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Abstract. We study the existence of nonseparable compact spaces that support a
measure and are small from the topological point of view. In particular, we show that
under Martin’s Axiom there is a nonseparable compact space supporting a measure which
has countable π-character and which cannot be mapped continuously onto [0, 1]ω1 . On the
other hand, we prove that in the random model there is no nonseparable compact space
having countable π-character and supporting a measure.

1. Introduction. The well known Suslin Hypothesis can be expressed
in the following form:

Every linearly ordered compact space satisfying the countable
chain condition is separable.

We shall call an arbitrary nonseparable ccc compact space a Suslinean
space. Clearly, Suslinean spaces do exist in ZFC. Perhaps the most obvious
example is [0, 1]κ with the standard product topology, where κ > c. Such a
space, however, is far from being linearly ordered. Indeed, linearly ordered
spaces cannot be mapped continuously onto [0, 1]ω1 .

The Suslin Hypothesis was shown to hold under MAω1 . Later it turned
out that linearity of the space in question can be relaxed to some kind of
topological smallness. For instance, Hajnal and Juhász [Juh71] proved that
under MAω1 every ccc compact space with a π-base of size less than c is
separable. By purely topological methods one can deduce from this result
that under MAω1 there are no Suslinean first-countable spaces or Suslinean
spaces of countable tightness (see Tall [Tal74]).
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Let us recall that no space which is first-countable or has countable tight-
ness can be continuously mapped onto [0, 1]ω1 . In the light of the results
mentioned above it is natural to ask if the following statement is consistent:

Every Suslinean space can be mapped continuously onto [0, 1]ω1.

In [Tod00] Todorčević called such a conjecture “the ultimate version of
Suslin hypothesis”. Another question which suggests itself here (cf. [Juh77])
is:

Is it consistent that there is no Suslinean space of countable π-
character?

Both the questions have been answered negatively. First, Bell [Bel96]
proved that MAω1 is consistent with the existence of a Suslinean space of
countable π-character which does not map continuously onto [0, 1]ω1 . Then
Moore [Moo99] gave an example of such a space whose existence is implied
by MA. Finally, Todorčević [Tod00] constructed in ZFC a compact space
with the same properties.

The aim of this article is to consider similar questions for the class of
compacta that support a measure. In particular, we discuss the following
two questions.

Problem 1.1. Is there a Suslinean space supporting a measure which
cannot be mapped continuously onto [0, 1]ω1?

Problem 1.2. Is there a Suslinean space of countable π-character sup-
porting a measure?

We say that a space K supports a measure if there is a measure µ such
that µ(U) > 0 for every nonempty open U ⊆ K (in other words, µ is strictly
positive on K). Clearly, if a compact space supports a measure then it is ccc.

Assuming the continuum hypothesis Kunen [Kun81] constructed a first-
countable Suslinean space supporting a measure so the answer to 1.1 and 1.2
is positive under CH. Later Kunen and van Mill [KvM95] proved the following
(cf. Plebanek [Ple97, Theorem 5.1]).

Theorem 1.3. The following are equivalent:

(i) there is a Suslinean first-countable Corson compact space supporting
a measure,

(ii) cov(Nω1) = ω1 (1).

For the definition of a Corson compact space see e.g. [KvM95]; it is worth
recalling that every separable subspace of a Corson compactum is metrizable.

(1) See Section 2 for the notation used here and Section 4 for further discussion.
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We give a consistent negative solution to Problem 1.2: we show that
under a certain axiom (satisfied e.g. in the standard random model) there is
no Suslinean space of countable π-character and supporting a measure.

On the other hand, in Section 3 assuming MA we construct a space
K giving a positive solution to both Problems 1.1 and 1.2, i.e. our space
K is a nonseparable compact space supporting a measure and of count-
able π-character. The space K is moreover linearly fibered, i.e. it can be
mapped continuously onto 2ω in such a way that all fibers are linearly or-
dered. Hence, it is in a sense a direct generalization of the Suslin line. In
particular, K cannot be mapped continuously onto [0, 1]ω1 . Moreover, using
slightly different methods, we show that under a weaker version of Martin’s
Axiom there is a small compact space which supports a measure but not
a countably determined one (so, in a sense, it is close to being nonsepara-
ble).

We do not know if Problem 1.1 can be resolved in the usual set theory.
However, Theorems 1.3 and 3.3 indicate that usually the answer to 1.1 is
positive: if we seek for a consistent negative answer, we have to assume
Martin’s Axiom for the measure algebras (that is, cov(Nω1) > ω1) and the
negation of MAω1 , so the standard model obtained by adding ω2 random
reals might be a natural candidate.

The above results seem to reveal an interesting phenomenon. Usually
Martin’s Axiom eliminates pathological objects (in particular various kinds
of Suslinean spaces) and it has been used for this purpose from the very
beginning of its creation. However, the space from Theorem 3.3 is a pathology
tolerated by Martin’s Axiom but not by the classical random model. Perhaps
this is an indication that the random model is the universe in which measures
on compact spaces behave in a more orderly way than in other models.

It seems that under additional axioms the methods used in [Tod00] can
provide yet another example of a small nonseparable space supporting a
measure. This is a subject under investigation (see [BNI16]).

2. Preliminaries. We use the standard terminology and notation con-
cerning topology, so w(K) is the topological weight of a space K, while π(K)
is the π-weight, the smallest cardinality of a π-base of K.

Let K be a compact space and x ∈ K. Recall that a family of nonempty
open sets P is a π-base at x if for every open V 3 x there is U ∈ P such
that U ⊆ V . By π(x,K) we denote the smallest cardinality of a π-base at x.
The π-character of K is defined as πχ(K) = sup{π(x,K) : x ∈ K}.

Given a Boolean algebra A, a family P ⊆ A+ is its π-base if for every
A ∈ A+ there is B ∈ P with B ≤ A. Clearly, every π-base of a Boolean
algebra defines a π-base of its Stone space.



290 P. Borodulin-Nadzieja and G. Plebanek

If I is an ideal on a set K, then

add(I) = min
{
|A| : A ⊆ I,

⋃
A /∈ I

}
,

non(I) = min
{
|X| : X ⊆ K, X /∈ I

}
,

cov(I) = min
{
|A| : A ⊆ I,

⋃
A = K

}
.

By a measure on a topological space K we mean a finite Borel measure
which is Radon, i.e. inner-regular with respect to compact sets. Typically,
we consider Radon measures on compacta.

If µ is a measure on K and Nµ is the ideal of µ-null sets, then we write
non(µ) = non(Nµ) and cov(µ) = cov(Nµ).

By a measure µ on a Boolean algebra A we mean a finite and finitely
additive function µ : A→ R (note that usually we consider Boolean algebras
which are not σ-complete).

Let A be a Boolean algebra and let K = ult(A) be its Stone space (of
all ultrafilters). If A ∈ A, then we denote by Â = {x ∈ K : A ∈ x} the
corresponding clopen subset of K. Recall that a measure µ on A can be
transferred to a measure µ̂ on the algebra of clopen subsets of K via the
formula µ̂(Â) = µ(A). In turn, µ̂ can be uniquely extended to a (σ-additive
and Radon) measure on K.

If µ is a measure on K, then we denote by A(µ) the measure algebra of µ,
i.e. A(µ) = Bor(K)/{A : µ(A) = 0}.

Let κ be a cardinal number. Denote by λκ the standard product measure
on 2κ (we also write λ for λω). Recall that for κ > ω, although the product
σ-algebra Σ of 2κ is much smaller than the family of Borel sets, by the
classical Kakutani theorem, Bor(2κ) lies in the completion of Σ with respect
to λκ. Therefore, λκ is in fact defined for all Borel sets. Let Nκ be the ideal
of λκ-null subsets of 2κ. Denote by Aκ the measure algebra of λκ.

Let µ be the Radon measure on a spaceK. Let us recall that theMaharam
type of µ is the least cardinal number κ such that there exists a family E of
Borel sets of size κ approximating µ with respect to symmetric difference,
that is,

inf{µ(E 4B) : E ∈ E} = 0

for every Borel set B.
By the Maharam structure theorem, if a Radon measure µ is of Maharam

type ≤ κ then the algebra A(µ) embeds into Aκ, the measure algebra of λκ.
Moreover, if A is homogeneous, i.e. the measure µ|A has the same Maharam
type for each nonzero A ∈ A, then A(µ) and Aκ are isomorphic.

3. Suslinean spaces supporting a measure under MA. The main
aim of this section is to give a partial positive answer to Problems 1.1 and 1.2.
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The space K we construct under MA has the following property: there is a
continuous mapping f : K → 2ω such that its fibers are homeomorphic to or-
dinal numbers (in particular, they are linearly ordered and scattered). Recall
that no scattered compact space can be mapped onto [0, 1] by a continuous
function. Consequently, by the proposition given below, our space K does
not admit a continuous surjection onto [0, 1]ω1 .

Proposition 3.1 ([Tka91], see also [BN16]). Assume K is a compact
space, M is compact and metric and f : K → M is a continuous mapping.
If K can be mapped continuously onto [0, 1]ω1, then there is t ∈M such that
f−1[t] can be mapped continuously onto [0, 1]ω1 .

We shall use the following consequence of Martin’s Axiom.
Lemma 3.2 ([Fre84, 33D])). Assume MA. Let α < c and let {Eξn : ξ < α,

n ∈ ω} be a family of closed subsets of 2ω such that for each ξ < α the
sequence (Eξn)n is increasing and limn λ(E

ξ
n) = 1. Then for each ε > 0 there

is a closed set E ⊆ 2ω such that

(i) λ(E) > 1− ε,
(ii) the set {i : E * Eξi } is finite for every ξ < α.

We shall construct the required space K as a Stone space ult(A) of a
certain Boolean subalgebra A of Borel subsets of 2ω.

Theorem 3.3. Assume MA. There is a compact space K and a contin-
uous mapping f : K → 2ω such that

• K is nonseparable,
• K has countable π-character,
• K supports a measure,
• each fiber of f is homeomorphic to an ordinal number (and consequently
K does not map continuously onto [0, 1]ω1).

Proof. If F , G are closed subsets of the Cantor set 2ω, then we write
F ⊆∗ G to denote that for every x ∈ G there is an open neighbourhood
U 3 x such that F ∩U ⊆ G (in other words, this means that F \G is closed).
Notice that although the relation ⊆∗ is not transitive, if F0 ⊆ F1 ⊆∗ F2, then
F0 ⊆∗ F2.

Fix an enumeration 2ω = {sα : α < c}. Let U be the family of clopen
subsets of 2ω. Let λ be the Lebesgue measure on 2ω. We are going to con-
struct inductively a sequence (Fα)α<c of closed subsets of 2ω such that for
every α < c:

(1) λ(Fα) > 0,
(2) Fα ∩ {sξ : ξ ≤ α} = ∅,
(3) if β < α then Fα ⊆∗ Fβ ,
(4) λ(

⋃
n Fα+n) = 1.



292 P. Borodulin-Nadzieja and G. Plebanek

Let A be the Boolean algebra of subsets of 2ω generated by U and by the
family {Fα : α < c}. Let K ′ = ult(A) be its Stone space. The measure λ
restricted to A defines a Radon measure µ on K ′ (see Section 2). Let K ⊆ K ′
be the support of µ, i.e. K = K ′ \

⋃
{Â : λ(A) = 0}.

We shall first prove that the resulting spaceK has the required properties.
Let f : K → 2ω = ult(A) be the standard continuous mapping induced by
the restriction map:

f(x) = {C : C ∈ A, C ∈ x} ∈ ult(A).

Claim. The space K supports a measure and is not separable.

Obviously, K supports the measure µ. Conditions (1) and (2) imply that
the space K is nonseparable. Indeed, given a family {xn : n < ω} ⊆ ult(A)
set f(xn) = tn for every n. Then {tn : n < ω} ∩ Fα = ∅ for α large enough,
so F̂α ∩K 6= ∅ contains no xn.

Claim. Each fiber of f is homeomorphic to an ordinal number < c.

Indeed, fix t ∈ 2ω and take β < α such that t ∈ Fα ∩ Fβ . Then by
property (3) there is U ∈ U such that t ∈ U and Fα ∩U ⊆ Fβ , which means
that f−1[t] ∩ F̂α ⊆ f−1[t] ∩ F̂β . It follows that the algebra of clopen subsets
of f−1[t] is generated by a well-ordered chain of length < c, so f−1[t] is
homeomorphic to some ordinal number < c.

Claim. πχ(K) = ω.

Consider x ∈ K and set γ = sup{α : x ∈ F̂α}. Then γ < c. Otherwise,
f(x) ∈ 2ω would belong to cofinally many Fα’s, contradicting property (2).
We claim that the family

Px = {F̂γ+n ∩ Û ∩K : n ∈ ω, U ∈ U} \ {∅}
forms a (countable) local π-base at x.

The family of sets of the form B̂ ∩K, where

B = C ∩ (Fξ1 ∩ · · · ∩ Fξk) ∩ (F cξk+1
∩ · · · ∩ F cξl),

C ∈ U , ξi ≤ γ for every i ≤ k and λ(B) > 0, is a local base at x.
We will show that every nonempty B̂ ∩ K, where B is as above, has a

subset from Px. By (4) there is n such that λ(Fγ+n∩B) > 0. Let t ∈ Fγ+n∩B
be such that whenever t ∈ V , V ∈ U , we have λ(V ∩ Fγ+n ∩ B) > 0. There
is U ′ ∈ U such that t ∈ U ′ and U ′ ⊆ C ∩ (F cξk+1

∩ · · · ∩ F cξl) (because the
latter set is open). For every i ≤ k we have Fγ+n ⊆∗ Fξi and so there is
Ui ∈ U such that t ∈ Ui and Fγ+n ∩ Ui ⊆ Fξi . Let U = U ′ ∩ U0 ∩ · · · ∩ Uk.
Then t ∈ U ∩ Fγ+n ⊆ B. By the choice of t we have λ(U ∩ Fγ+n) > 0 and
so F̂γ+n ∩ Û ∩K 6= ∅. Finally, F̂γ+n ∩ Û ⊆ B̂ and F̂γ+n ∩ Û ∩K ∈ Px, as
required.



Measures on Suslinean spaces 293

To complete the proof, we shall carry out an inductive construction. For
F0 take any closed set such that λ(F0) > 0 and s0 /∈ F0. Assume that we
have constructed {Fξ : ξ < α}.

Notice that for every ξ < α there is an increasing sequence (Eξn)n of
closed sets in 2ω such that

(A) limn λ(E
ξ
n) = 1,

(B) Eξn ⊆∗ Fξ.
Indeed, for every n there is a (possibly empty) closed set Kn ⊆ 2ω \ Fξ

such that λ(Kn) > λ(K \Fξ)−1/n. We can assume that the sequence (Kn)n
is increasing. Then Eξn = Fξ ∪Kn is as desired, since Eξn \Fξ = Kn is closed.

Now the family {Eξn : ξ < α, n ∈ ω} fulfils the assumptions of Lemma 3.2.
Let n be such that α = γ + n where γ is a limit ordinal. Let E be the set
given by Lemma 3.2 for ε = 1/(n+ 1). As non(N ) = c by Martin’s Axiom,
the set {sξ : ξ ≤ α} is of measure zero, so we can find a closed set Fα such
that Fα ⊆ E \ {sξ : ξ ≤ α} and λ(Fα) > 1− 1/(n+ 1). It is then enough to
check condition (3). Let β < α and x ∈ Fβ . As Fα ⊆ E, by Theorem 3.2(ii),
there is k ∈ ω such that Fα ⊆ Eβk . Hence, by (B), Fα ⊆∗ Fβ , and we are
done.

Using a weaker version of Martin’s Axiom we can construct an example
of a space with slightly weaker properties than those of the above theorem.
Recall that a measure µ on a space K is countably determined if there is a
countable family F of closed subsets of K such that

µ(U) = sup{µ(F ) : F ∈ F , F ⊆ U}
for every open U ⊆ K. Clearly, if K supports a countably determined mea-
sure, then it is separable. Also, separable spaces support countably deter-
mined measures (since purely atomic measures are countably determined).
On the other hand, 2c is separable but the product measure on 2c is not
countably determined.

Recall that the assertion p = c, which is equivalent to MA(σ-centered),
that is Martin’s Axiom for σ-centered posets, says that every family A of
subsets of ω of size less than c such that every finite intersection of elements
of A is infinite has an infinite pseudo-intersection P (i.e. P \ A is finite for
each A ∈ A).

Theorem 3.4. Assume p = c. There is a compact space K support-
ing a measure which is not countably determined and a continuous mapping
f : K → 2ω such that each fiber of f is homeomorphic to an ordinal number
(so in particular K does not map continuously onto [0, 1]ω1).

Proof. Let λ be the usual measure on 2ω. Fix an enumeration (Hα)α<c

of all closed subsets of 2ω with λ(Hα) > 0.
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Consider κ ≤ c and a sequence (Fα)α<κ of closed subsets of 2ω such that
for every α < κ:

(1) λ(Fα) > 0,
(2) if β < α then Fα ⊆∗ Fβ ,
(3) Fα ⊆ Hα.

Here we follow the notation used in the proof of Theorem 3.3.
We again let A be the Boolean algebra generated by {Fα : α < κ} and

the family U of clopen subsets of 2ω. Let µ be the measure on K uniquely
determined by µ(K ∩ Â) = λ(A) for A ∈ A.

Assume that µ is countably determined and let D be the countable family
of closed subsets of K determining the measure µ. We can assume that D is
closed under finite unions and intersections. Let E = {f [D] : D ∈ D}, where
f : K → 2ω is defined by the restriction map, as in the proof of Theorem 3.3.

Claim A. κ < c.

Indeed, otherwise E is a countable family of closed subsets of 2ω and
every closed H ⊆ 2ω with λ(H) > 0 contains some E ∈ E , but this is plainly
impossible.

Claim B. There is a closed set Fκ ⊆ Hκ such that λ(Fκ) > 0 and
Fκ ⊆∗ Fα for every α < κ.

To verify Claim B we first prove the following.

Claim C. For every ξ < κ there is a sequence (Eξn)n of elements of E
such that

(i) limn λ(E
ξ
n) = 1,

(ii) Eξn ⊆∗ Fξ.

Indeed, fix ξ < κ. Notice that both F̂ξ ∩ K and K \ f−1[Fξ] are open
subsets of K. Moreover

µ
(
F̂ξ ∪ (K \ f−1[Fξ])

)
= 1.

Therefore for any ε > 0 we can find D1, D2 ∈ D such that D1 ⊆ F̂ξ, D2 ⊆
K \f−1[Fξ] and µ(D1∪D2) > 1−ε. Then E = f [D1∪D2] ∈ E , λ(E) > 1−ε
and E ⊆∗ Fξ.

Using this observation we can define Eξn satisfying (i) and (ii) of Claim C.

Now we can prove Claim B. Let us fix an enumeration E = {En : n ∈ ω}.
For ξ < α, k > 0 and {Eξk : ξ < κ, n ∈ ω} as in Claim C let

Tξ = {n ∈ ω : ∃k En ⊆ Eξk}, Nk = {n ∈ ω : λ(En) > 1− 1/k}.
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Notice that if I ⊆ κ is finite, then for every k,∣∣∣⋂
ξ∈I

Tξ ∩Nk

∣∣∣ = ω,

since D is closed under finite intersections and, by (i),

lim
n
λ
(⋂
ξ∈I

Eξn

)
= 1.

Now, since p = c, there is an infinite T such that T \Tξ is finite for every
ξ < α and T \Nk is finite for every k. In particular, λ(En)→ 1 for n ∈ T so
we can pick an infinite T ′ ⊆ T with the property that

λ(F ) > 1− λ(Hκ), where F =
⋂
n∈T ′

En.

Now, for every ξ < κ there is n ∈ T ′ ∩ Tξ. Then F ⊆ En and so, by the
definition of Tξ, there is k such that F ⊆ Eξk. Since E

ξ
k ⊆
∗ Fξ we get F ⊆∗ Fξ.

We set Fκ = F ∩Hκ. Then λ(Fκ) > 0 and Fκ ⊆ F ⊆∗ Fξ for every ξ < κ, as
required.

Claims A and B imply that there must be κ < c such that µ is not
countably determined, and the proof is complete.

It is not clear for us if the space K from Theorem 3.4 can be constructed
without additional set-theoretic assumptions. There is, however, a ZFC ex-
ample of a compact space K which cannot be mapped continuously onto
[0, 1]ω1 and which supports a measure which is not strongly countably de-
termined. Recall that a measure is strongly countably determined if there is
a countable family F of closed Gδ sets such that

µ(U) = sup{µ(F ) : F ∈ F , F ⊆ U}.
Indeed, the space constructed in [Bel96] is separable (hence, it supports a
measure), it does not map continuously onto [0, 1]ω1 and it does not have
a countable π-base (and thus it cannot support a strongly countably deter-
mined measure).

4. Measures on spaces of small π-weight. As we have mentioned
in the introduction, under MAω1 every space with π-weight not exceeding
ω1 is separable. In this short section we prove that for spaces supporting a
measure we can relax the set-theoretic assumption.

Recall that countably determined measures were defined in the previ-
ous section. The following fact is an immediate corollary of [Fre84, Corol-
lary 32H].

Proposition 4.1. Under MAω1, if K is a compact space with π(K)≤ ω1,
and K supports a measure of countable Maharam type, then each measure
supported by K is countably determined (and consequently K is separable).
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In particular, under MAω1 , if K does not map continuously onto [0, 1]ω1

and π(K) ≤ ω1 then every measure supported by K is countably deter-
mined. The assumption on π-weight is essential here, as demonstrated in
Theorem 3.3.

We shall prove a result similar to Proposition 4.1 assuming Martin’s Ax-
iom for measure algebras. It will be convenient to recall several formulations
of such an axiom. The following fact is a combination of results due to Frem-
lin and Cichoń (see [Fre08, 525J] and [DP04, Section 4] for details).

Theorem 4.2. The following are equivalent:

(i) cov(Nω1) > ω1,
(ii) ω1 is a precaliber of measure algebras,
(iii) ω1 is a caliber of Radon measures.

Here we say that ω1 is a caliber of Radon measures if for any such measure
µ on a compact spaceK and any family {Bα : α < ω} of Borel sets of positive
measure there is x ∈ K such that x ∈ Bα for uncountably many α.

Corollary 4.3. If cov(Nω1) > ω1 then cov(µ) > ω1 for every Radon
measure µ defined on some compact space K.

Proof. Otherwise, K =
⋃
α<ω1

Nα where µ(Nα) = 0. Then there are
Fα ⊆ K \

⋃
β<αNα with µ(Fα) > 0 for α < ω1, and the family {Fα : α < ω1}

witnesses that ω1 is not a caliber of µ.

The next theorem is a slight generalization of [Kam89, Lemma 3.6], where
the result was proved only for Boolean spaces under a stronger assumption
on weight rather than π-weight. The proof given below is a modification of
the proof of [Juh71, Theorem 1.3].

Theorem 4.4. Assume cov(Nω1) > ω1. If K is a compact space sup-
porting a measure and π(K) ≤ ω1, then K is separable.

Proof. Let µ be a strictly positive probability measure on K. We work
in the product space Kω, and denote by ν the product measure

∏
n∈ω µ, so

that
ν(B0 × · · · ×Bn ×K ×K × · · · ) = µ(B0) · . . . · µ(Bn)

for all Borel rectangles.
Let P be a π-base of size at most ω1. For every P ∈ P define

GP = {π−1n [K \ P ] : n ∈ ω} and DP =
⋂
GP .

Notice that ν(DP ) = 0 since µ(K \ P ) < 1.
Our assumption and Corollary 4.3 imply that there is x ∈ Kω such that

x /∈
⋃
P∈P DP . The set S = {πn(x) : n ∈ ω} is then dense in K. Indeed, for

every open U ⊆ K there is P ∈ P such that P ⊆ U . As x ∈ Kω \DP there
is n ∈ ω such that πn(x) ∈ P .
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Let us also state a corollary to a result due to Todorčević [Tod90] (where
the notion of free sequences of pairs and its connection with tightness is
explained).

Corollary 4.5. Assuming cov(Nω1) > ω1, every countably tight com-
pact space supporting a measure has a countable π-base.

Proof. [Tod90, Lemma 1] states that in every compact space K there is
a family {(Ft, Gt) : t ∈ T} such that

(a) Ft ⊆ Gt ⊆ K, where Ft is closed and Gt is open for every t,
(b) the interiors of Ft are nonempty and form a π-base of K,
(c) for every T0 ⊆ T the subfamily {(Ft, Gt) : t ∈ T0} is free if and only

if
⋂
t∈T0 Ft 6= ∅.

It is enough to note that in our setting T must be countable. Indeed,
otherwise take a measure µ which is strictly positive on K. Then µ(Ft) > 0,
so by Theorem 4.2 and (4) we get an uncountable free family, which implies
that the tightness of K is uncountable.

5. Measures on spaces of small π-character. In this section we give
a relatively consistent negative answer to Problem 1.2: there may be no
Suslinean space of countable π-character supporting a measure.

We denote by (<) the following statement:

c = ω2 & non(N ) = ω1 & cov(Nω2) = c.

(<) holds e.g. in the model obtained by forcing with Aω2 . Since cov(Nω1) ≥
cov(Nω2), axiom (<) is stronger that the assumption cov(Nω1) > ω1 used in
the previous section.

Axiom (<) has an interesting impact on several properties of measures
on topological spaces. Let us mention the following two results proved in
[Ple97] and [Ple00], respectively.

Theorem 5.1. Assume (<).
(a) A compact space K carries a measure of Maharam type c if and only

if there is a continuous surjection from K onto [0, 1]c.
(b) Every Radon measure on a first-countable compactum is strongly

countably determined.

We shall need a theorem due to Fremlin explaining that non and cov
are cardinal coefficients of measure algebras rather than of concrete measure
spaces.

Theorem 5.2 ([Fre89, Theorem 6.13(c)&(d)]). Suppose ν1, ν2 are Radon
measures. If ν1 and ν2 have isomorphic measure algebras, then γ(ν1)=γ(ν2),
where γ ∈ {non, cov}.
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This observation allows us to prove the following.

Lemma 5.3. Let µ be a measure on a compact space K. Assume that K
cannot be mapped continuously onto [0, 1]c

+. If non(N ) = ω1, then non(µ)
= ω1, and if cov(Nω2) = ω2, then cov(µ) = ω2.

Proof. By Kraszewski’s theorem (see [Kra01, Corollary 3.11])

non(N ) = non(Nω1) = non(Nω2).

It is not difficult to see that cov(Nκ) ≥ cov(Nλ) if κ ≤ λ (see [Kra01,
Fact 4.1]). Hence

cov(N ) = cov(Nω1) = cov(Nω2) = ω2.

Now it is enough to notice that the Maharam type of µ is at most c. Indeed,
by a theorem due to Haydon, if K carries a Radon measure of Maharam
type c+, then K can be mapped continuously onto [0, 1]c

+ (see [Hay77, The-
orem 2.4]). But, if K carries a measure of type λ > c, then it carries a
measure of type c+ (see Fremlin [Fre08, Section 531]).

By the Maharam theorem and Theorem 5.2, we are done.

Proposition 5.4. Assume (<). If K is a compact space supporting a
measure and K cannot be mapped continuously onto [0, 1]c

+ , then d(K)≤ω1.

Proof. We will show that there is X ⊆ K such that |X| ≤ ω1 and
µ∗(X) = 1. As µ is strictly positive, we will be done. A priori, Lemma 5.3
and Theorem 5.2 only imply that there is X ′ ⊆ K of size ω1 such that
µ∗(X ′) > 0. But then we can consider the measurable hull of X ′ and repeat
the same argument for µ|K\X′ , which is still a Radon measure. Proceeding in
this manner, at some countable step we obtain a (countable) family of sets
of size ω1 whose union has outer measure 1 in K. Define X as this union.

We shall now prove the main results of the section.

Theorem 5.5. Assume (<). If K is a compact space supporting a mea-
sure and πχ(K) ≤ ω1, then K is separable.

Proof. Notice that if K is a compact space supporting a measure and
πχ(K) ≤ ω1, then K cannot be mapped continuously onto [0, 1]c

+ . Indeed, it
is known that w(X) ≤ πχ(X)c(X) for all T3 spaces (see [Šap74]), where c(X)
is the cellularity of X, i.e. the supremum of the sizes of families of pairwise
disjoint open subsets of K. Hence w(K) ≤ ωω1 = c. Moreover, a continuous
mapping cannot increase the weight of compact spaces.

Now it follows from Proposition 5.4 that d(K) ≤ ω1. Fix a dense set
X ⊆ K of size ω1 and then for each x ∈ X fix a π-base Fx at x of size ω1.
Then P =

⋃
x∈X Fx is a π-base of size at most ω1. Indeed, if V is a nonempty

open subset of K, then it contains x ∈ X. So Fx contains a nonempty open
U ⊆ V .
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We conclude that π(K) ≤ ω1, and Theorem 4.4 gives the separability
of K.

Theorem 5.6. Assume (<). Let K be a space of countable π-character,
supporting a measure. Then K has a countable π-base.

Proof. We already know (see the proof of Theorem 5.5) that there is a
π-base P of K of size at most ω1. Enumerate P = {Pξ : ξ < ω1}. Denote
Pα = {Pξ : ξ < α} and

Zα = {x ∈ X : Pα contains a local π-base of x}.
Notice that K =

⋃
α Zα and that Zα is closed for every α.

As cov(µ) > ω1, there is α < ω1 such that µ(Zα) = 1. So, Zα = K. One
can easily check, as above, that Pα is a (countable) π-base of K.

Let us recall that by Theorem 1.3 if cov(Nω1) = ω1, then there is a
first-countable nonseparable compact space supporting a measure. Of course,
first-countable spaces have countable π-character, so we need to assume at
least cov(Nω1) > ω1 to prove Theorem 5.6.

We conclude by some remarks on the so called normal measures. Recall
that a Radon measure on a topological space µ is normal if each nowhere
dense set is null with respect to µ. There are several results concerning the
existence of normal measures on certain kind of spaces, e.g. Fishel and Papert
[FP64] proved that there is no normal measure on locally connected spaces.
On the other hand, Plebanek [Ple14] constructed an example of a normal
measure on a connected space (which can be made first-countable under
CH). Zindulka [Zin00] proved that consistently there is no normal measure
on a first-countable locally compact space. Since the support of a normal
measure cannot be separable, Theorem 5.6 implies the following.

Corollary 5.7. Assume (<). There is no normal strictly positive mea-
sure on a compact space of a countable π-character.

In fact, using [Zin00, Lemma 3.2, Theorem 3.3 and Lemma 3.4] and
Theorem 5.5 one can show that consistently there is no locally compact
space with a countable π-character carrying a nontrivial residual measure.

6. Open problems. Problem 1.1 remains unsolved in ZFC. In particu-
lar, we still do not know the answer to the following question.

Problem 6.1. Does (<) imply that there is no compact nonseparable
space K supporting a measure and such that K cannot be mapped continu-
ously onto [0, 1]ω1?

Perhaps the construction from Section 3 can be improved in such a way
that it works in ZFC.
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Problem 6.2. Is there a compact nonseparable space supporting a mea-
sure and a continuous mapping f : K → 2ω such that f−1[t] is scattered for
each t ∈ 2ω?

If the answer to the above is “yes”, then we would have to use different
methods than those from Section 3. In the proof of Theorem 3.3 we added a
condition (4) to ensure that the constructed space has countable π-character.
Even without adding (4), the space in question would have the π-character
at most ω1 (if c = ω2). So, by Theorem 5.5, it would have to be separable
under axiom (<). There is a slightly more general reason why under axiom
(<) we would have to devise more subtle methods to construct a similar
example.

Proposition 6.3. Assume (<). Suppose that K is a compact space sup-
porting a measure µ, M is a compact metric space and f : K → M is a
continuous mapping such that for each t ∈ M the set f−1(t) contains a
dense set of isolated points of size at most ω1. Then K is separable.

Proof. Fix a countable base U of M . Let X ⊆ K be a set of size at most
ω1 such that µ∗(X) = 1 (see Proposition 5.4). Let Y = f [X]. For each t ∈ Y
let Yt be the set of isolated points of f−1(t). For each t ∈ Y and y ∈ Yt let
Py be an open set such that Py ∩ f−1(t) = {y}. We claim that

P = {Py ∩ f−1[U ] : y ∈ Yt, t ∈ Y, U ∈ U}

is a π-base of K and thus, according to Theorem 5.5, K is separable.
Let V ⊆ K be an open set. Then there is x ∈ V ∩ X. As the set of

isolated points is dense in f−1(f(x)), there is y ∈ Yf(x) such that y ∈ V . We
claim that there is U ∈ U such that Py ∩ f−1[U ] ⊆ V and f(x) ∈ U (and so
Py ∩ f−1[U ] is nonempty). Suppose to the contrary that

(Py ∩ f−1[U ]) \ V 6= ∅

for each U ∈ U such that f(x) ∈ U . Then also

P y ∩ f−1[U ] \ V 6= ∅

and so by compactness

P y ∩ f−1(f(x)) \ V 6= ∅.

But P y ∩ f−1(f(x)) = {y} and y ∈ V , a contradiction.

Finally, we do not know if one can prove a theorem similar to Corollary 5.7
for spaces which cannot be mapped onto [0, 1]ω1 .

Problem 6.4. Is it consistent that there is no compact space which can-
not be mapped continuously onto [0, 1]ω1 and which supports a normal mea-
sure?
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