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Operator positivity and analytic models of
commuting tuples of operators

by

Monojit Bhattacharjee and Jaydeb Sarkar (Bangalore)

Abstract. We study analytic models of operators of class C·0 with natural positivity
assumptions. In particular, we prove that for an m-hypercontraction T ∈ C·0 on a Hilbert
space H, there exist Hilbert spaces E and E∗ and a partially isometric multiplier θ ∈
M(H2(E), A2

m(E∗)) such that

H ∼= Qθ = A2
m(E∗)	 θH2(E) and T ∼= PQθMz|Qθ ,

where A2
m(E∗) is the E∗-valued weighted Bergman space and H2(E) is the E-valued Hardy

space over the unit disc D. We then proceed to study analytic models for doubly commuting
n-tuples of operators and investigate their applications to joint shift co-invariant subspaces
of reproducing kernel Hilbert spaces over the polydisc. In particular, we completely analyze
doubly commuting quotient modules of a large class of reproducing kernel Hilbert modules,
in the sense of Arazy and Englǐs, over the unit polydisc Dn.

Notation.

N Set of all natural numbers including 0.

n Natural number n ≥ 2.

Nn {k = (k1, . . . , kn) : ki ∈ N, i = 1, . . . , n}.
z (z1, . . . , zn) ∈ Cn.

zk zk11 · · · zknn .

T n-tuple of commuting operators (T1, . . . , Tn).

T k T k11 · · ·T knn .

Dn Open unit polydisc {z : |zi| < 1}.
For a closed subspace S of a Hilbert space H, we denote by PS the

orthogonal projection of H onto S. We shall denote the space of all bounded
linear operators on H by B(H).
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1. Introduction. The Sz.-Nagy and Foiaş analytic model theory for
contractions on Hilbert spaces is a powerful tool for studying operators on
Hilbert spaces and holomorphic function spaces on the open unit disc D
in C. It says that if T is a contraction (that is, I − TT ∗ ≥ 0) on a Hilbert
space and in C·0 class (that is, T ∗l → 0 as l → ∞ in the strong operator
topology) then T ∗ is unitarily equivalent to the restriction of the backward
shift M∗z on a vector-valued Hardy space to an M∗z -invariant subspace. More
precisely, there exists a coefficient Hilbert space E∗ and an M∗z -invariant
closed subspace Q of the E∗-valued Hardy space H2(E∗) such that

T ∼= PQMz|Q.

Moreover, there exists a Hilbert space E and a B(E , E∗)-valued inner multi-
plier θT ∈ H∞B(E,E∗)(D), also known as the characteristic function of T (see

[NF]), such that

Q = H2(E∗)/θTH2(E).

On the other hand, in [Ag] J. Agler introduced and studied hypercon-
traction operators from the operator positivity point of view. He showed
that the vector-valued Hardy space in the dilation space of a contraction can
be replaced by a vector-valued weighted Bergman space if the contractivity
assumption on the operator is replaced by weighted Bergman-type positivity.
Later, Müller and Vasilescu [MV], Curto and Vasilescu [CV], Ambrozie and
Timotin [AT02, AT03], Arazy, Englǐs and Müller [AEM] and Arazy and Englǐs
[AE] extended these ideas to a more general class of operators. This viewpoint
has proved to be extremely fruitful in studying commuting tuples of operators.

The purpose of this paper is to explore how one might do analytic model
theory for a general class of operators and commuting tuples of operators.
In particular, we associate a partially isometric multiplier with every oper-
ator satisfying a weighted Bergman-type positivity condition (see Theorem
2.4). Another basic result in this direction is the following analytic model:
Let T = (T1, . . . , Tn) be a doubly commuting tuple of pure operators on a
Hilbert space H (that is, Ti ∈ C·0, TiTj = TjTi and TpT

∗
q = T ∗q Tp for all

i, j = 1, . . . , n, and 1 ≤ p < q ≤ n). Then (T ∗1 , . . . , T
∗
n) is joint unitarily

equivalent to the restriction of (M∗z1 , . . . ,M
∗
zn) to a joint invariant subspace

of a vector-valued weighted Bergman space over Dn if and only if T satisfies
(joint) weighted Bergman-type positivity. Moreover, in this case, the ortho-
complement of the co-invariant subspace of the weighted Bergman space is
of “Beurling–Lax–Halmos” type (see Theorem 4.5).

Although our method works for more general cases (see Section 6), for
simplicity we restrict our discussion to hypercontractions (see Section 2).

Here is a brief description of the paper. In Section 2 we set up nota-
tion, recall some basic notions from the theory of hypercontractions and
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construct an analytic structure on the model space. Our main tool here
is the Agler dilation theorem for hypercontractions [Ag] combined with a
Beurling–Lax–Halmos type representation of shift invariant subspaces of an-
alytic reproducing kernel Hilbert spaces ([BB], [S15]). In Section 3 we discuss
a dilation theory for a class of doubly commuting operator tuples satisfying
a weighted Bergman-type positivity condition. In Section 4 we formulate a
version of Sz.-Nagy and Foiaş analytic model for doubly commuting tuple
of hypercontractions. In Section 5, we analyze doubly commuting quotient
modules of scalar valued weighted Bergman spaces. Finally, in Section 6 we
studyK-contractive tuples of operators in the spirit of Arazy and Englǐs [AE].

2. Functional models for hypercontractions. The main purpose of
this section is to develop an analytic functional model for hypercontractions
on Hilbert spaces.

We first recall the definition of weighted Bergman spaces and review the
construction of dilation maps for hypercontractions. We refer the reader to
Agler’s paper [Ag] for more details.

The weighted Bergman kernel on the open unit disc D with weight α > 0
is, by definition, the kernel function

Bα(z, w) = (1− zw̄)−α (z, w ∈ D).

For each α > 0, we let A2
α denote the weighted Bergman space corresponding

to the kernel Bα. For any Hilbert space E , the E-valued weighted Bergman
space A2

α(E) with reproducing kernel (z, w) ∈ D × D 7→ Bα(z, w)IE can be
canonically identified with the Hilbert space tensor product A2

α⊗E . In order
to simplify notation, we often identify A2

α⊗E with A2
α(E). It also follows that

{Bα(·, w)η : w ∈ D, η ∈ E} is a total set in A2
α(E) and 〈f,Bα(·, w)η〉A2

α(E) =

〈f(w), η〉E where f ∈ A2
α(E), w ∈ D and η ∈ E . Moreover, it is easy to see

that the shift operator Mz on A2
α(E), α ≥ 1, is a C·0-contraction, where

(Mzf)(w) = wf(w) (f ∈ A2
α(E), w ∈ D).

In the following discussion, we shall mostly use weighted Bergman spaces
with integer weights. Let us point out an important special case: A2

1 = H2,
the Hardy space over D.

For a multi-index m = (m1, . . . ,mn) ∈ Nn we denote the corresponding
weighted Bergman space on Dn by A2

m. The weighted Bergman kernel on
Dn with weight m is, by definition, the reproducing kernel function

Bm(z,w) =

n∏
i=1

Bmi(zi, wi) =

n∏
i=1

(1− ziw̄i)−mi (z,w ∈ Dn).

For each w ∈ Dn, we denote by Bm(·,w) the kernel function at w, where

(Bm(·,w))(z) = Bm(z,w) (z ∈ Dn).
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Convention: Let p(z,w) =
∑

p,q∈Nn apqz
pw̄q be a polynomial in

{z1, . . . , zn} and {w̄1, . . . , w̄n}. For a commuting tuple of bounded linear
operators T = (T1, . . . , Tn) on a Hilbert space H (that is, TiTj = TjTi for all
i, j = 1, . . . , n) we denote by p(z,w)(T ,T ∗) the corresponding hereditary
functional calculus in the sense of Agler [Ag]:

(2.1) p(z, w)(T ,T ∗) =
∑

p,q∈Nn
apqT

pT ∗q,

where T k = T k11 · · ·T knn and T ∗k = T ∗k11 · · ·T ∗knn for all k = (k1, . . . , kn)
∈ Nn.

Definition 2.1. A bounded linear operator T on H is said to be Bm-
contractive (or a Bm-contraction) if T is of C·0 class and

B−1m (z, w)(T, T ∗) =

( m∑
k=0

(−1)k
(
m

k

)
zkw̄k

)
(T, T ∗)

=

m∑
k=0

(−1)k
(
m

k

)
T kT ∗k ≥ 0.

We also recall that T ∈ B(H) is a hypercontraction of order m [Ag] if

B−1p (z, w)(T, T ∗) ≥ 0 for all 1 ≤ p ≤ m.
Now let T be a Bm-contraction on H. Since T ∈ C·0, it follows from [Ag,

Lemma 2.11] that

B−1p (z, w)(T, T ∗) ≥ 0 (1 ≤ p ≤ m),

that is, T is a hypercontraction of order m. In other words, these two notions
coincide for C·0 class operators, and hence we will restrict our considerations
to Bm-contractions.

The defect operator and the defect space of a Bm-contraction T ∈ B(H)
are defined by

(2.2) Dm,T = (B−1m (z, w)(T, T ∗))1/2, Dm,T = ranDm,T ,

respectively. Set

(2.3) Bm(z, T ) = (IH − zT ∗)−m (z ∈ D)

and

(vm,T f)(z) = Dm,TBm(z, T )f = Dm,T (IH − zT ∗)−mf (f ∈ H, z ∈ D).

Then vm,T : H → A2
m(Dm,T ) is a bounded linear operator with

vm,TT
∗ = M∗z vm,T

and

v∗m,T (Bm(·, w)η) = Bm(w, T )∗Dm,T η = (IH − w̄T )−mDm,T η
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for all w ∈ D and η ∈ Dm,T . This and the definition of vm,T imply

(2.4)
(vm,Tv

∗
m,T (Bm(·, w)η))(z) = Dm,TBm(z, T )Bm(w, T )∗Dm,T η (z ∈ D)

for all w ∈ D and η ∈ Dm,T . Furthermore, since T is a Bm-contraction,
vm,T is an isometry and hence a dilation of T (see Agler [Ag]).

Theorem 2.2 (Agler). Let T ∈ B(H) be a Bm-contraction. Then T ∼=
PQMz|Q for some M∗z -invariant closed subspace Q of A2

m(Dm,T ).

We shall now introduce the notion of multipliers on weighted Bergman
spaces. Let m1,m2 be natural numbers and E1, E2 be Hilbert spaces. An
operator-valued holomorphic map θ : D→B(E1, E2) is said to be a multiplier
from A2

m1
(E1) to A2

m2
(E2) if θf ∈ A2

m2
(E2) for all f ∈ A2

m1
(E1). We denote

byM(A2
m1

(E1), A2
m2

(E2)) the set of all multipliers from A2
m1

(E1) to A2
m2

(E2).
We also use Mθ, for θ ∈M(A2

m1
(E1), A2

m2
(E2)), to denote the multiplication

operator
Mθf = θf (f ∈ A2

m1
(E1)).

A multiplier θ ∈ M(A2
m1

(E1), A2
m2

(E2)) is said to be partially isometric
if Mθ is a partially isometric operator from A2

m1
(E1) to A2

m2
(E2).

Before proceeding, let us for completeness recall a Beurling–Lax–Halmos
type theorem for weighted Bergman shifts (see [BB] and [S15, Theorem 2.3])
upon which much of our discussion in this paper will rest.

Theorem 2.3. Let S be a closed subspace of A2
m(E∗). Then S is Mz-

invariant if and only if there exists a Hilbert space E and a partially isometric
multiplier θ ∈M(A2

1(E), A2
m(E∗)) such that S = θA2

1(E).

We are now ready to present a functional model for Bm-contractions.

Theorem 2.4. Let T ∈ B(H) be a Bm-contraction. Then there exists a
Hilbert space E and a partially isometric multiplier θ∈M(A2

1(E), A2
m(Dm,T ))

such that
T ∼= PQθMz|Qθ ,

where Qθ = A2
m(Dm,T )	 θA2

1(E).

Proof. First, by Theorem 2.2, we realize T as T ∼= PQMz|Q. Therefore,
it remains to prove the existence of a partially isometric multiplier θ such
that Q = A2

m(Dm,T )	 θA2
1(E).

Since Q = ranvm,T is M∗z -invariant, (ranvm,T )⊥ is an Mz-invariant
closed subspace of A2

m(Dm,T ). Thus, applying Theorem 2.3 to (ranvm,T )⊥,
we obtain a coefficient Hilbert space E and a partially isometric multiplier
θ ∈M(A2

1(E), A2
m(Dm,T )) such that

(ranvm,T )⊥ = θA2
1(E),

that is, Q = A2
m(Dm,T )	 θA2

1(E).
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The following observation was pointed out to us by R. G. Douglas: Let
T ∈ B(H) be a Bm-contraction. Then by Theorem 2.4, we have

H2(E)
Mθ−−→ A2

m(Dm,T )
π−→ H → 0,

where π = v∗m,T (recall that A2
1(E) = H2(E)). Note that since MθMz =

MzMθ, S := kerMθ is an Mz-invariant subspace of H2(E). Then by the
Beurling–Lax–Halmos theorem there exists a Hilbert space E∗ and an inner
(or isometric) multiplier ψ ∈ H∞B(E∗,E)(D) such that S = ψH2(E∗). Conse-

quently, we have a natural chain complex of Hilbert spaces

0→ H2(E∗)
Mψ−−→ H2(E)

Mθ−−→ A2
m(Dm,T )

π−→ H → 0.

3. Dilations of commuting hypercontractions. In this section, we
prove that a doubly commuting tuple of hypercontractions can be dilated to
the tuple of shift operators on a suitable weighted Bergman space over Dn
(see [AEM, AT02, AT03, AE]). We begin with a definition.

Definition 3.1. A commuting tuple of operators T = (T1, . . . , Tn) on
H is said to be Bm-contractive if Ti is a Bmi-contraction, i = 1, . . . , n, and

B−1m (z,w)(T ,T ∗) =
( n∏
i=1

B−1mi (zi, wi)
)

(T ,T ∗) ≥ 0.

We denote the (joint-)defect operator and defect space of a Bm-contraction
T as

Dm,T := (B−1m (z,w)(T ,T ∗))1/2 and Dm,T = ranDm,T ,

respectively.

For the rest of the paper we shall be dealing with a fixed natural number
n ≥ 2, and a multi-index m = (m1, . . . ,mn) ∈ Nn, mj ≥ 1, j = 1, . . . , n.

Let T be a doubly commuting Bm-contractive tuple on H. Then

Ti(B
−1
mj (z, w)(Tj , T

∗
j )) = (B−1mj (z, w)(Tj , T

∗
j ))Ti

for all i 6= j. This also implies that(
B−1mi (zi, wi)(Ti, T

∗
i )
)(
B−1mj (zj , wj)(Tj , T

∗
j )
)

=
(
B−1mj (zj , wj)(Tj , T

∗
j )
)(
B−1mi (zi, wi)(Ti, T

∗
i )
)
.

The above observations yield the following:

Lemma 3.2. Let T be an n-tuple of doubly commuting operators on H
and suppose each Ti is a Bmi-contraction, i = 1, . . . , n. Then Dmj ,Tj is a
Ti-reducing subspace of H and

TiDmj ,Tj = Dmj ,TjTi, Dmj ,TjDmi,Ti = Dmi,TiDmj ,Tj ,
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for all i 6= j. Moreover, T is a Bm-contraction and

Dm,T =
n∏
i=1

Dmi,Ti .

Now, we shall construct, by induction, a dilation map for a doubly com-
muting Bm-contractive tuple T on H.

In what follows, for j ∈ {2, . . . , n}, mj denotes the j-tuple (m1, . . . ,mj)
in Nj and Tj the doubly commuting Bmj -contraction (T1, . . . , Tj) on H.
For each j ∈ {2, . . . , n}, one checks easily that Dmj−1,Tj−1

is a Tj-reducing
closed subspace of H and

DTj |Dmj−1,Tj−1

= DTj |Dmj−1,Tj−1
, DTj |Dmj−1,Tj−1

= Dmj ,Tj
,

where Dm1,T1 = Dm1,T1 . Now we set V1 := vm1,T1 : H → A2
m1

(Dm1,T1) and
define

V2 : A2
m1
⊗Dm1,T1

∼= A2
m1

(Dm1,T1)→ A2
m1
⊗A2

m2
⊗Dm2,T2

∼= A2
m2

(Dm2,T2)

by
V2 := IA2

m1
⊗ vm2,T2|Dm1,T1

,

where vm2,T2|Dm1,T1
: Dm1,T1 → A2

m2
⊗Dm2,T2 is the dilation of T2|Dm1,T1

∈
B(Dm1,T1). It follows that, for all l ∈ N, h ∈ Dm1,T1 and z1, z2 ∈ D,

(V2(z
lh))(z1, z2) = zl1(vm2,T2h)(z2).

Continuing, one can define bounded linear operators {Vj}nj=2 by

Vj = IA2
mj−1

⊗ vmj ,Tj |DTj−1

: A2
mj−1

(Dmj−1,Tj−1
)→ A2

mj
(Dmj ,Tj

),

where

(3.1)

(Vj(z
k1
1 · · · z

kj−1

j−1 h))(z1, . . . , zj) = zk11 · · · z
kj−1

j−1 (vmj ,Tj |Dmj−1,Tj−1

h)(zj)

for all h ∈ Dmj−1,Tj−1
, {z1, . . . , zj} ⊆ D and j = 2, . . . , n. Consequently, we

have the following sequence of maps:

0→ H V1−→ A2
m1

(Dm1,T1)
V2−→ A2

m2
(Dm2,T2)

V3−→ · · · Vn−→ A2
m(Dm,T ).

Let us denote by VT the composition of {Vj}nj=1:

(3.2) VT := Vn ◦ · · · ◦ V2 ◦ V1 : H → A2
m(Dm,T ).

Then VT ∈ B(H, A2
m(Dm,T )) is an isometric dilation of T :

Theorem 3.3. Let T be a doubly commuting Bm-contractive tuple on H.
Then VT is an isometry and

(VTh)(z) =
( n∏
i=1

Dmi,TiBmi(zi, Ti)
)
h (h ∈ H, z ∈ Dn).
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Moreover, VTT
∗
i = M∗ziVT , i = 1, . . . , n, and for z,w ∈ Dn and η ∈ Dm,T ,(

(VTV
∗
T )(Bm(·,w)η)

)
(z) =

n∏
i=1

Dmi,TiBmi(zi, Ti)Bmi(wi, Ti)
∗Dmi,Tiη.

Proof. Clearly V ∗1 V1 = IH and for each j = 2, . . . , n, we have

(vmj ,Tj |Dmj−1,Tj−1

)∗vmj ,Tj |Dmj−1,Tj−1

= IA2
mj

(Dmj,Tj
),

from which we immediately deduce V ∗j Vj = IA2
mj−1

(Dmj−1,Tj−1
), and finally

V ∗TVT = IH. Now by (3.1), we have

VTh = Vn · · ·V2(V1h) = Vn · · ·V3(V2Dm1,T1Bm1(z1, T1)h)

= Vn · · ·V3(Dm2,T2Bm2(z2, T2)Dm1,T1Bm1(z1, T1)h)

= Vn · · ·V3(Dm1,T1Dm2,T2Bm1(z1, T1)Bm2(z2, T2)h)

for all h ∈ H. Continuing, we have

(VTh)(z) =
n∏
i=1

Dmi,TiBmi(zi, Ti)h (h ∈ H, z ∈ Dn).

A direct computation (or see [AEM] or [CV]) now readily implies the inter-
twining property of VT and

V ∗T (Bm(·,w)η) =

n∏
i=1

Bmi(wi, Ti)
∗Dmi,Tiη (w ∈ Dn, η ∈ Dm,T ),

which in turn yields the last assertion of the theorem.

The above theorem is a doubly commuting version and a particular case
of [CV, Theorem 3.16] by Curto and Vasilescu and [AEM, Corollary 16]
by Ambrozie, Englǐs and Müller (see also [BNS]). However, the present
approach is based on the idea of “simple tensor products of one-variable
dilation maps”. Moreover, our construction of an explicit dilation map is
especially useful in analytic model theory (see Section 4).

Recall that a pair of commuting tuples T = (T1, . . . , Tn) on H and
S = (S1, . . . , Sn) on K are said to be jointly unitarily equivalent, denoted
by T ∼= S, if there exists a unitary map U : H → K such that UTi =
SiU , i = 1, . . . , n. The following dilation result is an easy consequence of
Theorem 3.3.

Theorem 3.4. Let T be a doubly commuting Bm-contractive tuple on H.
Then there exists a joint (M∗z1 , . . . ,M

∗
zn)-invariant closed subspace Q ⊆

A2
m(DDm,T

) such that

(T1, . . . , Tn) ∼= (PQMz1 |Q, . . . , PQMzn |Q).

Proof. Let Q = ranVT , where VT is the dilation map of T as in Theorem
3.3. Then Q is a joint (M∗z1 , . . . ,M

∗
zn)-invariant subspace of A2

m(H) and
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UT := VT : H → Q is a unitary map. Moreover,

UTT
∗
j = VTT

∗
j = M∗zjVT = M∗zjVTV

∗
TVT = (M∗zj |Q)VT = (M∗zj |Q)UT

for all j = 1, . . . , n. Hence

UTTj = PQMzj |QUT (j = 1, . . . , n).

4. Analytic model. We begin with the following lemma, the relevance
of which to our purpose will become apparent in connection with the analytic
model of doubly commuting tuples of operators.

Lemma 4.1. Let T be a doubly commuting Bm-contractive tuple on H
and 1 ≤ j ≤ n. Then A2

m(Dm,T ) ⊆ A2
m(Dmj ,Tj ) and A2

m(Dm,T ) is a reduc-
ing subspace for( n⊗

i=1
i 6=j

IA2
mi

)
⊗ vmj ,Tjv

∗
mj ,Tj ∈ B(A2

m(Dmj ,Tj )).

Proof. The first statement follows from the inclusion Dm,T ⊆ Dmj ,Tj .
For the second, it is enough to prove that Xj(Bm(·,w)η) ∈ A2

m(Dm,T )
where w ∈ Dn, η ∈ Dm,T and

Xj :=
( n⊗
i=1
i 6=j

IA2
mi

)
⊗ vmj ,Tjv

∗
mj ,Tj .

To this end, for each zj , wj ∈ D, we compute

Dmj ,TjBmj (zj , Tj)Bmj (wj , Tj)
∗Dmj ,Tj

( n∏
i=1

Dmi,Ti

)
= Dmj ,TjBmj (zj , Tj)Bmj (wj , Tj)

∗
( n∏
i=1
i 6=j

Dmi,Ti

)
D2
mj ,Tj

= Dmj ,Tj

( n∏
i=1
i 6=j

Dmi,Ti

)
Bmj (zj , Tj)Bmj (wj , Tj)

∗D2
mj ,Tj

=
( n∏
i=1

Dmi,Ti

)
Bmj (zj , Tj)Bmj (wj , Tj)

∗D2
mj ,Tj .

In particular,(
Dmj ,TjBmj (zj , Tj)Bmj (wj , Tj)

∗Dmj ,Tj

)
Dm,T ⊆ Dm,T (zj , wj ∈ D).
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If w ∈ Dn, η =
∏n
i=1Dmi,Tih ∈ Dm,T and h ∈ H, then (2.4) gives

Xj(Bm(·,w)η) =( n∏
k=1
k 6=j

Bmk(zk, wk)
)(
Dmj ,TjBmj (zj , Tj)Bmj (wj , Tj)

∗Dmj ,Tjη
)
∈A2

m(Dm,T ).

Therefore, Rj ∈ B(A2
m(Dm,T )), j = 1, . . . , n, where

Rj =
( n⊗
i=1
i 6=j

IA2
mi

)
⊗ (vmj ,Tjv

∗
mj ,Tj )|A2

mj
(Dm,T ).

By (2.4) we have in particular, for w ∈ Dn, η ∈ Dm,T , and j = 1, . . . , n,

(4.1) Rj(Bm(·,w)η)

=
( n∏
i=1
i 6=j

Bmi(zi, wi)
)(
Dmj ,TjBmj (zj , Tj)Bmj (wj , Tj)

∗Dmj ,Tjη
)
.

Claim. {R1, . . . , Rn} is a family of commuting orthogonal projections.

Proof of the claim. Since vmj ,Tj is an isometry, we deduce from the

definition of Rj that Rj = R∗j = R2
j , 1 ≤ j ≤ n, that is, {Rj}nj=1 is a

family of orthogonal projections. Now let p, q = 1, . . . , n, p 6= q, w ∈ Dn and
η ∈ Dm,T . Using (4.1), we obtain

RpRq(Bm(·,w)η)

= Rp

( n∏
i=1
i 6=q

Bmi(zi, wi)(Dmq ,TqBmq(zq, Tq)Bmq(wq, Tq)
∗Dmq ,Tqη)

)

=
n∏
i=1
i 6=p,q

Bmi(zi, wi)(Dmp,TpBmp(zp, Tp)Bmp(wp, Tp)
∗Dmp,Tp)

· (Dmq ,TqBmq(zq, Tq)Bmq(wq, Tq)
∗Dmq ,Tqη)

=

n∏
i=1
i 6=p,q

Bmi(zi, wi)(Dmp,TpDmq ,TqBmp(zp, Tp)Bmq(zq, Tq)

·Bmp(wp, Tp)∗Bmq(wq, Tq)∗Dmp,TpDmq ,Tq)η

= RqRp(Bm(·,w)η).

Therefore RpRq = RqRp for all p, q = 1, . . . , n, proving the claim.
We now investigate the product

∏n
j=1Rj . For computational simplicity,

assume that, for each i = 1, . . . , n,

fi(z, w) := Bmi(z, Ti)Bmi(w, Ti)
∗ (z, w ∈ D).
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For each w ∈ Dn and η ∈ Dm,T , we have( n∏
j=1

Rj

)
(Bm(·,w)η) =

n∏
j=1
j 6=1

Rj(R1Bm(·,w)η)

=
n∏
j=1
j 6=1

Rj

( n∏
i=1
i 6=1

Bmi(·, wi)Dm1,T1f1(·, w1)Dm1,T1η
)

=
n∏
j=1
j 6=1,2

Rj

( n∏
i=1
i 6=1,2

Bmi(·, wi)Dm1,T1Dm2,T2f1(·, w1)f2(·, w2)Dm1,T1Dm2,T2η
)
.

Continuing, we have( n∏
j=1

Rj

)
(Bm(·,w)η) =

n∏
i=1

Dmi,Tifi(·, wi)Dmi,Tiη

=
n∏
i=1

Dmi,TiBmi(·, Ti)Bmi(wi, Ti)∗Dmi,Tiη,

and hence Theorem 3.3 yields VTV
∗
T =

∏n
i=1Ri. Summing up, we obtain:

Theorem 4.2. Let T be a doubly commuting Bm-contractive tuple on H.
Then {Ri}ni=1 is a family of commuting orthogonal projections and

VTV
∗
T =

n∏
i=1

Ri.

We need to introduce one more piece of notation. For m ∈ Nn and
j = 1, . . . , n, set

m̂j := (m1, . . . ,mj−1, 1︸︷︷︸
j th

,mj+1, . . . ,mn).

In particular,

A2
m̂j

= A2
m1
⊗ · · · ⊗A2

mj−1
⊗H2 ⊗A2

mj+1
⊗ · · · ⊗A2

mn .

Now let T be a doubly commuting Bm-contractive tuple on H, and let
1 ≤ j ≤ n. Then

ranRj =
(( n⊗

i=1
i 6=j

A2
mi

)
⊗ ran(vmj ,Tjv

∗
mj ,Tj )

)
∩
(( n⊗

i=1
i 6=j

A2
mi

)
⊗A2

mj (Dm,T )
)

=
( n⊗
i=1
i 6=j

A2
mi

)
⊗Qj ,
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where Qj = ran(vmj ,Tjv
∗
mj ,Tj

) ∩ A2
mj (Dm,T ). But ran(vmj ,Tjv

∗
mj ,Tj

) is an

M∗z -invariant subspace of A2
mj (Dmj ,Tj ), hence Qj is an M∗z -invariant closed

subspace of A2
mj (Dm,T ). By Theorem 2.3 there exists an auxiliary Hilbert

space Ej and a partially isometric multiplier θj ∈ M(A2
1(Ej), A2

mj (Dm,T ))
such that

Rj = IA2
m(Dm,T ) −MΘjM

∗
Θj ,

where

(4.2) MΘj =
( n⊗
i=1
i 6=j

IA2
mi

)
⊗Mθj .

Notice that Θj ∈M(A2
m̂j

(Ej), A2
m(Dm,T )) is a partially isometric multiplier

and

Θj(z) = θj(zj) (z ∈ Dn).

Together with Theorem 4.2, this yields the following:

Theorem 4.3. Let T be a doubly commuting Bm-contractive tuple on H.
Then there exist Hilbert spaces Ek and partially isometric multipliers θk ∈
M(A2

1(Ek), A2
mk

(Dm,T )), k = 1, . . . , n, such that

(MΘiM
∗
Θi)(MΘjM

∗
Θj ) = (MΘjM

∗
Θj )(MΘiM

∗
Θi)

for all i, j, k = 1, . . . , n. Moreover

VTV
∗
T =

n∏
i=1

(IA2
m(Dm,T ) −MΘiM

∗
Θi).

In order to formulate our functional model for Bm-contractive tuples, we
need to recall the following result concerning commuting orthogonal projec-
tions (cf. [S14, Lemma 1.5]):

Lemma 4.4. Let {Pi}ni=1 be a collection of commuting orthogonal pro-
jections on a Hilbert space H. Then L :=

∑n
i=1 ranPi is closed and the

orthogonal projection of H onto L is given by PL = I −
∏n
i=1(I − Pi).

We are now ready to present the main theorem of this section.

Theorem 4.5. Let T be a doubly commuting Bm-contractive tuple
on H. Then there exist Hilbert spaces Ek and partial isometric multipliers
θk ∈M(A2

1(Ek), A2
mk

(Dm,T )), k = 1, . . . , n, such that

H ∼= QΘ := A2
m(Dm,T )/

n∑
i=1

ΘiA
2
m̂i

(Ei)

and

(T1, . . . , Tn) ∼= (PQΘMz1 |QΘ , . . . , PQΘMzn |QΘ),
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where Θi is the one-variable multiplier corresponding to θi, i = 1, . . . , n, as
defined in (4.2).

Proof. We keep the notation of Theorem 4.3. Set Pi := MΘiM
∗
Θi

, i =
1, . . . , n. By Theorem 4.3 we have

IA2
m(Dm,T ) − VTV ∗T = IA2

m(Dm,T ) −
n∏
i=1

(IA2
m(Dm,T ) − Pi).

Now by Lemma 4.4, it follows that

(ranVT )⊥ =

n∑
i=1

ranMΘi =

n∑
i=1

ΘiA
2
m̂i

(Ei).

Therefore,

QΘ := ranVT =
( n∑
i=1

ΘiA
2
m̂i

(Ei)
)⊥ ∼= A2

m(Dm,T )/

n∑
i=1

ΘiA
2
m̂i

(Ei).

Now using the argument from the proof of Theorem 3.4 one can prove that
(T1, . . . , Tn) ∼= (PQΘMz1 |QΘ , . . . , PQΘMzn |QΘ).

In the special case of m = (1, . . . , 1) we recover the functional model for
doubly commuting tuples of pure contractions [BNS]. However, the methods
used here are different from those in [BNS].

5. Quotient modules of A2
m. We have a particular interest in tuples

of operators (Mz1 , . . . ,Mzn) compressed to joint (M∗z1 , . . . ,M
∗
zn)-invariant

subspaces of reproducing kernel Hilbert spaces over Dn. Let Q be a joint
(M∗z1 , . . . ,M

∗
zn)-invariant closed subspace of A2

m and

Czi = PQMzi |Q, i = 1, . . . , n.

Then Q is called a doubly commuting quotient module of A2
m if

C∗ziCzj − CzjC
∗
zi = 0 (1 ≤ i < j ≤ n).

First, we compute the defect operator of a given doubly commuting quotient
module Q of A2

m:

D2
m,Cz

= B−1m (z,w)(Cz,C
∗
z) = PQ

(
B−1m (z,w)(Mz,M

∗
z)
)∣∣
Q.

On the other hand, it is easy to see that (cf. [CDS, Theorem 3.3])

D2
m,Mz

= B−1m (z,w)(Mz,M
∗
z) = PC,

where PC is the orthogonal projection of A2
m onto the one-dimensional sub-

space of all constant functions. Consequently, D2
m,Cz

= PQPC|Q, and hence

(5.1) rankDm,Cz ≤ 1.
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Theorem 5.1. Let Q be a quotient module of A2
m. Then the following

conditions are equivalent:

(i) Q is doubly commuting.
(ii) There exist M∗z -invariant closed subspaces Qi of A2

mi, i = 1, . . . , n,
such that

Q ∼= Q1 ⊗ · · · ⊗ Qn.
(iii) There exist Hilbert spaces Ei and partially isometric multipliers θi ∈

M(A1(Ei), A2
mi), i = 1, . . . , n, such that

Q ∼= Qθ1 ⊗ · · · ⊗ Qθn ,
where Qθj = A2

mj/θjA1(Ej), j = 1, . . . , n.

Proof. Let us begin by observing that the operator Czi , i = 1, . . . , n, on
Q = Q1 ⊗ · · · ⊗ Qn can be represented as

Czi = PQ(IA2
m1
⊗ · · · ⊗ IA2

mi−1
⊗Mz ⊗ IA2

mi+1
⊗ · · · ⊗ IQn)|Q

= IQ1 ⊗ · · · ⊗ IQi−1 ⊗ PQiMz|Qi ⊗ IQi+1 ⊗ · · · ⊗ IQn .
This yields (ii)⇒(i) and (iii)⇒(i). The implication (ii)⇒(iii) follows from
Theorem 2.3, and (iii)⇒(ii) is trivial. Hence it suffices to show (i)⇒(iii).
Assume (i). Then by Theorem 4.5, there exist Hilbert spaces Ei and one-
variable partially isometric multipliers Θi ∈ M(A2

m̂i
(Ei), A2

m(Dm,Cz)), i =
1, . . . , n, such that

(Cz1 , . . . , Czn)|Q ∼= (PQΘMz1 |QΘ , . . . , PQΘMzn |QΘ),

and

QΘ = A2
m(Dm,Cz)/

n∑
i=1

ΘiA
2
m̂i

(Ei).

Now by (5.1) we have Dm,Cz
∼= {0}, or C. To avoid triviallities we assume

that Dm,Cz
∼= C. Then

Q ∼= QΘ = A2
m/

n∑
i=1

ΘiA
2
m̂i

(Ei).

In particular,

PQΘ =
n∏
i=1

(IA2
m
−MΘiM

∗
Θi) =

n⊗
i=1

(IA2
mi
−MθiM

∗
θi

),

which implies Q ∼= QΘ = Qθ1 ⊗ · · · ⊗ Qθn and concludes the proof.

The implication (i)⇒(ii) in the previous theorem was obtained in [CDS].
For the Hardy space case H2(Dn), that is, for m = (1, . . . , 1), this was
observed in [BNS] and [S14]. Moreover, as we shall see in the next section,
the same result holds for more general reproducing kernel Hilbert spaces
over Dn.
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6. 1/K-calculus and K-contractivity. The key concept in our ap-
proach is the natural connections between (i) operator positivity, imple-
mented by the inverse of a positive definite kernel function on D, and a dila-
tion map, again in terms of the kernel function, (ii) tensor product structure
of reproducing kernel Hilbert spaces on Dn, and (iii) operator positivity, im-
plemented by the product of n positive definite kernel functions on D, of
a doubly commuting n-tuple of operators. Consequently, our considerations
can be applied even for a more general framework (in the sense of Arazy
and Englǐs [AE]).

Let k be a positive definite kernel function on D and suppose k(z, w) is
holomorphic in z and anti-holomorphic in w, and k(z, w) 6= 0 for all z, w ∈ D.
Let Rk ⊆ O(D,C) be the corresponding reproducing kernel Hilbert space.
Moreover, assume that

(i) C[z] is dense in Rk,
(ii) the multiplication operator Mz on Rk is a contraction,

(iii) there exists a sequence {pk}∞k=0 ∈ C[z, w̄] of polynomials such that

pk(z, w̄)→ 1

k(z, w)
(z, w ∈ D)

and

sup
k
‖pk(Mz,M

∗
z )‖ <∞.

We will call such a reproducing kernel Hilbert space a standard reproducing
kernel Hilbert space, or just SRKH for short.

Let Rk be a SRKH and, by (i) above, let {ψk}∞k=0 ⊆ C[z] be an or-
thonormal basis of Rk. For any nonnegative operator C and bounded linear
operator T on a Hilbert space H, set

fk,C(T ) = IH −
∑

0≤m<k
ψm(T )Cψm(T )∗.

Definition 6.1. Let Rk be a SRKH and T ∈ B(H). Then T is said to
be k-contractive if supk ‖pk(T, T ∗)‖ <∞ and

C := WOT- lim
k→∞

pk(T, T
∗)

exists and nonnegative, and

SOT- lim
k→∞

fk,C(T ) = 0.

We are now ready to state the Arazy–Englǐs dilation result (see [AE,
Corollary 3.2]).

Theorem 6.2. Let Rk be a SRKH and T ∈ B(H) be a k-contraction,
and set D = ranC. Then there exists an M∗z -invariant closed subspace Q of
Rk ⊗D such that T ∼= PQMz|Q.



170 M. Bhattacharjee and J. Sarkar

In this case, the dilation map VT is given by (see [AE, (1.5)])

(VTh)(z) =
∑
k

ψk(z)⊗ C1/2ψk(T )∗h (h ∈ H).

Finally, note that the statement of Theorem 4.5 can be generalized to
this framework as follows (see [S15, Theorem 2.3]): Let H be a Hilbert space
and S be a closed subspace of Rk ⊗H. Then S is Mz-invariant if and only
if S = ΘH2(E) for some Hilbert space E and a partially isometric multiplier
Θ ∈M(H2(E),Rk ⊗H).

Consequently, Theorem 2.4 holds for the class of k-contractions.

Theorem 6.3. Let Rk be a SRKH and T ∈ B(H) be a k-contraction,
and set D = ranC. Then there exists a Hilbert space E and a partially
isometric multiplier θ ∈M(H2(E),Rk⊗D) such that T ∼= PQθMz|Qθ where
Qθ = (Rk ⊗D)	 θH2(E).

Now let Rki , i = 1, . . . , n, be n standard reproducing kernel Hilbert
spaces over D, and set

RK := Rk1 ⊗ · · · ⊗ Rkn .

Then RK is a reproducing kernel Hilbert space (see Tomerlin [To]) and

K(z,w) =

n∏
i=1

ki(zi, wi) (z,w ∈ Dn).

Let T be a doubly commuting tuple of operators on H and let Ti be a
ki-contraction, i = 1, . . . , n. Set

Ci = WOT- lim
k→∞

pi,k(Ti, T
∗
i ),

where pi,k(z, w̄)→ 1/ki(z, w), i = 1, . . . , n. In a similar way to Lemma 3.1,
one can prove that CiCj = CjCi for all i, j = 1, . . . , n, and

CT :=
n∏
i=1

Ci ≥ 0.

In view of this observation, a doubly commuting tuple T is called K-
contractive if Ti is ki-contractive for all i = 1, . . . , n (see the remark at the
end of Lemma 3.2). Consequently, all the results and proofs in this paper
hold verbatim for doubly commuting K-contractive tuples as well.
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