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When automorphisms of P(κ)/[κ]<ℵ0 are trivial off a small set

by

Saharon Shelah (Piscataway, NJ, and Jerusalem) and
Juris Steprāns (Toronto)

Abstract. It is shown that if κ > 2ℵ0 and κ is less than the first inaccessible cardinal
then every automorphism of P(κ)/[κ]<ℵ0 is trivial outside of a set of cardinality 2ℵ0 .

1. Introduction. The study of automorphisms of P(ω)/[ω]<ℵ0 was ini-
tiated by W. Rudin [4, 5] who showed that the Continuum Hypothesis can
be used to construct non-trivial autohomeomorphisms of βN/N, in other
words, homeomorphisms from βN/N to βN/N that are not induced by any
function from N to N. By Stone duality, this means that there are auto-
morphisms of P(N)/[N]<ℵ0 that are not induced by a function from N to N.
A major advance was provided by S. Shelah [6] who showed that it is con-
sistent with set theory that every automorphism of P(ω)/[ω]<ℵ0 is induced
by a function from ω to ω. Later, B. Velickovic [7] showed that the conjunc-
tion of OCA and MA implies that every automorphism of P(ω1)/[ω1]<ℵ0 is
induced by a function from ω1 to ω1. Moreover, he showed that PFA implies
that if κ is uncountable then every automorphism of P(κ)/[κ]<ℵ0 is induced
by a function from κ to κ.

However, finding extensions of Rudin’s result on the existence on non-
trivial automorphisms of P(κ)/[κ]<ℵ0 has proven to be much harder. This
article will provide some reasons for this. In particular, a positive answer
to the following question from [7] will be given for cardinals below the first
inaccessible: Can it be shown from MA and OCA alone that for every un-
countable κ, every automorphism of P(κ)/[κ]<ℵ0 is induced by a function
from κ to κ?
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The main result to be established in this article is that if κ > 2ℵ0 and
κ is less than the first inaccessible cardinal then for every automorphism of
P(κ)/[κ]<ℵ0 there is a set X ⊆ κ such that |κ \X| ≤ 2ℵ0 and the restriction
of the automorphism to P(X)/[X]<ℵ0 is induced by a function from κ to κ.

The question of cardinals not greater than the continuum has been dealt
with by P. Larson and P. McKenney [3] who have shown the following.

Theorem 1.1 (Larson & McKenney). If κ ≤ 2ℵ0 and Ψ is an automor-
phism of P(κ)/[κ]<ℵ0 such that Ψ�P(X)/[X]<ℵ0 is trivial for each X ∈ [κ]ℵ1

then Ψ is trivial.

Without too much extra work, these two results then provide a partial
answer to Velickovic’s question.

Corollary 1.2. If MA and OCA both hold and if κ is less than the
first inaccessible then every automorphism of P(κ)/[κ]<ℵ0 is trivial.

Proof. Let κ be less than the first inaccessible cardinal and let Φ be an
automorphism of P(κ)/[κ]<ℵ0 . By Theorem 3.1 there is X ⊆ κ such that
|X| = 2ℵ0 and there is a function that induces Φ�P(κ \ X)/[κ \ X]<ℵ0 . It
therefore suffices to show that Φ�P(X)/[X]<ℵ0 is trivial. To do so, it suffices
by Theorem 1.1 to show that if Y ⊆ X and |Y | = ℵ1 then Φ�P(Y )/[Y ]<ℵ0 is
trivial. But this follows from the theorem of Velickovic [7] that the conjunc-
tion of OCA and MA implies that every automorphism of P(ω1)/[ω1]<ℵ0 is
trivial. Hence Φ is trivial.

2. Terminology and notation

Notation 2.1. For X ⊆ κ let [X] be the equivalence class of X modulo
the ideal [X]<ℵ0 . For any infinite set X the notation P(X)/Fin will be used
in place of P(X)/[X]<ℵ0 , it being understood that Fin refers to [X]<ℵ0 as
appropriate. For any function f and any set x let f〈x〉 denote the image
of x under f .

Definition 2.2. A homomorphism Φ : P(κ)/Fin → P(κ)/Fin will be
said to be λ-trivial if there is a set S ∈ [κ]λ and a one-to-one function
F : κ \ S → κ such that F 〈X〉 ∈ Φ([X]) for every X ⊆ κ \ S. If Φ :
P(κ)/Fin → P(κ)/Fin is a homomorphism, let Φ̂ be some lifting of Φ. In
other words, Φ̂(X) is a function from P(κ) to P(κ) such that Φ̂(X) ∈ Φ([X]))
for each X ⊆ κ and Φ̂ is constant on each [X].

Theorem 2.3 (Balcar and Frankiewicz [1]). For any cardinal κ and any
automorphism Ψ of P(κ)/Fin, if Ψ([X]) = [Y ] and |X|, |Y | ≥ ℵ1 then
|X| = |Y |; moreover, if |X| = ℵ0 then |Y | ≤ ℵ1.

In particular, there is no isomorphism from P(κ)/Fin to P(λ)/Fin unless
κ = λ or {κ, λ} = {ℵ0,ℵ1}. In this context, it is interesting to note that it is
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shown in [2] that if there is an isomorphism from P(ω1)/Fin to P(ω)/Fin
then there is a non-trivial automorphism of P(ω)/Fin itself.

Definition 2.4. If B is a subalgebra of P(X) and λ is an infinite car-
dinal, define Iλ(B) = [X]<λ ∩B and Iλ(B) =

⋃
Iλ(B). The subalgebra of

P(X \ Iλ(B)) consisting of {B \ Iλ(B) | B ∈ B} will be denoted by Bλ.

Note that Bλ may be trivial if λ ≥ |X| or [X]<λ ⊆ B.

Definition 2.5. If Φ is an automorphism of P(X)/Fin and B is a
subalgebra of P(X) then define BΦ to be the algebra generated by Φ̂〈B〉,
noting that Φ̂〈B〉 may not itself be a subalgebra. The notation BΦ

λ will be
used instead of the more cumbersome (BΦ)λ. If λ is an uncountable cardinal,
define Φλ : Bλ → BΦ

λ by Φλ(B \ Iλ(B)) = Φ̂(B) \ Iλ(BΦ) for B ∈ B.

Lemma 2.6. If Φ : P(X)/Fin → P(X)/Fin is a one-to-one homomor-
phism, B is a subalgebra of P(X), λ > ℵ1 and |B| < cof(λ) then Φλ is a
well defined isomorphism from Bλ to BΦ

λ .

Proof. To see that the mapping is well defined, begin by noting that
|Iλ(B)| < λ. Now suppose that B \ Iλ(B) = B′ \ Iλ(B). Then |B4B′| < λ,
and hence, by Theorem 2.3, |Φ̂(B 4 B′)| < λ. However Φ̂(B) 4 Φ̂(B′) ≡∗
Φ̂(B4B′) and so Φ̂(B)4 Φ̂(B′) ⊆ Iλ(BΦ). In other words, Φλ(B) = Φλ(B′).

To see that Φλ is a homomorphism suppose that Φλ(B) 6⊆ Φλ(B′). Then
|Φ̂(B) \ Φ̂(B′)| ≥ λ. Since Φ̂(B) \ Φ̂(B′) ≡∗ Φ̂(B \B′), it follows from Theo-
rem 2.3 that |B \B′| ≥ λ and so B \ Iλ(B) 6⊆ B′ \ Iλ(B).

Since Φ is a homomorphism, in order to see that Φλ is one-to-one it
suffices to show that if Φλ(B) = ∅ then B ⊆ Iλ(B). This is immediate from
Theorem 2.3.

To see that Φλ is onto let B ∈ BΦ
λ . By definition there is some B′ ∈ Bλ

such that Φ̂(B′) ≡∗ B, and hence Φ̂(B′) 4 B ⊆ Iλ(BΦ). In other words,
Φλ(B′) \ Iλ(BΦ) = B \ Iλ(BΦ) as required.

3. The lemmas needed for the main result. The main result of this
article is the following.

Theorem 3.1. If κ > 2ℵ0 and κ is less than the first inaccessible cardinal
then every automorphism of P(κ)/Fin is 2ℵ0-trivial.

The proof proceeds by induction on κ, using several lemmas. The first is
immediate.

Lemma 3.2. If every automorphism of P(κ)/Fin is λ-trivial and ev-
ery automorphism of P(λ)/Fin is µ-trivial then every automorphism of
P(κ)/Fin is µ-trivial.

The next lemma deals with the successors of cardinals with uncountable
cofinality.
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Lemma 3.3. If κℵ0 = κ and ν ≤ 2κ then every automorphism of P(ν)/Fin
is κ-trivial.

The singular cardinals of uncountable cofinality are easy to handle, as
the next lemma demonstrates.

Lemma 3.4. If κ is singular of uncountable cofinality and if for every
cardinal λ < κ every automorphism of P(λ)/Fin is 2ℵ0-trivial then so is
every automorphism of P(κ)/Fin.

Proof. Let Φ be an automorphism of P(κ)/Fin. Let {κξ}ξ∈cof(κ) be an
increasing, cofinal sequence of cardinals in κ. Using the hypothesis, for each
ξ ∈ cof(κ) choose Xξ and Fξ : κξ \Xξ → κ such that

• |Xξ| ≤ 2ℵ0 ,
• Fξ〈A〉 ∈ Φ([A]) for each A ⊆ κξ \Xξ.

Then let

X =
( ⋃
ξ∈cof(κ)

Xξ

)
∪
( ⋃
{ξ,η}∈[cof(κ)]2

{ζ ∈ κ | Fξ(ζ) 6= Fη(ζ)}
)

and note that |X| ≤ cof(κ) · 2ℵ0 . Let F =
⋃
ξ∈cof(κ) Fξ�(κ \ X) and note

that F is a function.
To see that F 〈A〉 ∈ Φ([A]) for each A ⊆ κ \ X observe that otherwise

there is some infinite A ⊆ κ \X such that F 〈A〉∩Φ([A]) is finite. Moreover,
A can then be chosen to be countable, and hence A ⊆ κξ \ Xξ for some
ξ ∈ cof(κ), contradicting F 〈A〉 = Fξ〈A〉.

If cof(κ) ≤ 2ℵ0 there is nothing else to do. Otherwise, it has been
shown that Φ is cof(κ)-trivial. Since cof(κ) < κ, the result now follows
from Lemma 3.2.

The next two lemmas deal with the harder case of singular cardinals of
countable cofinality.

Lemma 3.5. If κ has cofinality ω and for every λ < κ every automor-
phism of P(λ)/Fin is 2ℵ0-trivial then every automorphism of P(κ)/Fin is
2ℵ0-trivial.

Lemma 3.6. Suppose that

• κ has countable cofinality,
• 2µ < κ for each µ < κ,
• if µ ≤ κ then every automorphism of P(µ)/Fin is 2ℵ0-trivial.

Then every automorphism of P(ρ)/Fin is κ-trivial for every cardinal ρ such
that κ+ ≤ ρ ≤ κℵ0.

Proof of Theorem 3.1. If the result fails, let λ be the least cardinal such
that there is an automorphism Φ of P(λ)/Fin that is not 2ℵ0-trivial. By
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Lemmas 3.4 and 3.5, λ must be a regular cardinal. Since λ is less than the
first inaccessible, there must be some least κ < λ such that 2κ ≥ λ. From
Lemma 3.3 applied to κ and λ, it follows that κℵ0 > κ. If κℵ0 < λ then
Lemma 3.3 applied to κℵ0 and λ implies that Φ is κℵ0-trivial. A contradiction
then follows from the induction hypothesis and Lemma 3.2. It can therefore
be assumed that κℵ0 ≥ λ.

Lemma 3.6 implies that either κ has uncountable cofinality or there is
ν < κ such that 2ν ≥ κ. (The third alternative cannot fail because of the
minimality of λ.) If the second alternative holds then the minimality of κ
implies that 2ν < λ. Since 2ν = (2ν)ℵ0 and 22ν ≥ 2κ ≥ λ it is once again
possible to apply Lemma 3.3 to 2ν and λ to get the contradiction that
Φ is 2ν-trivial and 2ν < λ. So it suffices to consider the case that κ has
uncountable cofinality and 2ν < κ for each ν < κ. This implies that νℵ0 < κ
for each ν < κ, and hence κℵ0 = κ, which has already been ruled out.

4. Automorphisms of P(2κ)/Fin when κℵ0 = κ

Proof of Lemma 3.3. Assume that κℵ0 = κ and ν ≤ 2κ, and note that
there is nothing to prove if ν ≤ κ. Let Ψ be an automorphism of P(ν)/Fin
and Ψ̂ a lifting of Ψ . Begin by noting that if (2X)σ denotes the space 2X with
the topology generated by Gδ sets in 2X with the usual product topology,
then the density of (2ν)σ is less than or equal to the density of (22κ)σ, and
this in turn is no greater than κℵ0 = κ. Hence there is a family D ⊆ P(ν) of
cardinality κ such that for any two disjoint countable sets A ⊆ ν and B ⊆ ν
there is D ∈ D such that A ⊆ D and B ∩D = ∅.

Let M be an elementary submodel of (H((2κ)+),D, Ψ̂ ,∈) such that
[M]ℵ0 ⊆M and |M| = κ. Let A = P(ν) ∩M and note that A is a Boolean
σ-subalgebra of P (ν) containing D. Moreover, A contains the Boolean σ-
subalgebra generated by Ψ̂〈A〉. By Lemma 2.6, Ψκ+ : Aκ+ → AΨκ+ is an
isomorphism, but it will be shown by using the following lemma that it is
in fact a σ-isomorphism.

Lemma 4.1. If C ⊆ Aκ+ is countable then

Ψκ+
(⋃

C
)

=
⋃
Ψκ+〈C〉.

Proof. Since Ψκ+ is a homomorphism, we have Ψκ+(
⋃
C) ⊇

⋃
Ψκ+〈C〉, so

suppose that

(4.1) Ψκ+
(⋃

C
)
\
⋃
Ψκ+〈C〉 6= ∅.

Then

(4.2) Z = Ψ̂
(⋃

C
)
\
⋃
Ψ̂〈C〉 6= ∅,
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and moreover Z ∈ M because Ψ̂ and C both belong to M. From (4.1) it
follows that |Z| ≥ κ+. By elementarity there is some Z∗ ⊆ ν such that
Ψ̂(Z∗) ≡∗ Z. By Theorem 2.3, |Z∗| ≥ κ+ and so there is C ∈ C such that
|C ∩ Z∗| ≥ κ+. Hence Ψ̂(C ∩ Z∗) ⊆∗ Z ∩ Ψ̂(C). By Theorem 2.3 again,
|Ψ̂(C ∩ Z∗)| ≥ κ+, contradicting Z ∩ Ψ̂(C) = ∅.

Corollary 4.2. Ψκ+ is a σ-isomorphism.

Now, for ξ ∈ ν \ Iκ+(A) let U(ξ) be the ultrafilter on Aκ+ defined by
U(ξ) = {A ∈ Aκ+ | ξ ∈ A}. Let U(ξ, Ψ) be the image of U(ξ) under Ψκ+ ,
and note that U(ξ, Ψ) is also an ultrafilter on AΨκ+ .

Lemma 4.3. For all but finitely many ξ ∈ ν \ Iκ+(A) the cardinality of⋂
U(ξ, Ψ) is at most 1.

Proof. Let B = {ξ ∈ ν \Iκ+(A) | |
⋂
U(ξ, Ψ)| > 1} and suppose that B is

infinite. Choose a countable B̄ ⊆ B and then choose {β0, β1} ∈ [
⋂
U(β, Ψ)]2

for each β ∈ B̄. Let Bi = {βi | β ∈ B̄}. Observe that since D ⊆ A, it
follows that if ξ 6= η then (

⋂
U(ξ, Ψ))∩

⋂
U(η, Ψ) = ∅, and hence {β0, β1}∩

{β̄0, β̄1} = ∅ if β and β̄ are distinct elements of B̄. Therefore B0 ∩B1 = ∅.
Then let C0 be such that Ψ̂(C0) ≡∗ B0. Now, even though B0 is count-

able, Theorem 2.3 does not rule out the possibility that |C0| = ℵ1. In this
case choose a countable C∗0 ⊆ C0 and let W = {β ∈ B̄ | β0 ∈ Ψ̂(C∗0 )}.
Then let C1 be such that Ψ̂(C1) ≡∗ {β1 | β ∈ W}. Once again, C1 might
be uncountable. If this is the case, choose a countable B∗1 ⊆ C1 and let

W̄ = {β ∈ W | β1 ∈ Ψ̂(B∗1)}. Let B̄i = {βi | β ∈ W̄} and then let B∗0 be

such that Ψ̂(B∗0) ≡∗ B̄0. It follows that Ψ̂(B∗i ) ≡∗ B̄i for each i, and each
B∗i is countable.

Since B̄0∩B̄1 = ∅, a contradiction will be obtained if it can be shown that
B∗i ⊇∗ W̄ for each i. So suppose that Z ⊆ W̄ \ B∗i is countably infinite for
some i ∈ 2. Using the fact that A ⊇ D and that Z and B∗i are both countable
we deduce that there is some D ∈ D such that Z ⊆ D and D ∩ B∗i = ∅. It
then follows that

|B̄i ∩ Ψκ+(D)| < ℵ0,

contradicting, by Lemma 4.1, the inequality

(4.3) |B̄i ∩ Ψκ+(D)| ≥
∣∣∣ ⋃
β∈Z

B̄i ∩
⋂
U(β, Ψ)

∣∣∣ ≥ |Z| = ℵ0

for each i ∈ 2.

Lemma 4.4. For all but κ many ξ ∈ ν\Iκ+(A) the cardinality of
⋂
U(ξ, Ψ)

is at least 1.

Proof. Let B = {ξ ∈ ν\Iκ+(A) |
⋂
U(ξ, Ψ) = ∅} and suppose that |B|>κ.

By Theorem 2.3 it follows that |Ψ̂(B)| > κ also, and hence it is possible to
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find a countable B̄ ⊆ B \ Iκ+(A) with Ψ̂(B̄) ∩ Iκ+(AΨ ) ≡∗ ∅. As in the
proof of Lemma 4.3, there is no loss of generality in assuming that Ψ̂(B̄)
is countable. Then observe that B̄ ⊆

⋃
β∈B̄ V (β) for all V ∈

∏
β∈B̄ U(β).

Hence, using Corollary 4.2, we see that for any V ∈
∏
β∈B̄ U(β),

Ψ̂(B̄) ⊆∗ Ψ̂
( ⋃
β∈B̄

V (β)
)
\ Iκ+(AΨ ) = Ψκ+

( ⋃
β∈B̄

V (β)
)

=
⋃
β∈B̄

Ψκ+(V (β))

and, since Ψ̂(B̄) is countable, there are some β1 ∈ B̄ and β2 ∈ Ψ̂(B̄) such
that β2 ∈ Ψκ+(V (β1)) for cofinally many V ∈

∏
β∈B̄ U(β), where

∏
β∈B̄ U(β)

is given the natural partial order of coordinatewise inclusion. But then, since
each ultrafilter is countably closed by Corollary 4.2, it follows that β2 belongs
to a cofinal subset of Ψκ+(U(β1)) = U(β1, Ψ) and hence β2 ∈

⋂
U(β1, Ψ).

This contradicts β1 ∈ B̄ ⊆ B.

It now follows that if H(ξ) is defined to be the unique, if it exists, element
of ν such that

⋂
U(ξ, Ψ) = {H(ξ)} then H is defined for all but κ elements of

ν \ Iκ+(A). The arguments of Lemmas 4.3 and 4.4 show that H−1 is defined
for all but κ elements of ν \ Iκ+(AΨ ). Consequently, H is a bijection whose
domain is E and range is EΨ such that |ν \E| ≤ κ and |ν \EΨ | ≤ κ. It may
further be assumed that EΨ ∩ Iκ+(AΨ ) = ∅.

All that remains to be shown is that [H〈A〉] = Ψ([A]) for each A ⊆ E.
Since Ψ is an isomorphism and H induces an isomorphism, it suffices to
show that if A,B ⊆ E and H〈A〉 ≡∗ Ψ̂(B) then A ≡∗ B. So suppose that
A and B provide a counterexample to this. It is then possible to find a
countable C ⊆ H〈A〉 ∩ Ψ̂(B) such that there are countable A∗ ⊆ A and
B∗ ⊆ B such that A∗ ∩ B∗ = ∅ and H〈A∗〉 ≡∗ Ψ̂(B∗) ≡∗ C. That C,
A∗ and B∗ can be assumed countable uses an argument similar to that of
Lemma 4.3.

Now use the density property of D to find D ∈ D ⊆ A such that A∗ ⊆ D
and D ∩B∗ = ∅. Note that it is easy to see that H〈F ∩ E〉 = Ψκ+(F ) ∩ EΨ
for any F ∈ Aκ+ , and in particular H〈D ∩ E〉 = Ψκ+(D) ∩ EΨ . From this
and the fact that Iκ+(AΨ ) ∩ EΨ = ∅, it follows that

C ⊆∗ H〈A∗〉 ∩ Ψ̂(B∗) ∩ EΨ
⊆∗ H〈D ∩ E〉 ∩ Ψ̂(ν \D) ∩ EΨ = Ψκ+(D) ∩ Ψκ+(ν \D) ∩ EΨ ,

contradicting the fact that Ψκ+ is an isomorphism.

5. Automorphisms of P(κ)/Fin when cof(κ) = ω

Proof of Lemma 3.5. Let {κn}n∈ω be an increasing sequence of cardinals
cofinal in κ. Suppose that Φ is an automorphism of P(κ)/Fin and Φ̂ is a
lifting of it. Let Φ̂−1 be a lifting of Φ−1 and note that Φ̂(Φ̂−1(X)) ≡∗ X for
all X.
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Using the hypothesis, let Fn and Sn be such that

(1) Sn ⊆ κn and |Sn| ≤ 2ℵ0 ,
(2) Fn : κn \ Sn → κ,
(3) Fn〈X〉 ∈ Φ([X]) for every X ⊆ κn \ Sn.

Let S =
⋃
n Sn.

Claim 5.1. For n ∈ m ∈ ω there exists a finite set An,m such that
Fn�(κn \ (S ∪An,m)) ⊆ Fm.

Proof. Suppose otherwise. There is then an infinite set A ⊆ κn \ S such
that Fn〈A〉 ∩Fm〈A〉 = ∅. This contradicts the fact that Fn〈A〉 ∈ Φ([A]) and
Fm〈A〉 ∈ Φ([A]).

Now let S̄ = S ∪
⋃
n,mAn,m and F =

⋃
n Fn�(κ \ S̄). It suffices to show

that F 〈X〉 ∈ Φ([X]) for every X ⊆ κ \ S̄.

To this end, suppose not and choose recursively Xξ ⊆ κ \ S̄, for ξ ∈ ω1,
such that

(4) |Xξ| = ℵ0,
(5) Xξ ∩Xη = ∅ if ξ 6= η,

(6) Xξ ∩ F−1(Φ̂(
⋃
η∈ξXη)) = ∅,

(7) Xξ ∩
⋃
η∈ξ Φ̂

−1(F 〈Xη〉) = ∅,
(8) F 〈Xξ〉 ∩ Φ̂(Xξ) is finite.

To see that this is possible note that if

Sξ = S̄ ∪ F−1
(
Φ̂
( ⋃
η∈ξ

Xη

))
∪
⋃
η∈ξ

Φ̂−1(F 〈Xη〉) ∪
⋃
η∈ξ

Xη

then by Theorem 2.3, |Sξ \ S̄| ≤ ℵ1 for every ξ ∈ ω1. Hence, if it is not
possible to find Xξ, then F and Sξ witness that Φ is 2ℵ0-trivial.

Now let X =
⋃
ξ∈ω1

Xξ.

Claim 5.2. Φ̂(X) ∩ F 〈Xξ〉 is finite for every ξ ∈ ω1.

Proof. Let ξ ∈ ω1 be given. Then

Φ̂(X) ≡∗ Φ̂
( ⋃
η∈ξ

Xη

)
∪ Φ̂(Xξ) ∪ Φ̂

( ⋃
η>ξ

Xη

)
.

By (8) it follows that F 〈Xξ〉 ∩ Φ̂(Xξ) is finite, and by (6),

F 〈Xξ〉 ∩ Φ̂
( ⋃
η∈ξ

Xη

)
= ∅.
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By (7) we see that Φ̂−1(F 〈Xξ〉) ∩ (
⋃
α>ξXα) = ∅ and hence

Φ̂(Φ̂−1(F 〈Xξ〉)) ∩ Φ̂
( ⋃
α>ξ

Xα

)
≡∗ ∅,

and so F 〈Xξ〉 ∩ Φ̂(
⋃
α>ξXα) is finite as well.

Now let g : ω1 → ω be such that Φ̂(X) ∩ F 〈Xξ〉 ⊆ F 〈κg(ξ)〉 for each
ξ ∈ ω1. Then define g+ : ω1 → ω such that F 〈Xξ∩κg+(ξ)〉 6⊆ F 〈κg(ξ)〉 for each
ξ ∈ ω1. To see that this is possible, note that the failure to find a suitable
g+(ξ) would imply that F 〈Xξ〉 ⊆ F 〈κg(ξ)〉, and hence Xξ ⊆ κg(ξ). Since

Fg(ξ) induces Φ�P(κg(ξ))/[κg(ξ)]
<ℵ0 , it would follow that F 〈Xξ〉 ≡∗ Φ̂(Xξ),

contradicting (8). Now choose m, k ∈ ω such that there is an infinite Z∗ ⊆ ω1

with g(ξ) = m and g+(ξ) = k for ξ ∈ Z∗
Now let Z =

⋃
ξ∈Z∗ Xξ ∩ κk. Since the Xξ are pairwise disjoint and

Φ̂(Z) ⊆∗ Φ̂(X), it follows that

• Φ̂(Z) ∩ F 〈Xξ〉 ⊆∗ F 〈κm〉 for all ξ ∈ Z∗,
• Φ̂(Z) ∩ F 〈Xξ〉 ⊆ F 〈κm〉 for all but finitely many ξ ∈ Z∗,

and hence Φ̂(Z) ∩
⋃
ξ∈Z∗ F 〈Xξ〉 ⊆∗ F 〈κm〉. Furthermore, Z ⊆ κk \ S̄ and so

Φ̂(Z) ≡∗ F 〈Z〉. Moreover F 〈Z〉 \ F 〈κm〉 is infinite because of the definition
of g+ and the fact that the Xξ are pairwise disjoint. This contradicts the

fact that F 〈Z〉\F 〈κm〉 ⊆∗ Φ̂(Z)∩F 〈Z〉 ⊆ Φ̂(Z)∩
⋃
ξ∈Z∗ F 〈Xξ〉 ⊆∗ F 〈κm〉.

6. Automorphisms of P(κℵ0)/Fin when κ has countable
cofinality

Proof of Lemma 3.6. Suppose that κ+ ≤ ρ ≤ κℵ0 and that ρ is the
least cardinal such that there is an automorphism of P(ρ)/Fin which is
not κ-trivial. Note that by Lemmas 3.4 and 3.5, ρ is a regular cardinal,
and by hypothesis κ 6= 2ℵ0 and so ρ > (2ℵ0)+. Let {κn}n∈ω be an increasing
sequence of cardinals converging to κ. Let R ⊆

∏
n∈ω κn be such that |R| = ρ

and suppose that there is an automorphism Φ of P(R)/Fin that is not
κ-trivial.

For k ∈ ω let Tk =
∏
n∈k κn, so that Tk consists of sequences t of length

k such that t(j) ∈ κj for each j ∈ k = domain(t). For W ⊆ Tk let C(W ) =
{f ∈ R | f�k ∈ W}. Let B be the Boolean subalgebra of P(R) generated
by sets of the form C(W ) where W ⊆ Tk for some k ∈ ω, and note that
|B| = κ. Let Φ̂ be a lifting of Φ and Φκ+ : Bκ+ → BΦ

κ+ . This is a well
defined isomorphism by Lemma 2.6. Since no confusion can arise because of
it, the symbol C(W ) will continue to be used to denote C(W ) \ Iκ+(B) in
the algebra Bκ+ . Note, however, that it may be that C(W ) = ∅ for some
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non-empty W ; this depends on R of course. As well, for singletons {t} the
notation C(t) will be used in place of the more cumbersome C({t}).

Next observe that

(6.1) (∀m ∈ ω)(∀W ⊆ Tm) Φκ+(C(W )) =
⋃
t∈W

Φκ+(C(t))

or, in other words, ∣∣∣Φ̂(C(W )) \
⋃
t∈W

Φ̂(C(t))
∣∣∣ ≤ κ.

To see this, suppose not and let m ∈ ω, W ⊆ Tm and A ⊆ R be such that

Φ̂(A) ≡∗ Φ̂(C(W )) \
⋃
t∈W

Φ̂(C(t)),

and note that |A| ≥ κ+
m by Theorem 2.3. Hence, since A ⊆∗ C(W ), there

is t ∈ W such that |A ∩ C(t)| ≥ κ+
m. Since Φ is a homomorphism, this

contradicts Φ̂(A) ∩ Φ̂(C(t)) ≡∗ ∅. Furthermore,

(6.2) if s ⊆ t then Φκ+(C(s)) ⊇ Φκ+(C(t)).

For each f ∈ R \ Iκ+(B) let U(f) be the ultrafilter {B ∈ Bκ+ | f ∈ B}
and let V (f) be the ultrafilter {B ∈ BΦ

κ+ | f ∈ B}. Let UΦ(f) be the

ultrafilter {Φκ+(B) ∈ BΦ
κ+ | B ∈ U(f)}.

Claim 6.1. Let

S = {f ∈ R \ Iκ+(B) | (∃h ∈ R \ Iκ+(B)) V (h) = UΦ(f)}.
Then

|R \ (S ∪ Iκ+(B))| ≤ 2ℵ0 .

Proof. If the claim fails then let A ⊆ R \ (S ∪ Iκ+(B)) be such that
|A| > 2ℵ0 . There must then be some k ∈ ω such that |{f�k | f ∈ A}| > 2ℵ0 .
Hence there is A1 ⊆ A of cardinality greater than 2ℵ0 such that the mapping
f 7→ f�k is one-to-one on A1.

Since A1 ∩S = ∅ it follows that
⋂
n∈ω Φκ+(C(f�n)) = ∅ for each f ∈ A1.

Since Φκ+(C(f�k)) ∩ Φ̂(A1) is finite for each f ∈ A1 it follows that for each
f ∈ A1 there is mf ≥ k such that

Φκ+(C(f�mf )) ∩ Φκ+(C(f�k)) ∩ Φ̂(A1) = ∅,
and hence

(6.3) Φκ+(C(f�mf )) ∩ Φ̂(A1) = ∅
because mf ≥ k and (6.2) holds.

Now let A2 ⊆ A1 be infinite and m be such that mf = m for all f ∈ A2,
and let Z = {f�m | f ∈ A2}. Then A2 ⊆ C(Z) and A2 ∩ Iκ+(B) = ∅, and
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so C(Z) 6= ∅. Moreover, from (6.1) it follows that

Φκ+(C(Z)) =
⋃
f∈A2

Φκ+(C(f�m)),

and hence Φκ+(C(Z)) ∩ Φ̂(A1) = ∅ by (6.3). However, this contradicts
Φ̂(A2) ⊆∗ Φ̂(A1) and Φ̂(A2) ⊆∗ Φκ+(C(Z)).

Claim 6.2. Let

S̃ = {f ∈ R \ Iκ+(B) | (∀h ∈ R \ Iκ+(B)) if V (h) = V (f) then h = f}.
Then |R \ (S̃ ∪ Iκ+(B))| ≤ 2ℵ0.

Proof. Suppose that {(fξ, gξ)}ξ∈c+ are disjoint pairs such that V (fξ) =
V (gξ) and {fξ, gξ} ∩ Iκ+(B) = ∅ for each ξ ∈ c+. Let A be such that

Φ̂(A) = {fξ}ξ∈c+ . Using arguments as in Claim 6.1, find k ∈ ω and A1 ⊆ A
and Z ⊆ c+ such that

• |A1| = |Z| = c+,
• the mapping f 7→ f�k is one-to-one on A1,
• Φ̂(A1) ≡∗ {fξ}ξ∈Z .

Then find B,Z∗ ⊆ Z and k∗ ≥ k such that

• |B| = |Z∗| = c+,
• the mapping f 7→ f�k∗ is one-to-one on B,
• Φ̂(B) ≡∗ {gξ}ξ∈Z∗ .

Since A1 and B are almost disjoint, it is possible to find m ≥ k∗ and an
infinite Ā ⊆ A1 such that if f ∈ Ā and g ∈ B then f�m 6= g�m. Let
W = {f�m | ξ ∈ Ā}.

Hence Φ̂(Ā) ⊆∗ Φκ+(C(W )) and Φ̂(B) ∩ Φκ+(C(W )) is finite. It follows
that for all but finitely many ξ such that fξ ∈ Φ̂(Ā) it must be the case
that Φκ+(C(W )) ∈ V (fξ) but Φκ+(C(W )) /∈ V (gξ), contradicting V (fξ) =
V (gξ).

A similar argument shows the following.

Claim 6.3. Let

S∗ = {f ∈ R \ Iκ+(B) | (∀h ∈ R \ Iκ+(B)) if UΦ(h) = UΦ(f) then f = h}.
Then |R \ (S ∪ Iκ+)(B)∗| ≤ 2ℵ0.

It follows from Claims 6.1–6.3 that letting E = S ∩ S̃ ∩ S∗ \ Iκ+(B) we
can find a well defined, one-to-one function F : E →

∏
n∈ω κn such that

V (F (f)) = UΦ(f) for every f ∈ E. Observe that

(6.4) (∀A ∈ Bκ+) F 〈A ∩ Ẽ〉 = Φκ+(A) ∩ F 〈Ẽ〉 ≡∗ Φ̂(A) ∩ F 〈Ẽ〉
for any Ẽ ⊆ E by the definition of F .
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Claim 6.4. Suppose that W ⊆ E and Ψ : W →W are such that Ψ〈A〉 ≡∗
Φ̂(A) for each A ⊆W . Then |{w ∈W | Ψ(w) 6= F (w)}| ≤ 2ℵ0.

Proof. If the claim fails then it is possible to find k ∈ ω and

Z ⊆ {w ∈W ∩ E | Ψ(w) 6= F (w)}
such that |Z| > 2ℵ0 and the mapping z 7→ z�k is one-to-one. For each z ∈ Z
there is some mz ≥ k and t0z : mz → κ and t1z : mz → κ such that t0z 6= t1z
and

Ψ(z) ∈ Φκ+(C(t0z)),(6.5)

F (z) ∈ Φκ+(C(t1z)).(6.6)

Observe that the definition of F implies that t1z = z�mz. Let Z̄ ∈ [Z]ℵ1 and
m be such that mz = m for all z ∈ Z̄.

Since the t1z are all distinct, there is an infinite ¯̄Z ⊆ Z̄ such that if

Wi = {tiz | z ∈ ¯̄Z} then W0 ∩W1 = ∅, and hence C(W0) ∩ C(W1) = ∅. The
construction of Φκ+ guarantees that

(6.7) Φκ+(C(W0)) ∩ Φκ+(C(W1)) = ∅.
By (6.4) and the hypothesis on Ψ it follows that

(6.8) F 〈C(Wi)∩W ∩E〉 ≡∗ Φ̂(C(Wi))∩F 〈W ∩E〉 ≡∗ Ψ〈C(Wi)∩W ∩E〉.

Since ¯̄Z ⊆ C(W1) it follows that

Ψ〈 ¯̄Z〉 ⊆∗ Ψ〈C(W1) ∩W ∩ E)〉 ≡∗ Φ̂(C(W1) ∩W ∩ E) ⊆∗ Φ̂(C(W1)).

On the other hand,

Ψ〈 ¯̄Z〉 ⊆
⋃
z∈ ¯̄Z

Φκ+(C(t0z)) = Φκ+(C(W0)) ⊆ Φ̂(C(W0))

by (6.1) and (6.5) and the definition of Φκ+ . This, of course, contradicts
Φ̂(C(W0)) ∩ Φ̂(C(W1)) ≡∗ ∅.

Now let {rξ}ξ∈ρ be an enumeration of E ⊆ R and define Eα = {rξ}ξ∈α.
Two cases need to be considered, the first one being that ρ = κ+. Observe
that if M is an elementary submodel of (H(ρ+), {rξ}ξ∈ρ, Φ̂,∈) and M∩ρ+ is

an ordinal of uncountable cofinality then Φ̂({rξ | ξ ∈M}) ≡∗ {rξ | ξ ∈M}.
Recalling that ρ is a regular cardinal greater than c+, we deduce that

Y = {ξ ∈ ρ | Φ̂(Eξ) ≡∗ Eξ and cof(ξ) > c}
is a stationary set. The third hypothesis of the lemma then implies that
for each ξ ∈ Y the restriction of Φ to P(Eξ)/Fin is an automorphism of
P(Eξ)/Fin that must be 2ℵ0-trivial.

The other case is that ρ > κ+. In this case

Y = {ξ ∈ ρ | Φ̂(Eξ) ≡∗ Eξ and cof(ξ) = κ+}



Automorphisms off a small set 179

is a stationary set. Therefore the minimality of ρ shows that for each ξ ∈ Y
the restriction of Φ to P(Eξ)/Fin is an automorphism of P(Eξ)/Fin that
must be κ-trivial.

In either case there is some α(ξ) ∈ ξ and a function Ψ such that Φ̂(A) ≡∗
Ψ〈A〉 for each A ⊆ Eξ \ α(ξ). By Claim 6.4 there is then β(ξ) ∈ ξ \ α(ξ)
such that Ψ(η) = F (η) provided that β(ξ) ∈ η ∈ ξ. The stationarity of Y
yields a β ∈ ρ such that F 〈A〉 ≡∗ Φ̂(A) for every bounded A ⊆ ρ \β. This is
enough to conclude that Φ is |β|-trivial, and Lemma 3.2 and the minimality
of ρ imply that Φ is κ-trivial.

7. Remarks and questions. Observe that Theorems 1.1 and 3.1 im-
ply that if κ is less than the first inaccessible cardinal and Φ is a non-trivial
automorphism of P(κ)/Fin then there is X ∈ [κ]ℵ1 such that Φ�P(X)/Fin
is also non-trivial. Hence it is of interest to understand the non-trivial au-
tomorphisms of P(ω1)/Fin. Of course, among them there are ones that are
obtained by taking a non-trivial automorphism of P(ω)/Fin and extending
it to all of P(ω1)/Fin by the identity on sets disjoint from ω. Hence the
following definition is natural in this context.

Definition 7.1. An automorphism Φ of P(ω1)/Fin will be called non-
trivially non-trivial if it is non-trivial (as defined in §1) but Φ�Z is trivial
for every countable Z ⊆ ω1.

Question 7.2. Is it consistent with set theory that there is an automor-
phism Φ of P(ω1)/Fin that is non-trivially non-trivial?

Recall from §1 that Velickovic [7] showed that the conjunction of OCA
and MA implies that every automorphism of P(ω1)/Fin is trivial. However
it might be that there is a stronger result answering the following question.

Question 7.3. Does it follow from the fact that every automorphism of
P(ω)/Fin is trivial that every automorphism of P(ω1)/Fin is trivial?

Note that in any model with an automorphism Φ of P(ω1)/Fin providing
a positive answer to Question 7.2 there must be a family of injections fξ :
ξ → ω1 for each ξ ∈ ω1 such that if ξ ∈ η then fξ ≡∗ fη�ξ and Φ�P(ξ)/Fin
is induced by fξ but there is no f : ω1 → ω1 threading the fξ—in other
words, there is no f such that fξ ≡∗ f�ξ for all ξ.

So given a potential family of functions {fξ}ξ∈ω1 , what needs to be done
is to define the values of Φ(X) for uncountable X ⊆ ω1 without adding a
function f threading the fξ. The natural partial order for adding the unique
element of P(ω1)/Fin that must be equal to Φ(X) will preserve ω1 for
certain, carefully constructed families of functions {fξ}ξ∈ω1 . However, the
countable support iteration poses several problems. Larson and McKenney



180 S. Shelah and J. Steprāns

and, independently, Rinot and Steprāns have shown that certain instances
of this partial order can be iterated, with countable support, to yield a
model where there is a non-trivial automorphism of the Boolean subalgebra
of P(ω1)/Fin generated by the countable sets and a maximal independent
family of subsets of ω1 which is trivial when restricted to any countable set.

On the other hand, there is also the question of inaccessible κ.

Question 7.4. Is it consistent, relative to the consistency of an inac-
cessible cardinal, that there is a non-trivially non-trivial automorphism of
P(κ)/Fin where κ is inaccessible?

Observe that if κ provides a positive answer to Question 7.4 then κ
cannot be too large a cardinal. For example, if κ is the least cardinal such
that there is a non-trivially non-trivial automorphism Φ of P(κ)/Fin then
it cannot carry a normal κ-additive ultrafilter. To see this, note that for
each ξ ∈ κ there is some fξ : ξ → κ such that Φ�P(ξ)/Fin is induced by fξ.
Of course, fξ ≡∗ fη�ξ for ξ ∈ η. In other words, for each ξ ∈ η ∈ κ there
is aξ,η ∈ [ξ]<ℵ0 such that fη�ξ \ aξ,η = fξ�ξ \ aξ,η. The normal κ-additive
ultrafilter yields a set X ⊆ κ of cardinality κ and an a such that aξ,η = a
for all {ξ, η} ∈ [X]2. Hence

⋃
ξ∈X fξ�ξ \ a induces Φ.

Theorem 3.1 suggests an alternative version of non-trivial non-triviality.

Definition 7.5. An automorphism Φ of P(ω1)/Fin will be called very
non-trivially non-trivial if Φ�Z is non-trivial for every co-countable Z ⊆ ω1.

Results about the existence or non-existence of very non-trivially non-
trivial would also be of interest.
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