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The enriched stable core
and the relative rigidity of HOD

by

Sy-David Friedman (Wien)

Abstract. In the author’s 2012 paper, the V-definable Stable Core S = (L[S],S)
was introduced. It was shown that V is generic over S (for S-definable dense classes),
each V-definable club contains an S-definable club, and the same holds with S replaced
by (HOD, S), where HOD denotes Gddel’s inner model of hereditarily ordinal-definable
sets. In the present article we extend this to models of class theory by introducing the
V-definable Enriched Stable Core S* = (L[S*],S™). As an application we obtain the
rigidity of S* for all embeddings which are “constructible from V”. Moreover, any “V-
constructible” club contains an “S*-constructible” club. This also applies to the model
(HOD, S*), and therefore we conclude that, relative to a V-definable predicate, HOD is
rigid for V-constructible embeddings.

In this article we introduce the Enriched Stable Core, a generalisation
of the Stable Core of [2], and use it to study the rigidity of HOD, Godel’s
universe of hereditarily ordinal-definable sets. We begin with a review of the
Stable Core (taking the opportunity to correct an error in the presentation
of [2]).

For an infinite cardinal o, H(«a)) consists of those sets whose transitive
closures have size less than a. Let C' denote the closed unbounded class of
all infinite cardinals 8 such that H(«) has cardinality less than 5 whenever
« is an infinite cardinal less than .

DEFINITION 1. For a finite n > 0, we say that « is n-Admissible if « is
a limit point of C' and (H («),C N «) satisfies ¥,, replacement (with C' N«
as an additional unary predicate). We say that « is n-Stable in 5 if a« <
and (H(a),CNa) is Yy-elementary in (H(5),C N }J).
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2 S.-D. Friedman

The Stability predicate S consists of all triples («, 3, n) such that a is n-
Stable in 8 and 3 is n—Admissible@ The As-definable predicate S describes
the “core” of V, in the following sense.

THEOREM 2. V is generic over (L[S], S) for an (L[S], S)-definable forc-
ing. The same is true with (L[S], S) replaced by (M[S], S) for any definable
inner model M .

COROLLARY 3. V is generic over HOD wvia a forcing which is definable
mV.

In general, the inner model L[S] may be strictly smaller than HOD; it
also obeys more absoluteness than that exhibited by HOD. See [2] for more
about this.

The proof of Theorem [2] comes in two parts. First it is shown that V'
can be written as L[F| where F' is a function from the ordinals to 2 which
“preserves” the Stability predicate S, in the sense that if « is n-Stable in 8
and B is n-Admissible then « is also n-Stable in g relative to F' @ Then
the function F' is used to prove the genericity of V' over (M[S],S) for any
definable inner model M.

To obtain F' we first define by induction on 5 € C a collection P(3) of
functions from S to 2. If 8 is not a limit point of C' then P(/) consists of
all functions p : f — 2 such that p[a belongs to P(«) for all « € C'N .
Suppose that ( is a limit point of C' and let P(</3) denote the union of the
P(a), a € C'N B, ordered by extension. Assuming extendibility for P(<f3),
i.e. the statement that for ap < a3 < f in C, each gy in P(ap) can be
extended to some ¢; in P(aq), this forcing adds a generic function which
we denote by f : § — 2. We say that p : 3 — 2 is n-generic for P(<j) if
G(p) = {pla | @ € C N B} meets every dense subset of P(<f) of the form
{g e P(<B) | qIF ¢ or qIF ~p}, where ¢ is a II,(H(3),C N B, f) sentence
with parameters from H (). We then take P(3) to consist of all p : § — 2
which are n-generic for P(<f) for all n such that g is n-Admissible.

Let P be the union of all of the P(3)’s, ordered by extension. The fol-
lowing are proved as Lemmas 7 and 6 in [2], respectively:

LEMMA 4. Suppose that a < 3 belong to C and p belongs to P(«). Then
p has an extension q in P(S).

LEMMA 5. Suppose that G is P-generic over V and let F' be the union of
the functions in G. Then V = L[F| and F preserves the Stability predicate.
Moreover, V' satisfies replacement with F as an additional predicate.

(*) The requirement that 3 be n-Admissible was missing in [2].
(?) We do not require that the n-Admissibility of 8 be preserved by F, although this
could be achieved with a more complicated argument.
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In [2] there was an error in the proof of Lemma 6 of that paper (which
corresponds to Lemma [5| above): To obtain the “n-genericity of F'[5” on
line 14 of that proof, one needs the n-Admissibility of 8. To fix this we have
now built n-Admissibility into the definition of the Stability predicate S.

To obtain the genericity of V' over (L[S], S), a forcing Q is defined con-
sisting of sentences in an infinitary propositional logic (with arbitrary con-
junctions and disjunctions in L[S]) which are consistent with a theory T
which captures the n-Stability relationships specified by the predicate S
(see [2, p. 265]; the new definition of S requires the added requirement that
B be n-Admissible in clause (b) on that page). A similar but more complex
argument is given in the proof of Theorem [10| below. The same argument
works with (L[S], S) replaced by (M]S], S) for any definable inner model M.

With these modifications of the treatment in [2], Theorem [2] is estab-
lished.

Rigidity. As V is generic over the Stable Core S = (L[S], S) (where S
is the Stability predicate) for a definable forcing whose definable antichains
are sets, we obtain as a consequence:

COROLLARY 6. Any V-definable club contains an S-definable club. And
S is rigid for V -definable embeddings, i.e., there is no V -definable elementary
embedding of S to itself other than the identity.

Proof. The statement about clubs follows immediately from the fact that
V' is generic over S for a definable forcing whose definable antichains are sets.

We give two proofs of rigidity for V-definable embeddings, as both are
useful for generalisations, such as the second conclusion of Theorem [L0| be-
low. In that argument, the analogous first proof is simpler, however the anal-
ogous second proof can be applied to theories weaker than Morse—Kelley.

First proof. Suppose that V' is P-generic over S for the S-definable forcing
[P and that there were an elementary (equivalently, ¥;-elementary) embed-
ding of S to itself which is ¥,,-definable over V. Let s be the least ordinal
which is forced to be the critical point of such a X,,-definable embedding by
some condition in P. Then x is S-definable and therefore cannot be moved
by any elementary embedding from S to itself, a contradiction.

Second proof. We first claim that there is an S-definable {>-sequence for
S that concentrates on ordinals of cofinality w and guesses S-definable classes
on S-definably stationary classes @ More precisely, there is an S-definable
sequence (X, | a of S-cofinality w) such that X, C «a for each a and
whenever X is an S-definable class of ordinals and D is an S-definable club
there is « in D such that X Na = X,. To see this, define X, inductively

(%) There is nothing special about the predicate S in this argument.
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as follows: Let n be least such that some pair (X, Dy ) is X,,-definable over
(Lo [S], SN L S]) and such that X, C a, D, is club in o and X, Na # Xg
for all @ € Dy. If o does not have S-cofinality w or if there is no such
pair, then we set X, = (); otherwise we let (X4, D,) be the least such pair
(where 3, sets are ordered by the formulas which define them and for a
fixed formula by the parameters used). We claim that the sequence (X, |
a of S-cofinality w) is as desired. If not, let n be least such that some
X C Ord which is ¥,-definable over S is not guessed correctly anywhere on
some Y,,-definable club D C Ord; fix the least such pair (X, D), and notice
that by reflection there is an a of S-cofinality w such that X Na = X,,
DNa= D,. But this is a contradiction because a belongs to D.

Now use the {-sequence to produce an S-definable partition (X; | i € Ord)
of the ordinals of S-cofinality w into pieces which are S-definably stationary
(i.e. which intersect each S-definable club). (For example, choose X; to con-
sist of those « of S-cofinality w such that D, = {i} for i > 0, and X to con-
sist of the remaining ’s.) Suppose that j : S — S were elementary with crit-
ical point k with j definable in V. Now D = {«a | jla] C a} is a V-definable
club and therefore contains an S-definable club; it follows that there is an
ordinal « of S-cofinality w in j((X; | i € Ord)), such that jla] C «, and
therefore j(a) = a. But then as j(a) belongs to j((X; | ¢ € Ord)); for
some ¢ < j(k), it follows that o belongs to X; for some i < k and therefore
j(a) = a belongs to j((X; | i € Ord)); for some i < k; this contradicts the
fact that j((X; | ¢ € Ord)) is a partition into disjoint pieces @ .

But what about embeddings that are not V-definable?

From now on we work in Godel-Bernays class theory, whose models
look like (V,C) where V' consists of the sets and C consists of the classes.
A reformulation of the previous corollary is:

COROLLARY 7. Suppose (V,C) is the least model of Gédel-Bernays built
over V (i.e., C consists only of the V-definable classes). Also let (L[S],C?)
be the least model of Gddel-Bernays built over L[S] which has S as a class
(i.e. C° consists only of the S-definable classes). Then any club in C contains
a club in C°, and S is rigid for embeddings in C.

To obtain rigidity of the Stable Core in larger models of Godel-Bernays
we put more information into the Stability predicate.

The Enriched Stable Core. We define the Enriched Stability pred-
icate S* as follows. For 8 in C, i < 87 of L(H(B)) and 0 < n < w we
say that g is (i,n)-Admissible if B is a limit point of C' and § is regular
with respect to functions which are ¥, (L;(H(53)),C N B) with parameters

(*) This argument traces back to Woodin’s proof of Kunen’s rigidity theorem (see [3]).
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from H(B) U{H(B)} (just H(B) if i = 0). If & < 8 are both limit points
of C,i < B of L(H(B)) and 0 < n, then we say that « is (¢, n)-Stable in
B if there is an H <y, (L;(H(B)),C N ) such that H(3) € H (if i > 0)
and H N H(B) = H(«). In this case we let HE’Z(Q) denote the C-smallest
such H @

Note that « is (0,n)-Stable in 8 (8 is (0,n)-Admissible) iff « is n-Stable
in 8 (B is n-Admissible) via the earlier definition. We set:

S* ={(a, B,i,n) | ais (i,n)-Stable in 5 and [ is (i,n)-Admissible}.
S* = (L[S™],S*), the Enriched Stable Core.

DEFINITION 8. Let (M, A) be an inner model of ZFC. Then a subclass Y
of M is (M, A)-constructible if there exists a formula ¢, parameter p € M,
club D C Ord and class X C Ord such that for o in D, X N« codes an
ordinal i, and YNH ()M is definable over (L;, (H (a)™), ANH (a)M) via the
formula ¢ with parameter p. If A is empty then we just say M -constructible.

REMARK. If (V,C) is a set model of Morse-Kelley and every linear order
in C which (V,C) thinks is a wellorder is really a wellorder, then the V-
constructible classes in the sense of (V,C) are exactly those subsets of V/
which belong to L (V') for some ordinal o which is the length of a wellorder
inC @ Moreover, if Cy consists of these classes then (V,Cp) is a model of
Morse—Kelley which satisfies “every class is V-constructible”.

LEMMA 9 (Main Lemma). Working in Gédel-Bernays, let V' denote the
sets and C denote the classes. Assume that every class is V -constructible.
Then there is a (V, S*)-definable class forcing P* which adds a function from
Ord to 2 such that, for P*-generic F* : Ord — 2, (V[F*],C[F*]) is a model
of Gédel-Bernays minus Power (where C[F*] consists of those classes which
are definable in (V[F*],X,F*) for some X € C), V is a definable inner

(®) To see that there is a smallest such H argue as follows. If i = 0 then of course H(«)
itself is the smallest such H. Otherwise note that every element of L;(H (8)) is X1-definable
in L;(H(B)) from an ordinal less than ¢ and parameters in H(8) U {H(8)}. Suppose that
¢ is a X, formula with parameters from H(«) U {H(B)} and one free variable that has a
solution in (L;(H(B)), CNB); we can choose a solution which is definable from parameters
in H(a) U{H(B)} and an ordinal parameter iy < ¢ where the ordinal parameter iy has
been minimised. But then ig belongs to any H which witnesses the (¢, n)-Stability of «.
Thus the C-smallest such H is the set of elements of L;(H(8)) which arise in this way for
some X, formula ¢ with parameters from H (o) U {H(8)}.

() To see this, let Y be such a subset of V and suppose that Y is definable over L;(V)
by the formula ¢ with parameters p and V; we may assume that p belongs to V' by taking
i to be least (if ¢ = 0 then drop the parameter V). Choose D to be a club of (i, n)-Stables
in Ord(V') such that p belongs to H(«) for o in D, and let X be a subset of Ord(V') that
codes the ordinal i. Then ¢, p, D and X witness the V-constructibility of Y. The converse
follows by considering the structure L;(V) where X codes the ordinal ¢; by hypothesis X
does indeed code an ordinal.
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model of (LIF*], F*) and, for any o < 3, i < 7 of L(H(B)) and 0 < n, if
« is (i,n)-Stable in B and B is (i,n)-Admissible then « is (i,n)-Stable in
relative to F* (i.e. there is an H <y, (L;(H(B)[F*8]),C N B, F*|B) such
that H(B)[F*B] € H (ifi > 0) and H N H(B)[F*|5] = H(a)[F*|a]).

REMARKS. (i) We do not expect L[F™] to satisfy the Power Set Axiom in
general, and therefore in the above it is important to distinguish H (3)[F*[/]
from H(B)MF"]; indeed the latter may fail to exist.

(ii) We do not require that if /3 is (7, n)-Admissible then this remains true
relative to F*, as we do not need it. However with some small modifications
this could have been arranged as well.

Before proving the Main Lemma we describe its implications for the
rigidity of HOD.

THEOREM 10. Let C* consist of the (L[S*],S*)-constructible classes,
where S* is the Enriched Stability predicate. Then:

(1) (L[S*],C*) has an outer model (L[F*],C*[F*]) of Gidel-Bernays mi-
nus Power which is generic over (L[S*],C*) for an S*-definable forc-
ing which is co-cc (i.e. whose antichains in C* are sets) such that V
is a definable inner model of (L[F*], F*).

(2) S* is rigid in C*[F™].

COROLLARY 11. Assuming Morse—Kelley, any V -constructible club con-
tains an (L[S*],S*)-constructible club and S* = (L[S*],S*) is rigid for
V-constructible embeddings. (It follows that also (HOD,S*) is rigid for
V' -constructible embeddings.)

Proof of Corollary from Theorem [10. It suffices to show that as-
suming Morse—Kelley, any V-constructible class belongs to the C*[F*| of
Theorem Any such class belongs to a model Ay of KP + “every set
is constructible from V” which is an end-extension of V', as Morse—Kelley
is strong enough to produce such models (see for example [1]). Then Ay
has an inner model Apg-) = (L[S*])Av which is a model of KP + “every
set is constructible from L[S*]” which is an end-extension of L[S*]. As V
is a definable inner model of (L[F™*], F™*) it follows that Ay is contained in
Aps+[F*]. But any class in A g+ is L[S*]-constructible and so the classes
of Apjs+[F"] belong to C*[F*]. =

Proof of Theorem |1(] from the Main Lemma. For conclusion (1) of the
theorem of course we take F'* to be as in the Main Lemma and need to
define an oco-cc S*-definable forcing @Q* for which F* is generic. In analogy
to the case of the (unenriched) Stable Core we build the forcing Q* out
of quantifier-free infinitary sentences which belong to L[S*]. Such sentences
are obtained by closing the atomic sentences “F(a) = 07, “F(a) = 17
under infinitary conjunctions and disjunctions in L[S*]. We let £* denote
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the collection of such sentences which are consistent, i.e., which are true for
some interpretation of F' in a set-generic extension of L[S*]; this notion of
consistency is definable in L[S*].

Now we introduce a certain theory 1™, consisting of sentences of L*. For
each o < 3,1 < 8% of L(H(B)) and n > 0 such that « is (i,n)-Stable in 3
and [ is (4, n)-Admissible, and each set ® of sentences of £* N H () which
is 3,-definable over L;(H(8)*5"1) with parameter p in H(a)"%"], we insert

the sentence
A@NH() - Ao

into T™. The forcing Q* consists of all sentences ¢ of L* which are consistent
with T (i.e. A(T5 U {¢}) is consistent for each T C T, Ty € L[S*]). We
order Q* by ¢ < o iff o A ~1) is not consistent with T™.

The sentences in T are all true when F' is interpreted as F*, thanks to
the fact that ™ preserves instances of (i, n)-Stability.

Fact 1. The forcing Q* is co-cc in C*.

Proof. Let A be a maximal antichain on Q* which is L[S*]-constructible
and choose a wellorder <, club D, parameter p and ¢ that witness the
L[S*]-constructibility of A. Let ¢ be ¥,. Let @ be the least element of D;
we claim that A = AN H(«) and therefore A is a set in L[S*]. Indeed, for
any 8 in D, the axioms of T yield \/(AN H(B)) — V(AN H(«)) by virtue
of the (i,n)-Stability of a in 8 where i = ot(<[f). As A is an antichain,
ANH () must equal all of ANH () for each 5 in D, and as D is unbounded,
AN H(a) equals all of A. »

Let G* consist of all sentences of £* which are true when F is interpreted
as F*. Clearly G* intersects each maximal antichain A of Q* which is a set
in L[S*], as otherwise /\ ,c 4 ~¢ would be a sentence consistent with 1" (and
therefore in £*) violating the maximality of A. But by Fact 1, all antichains
of @* in C* are sets in L[S*] and so G* is fully Q*-generic over (L[S*],C*).
This establishes conclusion (1) of the theorem.

For (2) we give two proofs. The first is simpler, but appears to need
Morse—Kelley in (V,C) as the background theory. (It is sufficient for estab-
lishing Corollary but not for the more general results mentioned in the
Abstract.)

First proof. Suppose that j : S* — §* is not the identity and j be-
longs to C*[F*]. Assuming Morse—Kelley in (V,C) (and therefore Morse—
Kelley minus Power in (L[F*],C*[F*])), we show that j can be extended
to j* : (L[S*],C*) — (L[S*],C*). Indeed, for each ordinal «, each class
X € C* which codes a sequence of classes (X; | ¢ € Ord) and each i € Ord
let H(a, X,4) consist of all elements of the structure (L[S*],{X; | i € Ord})
which are definable with parameters from o U {i}. We write (53,Y,j) >
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(o, X,4) iff B > a, X = Y}, for some k < § and i < f; this implies that
H(B,Y,j) contains H(a, X,i) as a substructure. The structures H (o, X, 1)
ordered by < form a direct system which is isomorphic to a direct system
whose elements and maps belong to L[S*]. We can apply j to the elements
of maps of this system II to obtain a system j[II] whose limit is isomorphic
to (L[S*],C*), using the fact that C* consists only of the S*-constructible
classes. This yields an elementary embedding j* : (L[S*],C*) — (L[S*],C*)
as desired. Note that j* can be simply defined by setting j*(X) =
Uacora J(X N Ly [S*]). However to establish the elementarity of this j* we
appear to need the argument with direct limit systems given.

But now we can proceed as in the first proof of Corollary [} The embed-
ding j* is definable over (L[F™*], C*[F™*]) and therefore generic over (L[S*],C*)
for an oo-cc definable forcing. The least ordinal forced by some condition
in this forcing to be the critical point of such an embedding is (L[S*],C*)-
definable and therefore cannot be moved by such an embedding, a contra-
diction.

Second proof. We only assume that (V,C) models Gédel-Bernays, and
need two facts.

FacT 2. There is an (L[S*], S*)-definable {-sequence (S, | a € Ord)
for (L[S*],C*) which concentrates on strong limit cardinals of cofinality w
of L[S*]; that is, if X belongs to C* and D is a club in C* then there is a
strong limit cardinal « of cofinality w of L[S*]| such that X Na = S,.

Proof. Let S, be empty if « is not a limit point of C' which in addition
is a strong limit cardinal of cofinality w of L[S*]. Otherwise, assuming that
S is defined for § < a we take (S,, Ca) to be the least pair in L(H (a)57])
such that C, is closed unbounded in o« and S, N a # S for & in Cy,
if it exists, (0,0) otherwise. (Note that even though « has cofinality w,
we can still talk about closed unbounded subsets of «, which indeed may
appear at a level of L(H (a)5]) before it is recognised that « is singular.)
Suppose that the resulting sequence is not the desired {>-sequence and let
(S,D) in C* be a counterexample, i.e., D is a club and for limit points «
of C' which are strong limit cardinals of cofinality w of L[S*] in D, SN«
# Su. Then for each « in D (which is a limit point of C' and a strong
limit cardinal of cofinality w of L[S*]), the pair (S,,Cy) was chosen as the
least pair such that S, N & # Sy for & in C,. But this choice of S, is
Y;-definable in Lot(<ra)(H(a)L[S*]) for a club E of a’s, where <, E belong
to C* and witness the L[S*]-constructibility of (S, D); moreover, E can be
chosen so that there is a Xj-elementary embedding of Lot(<[a)(H(a)L[S*])

into Lot(<w)(H(ﬁ)L[S*]) for < Bin E. It follows that SgNa = S,, CgNa =
C, for a < fin E. This is a contradiction as we can choose a < 8 in END to
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be limit points of C' which are strong limit cardinals of cofinality w of L[S*],
yielding Sg Na = S, with a in Cpg. =

FAcT 3. Any club in C*[F*] contains a club in C*.

Proof. This is because, by Fact 1, (L[F*],C*[F*]) is an oo-cc generic
extension of (L[S*],C*). m

Now for the rigidity of S* in C*[F*] we argue as before: Using Fact 2
we can obtain an S*-definable partition (7, | « € Ord) of the ordinals of
cofinality w into pieces which are C*-stationary, i.e., which intersect any
club in C*. By Fact 3 any club in C*[F*| contains a club in C*. But now
there can be no nontrivial elementary embedding j : S* — S* in C*[F*:
otherwise we can choose a in j((T, | @ € Ord)), to be a fixed point of j
and derive the contradiction that a belongs to both j((Ty, | « € Ord)),, and
J(Tw | o € Ord)), for some v < k. This completes the second proof of
Theorem 10(2). m

Proof of the Main Lemma. The desired forcing P* is the final stage Q%
of a finite support iteration (]P’;,@Z; | B € CU{o0}). The Sth stage Qp of
the iteration will add a function p* : g — 2. If § = w is the minimum of C
then @/}} is the atomic forcing whose conditions are functions p* : w — 2. If
B is a successor point of C' and [y is its C-predecessor then QE is an atomic
forcing, whose conditions consist of all p* : 8 — 2 in V[GgO,G*(ﬂo)] such
that p*[Bo is Qj, -generic over V[G} | (where G7,, G*() denote the generics
for P¥, Q respectively for each a in C); we also require that p*[[fo, 5)
belong to V', p*(8y) = 1 and p*(2y) = 0 for all v in (Bo, B). (These latter
requirements ensure that both V and C' are definable over (L[F™], F*) when
F*:0rd — 2 is P*-generic.)

Suppose that 3 is a limit point of C. Let Q*ﬁ’o denote the set (or class if
B =o00)ofall p*:a—2in V[G},G*(a)] where a € C'N B and p*[a is Q-
generic over V[G}]; QE’O is ordered by extension. If 5 is regular in L(H(f))
or 8 = oo then Qz} is equal to QE’O. Otherwise, proceed as follows. We say
that p* : 8 — 21is (i, n)-generic for QE’O if G*(p*) = {p*la | a € CNB} meets
every dense subset of Q;’O of the form {¢* € Q;’O | ¢* IF @ or ¢ IF ~p}, where
@isall,(L;(H(B)),CNA, f) sentence with parameters from H(3)U{H(5)}
(just parameters from H(J3) if i = 0; here f denotes the generic function
with domain ). Then we take Q% to be the atomic forcing whose conditions

are functions p* : 8 — 2 in V[G}] which are (i,n)-generic for QZ’O for the
(fewer than 8T of L(H(B))-many) (i,n) such that 3 is (i, n)-Admissible.

For notational convenience, we define QZ’O to be QEO when [ is a successor
point of C' and fy is its C-predecessor.
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LEMMA 12. Suppose that B belongs to C' and [ is either a successor
point of C or not regular in L(H(B)). Then, in V[G}], each p* in Q;O has
an extension in QE.

Proof. We use induction on 5. Suppose that (3 is a successor point of C
and let By be its C-predecessor. If Sy = w is the minimum of C then it is
easy to extend any element of QF to an element of QE If By is a successor
point of C' or not regular in L(H(fB)) then by induction, in V|G |, each

p* in Q*’OO has an extension p** in QEO; it is then easy to extend p** further
to an element of Q. If fy is a limit point of C' and is regular in L(H (o))

then by induction any p* in QE’OO has extensions in QF for arbitrarily large
v € €N Po; it follows that any Qj -generic p™ has domain fy and it then
follows that each p* in QE’OO can be extended to some Q7 -generic p** in V[G7]
(the forcing Q};O is homogeneous). It is then easy to extend p** further to
an element of Qf in V[GF].

Suppose that § is a limit point of C' and is not regular in L(H(f3)). Let
(i,n+1) be least so that 3 is not (i, n—l—l)—AdmissibIem First suppose that
n = 0. If i = 0 then S is not 1-Admissible and there is a closed unbounded
subset D of C'N 3 of ordertype less than 8 whose successor points 7y are not
regular in L(H ()) and whose intersection with each of its limit points v < /3
is Aj-definable over (H(7y),CN~). Given a € CN and a p* in QE’O that we
want to extend into QE, we can assume that both « and the ordertype of D
are less than the minimum of D. Now enumerate D as Sy < f1 < --- and us-
ing the induction hypothesis, successively extend p* to g5 C ¢ C --- with q;
in ng, taking unions at limits. Note that for limit 7, q}f is indeed a condition
because [3; is not 1-Admissible. The union of the g;’s is the desired extension
of p* in QE. If i = ip+1 is a successor ordinal then we instead choose D to be
a closed unbounded subset of C'N S of ordertype less than 3 whose successor
points v are not regular in L(H (7)) and such that for limit points v < /3
of D, DN is Aj-definable over the transitive collapse of the hull HJ™ (7)
(= the C-least ¥,-elementary submodel H of (L;,(H(8)),C'N ) containing
H(B) as an element (if i9 > 0) such that HNH(8) = H(y)). Again we make
successive extensions of p* to g5 C ¢f C --- with q;-‘ in QE],, taking unions at
limits, where the 3;’s increasingly enumerate D. We get a condition at limit
stages using the fact that v is not ¥Xi-regular over the transitive collapse of
HE™ () when it is a limit point of D (and using reflection to infer that the
associated limit ¢; is indeed sufficiently generic for the forcing Qf,’o).

Now suppose that n > 0.

(") Note that if i is least so that 3 is not X, (L:(H(B)))-regular then 3 is not (i,n+1)-
Admissible for some n.
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If B is a limit of « which are (i,n)-Stable in § then proceed as in the
previous paragraph: Choose a closed unbounded subset D of C'N 3 of order-
type less than /3 consisting of o which are (7, n)-Stable in £, whose successor
points y are not regular in L(H (7)) and whose intersection with each of its
limit points v < B is A, 1-definable over the transitive collapse of Hg’ﬁ ) ().
Assume that the ordertype of D as well as the domain of the given p* € QZ’O
that we wish to extend are less than the minimum of D, enumerate D as
Bo < B1 < --- and, using the induction hypothesis, successively extend p
togo € 1 C --- with g; in Q;;j, taking unions at limits. For limit j, g; is
indeed a condition because 3; is not (i,m + 1)-Admissible, where 7 is the

height of the transitive collapse of Hﬁf’ﬁ) (Bj), and as it is a limit of ordinals
which are (i,n)-Stable in 3, ¢; is (i,n)-generic for @ZJO The union of the
g;’s is the desired extension of p* in QE.

If B is not a limit of a which are (i,n)-Stable in 8 then 8 must have
cofinality w (else by (i, n)-Admissibility, we could find cofinally many (i,n)-
Stables in g, for i > 0 using the fact that the subsets of H(f) which are
Y ,-definable over (L;(H(5)),C N ) with parameters from H(5) U{H(5)}
are those which are ¥-definable over (H (), T,—1) where T,,_; is the ¥,_;
theory of (L;(H(5)),CNB) with parameters from H(5)U{H (3)}). It suffices
to show that any condition p* in QZ’O can be extended to decide (i.e. force
or force the negation of) each of fewer than S-many IL,(L;(H(B)),C N j)
sentences with parameters from H(3)U{H(B)} (just H(B) if i = 0). (Given
this, we can extend p* in w steps to a condition in QZ which is (7, n)-generic
for P’;.) To show this, let (¢; | j < 6) € H() enumerate the given collection
of I1,,(L;(H(B)),C N B) sentences (by explicitly listing the sentences with
their parameters from H (), treating the parameter H(S) as implicit, if
i >0),and if n > 1, let D consist of all v which are limits of (i, n—1)-Stables
in 8 and large enough so that H(y) contains p* and Hﬁf 1(7) contains this
enumeration. (If n = 1 then let D consist of all v which are limit points of
C' and large enough so that H(v) contains p* and this enumeration.) Now
extend p* successively to elements g; of Qﬁj, where vj41 > 7, is the least
element v of D so that v is not regular in L(H(y)) and either g; forces ¢; or
gj+1 forces ¢; = the negation of ¢; (with corresponding witness to the 3,
sentence v;), taking unions at limits. For limit j, ¢; is a condition because
7; is not (i,n)-Admissible but (in case n > 1) is a limit of (¢,n — 1)-Stables,
where ¢ is the height of the transitive collapse of Hﬁfﬁ) (74). (The failure
of 7; to be (i,n)-Admissible uses the fact that the set of jo < j such that
¢jo+1 forces the negation of ¢;, can be treated as a parameter in H(v;).)
As  is (i,n)-Admissible, this construction results in a sequence of g;’s of
length &, whose union is the desired extension of p* deciding all of the given
I, (L;(H(B)),C N j) sentences. m
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LEMMA 13. Suppose that G* is Q% -generic where Q% s the class of
p* o — 2 in V[GL] such that a belongs to C and p* is QF,-generic. Let
F* : Ord — 2 be the union of the functions in G*. Then V is a definable
inner model of L[F*| and, for anya < 3,1 < 8% of L(H(B)) and 0 < n < w,
if o is (i,n)-Stable in § and B is (i,n)-Admissible then « is (i,n)-Stable in
B relative to F™*.

Proof. 1t is easy to define V' from F™, as from F* we can first identify
the elements of C' and then V' consists of those sets coded by F* restricted
to some adjacent interval of C. Suppose that « is (i,7n)-Stable in 5 and
B is (i,n)-Admissible. Then by the definition of Qf,, F*[8 is (i,n)-generic
for Q;’O and F*|a is (i,n)-generic for Q5" where J2S (a) has transitive
collapse of height i, as « is (4, n)-Admissible. But as the forcing relation for
I1,, formulas is II,,-definable, this implies that « is (i, n)-Stable in (3 relative
to F*, as desired. m

Now notice that since we iterate with finite support, the forcing P is
0o-cc, i.e., all antichains for this forcing which belong to C are sets in V. It
follows that Godel-Bernays minus Power is preserved. This completes the
proof of the Main Lemma and therefore of Theorem [10] =

Open questions. Can one prove in Morse—Kelley (or even in Godel-
Bernays) that HOD is relatively rigid for arbitrary class embeddings? Is
HOD rigid (not just relatively rigid) for V-constructible classes?
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