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Shadowing for induced maps of hyperspaces
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Abstract. Given a nonempty compact metric space X and a continuous function
f : X → X, we study shadowing and h-shadowing for the induced maps on hyperspaces,
particularly in symmetric products, Fn(X), and the hyperspace 2X of compact subsets
of X. We prove that f has shadowing [h-shadowing] if and only if 2f has shadowing
[h-shadowing].

1. Introduction. A continuous function f : X → X on a compact
metric space induces a number of maps on related spaces. There is a close
relationship, for example, between the dynamical behaviour of f , the topo-
logical structure of the inverse limit space lim←−(X, f) and the induced shift
map on (X, f). This situation has been extensively studied (see for example
[2, 14, 28] and the references contained therein). Over the past few years
there has been increasing interest in the study of the induced map on the
hyperspace of closed subsets and various of its subsets equipped with the
Vietoris topology (or Hausdorff metric). This study was initiated by Bauer
and Sigmund [5] and it has been argued [10] that, from a computational and
domain-theoretic point of view, this is the natural approach to dynamical
systems.

Given a compact metric space X, 2X is the hyperspace of nonempty
closed subsets ofX with the Vietoris topology. A continuous map f : X → X
induces a continuous map 2f : 2X → 2X defined by 2f (A) = f(A). A number
of well-studied subspaces (such as the collections Cn(X) of closed sets with
at most n components, F (X) of finite subsets, or Fn(X) of subsets with at
most n points) are invariant under this map, and therefore form dynamical
systems in their own right. It turns out that a number of dynamical proper-
ties lift between these systems. For example, 2f is transitive if and only if it
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is weakly mixing if and only if f is weakly mixing [1, 26]. In [11] the authors
study chain transitivity, chain recurrence and periodicity of induced maps
on Fn(X) and 2X . Relationships between the entropy of the map f and the
entropy of the induced maps on 2X , Cn(X), Fn(X) and F (X) are stud-
ied in [12] and [18]. In [13] the authors study periodicity, recurrence, quasi
periodicity, wandering points, shadowing, exactness and nonwandering for
the induced map in the hyperspace Fn(X). Induced maps on the symmetric
products Fn(X) are also studied in [17] and [15].

Of particular relevance in the computation of a dynamical system is
the notion of shadowing, which is the focus of this paper. Given a map f ,
a δ-pseudo orbit is a (finite or infinite) sequence of points such that the
distance between f(xi) and xi+1 is less than δ. A typical example of a
pseudo orbit would be the points produced computationally in calculating
the orbit of a point where there is a round-off error. A pseudo orbit is said
to be ε-shadowed if there is a real orbit whose points track the pseudo orbit
within a distance of ε. The map f has the shadowing property if, for a given ε,
there is a δ such that δ-pseudo orbits are ε-shadowed. Shadowing has been
studied in the context of numerical analysis [8, 7, 24], at times being cited as
a prerequisite to achieving accurate mathematical models, and extensively
investigated as a property in its own right [9, 19, 21, 23, 25, 27, 29]. Bowen
was one of the first to consider this property in [6], where he used it in the
study of ω-limit sets of Axiom A diffeomorphisms.

Some work on the shadowing of induced hyperspace maps has been done.
In [13] it is proved that, for any n ≥ 1, if the restriction fn of 2f to Fn(X)
has shadowing, then f has shadowing. The authors also prove that if f has
shadowing, then f2 has shadowing, but give an example (z 7→ z2 on S1)
for which f has shadowing but fn does not have shadowing for any n ≥ 3.
Interestingly, we prove below that the pseudo orbits in this example that
cannot be shadowed in Fn(X) can be shadowed in Fm(X) for some m > n.
Sakai [29] proves that a positively expansive map on a compact metric space
has shadowing if and only if it is open. In [30] it is shown that the induced
map 2f of a positively expansive open map f is open but need not be
positively expansive. However, the authors show that such induced maps do
have shadowing. Se also [16]

In this paper we show that, in fact, 2f has shadowing if and only if f
has shadowing.

If a map f : X → X has shadowing, then the restriction f<ω of 2f to
F (X) has shadowing for finite pseudo orbits. Since F (X) is not compact,
this is not enough to show that F (X) has shadowing. However F (X) is
dense in 2X and invariant under 2f , and this is enough, via a general result
on shadowing in dense subspaces, to prove that f has shadowing if and only
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if 2f has shadowing. Using slightly different arguments we prove a similar
result which says that f has the much stronger property of h-shadowing if
and only if 2f does.

2. Preliminaries. We start with some definitions (see [22]).

Definition 2.1. Let X be a compact metric space. Consider the follow-
ing hyperspaces of X:

• 2X = {A ⊆ X : A is nonempty and closed} is the hyperspace of closed
nonempty subsets of X.
• C(X) = {A ∈ 2X : A is connected} is the hyperspace of subcontinua

of X.
• Fn(X) = {A ∈ 2X : A has at most n points} is the n-fold symmetric

product of X.
• F (X) =

⋃∞
n=1 Fn(X) is the collection of all finite subsets of X.

Definition 2.2. A map f : X → Y between compact metric spaces
induces the following maps:

• 2f : 2X → 2Y given by 2f (A) = f(A).
• C(f) : C(X)→ C(Y ) given by C(f) = 2f |C(X).

• fn : Fn(X)→ Fn(Y ) given by fn = 2f |Fn(X).

• f<ω : F (X)→ F (X) given by f<ω = 2f |F (X).

Given a metric space X with metric d, for any r > 0 and any A ∈ 2X ,
we define the open ball about A of radius r by

NX(A, r) = {x ∈ X : d(x,A) < r}.
For the special case when A = {x} we write NX(x, r). If X is a compact
metric space with metric d, then (see for example [20]) 2X is a compact
metric space when equipped with the Hausdorff metric

H(A,B) = inf{ε > 0 : A ⊆ NX(B, ε) and B ⊆ NX(A, ε)}.
The topology generated by H coincides with the Vietoris topology.

3. Shadowing. It is shown in [30] that if f is a positively expansive
open map, then 2f has shadowing. Here we prove that if one of the induced
maps fn, C(f), 2f or f<ω has shadowing, then f has shadowing. Also we
prove that if f has shadowing, then f<ω has finite shadowing, which, in
turn, implies that 2f has shadowing.

We start with basic definitions. Let X be a compact metric space and let
f : X → X be a continuous function. For δ > 0, a (finite or infinite) sequence
Γ = 〈x0, x1, . . . 〉 of points in X is a δ-pseudo orbit if d(f(xi), xi+1) < δ for
every i ≥ 0. If ε > 0, we say that the sequence 〈y0, y1, . . . 〉 ε-shadows Γ
provided d(yi, xi) < ε for every i. If yi = f i(y) for some y ∈ X, we say that
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y shadows the sequence Γ . We say that f has shadowing if for every ε > 0
there is δ > 0 such that every δ-pseudo orbit is ε-shadowed by some point
in X. In the case that only finite pseudo orbits are shadowed, we say that
f has finite shadowing. If X is compact, then f has shadowing if and only
if f has finite shadowing (see, for example, [4, Remark 1]).

We first prove a general result about shadowing that we assume to be
well known.

Lemma 3.1. Let X be a compact metric space, let f : X → X be a
continuous function and let Y be a dense invariant subset of X. Then f has
finite shadowing if and only if f |Y has finite shadowing.

Proof. Assume first that f has shadowing. Let ε > 0 and choose δ such
that every δ-pseudo orbit in X is ε/2-shadowed. Let Γ = 〈y0, y1, . . . , yr〉 be a
δ-pseudo orbit in Y . Then Γ is a δ-pseudo orbit in X. Since f has shadowing,
there is a point x ∈ X which ε/2-shadows Γ , i.e., d(f i(x), yi) < ε/2 for every
i ∈ {0, 1, . . . , r}. Since f is continuous, there is ηr−1 > 0 with ηr−1 < ε/2
and f(NX(f r−1(x), ηr−1)) ⊆ NX(f r(x), ε/2). Also, there is ηr−2 > 0 with
ηr−2 < ηr−1 and f(NX(f r−2(x), ηr−2)) ⊆ NX(f r−1(x), ηr−1). Continuing
this process, we arrive at η1 > 0 with η1 < η2 and f(NX(f(x), η1)) ⊆
NX(f2(x), η2). Finally, there is η0 > 0 with η0 < η1 and f(NX(x, η0)) ⊆
NX(f(x), η1). By construction, every y ∈ NX(x, η0) ∩ Y ε-shadows Γ .

Now assume that f |Y has finite shadowing, let ε > 0 and let Γ =
〈x0, x1, . . . , xr〉 be a δ/3-pseudo orbit in X, where δ is given by shadowing in
f |Y for ε/2. Since f is continuous and X is compact, f is uniformly continu-
ous and there exists η > 0 with η < δ/3 and η < ε/2 such that if d(x, y) < η
then d(f(x), f(y)) < δ/3. For each i ∈ {0, 1, . . . , r}, let yi ∈ NX(xi, η) ∩ Y .
Hence d (f(xi), f(yi)) < δ/3. Thus, Γ ∗ = 〈y0, y1, . . . , yr〉 is a δ-pseudo orbit
in Y because

d(f(yi), yi+1) ≤ d(f(yi), f(xi)) + d(f(xi), xi+1) + d(xi+1, yi+1)

< δ/3 + δ/3 + δ/3 = δ.

Since f |Y has shadowing, there is a point y ∈ Y which ε/2-shadows Γ ∗.
But then d(f i(y), xi) < d(f i(y), yi) + d(yi, xi) < ε/2 + ε/2 = ε. Therefore,
y ε-shadows Γ and f has finite shadowing.

Turning now to induced maps on hyperspaces, we start with a simple
observation.

Theorem 3.2. Let X be a compact metric space and let f : X → X
be a continuous function. Let n ≥ 1. If any of fn, C(f), 2f or f<ω has
shadowing, then f has shadowing.

Proof. The proof is identical in each case, so we present it for 2f . Sup-
pose that 2f has shadowing. Let ε > 0 and let δ > 0 be given by shad-
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owing for 2f . Let Γ = 〈x0, x1, . . . , xr〉 be a δ-pseudo orbit in X. Then
Γ ∗ = 〈{x0}, {x1}, . . . , {xr}〉 is a δ-pseudo orbit in 2X . Since 2f has shadow-
ing, there is a point A ∈ 2X which ε-shadows Γ ∗. But then every point x
of A ε-shadows Γ .

As mentioned above, in [13] it is shown that f has shadowing if and only
if f2 has shadowing but that there is a map f with shadowing for which
certain pseudo orbits in Fn(X) can only be shadowed in Fm(X) for some
m > n. The fact that finite sets can always be shadowed by larger finite sets
turns out to be a general property of shadowing maps.

Theorem 3.3. Let X be a compact metric space and let f : X → X be
a continuous function. If f has shadowing, then f<ω has finite shadowing.

Proof. Fix ε > 0 and let δ > 0 be given by shadowing for f . Let Γ =
〈A0, A1, . . . , Ar〉 be a finite δ-pseudo orbit in F (X) and assume that |Ai| =
ni for each i ∈ {0, 1, . . . , r}. We will construct a family of δ-pseudo orbits
in X, denoted {Γj : j ≤ n}, for some n, such that, writing

Γj = 〈aj0, a
j
1, . . . , a

j
r〉,

we have Ai = {aji : j ≤ n} for each i ≤ r.
To this end, suppose thatAr = {a1r , a2r , . . . , anr

r }.For each jwith1≤ j ≤ nr,
we first construct a δ-pseudo orbit in X with ith element in Ai, whose fi-
nal element is ajr. Since Γ is a δ-pseudo orbit, we can choose ajr−1 ∈ Ar−1
such that d(f(ajr−1), a

j
r) < δ. Again, there is some ajr−2 ∈ Ar−2 such that

d(f(ajr−2), a
j
r−1) < δ. Continuing in this way, we have δ-pseudo orbits

Γj = 〈aj0, a
j
1, . . . , a

j
r〉

for each j ≤ nr, such that Ar = {ajr : j ≤ nr} and {aji : j ≤ nr} ⊆ Ai for
each i ≤ r.

Let k = max{i < r : Ai 6= {aji : j ≤ nr}} (if no such k exists, then we are

done) and write Ak−{ajk : j ≤ nr} = {ajk : nr < j ≤ n′k}. Exactly as for Ar,

for each nr < j ≤ n′k, we can construct a δ-pseudo orbit Γ ′j = 〈aj0, a
j
1, . . . , a

j
k〉

such that aji ∈ Ai for i ≤ k. Clearly Ak = {ajk : j ≤ n′k}. Now, since

f(ajk) ∈ f<ω(Ak) and H(f<ω(Ak), Ak+1) < δ, there is ajk+1 ∈ Ak+1 such

that d(f(ajk), a
j
k+1) < δ. Similarly, for each nr < j ≤ n′k and k < i < r,

there are aji ∈ Ai such that d(f(aji ), a
j
i+1) < δ, so that we can extend Γ ′j to

a δ-pseudo orbit Γj which starts in A0 and ends in Ar.

Repeating this process, we clearly see that we can construct the collection
{Γj : j ≤ n} of δ-pseudo orbits in X. Since f has shadowing, for each Γj
there is a point bj ∈ X which ε-shadows Γj . Let B = {b0, b1, . . . , bm}. By
construction, B ε-shadows Γ .
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Our main theorem now follows easily.

Theorem 3.4. Let X be a compact metric space and let f : X → X be a
continuous function. Then f has shadowing if and only if 2f has shadowing.

Proof. By Theorem 3.2, if 2f has shadowing, then f has shadowing.
Conversely, if f has shadowing, then f<ω has finite shadowing by Theorem
3.3, but F (X) is an invariant dense subset of 2X , so by Lemma 3.1, 2f has
shadowing.

It also follows immediately from Theorems 3.2 and 3.3 that f<ω has
finite shadowing whenever fn has shadowing for some positive integer n. In
Example 3.5 below, fn has shadowing for every positive integer n but f<ω

does not have infinite shadowing (recall that F (X) is not a compact space).
The proof of this fact isolates the fundamental idea in [13, Example 12].
The fact that this system has shadowing is well-known folklore, though we
include a proof for completeness.

Example 3.5. Let X = {1/2n : n ∈ N∪{0}}∪{0}, and let f : X → X be
given by: f(0) = 0, f(1) = 1, and for every n ∈ N, n ≥ 1, f(1/2n) = 1/2n−1.
To see that f has shadowing let ε > 0. Let k0 be such that 1/2k0+1 < ε ≤
1/2k0 and choose δ < 1/2k0 − 1/2k0+1. Let Γ = 〈x0, x1, . . .〉 be a δ-pseudo
orbit in X. Notice that if xm = 1/2k0 for some m ≥ 0, then 〈xm, xm+1, . . .〉
must be a real orbit because of the choice of δ. There are two cases to
consider: Γ ⊆ [0, ε) or Γ ∩ [ε, 1] 6= ∅. In the first case, y = 0 ε-follows Γ . In
the second case, let m be the least nonnegative integer such that xm > ε.
Either m = 0 and Γ is a real orbit (which shadows itself), or xm = 1/2k0

and so y = 1/2k0+m ε-shadows Γ .

To see that f<ω does not have infinite shadowing let ε = 1/8 and δ > 0.
There is N ≥ 3 such that 1/2N < δ. Let A0 = {0, 1}, A1 = {0, 1/2N , 1},
A2 = f<ω(A1) = {0, 1/2N−1, 1}, A3 = (f<ω)2(A1) = {0, 1/2N−2, 1}, . . . ,
AN = (f<ω)N−1(A1) = {0, 1/2N−(N−1),1}= {0, 1/2, 1}, AN+1 = (f<ω)N(A1)
= {0, 1} = A0. By construction

Γ = 〈A0, A1, . . . , AN , A0, A1, A2, . . . 〉
is a δ-pseudo orbit in F (X) (which actually is a δ-pseudo orbit in F3(X)).
It is not difficult to see that the sets that ε-shadow Γ are of the form

B =

{
0,

1

2kN
,

1

2(k−1)N
,

1

2(k−2)N
, . . . ,

1

2N
, 1

}
.

The number of iterations that B is going to ε-shadow Γ depends on k.

4. h-Shadowing. The following definition was introduced in [4] and is
motivated by the fact that shifts of finite type actually enjoy a stronger
shadowing property, h-shadowing, or shadowing with exact hit, which hap-
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pens to coincide with shadowing in shift spaces (but not necessarily in other
systems). In fact (see [3]), it turns out that open maps that are expanding (in
the sense that, for some µ > 1 and small enough ε, Bµε(f(x)) ⊆ f(Bε(x)))
have h-shadowing.

Definition 4.1. Let X be a compact metric space and let f : X → X
be a continuous function. We say that f has h-shadowing if for every ε > 0
there is δ > 0 such that, for every finite δ-pseudo orbit Γ = 〈x0, x1, . . . , xr〉,
there is a point x ∈ X such that d(f i(x), xi) < ε for every i < r and
f r(x) = xr.

The proofs of the following two theorems are similar to those of Theorems
3.2 and 3.3, respectively.

Theorem 4.2. Let X be a compact metric space and let f : X → X
be a continuous function. If fn, 2f or f<ω has h-shadowing, then f has
h-shadowing.

Theorem 4.3. Let X be a compact metric space and let f : X → X be
a continuous function. If f has h-shadowing, then f<ω has h-shadowing.

Also, it follows immediately from Theorems 4.2 and 4.3 that if fn has
h-shadowing for every positive integer n, then f<ω has h-shadowing.

Lemma 4.4. Let X be a compact metric space, let f : X → X be a
continuous function and let Y be a dense invariant subset of X. If f |Y has
h-shadowing, then f has h-shadowing.

Proof. Suppose that f |Y has h-shadowing. Let ε > 0 and choose δ > 0
so that every finite δ-pseudo orbit in Y is ε/2-h-shadowed by some y ∈ Y .
Let Γ = 〈x0, x1, . . . , xr〉 be a δ/3-pseudo orbit in X. By the proof of Lemma
3.1, for each n > 0 there is a δ-pseudo orbit in Y , Γ ∗n = 〈yn,0, yn,1, . . . , yn,r〉,
such that d(xi, yn,i) ≤ ε/2 and d(xr, yn,r) < 1/2n. By h-shadowing in Y ,
there is a point yn ∈ Y which ε/2-shadows Γ ∗n . Then, if y is the limit in X
of a convergent subsequence from {yn : n ≥ 1}, y ε-h-shadows Γ .

The converse of Lemma 4.4 is not true. To see this, let f : [0, 1]→ [0, 1]
be the full tent map with slope 2. Then, according to [3, Example 5.4], f has
h-shadowing. Let Y = ([0, 1]−Q)∪{0, 1}. Then Y is a dense invariant (but
not strongly invariant) subset of [0, 1], but f |Y does not have h-shadowing
because for any δ there are δ-pseudo orbits ending in 1, which obviously
cannot be shadowed by an orbit that ends in 1. However, it is true that f
has h-shadowing if and only if 2f has shadowing.

Theorem 4.5. Let X be a compact metric space and let f : X → X be
a continuous function. Then 2f : 2X → 2X has h-shadowing if and only if
f<ω : F (X)→ F (X) has h-shadowing.
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Proof. Assume first that 2f has h-shadowing, let ε > 0, and let δ > 0 be
given by h-shadowing for 2f . Let Γ = {A0, A1, . . . , Ar} be a δ-pseudo orbit
in F (X). Then Γ is a δ-pseudo orbit in 2X . Since 2f has h-shadowing, there
is a point C in 2X such that H(f i(C), Ai) < ε/2 for i ∈ {0, 1, . . . , r − 1}
and f r(C) = Ar. Let Br = Ar and assume that Br = {b1r , . . . , bnr

r }. Since

Br = f r(C), for each point bjr in Br there is a point bjr−1 in f r−1(C) such that

f(bjr−1) = bjr. Let B∗r−1 = {b1r−1, . . . , b
nr
r−1}. If H(B∗r−1, f

r−1(C)) < ε/2, let

Br−1 = B∗r−1. Otherwise, there are finitely many points bnr+1
r−1 , . . . , bnr+k

r−1 in

f r−1(C)\NX(Br, ε/2) such that if Br−1 = {b1r−1, . . . , b
nr
r−1, b

nr+1
r−1 , . . . , bnr+k

r−1 },
then Br−1 ⊆ f r−1(C) and H(Br−1, f

r−1(C)) < ε/2, which implies
H(Br−1, Ar−1) < ε. Rename the points in Br−1 as follows: Br−1 ={
b1r−1, . . . , b

nr−1

r−1
}

. Continuing this process we obtain B0 = {b10, . . . , b
n0
0 },

a finite subset of C, which ε-shadows Γ and, by construction, f r(B0) = Ar.
Thus, f<ω has h-shadowing.

For the converse just recall that 2f |F (X) = f<ω, therefore, if f has h-

shadowing then so does 2f by Lemma 4.4.

A consequence of Theorems 4.3 and 4.5 is the following result.

Theorem 4.6. Let X be a compact metric space and let f : X → X
be a continuous function. Then f has h-shadowing if and only if 2f has
h-shadowing.
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