSA) = σ2e(2ρ

2
1γ2 + 4ρ1ρ2δ02 + 4ρ1 + 4ρ2δ12 + 2σ4bϑ

+ 2σ4e + kaσ
4
aγ2 + kbσ

4
b δ24 + keσ

4
eγ−1).

Using (3.2) and (3.4), one writes

(8.11) Z′2P2Z2 = diag(n11, . . . , n1b1, . . . , nv1, . . . , nvbv)−
v⊕
i=1

ni·n
′
i·

ni·
.
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Hence,

tr(Z′2P2Z2 diag(Z′2P2Z2)) =

v∑
i=1

bi∑
j=1

n2ij

(
1− nij

ni·

)2

,

and after some algebra

tr(Z′2P2Z2)
2 =

v∑
i=1

bi∑
j=1

n2ij − 2

v∑
i=1

bi∑
j=1

n3ij
ni·

+

v∑
i=1

(
∑bi

j=1 n
2
ij)

2

n2i·
.

Hence, by Lemma 3.4,

lim
N→∞

1

N
tr(Z′2P2Z2 diag(Z′2P2Z2)) = δ02 − 2δ13 + δ24,

lim
N→∞

1

N
tr(Z′2P2Z2)

2 = δ02 − 2δ13 + ϑ.

(8.12)

The matrix P2 is idempotent, so tr P2
2 = tr P2, where tr P2 = b· − v, and

tr(Z′2P
2
2Z2) = tr(Z′2P2Z2) =

v∑
i=1

bi∑
j=1

(
nij −

n2ij
ni·

)
.

Moreover,

tr(P2 diag(P2)) =
v∑
i=1

bi∑
j=1

nij

(
1

nij
− 1

ni·

)
.

This implies that

(8.13)

lim
N→∞

1

N
tr(P2

2) = ϕ− ζ,

lim
N→∞

1

N
tr(P2 diag(P2)) = η − 2δ + γ−1,

lim
N→∞

1

N
tr(Z′2P

2
2Z2) = lim

N→∞

1

N
tr(Z′2P2Z2) = 1− δ12.

Combining (8.12) and (8.13) one gets

(8.14) lim
N→∞

1

N
Var(SSB) = σ4e

(
2ρ22(δ02 − 2δ13 + ϑ) + 4ρ2(1− δ12)

+ 2(ϕ− ζ) + kbρ
2
2(δ02 − 2δ13 + δ24) + ke(η − 2δ + γ−1)

)
.

The matrix P3 is idempotent, so

tr(P2
3) = tr(P3) =

v∑
i=1

bi∑
j=1

nij

(
1− 1

ni·

)
= N − b·,
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and furthermore

tr(P3 diag(P3)) =
v∑
i=1

bi∑
j=1

nij

(
1− 1

nij

)2

= N − 2b· +
v∑
i=1

bi∑
j=1

1

nij
.

This implies that

(8.15) lim
N→∞

1

N
tr(P2

3) = 1− ϕ, lim
N→∞

1

N
tr(P3 diag(P3)) = 1− 2ϕ+ η.

Hence,

(8.16) lim
N→∞

Var(SSE ) = 2σ4e(1− ϕ) + keσ
4
e(1− 2ϕ+ η).

Now, by the definition of Pi, i = 1, 2, 3,

tr(P1 diag(P2)) =

v∑
i=1

bi∑
j=1

nij

(
1

ni·
− 1

N

)(
1

nij
− 1

ni·

)
,

tr(P1 diag(P3)) =
v∑
i=1

bi∑
j=1

nij

(
1

ni·
− 1

N

)(
1− 1

nij

)
,

tr(P2 diag(P3)) =

v∑
i=1

bi∑
j=1

nij

(
1

nij
− 1

ni·

)(
1− 1

nij

)
.

This implies

lim
N→∞

1

N
tr(P1 diag(P2)) = δ − γ−1,

lim
N→∞

1

N
tr(P1 diag(P3)) = ζ − δ,

lim
N→∞

1

N
tr(P2 diag(P3)) = ϕ− η − ζ + δ.

(8.17)

By (8.5) and (8.11) after some algebra one obtains

tr(Z′2P1Z2Z
′
2P2Z2) =

v∑
i=1

bi∑
j=1

n3ij
ni·
−

v∑
i=1

(
∑bi

j=1 n
2
ij)

2

n2i·

− 1

N

v∑
i=1

bi∑
j=1

n3ij +
1

N

v∑
i=1

(
∑bi

j=1 n
2
ij)

2

ni·
,(8.18)

tr(Z′2P1Z2 diag(Z′2P2Z2)) =

v∑
i=1

bi∑
j=1

n3ij

(
1− nij

ni·

)(
1

ni·
− 1

N

)
.

Because the matrices Pi, i = 1, 2, 3, are pairwise orthogonal, i.e. PiPj = 0
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for i 6= j, by (8.17) and (8.18) one obtains

lim
N→∞

1

N
Cov(SSA,SSB)

= σ4e
(
2ρ22(δ13 − ϑ) + kbρ

2
2(δ13 − δ24) + ke(δ − γ1)

)
,

lim
N→∞

1

N
Cov(SSA,SSE ) = keσ

4
e(ζ − δ),

lim
N→∞

1

N
Cov(SSB ,SSE ) = keσ

4
e(ϕ− η − ζ + δ).

(8.19)

Thus, by (8.10), (8.14), (8.16) and (8.19) the asymptotic covariance matrix
of N−1/2Θ is given by

(8.20) ∆ = σ4e(Ξ1 + Ξ2 + Ξ3 + Ξ4),

where

Ξ1 =[
2(ρ21γ2+2ρ1ρ2δ02+2ρ1+2ρ2δ12+ρ22ϑ+ζ) 2ρ22(δ13−ϑ) 0

2ρ22(δ13−ϑ) 2(ρ22(δ02−2δ13+ϑ)+2ρ2(1−δ12)+ϕ−ζ) 0

0 0 2(1−ϕ)

]
,

Ξ2 =

γ2 0 0

0 0 0

0 0 0

, Ξ3 =

δ24 δ13 − δ24 0

δ13 − δ24 δ02 − 2δ13 + δ24 0

0 0 0


and

Ξ4 =

γ−1 δ − γ−1 ϕ− δ
δ − γ−1 η + γ−1 − 2δ ϕ− η − ζ + δ

ϕ− δ ϕ− η − ζ + δ 1− 2ϕ+ η

 .
This completes the proof of Theorem 4.1.

Proof of Proposition 4.2. First, we will show that

(8.21)
√
N(θ − E(θ))

d→ N(0,Σ) as N →∞.
In view of the Main Theorem in [14], in order to prove (8.21) it suffices

to show that the assumptions of that theorem are satisfied. Note that as-
sumptions (A2)–(A4) are equivalent to (i)–(iii) in [14]. Thus, one only has
to show that assumptions (iv) and (v) are satisfied.

By the proof of Theorem 4.1 (see (8.20)), under (A1)–(A4),
1

N
Var(Θ)→∆ as N →∞.

Hence, condition (v) of the Main Theorem is satisfied.
Furthermore, by (A2)–(A4), ΩN → Ω as N →∞ (see the proof o Theo-

rem 4.1). Thus, taking FN = Ω−1N and F = Ω−1 in assumption (iv) in [14],



Hypothesis testing in nested random models 77

one obtains
√
N(θ − E(θ))

d→ N(0,Ω∆Ω′) as N →∞.
By Theorem 4.1 one gets the claim.

Now, after some algebra using the identity E(a′Aa) = tr(AΛ) +µ′Aµ,
we have

E(θN ) = σ2e


1
v−1(ρ1 tr(Z′1P1Z1) + ρ2 tr(Z′2P1Z2) + tr(P1))
1

b·−v (ρ2 tr(Z′2P2Z2) + tr(P2))
1

N−b· tr(P3)

 .
Then, by (8.6)–(8.9), (8.13) and (8.15) it follows that

(8.22) E(θN )→ Γ as N →∞.

Combining (8.21) and (8.22) we get the assertion.

Proof of Theorem 4.3. (i) Note that F1 = MSB/MSE is a function of
MSA, MSB and MSE . Thus, differentiating F1 with respect to MSA, MSB
and MSE at

(8.23)
(
σ2e(ρ1ζ

−1 + ρ2δ12ζ
−1 + 1), σ2e

(
1 + ρ2(1− δ12)(ϕ− ζ)−1

)
, σ2e

)
,

one finds that the vector ∇F1 of first derivatives is equal to

∇F1 =

[
0,

1

σ2e
,−1 + ρ2(1− δ12)(ϕ− ζ)−1

σ2e

]′
.

Hence, by using the delta method (see e.g. [12]) one has
√
N

(
F1 −

(
1 +

ρ2(1− δ12)
ϕ− ζ

))
=
√
N(∇F1)

′(θ − Γ) + oP (1).

Thus, by [3, Theorem 4.2 and Proposition 5.2],
√
N

(
F1 −

(
1 +

ρ2(1− δ12)
ϕ− ζ

))
d→ N(0, σ2H1

),

where σ2H1
= (∇F1)

′Σ(∇F1). After some algebra one gets (i).
(ii) Using similar arguments to those in (i) one finds that

√
N(F2 − F̃ ) =

√
N(∇F2)

′(θ − Γ) + oP (1),

where F̃ and ∇F2 are the value of F2 and the vector of first derivatives of
F2 calculated at (8.23), and are equal to

F̃ = 1 +
ρ1ζ
−1 + ρ2δ12ζ

−1 − ρ2(1− δ12)(ϕ− ζ)−1

1 + ρ2(1− δ12)(ϕ− ζ)−1
,

∇F2 =

[
1

σ2e(1 + ρ2(1− δ12)(ϕ− ζ)−1)
,
−(ρ1ζ

−1 + ρ2δ12ζ
−1 + 1)

σ2e(1 + ρ2(1− δ12)(ϕ− ζ)−1)2
, 0

]′
.
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Hence, by Theorem 4.2,
√
N(F2− F̃ ) is asymptotically normal with variance

σ2H2
= (∇F2)

′Σ(∇F2). After straightforward computations one gets (ii).
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