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Asymptotic behaviour of Besov norms
via wavelet type basic expansions

ANNA KAMONT (Gdarnisk)

Abstract. J. Bourgain, H. Brezis and P. Mironescu [in: J. L. Menaldi et al. (eds.),
Optimal Control and Partial Differential Equations, IOS Press, Amsterdam, 2001, 439—
455] proved the following asymptotic formula: if 2 C R? is a smooth bounded domain,
1<p<ooand f € W"?(R2), then

. x) — P

lim (1 - 5) S S %d:pdy = KS IV f ()] da,
Q0 Q

where K is a constant depending only on p and d.

The double integral on the left-hand side of the above formula is an equivalent semi-
norm in the Besov space B,*(f2). The purpose of this paper is to obtain analogous
asymptotic formulae for some other equivalent seminorms, defined using coefficients of
the expansion of f with respect to a wavelet or wavelet type basis. We cover both the
case of the usual (isotropic) Besov and Sobolev spaces, and the Besov and Sobolev spaces
with dominating mixed smoothness. We also treat Besov type spaces defined in terms of
a Ditzian—Totik modulus of smoothness, but for a restricted range of parameters only.

1. Introduction. The starting point for this paper is the following re-
sult by J. Bourgain, H. Brezis and P. Mironescu [5]: if 2 ¢ R? is a smooth
bounded domain, 1 < p < oo and f € W1P(§2), then

I = R S (s
5 op WY 2

where K is a constant depending only on p and d, and || - | denotes the
euclidean norm in R?. This result has attracted a lot of interest. V. Maz’ya
and T. Shaposhnikova [25] obtained a version of the above result when
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where K is another constant depending on p and d.

In the terminology of [4] or [33], the double integral on the left-hand sides
of these equalities is an equivalent seminorm in the Besov space B,”(£2) or
B,?(R%). Therefore, the above results have been extended by several authors
to give the asymptotic behaviour of other natural seminorms in B, ?(R?)
(see G. E. Karadzhov, M. Milman and J. Xiao [21] or H. Triebel [34]). The
seminorms considered in those papers are defined in terms of moduli of

smoothness or progressive differences. An example of these results is the
following (see [21]): if

PN
(1) s = (5§ prrtsate )
2
then
(L0 D (= 1= Yl DG RSl = I
lar|=k

where c,, C' are some constants depending on «, k,d, ¢; another seminorm
considered in [21] is (§3° (wpp(f,1)/t5)4 dt/t)'/9, while in [34] the asymptotic
behaviour of the norm || f||, + (Sé(wk,p(f, t)/tF)2 dt/t)1/9 is discussed.

The Besov spaces By'? with 0 < s < m can be identified with real inter-
polation spaces between LP and the Sobolev space WP, with parameters
s/m and q. Therefore, these results should also be seen in the context of
the paper of M. Milman [29], where a variant of the above results for real
interpolation spaces for normal interpolation pairs is obtained. That is, if
(X0, X1) is an interpolation pair, and K(f,t) is the K-functional for the
pair (Xo, X1), and
K(f07 t)

t

(1.5) lim = lollxor  Jim K(fi,t) = fallx,,

and for 0 <s<1,1<q< o0,

CUK(f, )\ dt\
0

then
(1.6) hm 1flx0,x1),8.0 = Il x,  and 1{n||f||xo,x1 s.q = 1l xo-

Let us note a recent paper by R. Arcangéli and J. J. Torrens [2], which
can be seen as an extension of the original formulation of (1.1)) or (1.2)
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to higher order of smoothness. Some other related results, including the
investigation of the best constants in various embedding theorems, can be
found e.g. in J. Bourgain, H. Brezis and P. Mironescu [6], V. Maz’ya and
T. Shaposhnikova [26], V. I. Kolyada and A. Lerner [22], and M. Milman
and J. Xiao [30].

Another important tool used in the study of Besov and Sobolev spaces
is wavelet or wavelet type bases. In this paper, we present a version of
the above results using such bases. It is well known that the Sobolev spaces
W™P with 1 < p < oo have equivalent norms, defined in terms of multipliers
on wavelet bases. In the case of Besov spaces, there are equivalent norms,
which are some weighted norms of the type ¢4(¢7) applied to the sequence
of coeflicients of the expansion of a function with respect to a wavelet or
wavelet type basis. However, for such norms, we cannot expect asymptotic
results of the type described above (an obvious counterexample is presented
in Section .

Nevertheless, we shall see that Besov spaces also have equivalent norms,
defined with the use of some multipliers on wavelet bases; more precisely,
when 1 < p < oo, we shall see that the modulus of smoothnes wy, ,(f, 1) is
equivalent to the norm of some multiplier on wavelet bases. The idea of such
an approach can be traced back to Z. Ciesielski [§]. An important property
which we use is unconditionality of wavelet bases in LP and W™P, so the
cases p = 1 and p = oo are excluded from our analysis. For the norms
in Besov spaces defined in this way, we get counterparts of , or
(1.4). We also get a variant of these results for spaces with dominating
mixed smoothness, and for Besov type spaces corresponding to moduli of
smoothness introduced by Z. Ditzian and V. Totik [13], with the step of
the difference depending on the point, but in the latter case for a restricted
range of parameters only.

Let us mention that such an analysis can also be applied in other settings,
for example in the case of Besov and Sobolev spaces on smooth manifolds,
with the use of wavelet type bases constructed by Z. Ciesielski and T. Figiel
[11I]. On the other hand, one can consider function spaces on fractal sets
and piecewise linear bases in those spaces, constructed by A. Jonsson and
A. Kamont [19].

The main fact we use is unconditionality of wavelet bases in L, 1 < p
< 00. Therefore, we have decided to present the technical part of the results
in an abstract formulation, starting with a Banach space with an uncon-
ditional basis. This is done in Section [2} In that setting, we consider two
scales of spaces, which correspond to Sobolev and Besov spaces. First we get
some estimates between the norms from these two scales. The counterparts

of (1.1)), (1.2) or (1.4]) follow directly from these estimates. We consider two
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versions: a one-parameter version, which corresponds to Besov and Sobolev
spaces as above, and a multiparameter version, which corresponds to Besov
and Sobolev spaces with dominating mixed smoothness. This is done in
Sections [2.1] and respectively.

Then, in Section [3] we use wavelet or wavelet type bases to translate
the results of Section [2| to Besov and Sobolev spaces. More specifically, in
Sectionwe treat the case of Besov and Sobolev spaces on R?, and wavelet
bases. In Section we treat spaces and wavelet type bases on the cube
[0, 1]%: Section eals with the isotropic case, while Section deals
with spaces with dominating mixed smoothness. Finally, Section treats
the spaces corresponding to moduli of smoothness defined by Z. Ditzian and
V. Totik.

Some notation. The following notation is used. By N we denote the
set of positive integers, and Ng = N U {0}. For fixed d € N, we set D =
{1,...,d}. Vectors in R? or Ng are denoted by ¢, h, o, j, n, etc.; in particular,
1=(1,...,1),0=(0,...,0) € N&. If k = (k1,...,kq) and A C D, then we
write k4 = (k1,4,...,kqa) with k; 4 = k; ifi € Aand k; 4 =0if i ¢ A. For
A C D we denote A¢ = D\ A. Occasionally, to simplify the notation, we use
only the “active” parameters of k4 or t,, i.e. with ¢ € A; thus we identify
ky€Z% t, € (0,00)% ete. with elements of ZAl) (0, 00)14, ete.

For a vector | = (ly,...,lq) € N& denote |I| = I; + -+ + lg and |l|oc =

max(l1,...,ls). We use the following vector notation: for n = (n1,...,nq)
and j = (j1,...,Jq), we denote n - j = nij1 + - - - + ngja, nl=nl-.. . .0,
n < j means that n; < j; for all i = 1,...,d; analogously, n < j means that

n; Sijl for all i = 1,.‘.,d.

We consider various function spaces: LP spaces, Sobolev spaces WP,
Besov spaces By'? etc., both over R? and [0, 1]%. If the domain is not explic-
itly indicated, we have in mind both versions simultaneously.

As usual, for an exponent 1 < ¢ < oo, we denote by ¢’ the conjugate
exponent, 1/q+1/¢' = 1.

The notation a(x) ~ b(z) means that there are constants 0 < ¢1, ¢z < 00,
independent of the parameter x, such that cja(z) < b(x) < cea(z). We also
denote a A b = min(a, b).

2. The abstract version. Let X be a Banach space with an uncon-
ditional basis X. We assume that the basis is 1-unconditional, that is, if
X = {z, : v € V}, where V is a countable set of indices, then for each
sequence (ay)yey of coefficients with finitely many non-zero terms and a
sequence (6,)yey of scalars with |0,| < 1, v € V, we have

HZ 0y ay Ty Z AyTy
veV veV

<]
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We will consider two ways to enumerate X. The first one is suitable for
one-parameter results. In this version, we write V = U?io V; with V; finite
or countable and pairwise disjoint, and

o0
X=|J& with X;={z,:veV}
j=0
In the multiparameter version, we set V = Ul'eNg Vj, with Vj finite or
countable and pairwise disjoint, and
X=Ja with X ={z,:veV;}
JENG
2.1. One-parameter version. For each x € X, there is a unique se-
quence a(x) = (ay(z))yev of coefficients such that = 322 Evevj ay ().
To simplify the notation, we write a, instead of a,(z), and we set Q;(z) =
>_vev; QuTo.
Now, we define two scales of spaces, w® and by;?. The model for w® is the
scale of fractional order Sobolev spaces, obtained by complex interpolation

of Sobolev spaces of integer order. The model for b7 is the scale of Besov
spaces.

DEFINITION 2.1. Let a > 0. Define
o .
w® = {x € X: Z2JO‘QJ-($) converges in X},
=0

with the norm

follae = 3220, @)
§=0

REMARK 2.1. It can be checked that if X is a Banach space over C and
0 < o < m, then w® is a complex interpolation space between w® and w™,
more precisely w® = (wo,wm)[a /m]> With equivalence of norms, and with
equivalence constants not depending on «.

Next, for x € X = w', let us estimate the K-functional for the pair
w™), i.e.
) )

1 . 1
K (40 g ) = { e = s + ol 59 € 0" .

PROPOSITION 2.2. Let w®, w™ be given by Definition . Then for each
rcw’ andn € Z,

(2.1) ;Hjé@m@-") Q)| < K(x 2,1) < Hg(zm“—m AQ; ()|

(w®
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Proof. We give the proof of Proposition [2.2] for reference, since the ar-
gument used here is repeated in other cases as well.

The upper estimate follows by taking 3, = 0 for n < 0 and y,, =
> j=0Qj(x) for n > 0. To check the lower estimate, take y € w™ and con-

sider z = Z;io Zvevj Uy Ty, where u,, = max(|a,(x) —ay(y)], 2m(j_”)|a1,(y)|)
for v € V;. Then by 1-unconditionality of the basis,
1
121l < llz = yllwo + s 1yl

Considering separately the cases |a,(y)| > |ay(z)|/2 and |ay(y)| < |ay(z)|/2
we get u, > (270U~ A 1)|a,(z)|/2, hence, again by 1-unconditionality,

21> 2 SS@0- Ay @)
§=0

This concludes the proof of Proposition .

Because of Proposition the space by;? defined below is in fact a
real interpolation space (w® w™), /m,q>» With an equivalent norm, and with
equivalence constants independent of 0 < v < m:

DEFINITION 2.2. Fix m > 0, and let 0 < o < m and 1 < ¢ < oco. Define

o0
) < OO},
neZllea

> A1)Q; (@)
)nGZ

We are interested in the asymptotic behaviour of (m — a)||z|| poa s
s /*m and of al/qHabegﬁq as a \, 0. Because of 1D we have

bt — {x €X: H(zan

with the norm

lallygr = [ (2 i@m(ﬂ‘—") A)Q; (o)

o’

. 1 . 1
hmsup2mnK<x, 2mn> ~ 2|, hgglgéf?m”KG:? 2mn> ~ 2|,

n—o0
limsup K (z,2™") ~ ||z 0, liminf K (z,2™") ~ ||z 0.
n—o0 n—oo

Therefore, we are in a situation similar to that in M. Milman [29], but
with equivalence instead of equality in . However, in the setting of this
section, it is possible to get some inequalities between the norms || - [|,e.« and
|| - |lwore (Propositions and [2.5)). Then the asymptotic result (Theorem
is a consequence of these estimates.

For later convenience, let

o0

. 28
_ -3¢ _ ]
s(g)_;oz =57 forg>o0
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For reference, let us formulate

LEMMA 2.3. We have

1
lim € - s(€) = .
lim & ) = o1

The main result of this section will be a direct consequence of Proposi-
tions [2.4] and [2.5] below. Proposition [2.4] contains the upper estimate:

PROPOSITION 2.4. Let 0 < a < m and € > 0 with a + € < m, and let
1 < q < oo. Then for x € w*¢ we have

(2.2) [2]le0 < s(ge)l|zlfase +27s(qa) |23,
Moreover, for ¢ = oo and x € w* we have
(2.3) [z]lpo,e < [z ]we-

Proof. Denote

x
Fu(@) = [>@"07 A 1)@y ()]
=0
First, consider n > 0. Then

2n(a+€)Fn(:I:) — HZ(QW(J'*TL) A 1)2(”*3')(0‘+5)2j(°‘+6)Qj (:I:)H
5=0
Now we have:
for j <m, (27U A1)t = gnmilatem) <
for j >n, (2"07 A1)t = gt <,

Therefore, by 1-unconditionality of the basis under consideration,
o0
@I, (@) < |32 IQs (@) | = il
=0

In particular, this proves ({2.3)).
In case ¢ < oo, the above inequality gives

00 o
SR @) = Y (2R, )"
n=0 n=0
=1
< )| as > e = S(@O)17 e
n=0

For n < 0, note that

Fu) = [ 2 @0 2 1)@, = [ S Q@) = el
j=0 Jj=0
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Therefore

S @ Fu@) =l 30 209 = 2 e

n<0 n<0
Combining the above results we get . "
The lower estimate will be a consequence of the following:
PROPOSITION 2.5. Let 1 < g < 00, and let 0 < a < m and n > 0 be
such that 0 < a —n/q" < m. Then for x € by! we have

s(m—a+n/¢) 4

8(77)‘1_1 H ||wo¢7’q/q’

Proof. We keep the notation F,(z) = || Z;‘;O(Qm(j*”) A 1)Qj(x)]. By
Jensen’s inequality,

o0

Z(QnaF q _ S Z 9N 2”(06-0-77/‘1) (x))q

n=0

(2.4) +27%s(ga)l|z 0 < Il

> s(n)( i s(n) 12 E ()

n=0
By the triangle inequality and 1-unconditionality of the basis,

i o=/ (z) > i i grla=n/d) (gmli—n) A 1)Q]($)H
n=0 n=0 j=0
= i Q;(z) i 2”(0‘*77/61/)(27”(]'*") A 1)”
j=0 n=0
> i Q;(x) i on(a=n/q")gm(j—n)
i=0 n=j
= s(m j(a—n/Q’)Qj(x)H
=0

= s(m—a+n/q)|z| -
Putting together these inequalities we get

[e.e]

D (@M F (@) = s(m —a+n/d) s(m) =), .
n=0
As in the proof of Proposition [2.4] we have

S @B @) = 2 e,

n<0
Combining the above results we get (2.4). m
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The main result of this section is the following;:

THEOREM 2.6. Let 1 < g < oo. Then for x € w™ we have

(25) lim (1 — 0) /920 = (1)1/q||wuwm
a,/'m m q(In2 —1) ’
and for x € Jycqem bm?,
(2.6) lim /7 _ L e
. e e I

For g = oo the above formulae take the form

@D Jim el =l and T el = el
for z € w™ or x € Uycpem bm ., Tespectively.

Comment. Before we proceed with the proof of Theorem [2.6] let us
comment on its assumptions in case o \, 0. Proposition implies that if
x € w® for some 0 < o« < m, then for each 1 < ¢ < 0o there is 0 < 8 < «
such that x € bﬁ;’q for all 0 < 8’ < B. Conversely, applying Proposition
(directly in case 1 < ¢ < oo or in combination with the straightforward
embedding b%> C b4 for 0 < < a <m and 1 < ¢ < 00), we find that if
there are a, ¢ such that = € by;?, then there is 0 < 8 < a such that = € wh'
for all 0 < B < B. Therefore, without loss of generality we can formulate
the assumption in case o \, 0 as = € Uy q<pp W™

Proof of Theorem 2.6. Clearly, for x € w™ we have limg », ||z[,s =
|z |lwm, and if 2 € w* for some o > 0 then limg~ g ||z 6 = || y0-

Consider first the case of 1 < ¢ < o0.
Applying Proposition 2.4 with ¢ = m — a we find

(2.8)  (m—a)|zlfjaq < (m—a)s(gim—a))|z|gm+(m—a)27"s(qa)||z[ly,-

By Lemma [2.3| we have

. 1
(2.9) O}I/mm(m —a)s(qg(m —a)) = qm2_1)
Moreover,
(2.10) Oéh/r‘rrln(m —a)27%%s(qa)) = 0.

Thus, letting a ' m in (2.8)), we get

) 1
lim sup (m_O‘)HxHZﬁ;q < [y -

a,/'m Q(ln2 - 1)
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To obtain the lower estimate, we apply Proposition with n = ¢(m — «)
to find

(2.11)  (m—a)s(gtm — )zl . wye + (M —a)27"s(qa)||z|/],
< (m— a)”“J'Hngq'
Since limg, o, [|2]| yo-m-aya/a = [|Z|lwm, by and (2.10) we get
1
q(In2—1)
This completes the proof of .
To prove , first apply Proposition with € = \/a to get

af|zllfaa < as(gVa)l]] .. s + 027 s(ga)||z] 0.

q B i q
[ [[m < lim in (m = a)llz|jaq-

Since
1
li =0 d lim @279 =
Jiany as(gyv/a) and - lim o s(qa) JIn2=1)’
it follows that .
1. qa < —_— q .
lgl\sl(l)lpallfc\lbn{q S Sz 1) |0
On the other hand, by Proposition [2.5
a2™"%s(qa)|zllh0 < aflzllja.q,
which implies
1
q(In2—1)
Altogether we get ([2.6]).
In case ¢ = o0, by ([2.3]) we have

limsup [0 < [lz]lum  and  Timsup [l < {0
a,/'m " o i

To get the lower estimate, recall that F,(x) = HZ;’;O(T”(J'*”) A1D)Qj(x)]-
Taking n = 0, we see that

sup 2"y (z) > Fo(x) = [|2| 0.
n>0

q : : q
oy < limint ol

This implies
1. i f a,00 > .
12\11{)1 [zllpz = [z ]lwo

To consider the case o  m, note that by l-unconditionality of the basis
under consideration, for each fixed n > 0 we have

n
#llgee > 27 Fnr) > 27|37 2m3Q;(2) |
§=0
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Letting a * m we find
n
lim inf °"°°>H omi (). H
iminf o] > JZ(:) Qj(x)

Letting n — oo yields

liortr}igllf [z[lpzoe > (|2 ]|wm.

Comment (continued). While considering the case o« m, we as-
sume in Theorem that x € w™. Note that in case 1 < p < 0o, the result
of [5] is stronger: it says that if the left-hand side of is finite, then
f € WHP(02). Therefore it is natural to ask if the conditions

(2.12) sup (m — a)l/quHb%,q <oo forl1<g<oo
0<a<m
or
(2.13) sup ||z|lpee < 00
0<a<m

guarantee that € w™. In fact, Proposition implies that for 1 < ¢ < oo
there is a constant C' = C(m, q) such that

sup [ zflwe < C sup (m — a)V/7||z|ye0.
0<a<m 0<a<m

For ¢ = oo, the inequality 2"*F, (z) < [|z|ye;> implies

mj mn oo
ii%”z (2 A 2™Q(a)| < sup g
Therefore, conditions or (2.13) imply that = € w™ if the space X
has the following version of the Fatou property (cf. e.g. [24, p. 30]): for
each sequence {y, : n € N} C X with y, = > ¢y av(yn)z, such that
sup,en llyn|l < oo and for each v € V' we have |ay(yn)| < |ay(yn+1)| and
the (finite) limit limy, 00 @y (yn) = a, exists, the series ), -y a, 2, converges
in X. Observe that the spaces considered in Sections and [3.4] have
this property. (But e.g. X = ¢y does not.)

2.2. Multiparameter version. In this section, all parameters are
d-dimensional, i.e. o = (a1,...,0q), m = (m1,...,mq), j = (J1,---,Ja),
etc.

Now, each z € X has a unique representation = = ) jeNd Zuevj Ay Ly
To simplify the notation, set Q;(z) = Zvevj Ay Ty -

Now, we define two scales of spaces, w® and by;’. Their respective models
are the scales of Sobolev and Besov spaces with dominating mixed smooth-
ness.
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DEFINITION 2.3. Let a = (ay,...,aq) with a; > 0. Define
wE = {a: eX: Z 2 2Q;(x) converges in X}
jend

with the norm

ol = || > 2720 (x|

JENG

DEFINITION 2.4. Fix m = (mq,...,mq) with m; > 0, a = («ay,...,qq)
with 0 < a; < m; and 1 < g < co. Define

= {r e 2 |22 S T nnao), ), <o)
jeNd i=1 a
with the norm ]
||$Hb = H(2na Z H 2mi) D@ (= )’ >ﬂezd v

]GN 1=1

The link between the two scales w® and by;? is the method of real in-
terpolation for 2%-tuples of spaces by D. L. Fernandez [14], which we recall
now. For A € D = {1,...,d}, let Y4 be a Banach space, and assume that
there is a space Y such that Y4 C Y for each A C D. Then fory € Y ,p Ya
and ¢t = (tl, - ,td) with ¢; > 0, let

K(y,t,{Ya}ac) = inf{ > t4]yally, :
ACD

Y=Y ya with ya € Ya for AC D},
ACD

The following proposition, which is a multiparameter counterpart of Propo-
sition shows that the spaces by defined in Definition are special
cases of interpolation spaces considered by D. L. Fernandez [14].

PROPOSITION 2.7. Fiz m = (m1,...,mg), and consider the family of
spaces {w™a} ycp. Then for each x € X with x = ZieNg Qj(z) and t,, ,,, =
(1/2mma . 1/2ma™ma) where n = (ny,...,ng) € Z%, we have

K(z,ty s {w™4 tacp) ~ H Z ﬁ@mi(ji_ni) A I)Ql(:n)H

jeNd i=1
The equivalence constants can be taken to be 1 and 2~¢.

Proof. The proof is analogous to that of Proposition [2.2] but we give the
main argument for later reference. For the upper estimate, it is enough to
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take

ya = > Qj(x).

J:ji<n; fori€A, ji>n; forig A
To get the lower estimate, take y4 € w™4 such that 2 = Y ,pya. Then
T = ZjeNd EUEV ayTy and yyq = Zl'eNg Zvevl by, ATy, with the series con-
vergent in X = w®. Then take

Uy = rjla%dmf"(lfx_ﬂf‘)]bvm for v € V},
- i

and consider z = ZjeNg Zvevj UyTy. Then

2l < D tallyalluma.

ACD

On the other hand, we have a, = ) Acp bu,a. Therefore for each v there is
A C D such that |b, 4| > 27%a,|, and consequently for v € V; we have

d
’Uv| > 2id‘av’ min QMA‘(ZA_QA) = 27d|av‘ H(zm’(]zinz) A 1)7
ACD i1
which implies

2l > 27| 32 [ n 1@ (@)

jeNd i=1
This implies Proposition with equivalence constants 1 and 27¢. w

Now we formulate the multiparameter versions of Propositions [2.4] and

PROPOSITION 2.8. Let m = (mq,...,mg), a = (a1,...,aq) with 0 <
a; < m; and € = (€1,...,€q) with ¢, > 0 be such that o + ¢; < m;, and
1< g < oo. Then for x € weTe,

(2.14) I lga < > Il staed) TT 27 stgai) el ap e

ECDieFE 1€ERC
In case ¢ = co and x € w<,
[ ]lpzoe < Jl2]lwe-

PROPOSITION 2.9. Let 1 < ¢ < o0, m = (my,...,myq), and let a =
(a1,...,aq) with 0 < oy <m; and n = (1;,...,nqa) with n; > 0 be such that

0 < a; —n;/qd <m;. Then for x € by?,

(m; — i +17 /q')? —qa
2 15 Z H i i q 11 H 9 qazs(qai) . ||x||i£E7ﬂE/ql S ||5E||Z%q

ECDicE ke
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Proof. The proofs of Propositions 2.8 and [2.9] are analogous to those of
Propositions [2.4] and [2.5] and use the following observation: if £ C D and
n=(ny,..., nd) with n; > 0 for ¢ € E and n; < 0 for 7 € E°, then

1= | e oo - | Tl mao]

jeNg i=1 jENdi€E
Thus, if we denote
ZYE)={n=(ni,...,nq) €Z%:n; >0 fori € E and n; < 0 for i € E},

then we have

Y (2%eF ()

neZd(E)

T2 sta S ([T 3 TIem anes@))”

icEeC i€Em;=0 iCE jENd i€E

Then we follow the argument in the proofs of Propositions [2.4] and .
The multiparameter analogue of Theorem is now the following:

THEOREM 2.10. Let 1 < g < oo, m = (my,...,mg) and F C D. Then

1 d/q
1 — ;)1 la. e wnE .
Jim [Lmi =V ] oi lzlge = ( oqug =y ) Iellunr

1EF e ke
For g =00
Jim falg = ol

More precisely, in the above limits o; / m; for i € F and oy \, 0 for
i € F°, and we consider x € X = w® such that there is B = (B1,-..,B4)

with 0 < B; < m; such that x € w™F Bre

Proof. Proposition [2.8/and the assumption x € w™F HBpe guarantee that
the norms ||z[|y2¢ are well-defined when a@ — mp.

The proof igsimilar to the proof of Theorem with the use of Propo-

sitions [2.8 and [2.9] so we just give a sketch.

To get the upper estimate in case 1 < ¢ < oo, apply Proposition [2.8 with
€ = (€e1,...,€q) defined as follows: ¢, = m; — «; for i € F and ¢; = \/a; for
1 € F°. Then we are led to consider the following products: for each £ C D,

Y B) = T (mi—astatmi—a)) [ (m— 527" s(ga)

i€EFNE icFNE*

H a;s(gv/a;) H ;27 % s(qay).

i€EF°NE i€FeNE*®
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Then

1 d
QH%F v(a, F) = <q(h12—1)> and QE%F v(a, E) =0 for E # F.
With this in hand, the upper estimate follows by Proposition [2.§

To get the lower estimate in case 1 < ¢ < oo, apply Proposition with
n=(m,...,nq) defined as follows: n; = ¢(m; — ;) for i € F and 7; = «; for
i € I° since we are interested in the estimate from below, it is enough to
consider only the term with E = F. Since

T m: — awps(atms — ) [T a2 s(qa) - (

1 d
)) as @ — mp,
i€l ieFe

q(In2 -1
the lower estimate follows.

The case ¢ = o is treated separately. The upper estimate is an imme-
diate consequence of the corresponding part of Proposition The lower
estimate is obtained as in the corresponding part of the proof of Theorem
by considering F,,(x) with n = (n1,...,nq) such that n, > 0 for i € F
and n; =0fori € F° u

Comment. Let us discuss the assumption z € w™F +Bre for some 6=

(B1,--.,8q) with 0 < B; < m;. Theorem is applied in Section m
in a setting where the spaces by;! have a direct interpretation as spaces of
functions with some smoothness for all 0 < o < m. The spaces w? have
such an interpretation when 8 € Ng. Therefore we would like to have an
alternative form of the assumptions in Theorem which would allow us
to avoid the use of the counterpart of w2 with non-integer S (cf. also the
Comment following Theorem [2.6)). B

For F' = D, the assumption x € w™F +Bpe means just that z € w™. For
F = (), we can take x € by for some a = (a,...,aq) with 0 < a; < m;.
Then by Proposition (directly in case 1 < ¢ < oo, or in combination
with the embedding b%™ C ba! for some 8 = (B, ..., B2) with 0 < i < oy
and 1 < ¢ < 0o) we find that there is 8 = (1, ..., 4) such that z € w? for
cach 8/ = (B1,...,8)) with 0 < ] < f;.

Let us formulate a version of the assumptions for Theorem [2.10]in this
form for other F' C D as well. For this, we need to discuss scales of b- and
w-spaces with k = |F°| parameters, but constructed with Y = wPr as the
initial space, and with X split as X = Ug’eN’g Xy with Xy = UZGNgiti:i' ;.

Q Q pe,q

This leads to spaces wﬁch and bm, BLF defined by

el ape = | 3 222 - 2hremee ()| < o0
- JeNg
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(in particular, the series converges in X = w?), and

Z 2 p B H (2milii— ”1)/\1)62( )‘

]EN

lellren = | (22reae <.

>QFC €NFk [l ¢a

Clearly, w ﬁF = wPrtere Note also that z € bf:f;’% iff Tg r(z) € bzfg’;,
where T p(z) = ZjeNd 27F¥FQj(x).
In this setting, a natural assumption for Theorem isx e baF co9 o for

7i7

some 0 < a < m. Note that Proposition [2.9] applied to the k-parameter

aFC7q mF+B
m,m,F"

B<a. That i is, we recover the assumption as formulated in Theorem [2.10) -

3
spaces W', ; and b implies that » € w, ", = w re for some (0 <

3. Application to wavelet and wavelet type bases on R? and
[0,1]%. Let us see what the results of Section [2| mean for wavelet bases
on R or wavelet type bases on [0, 1]d . We need two properties of such bases:
they are unconditional in LP and in the Sobolev spaces W™P for 1 < p < oo,
and the Sobolev spaces have equivalent norms given in terms of a multiplier
on the basis under consideration.

We shall discuss two types of bases. The first type of bases are localized
wavelet or wavelet type bases. We shall discuss them using the example of
wavelet bases on R? but there are also bases of this type on [0,1]? (see
e.g. Z. Ciesielski and T. Figiel [I1]), and the analysis in this case is fully
analogous. This is done in Section [3.2]

The second type of bases are tensor products of one-dimensional bases.
We shall discuss them using the example of tensor products of one-dimen-
sional wavelet type bases on [0,1]?, but a similar analysis is also possible
on R%. More precisely, the univariate bases we have in mind are spline bases
with dyadic knots as discussed in Z. Ciesielski [7, 0], and their tensor prod-
ucts as discussed by Z. Ciesielski and J. Domsta [10]. Here we use the fact
that the bases under consideration are not only bases in W»™|0, 1], but also
the derivatives of the basic functions form a basis in L?[0, 1]. Because of this
additional property, the results we obtain for the tensor product bases are
more precise than in the case of localized bases (cf. Theorems and [3.6)).
For the tensor product bases, we show how to apply the results of Section
in the case of Sobolev and Besov spaces (Section , but also in the case
of Sobolev and Besov spaces with dominating mixed smoothness (Section
. Finally, we apply the results of Sectionto analyse Besov type spaces
corresponding to moduli of smoothness defined by Z. Ditzian and V. Totik
[13] (Section [3.4)); however, this is possible for a limited range of parameters
only.
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The results we get in the case of isotropic Besov spaces (Theorems
and are parallel to the results of G. E. Karadzhov, M. Milman and
J. Xiao [21] and H. Triebel [34], mentioned in the Introduction.

3.1. Sobolev and Besov spaces on R? and [0, 1]%. First, we recall

the definitions of Sobolev and Besov spaces.
For a vector [ = (Iy,...,lq) € N¢ denote D! = %'”;&%' For m € N,
1 d

the norm in the Sobolev space W™P(R?) or W™P[0,1]¢ is defined as
1 llwme = 1fllp+ D 1D lp.

[t|=m
We also need Sobolev spaces with dominating mixed smoothness. For a vec-
tor m = (my,...,mq) € NZ, the norm in the space W™P(R?) or Wmr|0, 1]¢
is defined as

1fllwme = Y [ID™4 ],
ACD
Now, we recall the definition of Besov spaces. For h € R? and m € N,
define A}" f, the progressive difference of order m, by

AF() = F(+ 1) - FO),
PR = AWATT () =3 (m) (1™ (- + b,

. J

7=0
Then wyy, p(f,t), the modulus of smoothness of f of order m in the L” norm,
is defined as

Wmp(f,t) = sup HAZLf”p,
Inll<t
where in the case of [0,1]¢ the integral in the definition is over the set
{te[0,1]¢:t+jhec[0,1]% j=0,...,m}. Fix 0 <a<mand 1< ¢ < oo.
Then the norm in the Besov space By ?(R%) or By ?[0,1]% is, for 1 < ¢ < oo,

% WS, 4 g\ L/
Iflsgs = 1ty + (§(2282) )

0
while for ¢ = oo,

[fllgee = fllp + sup ¢t wmp(f, 7).
0<t<oo

Recall that the norms for different m > a are equivalent (see e.g. [4] in
the case of R or [I2] for the argument with the use of the Marchaud
inequality in the case of [0,1]%; cf. also [I8] for the Marchaud inequality in
the multivariate case).

For further reference, we recall the well-known equivalence of moduli
of smoothness and a modified K-functional (see e.g. R. A. DeVore and
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G. G. Lorentz [12] in the univariate case, and H. Johnen and K. Scherer
[18] or C. Bennett and R. Sharpley [3] in the multivariate case):

Fact 3.1. Let 1 < p < oo and d,m € N. Then for each f € LP,

(B1)  wnp(fst) ~inf{|f =gl + e S Dl g € WY,

|L|=m

with equivalence constants independent of f and t > 0.
Consequently, for 0 <t <1,

™ Fllp + wWinp(fo 1) ~ f{|Lf = gllp + ™ [|gllwms : g € W™P},

with equivalence constants independent of f and t.

In particular, Fact explains the well-known relation (LP, W™P), /.,
= B!, with equivalence of norms (and equivalence constants independent
of 0 < v < m); see e.g. [4, 3,12, B3]. Let us mention that Fact also holds
for p=1and f € L', and for p = oo and continuous functions, but here we
work only with the case 1 < p < .

We also need Besov spaces with dominating mixed smoothness. To recall
their definition, denote e; = (e;j1,...,€;4), where e;; = 1 for j = i and
ei; =0 for j # i (i.e. ¢; is the ith coordinate vector in R%). Given m =
(mq,...,mq) (possibly with some m; = 0) and h = (hy, ..., hq), denote

A= AT ..o Al

hie; haeq*

For t = (t1,...,t3) and A C D define

wmpa(fita) = sup AL,
h:|hi|<t; for i€A o
(Note that the “active” variables of ¢, are only those ¢; for which i € A;
in particular, for A = 0, we have wpp a(f,t4) = [|fllp-) Then for o =
(a1, ...,aq) with 0 < a; < m; and 1 < ¢ < oo, the norm in By, the Besov
space with dominating mixed smoothness, is defined as

<w>nmw=2<§xwﬁwaﬂwﬂ?mJ7

th
ACD N0,00) ig A ta

where u : R — (0,00) is a fixed function with {; u(t)dt = 1 (the term
[1iza u(ti) is introduced to take care of the “inactive” variables ¢;, i ¢ A).
In case ¢ = co we define

(3.3) [fllpeee = sup £,  wmpa(fita).
t€(0,1)4, ACD

We will need the following formula (see e.g. A. Kamont [20]):
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FACT 3.2. Letl <p<oo,d €N, meN? and A C D. Then for f € L?,
(34)  wnpalfita) ~nf{[|f = 3 g5

0#BCA

+ Z B W, a\B(D™2 9B, La\B) : 9B € WMB’p}'
0#£BCA

with equivalence constants independent of f and t € (0, oo)d.

The proof in [20] is done for [0,1]¢ and 0 < t; < 1/m;, but it can be
generalized to t; > 1/m; by arguments analogous to that in [I2, Chapter 6,
proof of Theorem 2.4]; it carries over to the case of R? as well. As above,
there are also versions for p = 1 and f € L', and for p = co and continuous
functions, but we will work only with 1 < p < co.

3.2. Sobolev and Besov spaces on RY and localized wavelet
bases. First, let us consider the case of wavelet bases on R%.

Let ¢ be an orthonormal scaling function on R? with the corresponding
set of orthonormal wavelets {1 : | = 1,...,2¢—1}. For a function f defined
on R? we use the usual notation

Fi() =292F20 - k), jez, kez.
Then we can consider two types of wavelet systems:

{bor  k€ZYU{hjp:7>0,keZ%1=1,...,2¢ 1},
or
{(bjr:j €L, ke 1=1,...,27 -1}

It is well known that—under suitable conditions on the smoothness and
decay of ¢, 1y, e.g. in the terminology of Y. Meyer [28], under the assumption
of r-regularity of the wavelet system under consideration with m < r (see
[28, Chapter 6])—both these systems are unconditional bases in L?(R%) and
WmP(R?) for 1 < p < oo and m < r. More precisely, for f € LP(R?) with

00 2¢—1
(3.5) F= (foomdor+ D> > (fvin)tin
kezd J=0 kezd 1=1
241
=D 00D (i) ugm
JEZ kezd =1
we have - 0d_1 /
1/2
36) 7l ~ | (X 1 on)Pxa+ 3 30 D M vwlGe) |

kezd J=0 kezd =1

241 9 9 \1/2
EE S i),

JEL kEZ 1=1

Y
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where X(-) = X[o,1)¢(+) is the characteristic function of 0, 1)4. Moreover, if
feWrP™R), 1<p<oo, m<r, then

3.7 S llwrm
2¢—1
~ H(kZZj\ £, d08)] XOHZ@,;Z; > S bl )l
S J €
d_
AL Z 5 sy,

The equivalence constants depend only on p, m and the wavelet system
involved. On the other hand, for f € By ¢(R%),

(3.8) [ fllpga ~
241

(( > I bo) |p>q/p+§:<2m 2PN N (f ) |p)q/p>

kezd kezd =1

but the equivalence constants depend on « as well; cf. e.g. Y. Meyer [28], and
analogous results for Besov spaces on the interval [0, 1], on the cube [0, 1]¢
or on a manifold can be found e.g. in earlier papers by S. Ropela [31], or
by Z. Ciesielski and T. Figiel [I1]. Therefore, we cannot expect asymptotic
results as in Section [2| when using the above equivalent norm in the
Besov space.

Indeed, consider the case d = 1. Given a sequence of coefficients (¢;, j >0),
consider two functions on R:

211 §29427 -1
= E E Cjwj,k and f2 = E E Cjwj,k‘
j>0 k=0 j=0  k=j;27

Then for the equivalent coefficient norm in By*?(R) given by the right-hand
side of (3.8]) we have

) o 1/q
Illgge ~ (322702 es|7) 7 ~ ol g acey-
Jj=0
However, by (3.6)) and (3.7) we have
. 1/2 1/2
1l ~ (30 271i) 7 and [l fallwom ~ (302002 2)

>0 3>0

while

[ f2llp ~ (ngj/2|cj|p)l/p and || folwom ~ (ngj(m+1/2)|cj‘p>

>0 >0

1/p
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On the other hand, we can use the coefficients of the wavelet expansion of
f € LP(RY) to define an equivalent norm in By*?(R?%) by means of Definition
That is, our space is now w® = LP(RY) with the norm defined by

39) Wl = |( £ 1000+ S50 5 1 vnsads) |

kezd j=0 k€Z I=1
or

291 1/2
310 flz=||[(X X X IGvu0Ge)

JEZ kezd =1

The decomposition of w? is defined by

241
Qof =D (f,d0m)bok =D > > (Frtrim)Prin
kezd J<0 kezd I=1
2d_1
Qif =Y (frtnj—re)rjre  forj>1.
KeZ 1=1

Thus, there are two equivalent norms in w™ = W™P(R?):

(3.11) 1l = || 30 29@5 ] =1,2.
>0

)

7
e

Applying Fact in combination with (3.6 and (3.7)), we find

PROPOSITION 3.3. For firted 1 < p < oo, m € N and an r-reqular wavelet
basis with m < r, let f € LP(R?) be given by (3.5). Then for n € Z,

(A2 flp +omp (27 ~ [ oM An@sf L i=12
- LP
Jj=0
with equivalence constants independent of f and n.

Proof. Once Fact and equivalences ({3.6)), (3.7)) are at hand, the proof
is analogous to that of Proposition [2.2] so we omit the details. m

Thus, we can define equivalent norms in Besov spaces By'?(R%) using
multipliers on wavelet basis:

(312) [flpge; = | (27 @ A 1)Qu|
Jj=0

) L i=1,2.
Lr i/ neZlla
Because of (3.6) and Proposition we have, for 1 < ¢ < oo,

(3.13) [ fllpge; ~
: w 9 Jdt 1/q
max(s(q(m — a0),s(qa)) Y £l + | (el )" 4T

(s(a qa)) (§< : ) t)
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while for ¢ = oo,
(3.14) 1150 ~ max (17l sup t%mp(7,1),
0<t<1

with equivalence constants independent of 0 < o < m and 1 < ¢ < o0.

Formula coincides with the norm obtained via Definition for
| - |lrs and || - ||wmwp i, @ = 1,2. Therefore, we can apply Theorem To
summarize, we get

THEOREM 3.4. For fired 1 < p < oo, m € N and an r-reqular wavelet
basis with m < r, let f € LP(RY) be given by (3.5). For i = 1,2, let the

norms ||+ [|Lei, || - [lwmei and || - |[gaa; be given by (3.9)~(3.12). Then
Ifllze i ~ W[ fllps [ fllwme s ~ [ fl[wme,

while the equivalent form of || - HBS"Z,z’ s given by (I3.13p and (]3.14[), with
equivalence constants independent of 0 < a <m and 1 < g < oc0.
If f € ByY(RY) for some e >0 and 1 < q < oo then

T 1 1/q
3 q — - .
o a1 s = (s ) Wl

(In2 -1
and for f € WmP(RY),

" 1 1/q
3 — q N _— m,p j
i = M) g = (o) Il

If f € By (RY) for some € > 0 then
Lo | ll g s = 1 fllz s
and for f € WmP(RY),
T g = 1w

3.3. Tensor products of univariate wavelet type bases in func-
tion spaces on [0, 1]d. Now, we present a version of the results on the
cube [0, 1]%. Here in the d-dimensional case, we use bases consisting of ten-
sor products of univariate bases. We exploit the fact that the univariate
bases under consideration are not only (unconditional) bases in LP[0, 1] and
W™P[0,1], but they are simultaneous bases, that is, the system consisting
of the derivatives of the basic functions is again an (unconditional) basis in
L?[0,1].

3.3.1. Bases. We start by recalling the main properties of the spline
bases to be used. The properties listed below can be found in Z. Ciesiel-
ski [7, 9], Z. Ciesielski and J. Domsta [10], S. Ropela [31] B2], or they are
direct consequences of univariate results; in particular, unconditionality of
d-variate tensor product systems considered below in LP[0, 1]% or W™P[0, 1]¢,
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1 < p < o0, is a consequence of the unconditionality of the univariate sys-
tems in LP[0,1], 1 < p < oo, and C. A. McCarthy’s result on boundedness
of commuting boolean algebras of projections (see C. A. McCarthy [27]).

1. Fix » € N. The system under consideration, denoted by ¥, = {t, :
n > —r + 2}, is an orthonormal system in L?[0, 1] with dyadic structure,
regularity and decay as described below.

2. Dyadic structure: ¥, = szo W, i, where ¥, o = {tp, : —r+2 < j <1}
and ¥, ; = {4y, : 2 ly1<n< 2j}.'The set of indices of U, ; is Uy, =
{—r+2,...,1} for j =0, and U; = {2771 +1,...,27} for j > 1.

3. Regularity: ¥, ¢ C"~2[0,1], v, is a polynomial of degree n + r — 2 for
n < 1, while for n € U; with j > 1, ¢y, is a piecewise polynomial of degree
r — 1 and with dyadic knots {{/27 : [ =0,...,27}; for n € Uj, the derivative
1/;,({"‘1) exists and is constant on each dyadic interval (I/ 27, (1+1)/29),1 =
0,...,29 —1.

4. Exponential decay: there are 0 < 8 < 1 and C' > 0 such that

()] < €227 1R e =20 k1< k<2

5. Together with ¥, = {¢, : n > —r + 2}, we consider systems ¥\*) and
!Z/,st) defined as follows. For 0 < s <r —1, let

S

(s) d
v = sm — S =Wn U r—s (
r,0 {7/) ; dtsu} n € Uy, }

(s) _ s ,
) = {wsm =27 e UJ}.
Moreover, denoting H f(t) = Si f(u) du, we define
U = (Yo = 29 H, € Uy,
(£s)
A

These functions have the same decay as ¥,.. The systems %SS) and qu_s) are
biorthogonal.

the set of indices being Up s in case j = 0. Then we set %gis) = szo

6. Each system F* is an unconditional basis in LP0,1], 1 < p < oo.

In addition if |s| <r —1 and
o
(3'15) f = Z an¢s;n + Z Z anws;n with a,, = (fmwfs,n)a
nEUO’,,‘,‘S‘ j=1 nEUj
then

316 I~ (X |an\2ni+i2ran|2ni)”2Hp7

neUO,'r—\s\ Jj=1 ner
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where r, = 1 for n € Uy,_js, and K, = 2(j_1)/2X[(k_1)/2j71’k/zjfl) for
neU,n=2"14k 1<k<271
7. Consequently, each system %(8), 0 < s <r—1,is an unconditional
basis in W'P[0,1], 0 <1 < r — 1 — s. Moreover, if f € WP[0,1], s > 0 and
0<s+1<r-—1, then

(3'17) f(l) = Z anwerl;n + Z Z 2jlanws+l;n

neUO,T*(S+l) Jj=1 ner
and
1/2
G138 IO (X el Y ) I,
neUO,rf(stl) Jj= IHEU

Note also that in this case
29y = 29(fo, —sn) = (fOs 00— st0)-

8. In the multivariate case, we consider tensor product systems. Fix

r=(ry,...,rq), s = (81,...,8q) with |s;] <r; — 1 and systems JIT(ZSI) Set
sté) = {thsn = Vs @+ @ Ysying * Ysim; € Wr(;%)}
The set of indices is split into blocks: for j € Ng, write
Viws = Uj X -+ X Ujy,
where Uy means Up ., _|s,|- ’fhis splitting will be used in the multiparameter
setting, while in the one-parameter setting we will use
Vigs = U Virs where |jlo = max(j1,...,ja), j € Nd.
ljloo=3

(s)

Then each system ¥~ is an unconditional basis in LP|0, 19,1 < p < oo,

and for

(3.19) F=> > antben with an=(f,¢ gn)
JENInEVjr s

we have

(3.20) Hf||pNH<Z D laus 2) H

JENI nEVjr s
where kp = kp;, @ -+ ® Ky, for n = (nq,...,nq).

9. Moreover, if [ = (l1,...,l3) and s = (s1,...,84) with s; > 0 and
0<s;+1l; <r; —1, then

(3.21) Dif = Z Z 2 a1 1m

JENI nEV)r s 41
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and
25°L), 12,2 1/2
(3.22) 1D~ (2 3 22halsy) |
jeNd n€Vjir s41
Note that
(3-23) 21!@@ = Qﬂ(f, d}*&ﬂ) = (Défa ¢—§—l;ﬂ)'

Thus, in case s; > 0, if m +s; < r; — 1 for each 1 < ¢ < d, then !Ilﬁ@) is
an unconditional basis in W™?[0,1]¢, 1 < p < oco. In the mixed smoothness
case, if m = (mq,...,mq) with m; +s; < r; — 1 for each 1 < i < d, then
!I/E@ is an unconditional basis in W™P[0,1]%, 1 < p < oco. In particular,

(3.24) Hfuwme(oo > Y )

J=0neVj, s

while in the mixed smoothness case

(3.25) s~ (23 22dlaPe2) ]

]GNd nEV] .S

10. For later reference, consider the following procedure: for fixed m, r
and s with s; > 0, take the expansion of f with respect to Wz@ and remove
from it all terms for which the basic function ., is a polynomial of total
degree < m. For this, denote by VO( ™) the set of indices n such that ., is

not a polynomial of total degree < m that is,

d
VO( m) {@EVQmé:Zmi—&—m—Q—si\Zm}.

i=1
In this notation, set
(3.26) Pm;z,gf = Z aﬂdjﬁﬁ‘
Voir,s \V()(Trn)s
Then
CECRNTEY SN (O SRR ED Sib SR
”EVO(T)S JAOnEVjir s

Moreover, for fixed m € N,

329 SISl ~ (X P+ S b)Y

[l]l=m neVO(’T”)S JAOnEVjir s
The multiparameter counterpart is as follows: for fixed [ = (I1,...,1y), we

remove from the expansion of f all terms which are polynomials of degree
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< l; in direction 7 for some ¢ € {1,...,d}. Note that such terms appear only
for j = (j1,...,Ja) with some j; =0, i.e. j € N4\ N¢. That is, let

(3.29) Prysf = Z Z anPsin-
JENd\Nd neVj, s\V, jir,s+l
Then
1/2
(3.30) 17 = Pisflly ~ [|(32 30 laals2) |
]6Ndn€%rs+l
and
(3.31) I~ (2 3 tanpe)
]ENdne‘{rs

3.3.2. The isotropic (one-parameter) case. In this section, we fix m € N,
r=(ry,...,rq) and s = (s1,...,5q) such that s; > 0 and m+s; <r; —1 for
each i = 1,...,d. Recall the grouping of the tensor product basis described
in Section B.3.1F

]rs: U ijrs and set Q]f— Z an¢sn’

J:liloo=d n€Vjirs
where f € LP[0,1]¢ is given by (3.19).
We begin with the following:
PROPOSITION 3.5. Fiz 1 < p < oo and m € N. Then for f € LP[0,1]¢
with f = EjeNg > nev; tnsm and p € Z we have
(3:32)  wmp(f,1/2%) ~
, 1/2
H( 27m,u A 1)2’0@’2/{%_’_ Z Z (Qm(J*H) A 1)2|a@‘2"<@i> ‘

neV(m) J>0neVjr s

0;r,s

)

p

and consequently
(3.33)  (AA2ZT)fllp + wmp(f,1/2%)

‘(Z Z 2m] ) A1) ’an’2 2) /2H

Jj20neVjir s

The equivalence constants do not depend on f or u € Z.

Proof. Note that for n € Vo, 5\ V™ e have Aftgn = 0 for each h,

O;r,s
and Dlg.,, = 0 for each [ with |I| = m. Therefore, it is enough to consider

n e VQ(;Z;UUpO Vj.r,s- Then, because of 1} and (|3.28)) combined with Fact
we are in the situation of Proposition and an analogous argument
applies. This gives (3.32). The equivalence (3.33) is a consequence of ([3.32))
and (3.20]). m
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The multipliers appearing on the right-hand sides of (3.32) and (3.33)) are
used to deﬁne two versions of by;? spaces. The version using the right-hand
side of (3 leads to an expression equivalent to §°(wnm (f,¢)/t*)?dt/ )/,
while the use of the right-hand side of (3.33] - ) leads to an expression equivalent
0 || - [ .

O as the set of sequences [~ (an,n € V(m)

Version 1. Define w 0rs

U;>0 Viir,s) such that

B30 o= (X P+ Y lwfe) | <.

nev(m) ]>0 nEV jir,s

0;r,s

Then w™ is defined as the set of sequences f ~ (an,n € Vj, Tl UUjs0 Viirs)
for which

633 o= [ 2 lP 3 Y 2meE) | <

nev()(TS ]>0 nEVJ TS
The norm ||+ [[,a,a.; is defined according to Deﬁnition using the multiplier
: 1/2
(27 A1) a,|?K2 + 2= A 1)%|a 2,%2) H .
H( Hﬂ’ﬂzz( )|n|n »
”EVO(T)S J>0n€Vjr s
That is, we set
(3.36) £ llszgoia = 1127 S,u(f)) ez lles,
where
. 1/2
D=l > @A laalPri4Y] S @A) |
Om) J>0n€Vjir s b

Note that by (3.32) and (3.27) for 1 < ¢ < oo we have
T(wmalft) ) de) "

(337 o~ (1 (2252) )
0

with equivalence constants independent of 0 < o < m and 1 < ¢ < o0, or
more precisely

1 1
(3.38) [l fllygyein ~ s(qo) 4| f — Prgsfllp + (S (W)q ijt) q.
0

In case ¢ = oo we have
(3.39) 1 lgs ~ max (1 = P fllos sup ™ wmp(£.1)),
0<t<1

with equivalence constants independent of 0 < a < m.
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Version 2. Now, both w? and w™ are defined as the sets of f~(ap,ne
Ujs0 Vir,s) for which

(3.40) e = [(3 X Jaui) | <ox.

7>0 nEVg TS
respectively
. 1/2
(3.41) e = [ (3230 22mijanfs2) | < o0
j>0 nEers g

The norms of w® and w™ deﬁned by (3401 ) and (| .41 are just equivalent
norms in LP[0,1]¢ and W™P[0,1]? (see (3.20) and (

The definition of || - [|,e.9 (1n Definition [2. } uses the multlpher
1/2
(X X @0 n1Plaalsy) )
J20neVjirs

That is, we set

(342) | Flgne = || (2

(X 3 e mfierd) ),

]rs

.

It follows from ([3.32] - ) that

(3:43) I/l ~ 1 1
St~ V1Sl + g0 P 7l + (22 0Y ),

while for ¢ = oo 0

(3.44) IFlze.2 ~ masx (£ sup = mp(£.1)).

with equivalence constants independent of 0 < a < m and 1 < ¢ < oc.

Note that in both cases (i = 1,2), the assumptions of Theorem are
satisfied, and we get asymptotic formulae for these norms. To summarize
these considerations, we formulate the following:

THEOREM 3.6. Fix 1 < p < oo and m € N. Let r = (r1,...,rq) and
s=(s1,...,8q) with s; > 0 be such thatm+s,~ <ri—1foralli=1,...,d. Let
f € LP[0,1]% be given by its expansion (3 with respect to the basz's !7(8)

Fori=1,2, let || - |lyo, || - |lwm.i and || llpesa; be given by (3.34) -
and ([3.40} - - Then

If = Prrsfllp ~ 1 fllwo 15 11l ~ (1l 25
ST DYl ~ It s ~ 11 lm 2,

|t|=m
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and equivalent forms of || - [,ea; given by (3.37)—(3.39) and (3.43), ,

with equivalence constants independent of 0 < a <m and 1 < ¢ < co.
If f € By?0,1]? for some € >0 and 1 < q < co then

1/ 1 1/q
li q a,q ;= - .
ti o) o = (g ) o

and for f € W™P[0,1],

Y 1 1/q
1 _ q N — _— wm g
i (m =)Vl = ()l

If f € By*™°[0,1]¢ for some € > 0 then
1‘ «,00 . — .
a% ||f”bm ) Hf”wo,m
and for f € W™P[0,1]¢,
lim onoi = wm™m 4.
a/‘m”f”bm i = 1 llwm,

REMARK. It is observed in R. Arcangéli and J. J. Torrens [2] that the
asymptotic behaviour of double integrals as in , when s N\, 0 is
different in the two cases of R? and 2 a bounded domain. That is, for a
bounded domain {2, the double integral in ([1.1)) is bounded when s “\ 0.
However, in that case, the double integral in question corresponds essentially
to (Sgo(wm,p(f, t)/t*)4dt/t)"/? with some Ty < oo. Note that our norms
[ llpesa 4, @ = 1,2, contain some extra terms, which guarantee the asymptotic
behaviour as in Theorem [3.6] when s ™\ 0.

3.3.3. The dominating mized smoothness (multiparameter) case. We
start the analysis of the mixed smoothness case with the following observa-
tion:

PROPOSITION 3.7. Fiz 1 <p < oo, m = (my,...,mg), r = (r1,...,7q)
and s = (81,...,8q) with s; > 0 and m; + s; < r; — 1. Let Jlﬁ@ be one
of the tensor product bases described in Section and let f € LP[0,1]%
with f = ZjeNg Z@evj anlsm- Then for p = (pua,...,pHa) € Z°, t, =

Jirs

(1/201,...,1/2d) and A C D, we have

(345) wm,p,A(f’zﬁ,A) ~ H(Z Z H(2mz(h*#z) A 1)2|aﬂ‘2/€i) 1/2

JENE REVjir sim, A €A

)
P
where

Viirsm,A = {n € Viws :mi+1i—2—s;>m; forie A}.
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Moreover,

346) > ]I <1 A 2mlim> < wmpA(frt,0)
ACD ieD\A J
~ H( Z Z H(Qmi(ji_ﬂi) A 1)2’aﬂ|2’%i> I/QHP.

JENE nEVj;p s =1

The equivalence constants above do not depend on f or .

Proof. Once (3.45) is proved, formula (3.46)) is a consequence of ((3.45)).
The proof of (3.45) is by induction on |A| and exploits (3.4]). We can restrict
our consideration to indices n € Vj., s.m 4, since for all n € Vj.p s\ Vjip som. 4,

B C A and h we have AhmA\BDmbﬁ;ﬂ =0.
First, let |A| = 1, A = {i}. Let f = ZjeNg devj
by (3.4), X
Winp,A(f5L,,4) ~ inf{\f —gllp + ot D™ gllp - g € WMEP[O, l]d}.

Let g € Wm0, with g = 35 jcng Dnevs, o 4 Pn¥sin. Then by (3.22),

=alo~ (2 X la-n2)"

JENE 2EV)ir s:m, A

. 1/2
D™y~ |[(D DD 2P naE)
p

JENE 2EV)ir s:m, A

L n¥sin. Then

1,85,

rhsm,

)

Repeating essentially the argument from the proof of Proposition we get

. 1 N N
wE{1F = gl + g | D™ gl 59 € W0, 1))

~(E X e 1)21aﬂ|2/-@;)1/2‘ )

JENE NEV)r s:m A

which is for A = {i}.

To illustrate the inductive argument and simplify the notation, we show
the argument for passing from |A| = 1 to |A| = 2. Let A = {i,k}. Set
A" = {i} and A” = {k}. Then by (3.4),

Winp,A(f 1, 4)

. 1 e
~ mf{Hf —(gi + g + giJg)”p + mevp,f\”(szglgi,tﬁ,;}//)

1
mire€r.
72"’/[@#}@ wﬂvval (D kfkgk; EE7A/) + 2mzﬂz+mkﬂk ||

gi € WMi€oP |0, 1]d’ gr € WMkERP[0), 1]d’ Gik € Wmigi-l-mkgmp[o’ 1]d}'

9

mi§i+mk§kgi kllp -
b



Asymptotic behaviour of Besov norms 131

Let g9i = ZjeNd ZnEV] zém
Gik = ZZGNg ZEE Visr,sim Z k, nd)s o Then by @P?

||f—<gi+gk+gi,k>up~H(Z S low (i bt P2)

J jENG REVjir sim, A

1/2
DMk -l—mkekg i ~ H( 22(m,]1+mk]k) b i 2 2) H ]
u (¥ biral2)

lENd ne‘{ ,s;m, A
Next, by (3.21)),
DMt = Z Z Qmijibi@@bg-i-migi;ﬁv

jGNd QEV"T s;m,A

D"k gy = Z Z oM bk s +myeyin-

JGNd n€Vjir sim, A

4 binVsins gk = Z]eNg Zﬁevj moa Oknsin and

QURY-H)

)

p

Note that
Vi;zé;m,A = V1;£,§+migi;m7x4” = ‘/i;z,§+mk§k;m7A"
Therefore, since |A’| = |A”| = 1, by the already proved part, applied to the
basis Ll/( sme,) and m’ = (mf},...,m}) with m) = my for | # k and mj, =0,
we get
Wm,p, A (D" gy, EB,A/)
= (D455 gy 1, 1)

NS E e,

]GNdnE Jir,ssm, A

Applying a similar argument to Llfﬁ(ﬁmigi) and m” = (m{,...,m}) with

my =my for | # i and m =0, we get

Wm,p,A”(Dmigigut A”) = W p, a7 (D miggi’E@A”)
. ) 1/2
T 5 e i)
- P

With these equivalences in hand, we proceed as in the proof of Proposition

to get (3.45) for A = {i,k}.

The general case follows by induction on |A|. =

Now, we present two versions of asymptotic formulae for mixed smooth-
ness spaces Bp 1[0, 1]%: the first version describes the asymptotics of || - || B,
while the second describes the asymptotics of a piece of the norms defined
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by (3.2)) and (3.3]) with fixed A C D (see Theorems 3.8/ and |3.9| below). This
will be done by applying Theorem [2.10)

First, let us discuss the regularity assumptions on f needed to apply
Theorem in this setting. Clearly, the minimal assumption should be
f € WmrP[0,1]% but we also need some condition on regularity of f in
directions in F¢ or in A \ F. For example, the direct interpretation of the
assumptions of Theorem in the setting of Theorem (see below)
would be the following: f € LP[0,1]¢ is given via its expansion and
there is € = (e1,...,€4) with ¢ > 0 such that

(3.47) o> wlmeterdg,p,, € LP[0,1)7

JENd nEVj s

If the vector mp + €p. has some non-integer entries, we do not have an
interpretation of this condition in terms of derivatives of f and/or asymp-
totics of moduli of smoothness of f. However, we use the Comment following
Theorem [2.10] to present assumptions for Theorems [3.8] and [3.9] directly in
terms of f and its derivatives. The spaces which we describe below com-
bine Sobolev type regularity in directions in F' and Besov type regularity in
directions in F, where E, F C D with ENF = {).
For this, fix 0 # FE C D. For 0 < a <m and 1 < ¢ < o0, letBaq[O 1]4

be the space with the norm defined by formulae analogous to and .,
but using only A C E, that is,

m , q d 1/q
sy = 0 (1 (222 ) T a) i)
Ty ~ t

ACE (0700)‘1

Hf“BO‘ oo = sup ﬂgAwm,p,A(f, ta)
EG(O,oo)d,ACE

For E = ) we mean BI%’]% = LP[0,1]¢. Next, for F C D such that FNE = ()
and k € Nd set

WEB2E0,1] = {f € LP[0,1) : D'f € B2{[0,1]¢ for cach 0 <1 < kp},

with the norm

1l pes = = D 1Dk flpe.

GCF

Let f be given by the series ). Observe that by (3.45)) and (3.21] - ), for each
A C E and k such that kp +§F g rp—1p (and clearly ma+sy <ry—1y)
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we have

Z wm,p,A(DEG B EHA)

GCF
AE E Moo npsieniofa)

]eNdnE jir.sim, A ATEA

and consequently

£l pan ~ D 1Sy, 0 (1), ziniln

ACE
where

Sk, (f) H(Z Z H omilii=i) p 1)29%r x| g, 2 2>1/ H

jENd ne‘/j irsim, A 1EA

Observe that for E = () we have WI?B;%’]_% [0,1]% = WErP[0,1]¢, and for F = 0)

and E =D we have WrB2E[0,1]% = B [0, 1]%.
We are ready to present the asymptotic behaviour of mixed smoothness
Besov norms.

Version 1. First we consider spaces with the norm equivalent to the
norm in By ?[0,1]%. For f ~ (ay,n € UjeNd Viir,s) we set

(3.48) [ flfwe = H(Z > Paf Z)WH '

JENI nEVjip s

The norm in by;? uses the multlpher

(5 5 Tl nriare)”],

gENd nGVJ s =1
That is, we set

(3.49) 1 llozye = (2225, (f)) pezalleas

where

0= X Tlesm na)”|,

jENd neVjir,s i=1
It follows from Proposition [3.7] that for 1 < ¢ < oo,
350)  flhge ~

Z H max ( az)),s(qai))l/q< S

ACD ieD\A (0,00) 14l

(wm,p,A<f, m)q dt, )“q

oA ﬁ‘f\
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while for ¢ = oo

(3.51) I fllyee ~  sup  max £, A wmpa(f,La)-
- §E(O,oo)dACD

The equivalence constants above do not dependon 0 < a < mor1l < g < oo.
In this setting, we get the following result:

THEOREM 3.8. Letl <p<oo,deN, r=(ry,...,7q), s= (S1,...,5q4)
with s; > 0 and m = (ma, ..., mq) with m; +s; < r; — 1. Let f € LP[0,1]¢

be given via its expansion (3.19)) with respect to the basis Wﬂ(é). Let FF C D.
Let || - [lymr and || - [,aq be given by (3.48) and (3.49). Then

[fllwme ~ [ fllwmer,

and the equivalent form of || f|l,aq is given by 1) 1' with equivalence
constants independent of 0 < a <m and 1 < ¢ < 0.

Assume that f € Wi Bp 2.0, 1]¢ for some € > 0. Then for 1 < q < oo,
1/q 1/q 1 W
aFll_{glnF (mi — ;) | H o | fllpge = (q(an—l)) 1S llwmre,
1EF i€D\F
while for g = oo
i [l = |l
=2F 7R -

and the convergence o — mp s understood as o; / m; for i € F and
a; (0 forie D\ F.

Proof. The spaces w™ and by;? satisfy the assumptions of Theorem
In the setting of Theorem the condition f € WF@BE’%C [0, 1]¢ means that
the corresponding sequence of coefficients belongs to the space bm m, > 88
described in the Comment following Theorem [2.10} As explained there, The-
orem [2.10| applies under this assumption and the corresponding asymptotic
formulae follow.

Version 2. Now, we describe spaces w% and b%qA which correspond to
one of the terms in the norm in By %[0, 1]¢ as defined by (3.2), (3.3)), namely
0 (Jg oy (22248540) " 52) 1% with fixed A € D.

A

Fix m and A. The space under consideration consists of f ~ (an,n €
UgeNg V17L§7m7A)~ Then we set

B52 e =[(Z X 2emape) ]

JENG nEV}ir sim,A

Note that in fact we now deal with spaces with |A| parameters (instead of
d parameters). The grouping of the indices for the multiparameter model
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from Section is in fact into

e= U Viesma foréeN.
JENG:1 ,=¢
It follows from ([3.29)) and (3.22)) that for F' C A we have
(3.53) [fllyme ~ 1D=F (f = Py )l

Next, the norm in b%{qA uses the multiplier

(2 > Temonrets) ],

]gNd nEV.y sim, A €A
That is, we set
(3.54) 1 oz, = 1(2Fa 248, (1)), eiailles,

where

5,0=(X ¥ e avapa) ™))

]eNd ne\ézém ALEA

It follows from Proposition that for 1 < ¢ < oo,

1
(3.55) 1l ~ ( g (wmA<ftA>>th) fo
. a 1t ; |
- (0,00)141 ty ;AA
while for ¢ = oo
(356) ”f”bg’q ~ sup tAfA AWm,p, (f tA)
mA -y (0,00)l41

with equivalence constants independent of 0 < a < m and 1 < g < co. Note

that the norms in (3.54)—(3.56) depend on « only via a 4.
In this setting, we get the following result:

THEOREM 3.9. Let 1 <p<oo,d €N, r=(r1,...,7q4), = (S1,--.,5q)
with s; > 0 and m = (my, ..., mq) with m;+s; <r;—1. Let f € LP[0, 1]¢ be
gwen via its expansion (3.19) with respect to the basis W( Fiz ) # A C D,

and let || - ||,, mE for FC A and ||- ||qu be given by 1 Then for
i 53 €59

[fll e ~ ID™F(f = Py s f)lps

and an equivalent form of || - ||bgq given by (3.55)), q3.56|), with equivalence

constants independent of 0 < « < m and 1 < g < oo.
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Assume that f — Py, .rsf € Wg pA\F[ 1]¢ for some € > 0. Then for
1<g <o,
1/ 1/q 1 |Al/q
_ q - - m
i TTom— a0 TT alilige, = (cmg=r) Illae,
ieF 1€A\F

while for ¢ = oo
Jm g = 10,

and the convergence oy — mp is understood as o; / m; for i € F and
a; (0 forie A\ F.

Proof. The spaces w% and b A satisfy the assurnptlons of Theorem

In the setting of Theoremﬁ, the condition f— Py, ,.rsf € W B A\F[O 17

means that the corresponding sequence of coefficients belongs to b_ A}f;yql s @S

described in the Comment following Theorem As explained there, The-
orem [2.10| applies under this assumption and the corresponding asymptotic
formulae follow.

3.4. Besov type spaces corresponding to Ditzian—Totik moduli
of smoothness. Here we present yet another application of the results of
Section [2| namely to Besov type spaces defined in terms of Ditzian—Totik
moduli of smoothness. Z. Ditzian and V. Totik [13] introduced moduli of
smoothness with variable step in order to characterize the order of approx-
imation of functions on the interval [0,1] by algebraic polynomials in the
norm of LP[0,1]. The definition is as follows: given f : [0,1] — R and a
step-weight function ¢(z) = \/x(1 — x), and h > 0, define F;Z;(x)f(m), the
symmetric difference of f at x with step he(x), by the formula

m
_ (m .
Ko (@) = 17 (") e+ (/2 = gt
j=0
Then the corresponding modulus of smoothness is defined as
Wm,p,cp(fv t) = sup ”th@()f()np
0<h<t
This modulus of smoothness is equivalent to the following K-functional (see
[13] or [12]):

Fact 3.10. Let 1 < p < oo and m € N. Then for f € LP[0,1] with
1<p<oo,orfeCl0,1],p=00cand0<t<1/(2m),

Wm,p,w(fa t) ~ Km,p,ga(fv t),

where

Ko (fot) = mE{||f — gllp + ™ (lg"™ - o™l : g™V € ACh.},
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and AC\. denotes the set of functions absolutely continuous on (0,1). The
equivalence constants above do mot depend on f ort.

We would like to apply an analysis similar to that in the preceding
sections to Besov type spaces defined in terms of Ditzian—Totik moduli of
smoothness, that is, to spaces of functions for which

1/(2m)

( S (wm,p:i(fv t))q Cit) e < o0,

0
or in case q = o0,
sup T “wmpe(fit) < oo.
0<t<1/(2m)
For this, as before, we would like to apply Fact to express W, p.o(f,1/2")
as a norm of some multiplier on the expansion of f with respect to the

basis %gs), i.e. on the expansion of f given by 1) This requires that the

bases under consideration (i.e. the bases LIZES) discussed in Section | are
unconditional bases in the weighted LP space on [0, 1] with weight ¢©™?, i.e.
in the space

1
Lnl0.1 = {g s gl = lg(a)Piol@)™ da < oo}

0
This can be achieved if we know that the weight under consideration, ¢ (z)™P
= 2™P/2(1 — z)"™P/2, belongs to the Muckenhoupt class A, on [0,1]. This
restricts the range of parameters: we need —1 < mp/2 < p—1. This condition
can be satisfied only in case m = 1 and p > 2, and from now on, we work
under this restriction.

For comparison, let us recall that wavelet systems on R or on R¢ are
unconditional bases in LL,(R?) with 1 < p < oo when w belongs to the
Muckenhoupt class A,(R%) (see e.g. [23 [15, [1]). Below, we work out in
detail the case of the bases discussed in Section and the particular
weight o(z)? = xP/2(1 — 2)P/? on [0, 1], which we need for our application.

We will use various facts concerning the boundedness of Calderén—
Zygmund operators or Hardy—Littlewood maximal function on weighted LP
spaces with A, weight on [0, 1]. References for these facts are e.g. [16] or [17].

To apply Fact (for m =1 and 2 < p < o0, as explained above), we
need to express ||¢’ - ¢||, for g € LP[0,1] in terms of the coefficients of the
expansion of g with respect to the basis @gs) with s >0and s+2<r—1
(one of the univariate bases discussed in Section cf. (3.15)). We are
interested in the behaviour of ¢/, and the function s _, 4512 is constant
on [0,1], so without loss of generality we assume that (g,9—s —r1s42) = 0.

Thus, let g = Z;’;O Zner (95 ¥—s.n)%sn, where Up means Up ,_(s41). First,
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observe that

S 3 Wt @) rsan(®)] < —C

J=0neU; |x_y‘
C
<7
ZOZWJS ln st+ln( )|—|$_y|2’
j=0neU;
C
S5 )] [l s
j=0neU; Y

The proof of the above inequalities is routine, using the exponential decay of
the functions under consideration and of their derivatives (see Section )
and the inequality Y, ., OV FF=k < Cplu=l/2 for all 0 < § < 1, where
C > 0 is a constant depending on #, but not on u,v € R. As W(SH) %S_s_l)
are Riesz bases in L?[0, 1], each operator T. s+1,M,c With kernel

Kure(w,y) Z Z enV—s—1,0(T) Vs 1,0 (Y),

Jj=0neU;

e = {ey} with ¢, = +1, is a Calderén-Zygmund operator on [0, 1], and
the parameters of those Calderéon—Zygmund operators are bounded inde-
pendently of M, e. Since ¢” € Ay, we infer that each Ts41, a7, is bounded on
Lp [0, 1], uniformly in M, e: there is C' > 0, independent of M and e, such
that for each f € L »10,1],

(Vrsrf@reeras) " < o(§ spetar as) "
0 0

Moreover, for e = {1}, i.e. with ¢, = 1, and f € CJ[0,1], we have f =
limps oo Toq1,0,{13f, with uniform convergence (see [7]). As S(l) o(z)P dx
< oo, this implies Ty 1 a7 (13f — f as M — oo in L »[0,1] as well. Since

continuous functions are dense in LZ [0,1], it follows that 7 is an un-
conditional basm in LZ [0,1]. The biorthogonal functional to tsy1,y is now

Y_s—1n/PP € L [0, 1], so the corresponding coefficient in the expansion of
fe Lyp[0,1] is
1

Sf(w)WMw)p de = § F(2Was () dz = (. s10).
0 0

Thus we have f = Z;io Ener (fs—s—1n)Ys+1n, with the series uncondi-
tionally convergent in Lgp [0, 1]. Therefore, applying the standard argument
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with Khintchine’s inequality we find that

(§IrePewpa)”

O e p/2 1/p
~ (12 X 1t )P a@)P) ol az) .

0 5=0 nEUj

Next, if f = ¢’ with g € LP[0,1] then (¢',v%—s—1n) = 2/(g,%—sn), where
n € Uj;. Therefore

(V1o @ptepipas)”

0
1 [e'e] ) , p/2 1/
N(S(ZZQJ|97 sn| |Q;Z)s+1n( )|) 90($)pdl') .
0 j=0neU;

This means that
/ .- 27 2 2 1/2
@51 g el ~ | (32 X 2910 v Pl @) ||
=0 neU; p

Recall the notation k, = 2071)/2)([(1%1)/2%1,k/2j—1] for n = 2771 4+ k (and
kn = X[o,1] for n € Up). Further, recall that (cf. [9])

[Ws+10(2)] < CMEn(2),  Rn(2) < MPsirn(@),

where M f denotes the Hardy—Littlewood maximal function of f (with re-
spect to the Lebesgue measure on [0, 1]). Since P € A, applying the vector
valued weighted Fefferman—Stein inequality (see e.g. [I7]) we find

1/2
659 Nl (33 Pl vonn Plrale?)
=0 neU; P

Setting
{( byl for n =271 4 k with 1 < & < 292,
Zn =

271

(25202 for = 2971 4k with 272 41 <k < 2971,

we find that

(k-1 &k , ,
~ - —9j—1 Jj—1 _
o(x) ~ 2z, forxze _2].1,2].1},71 207+ k,2< k<2

In case n = 2971 + 1 we have
[1 1

1
o(x) ~ 2z, forxe % 2].1} o(r) < Cz, forzxe [0, 2].1],
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and denoting Rn = 2(j_1)/2X[1/2j71/2j71],
kn < CMEp, Rp < Kp.
Similarly, in case n = 2/ we have

1 1

o(x) ~ 2 for z € [1—2j_1, ~ 5

1
], go(m)ﬁCznforfne[l—m_l,l},

and denoting k,, = 2(j_1)/2X[1_1/2j71’1_1/2j]7
Rn < CM'%na /%n < Kn.

Similarly, for n € Uy we define z, = 1 and K, = X[1/4,3/4- Combining
these estimates with , and applying again the Fefferman—Stein vector
valued maximal inequality (this time with respect to the Lebesgue measure
on [0, 1]) we get

(359) gl ~ | (i 2 271(g,¥-sm) 223'“”‘2)1/2“;{

J=0neU;

For later convenience take p1, € NU {0} such that /28t < ) <1200,
Note that for n € U; we have 1/2(3*1)/2 <z, < 1/21/2, hence 0 < pu, < j/2,
and consequently j — py, > 0. Then (3.59) takes the following form:

PROPOSITION 3.11. Let 2 < p < oo and 0 < s <r —3. Let g € LP[0, 1]

with g = Zner’r_s(ga ¢—s,n)ws,n + Z;il Zner (gﬂb—s,n)zﬂs,n be such that
g - € LP[0,1]. Then

(3.60)  llg" - llp ~

(50 ot + 3 3 2 l?) |

neUO,Tf(stl) Jj=1 ner

)
p

where p, € No are defined by the following rules: p, = 0 if n € Up,_(s41)
orn € Uy, and for n € Uj with j > 2,

1 kY21 - Ly
— 9]~ J—
TS <2j—1> S gy forn=2""" 4k 1<k <277

1 291 k41 1/2<
SYEESE 91

1 A , _
g Jorn =214k, 27241 <k <27

The equivalence constants in (3.60) do not depend on g.

Next, we get the following:
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PROPOSITION 3.12. Let2 <p < oo and 0 < s <r —3. For f € L?[0,1]
with f = Zner;,us CnWsm + Z;’;l Zner Cnthsn we have, forl €N,

(3.61)  wipu(f1/2) ~

3 s o 1/2
[ X 2l + 3 S @ a2 P P)

n€Uo;r—(s+1) J=1nel;

)
p

where the exponents uy, are as in Proposition|3.11]. The equivalence constants
do not depend on f orl.

Proof. With Proposition Fact and equivalence ([3.16)) in hand,
we proceed as in the proof of Proposition [3.5or[2.2] but with another group-

ing of indices, i.e. according to the exponent j — p,. That is, for k € NU{0}
we set

Vi=|J{neU:j— =k}
Jj=0

Since for each n € Uj, the exponent j — u, is a non-negative integer, it
follows that
Uv=Uu.

k>0 §>0
We skip the technical details. =

Now we are ready to introduce spaces w® and I;‘f’q: for f ~ (cp,m >
—r+s+3)and 0 <a <1,

(3.62)  |[fllae =
512, 20(j 21 12\ /2
[ 5 Pl + Y 3 2ot mlae?) )
n€lo;r—(s+1) j=1nel; b
and for0<a<land1<qg< oo,
(3.63) [l = IS ezl
where
_ > _— 1/2
sh=( X A ealra+Y Y @AY e ) |
n€Uo;r—(s+1) Jj=1neU; P

The main result of this section is the following:

THEOREM 3.13. Let2 <p < oo and 0 < s <r — 3. Let 0 and Z;(ll’q be
given by (3.62)) and (3.63), respectively. Then for f € LP|0, 1] with ezpansion

3.15|) with respect to the basis %gs) we have
(3.64) Ifllgo ~I1f = Prirsfllps  1flar ~ 1" ollp,
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and for 1 < q < oo,

1/
(3.65) HfHE?’q ~ s(aq)l/‘IHf = Prysfllp + ( S (uﬂ’pw : ))q it) q,
0

while for g = oo

3:66) Il ~max(If = ProsSls sup 1 w150(£:0)),

1/

with equivalence constants independent of 0 < a <1 and 1 < g < oo.

In this setting, let 1 < q < oo, and let f be such that there is a > 0 for
which the right-hand side of (3.65|) is finite. Then

Y 1 1/q
. li U fllres = | ——— 70
(3.67) tn a1 gz = (g ) Wl

For f such that ||f"- ||, < oo we have

1 1/q
| B (1 — a) V) fllrn = [ o
369 -0 e = (i ) Il
In case ¢ = oo, if f is such that there is a > 0 for which the right-hand side
of (3.66|) is finite, then
(3.69) T {1 flggoee = 1 f 0,

and for f such that || f" - ||, < co we have

(3.70) oy [ fllgaoe = I 1l

Proof. Inequalities (3.64]) are in fact a reformulation of (3.16)) and Propo-

sition Equivalences (3.65)) and (3.66|) are direct consequences of Propo-
sition |3.12)

To get the asymptotic formulae (3.67)—(3.70]), we use the same grouping
of indices as in the proof of Proposition i.e. for k € NU{0} we take

Vi=J{neU;:j— =k}
Jj=0
Now, the asymptotic formulae (3.67)) and (3.68)) follow by applying Theorem
with the splitting (U~ Vi =
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