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Abstract

We consider a characteristic initial value problem for a class of symmetric hyperbolic systems
with initial data given on two smooth null intersecting characteristic surfaces. We prove ex-
istence of solutions on a future neighborhood of the initial surfaces. The result is applied to
general semilinear wave equations, as well as the Einstein equations with or without sources,
and conformal variations thereof.
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1. Introduction

There are several reasons why a characteristic Cauchy problem is of interest in general
relativity. First, the general relativistic constraint equations on characteristic surfaces are
trivial to solve (see e.g. [7,[12,|38]), while they are not on spacelike ones. Thus, a good
understanding of the characteristic Cauchy problem is likely to provide more flexibility
in constructing space-times with interesting properties. Next, an observer can in prin-
ciple measure the initial data on her past light cone, and use those to determine the
physical fields throughout her past by solving the field equations backwards in time; on
the other hand, initial data on a spacelike surface near the observer cannot be measured
instantaneously. Finally, Friedrich’s conformal field equations may be used to construct
space-times using initial data prescribed on past null infinity [13}/23,27] which, at least
in some situations, is a null cone emerging from a single point representing past timelike
infinity.

The characteristic initial value problem for the vacuum Einstein equations with initial
data given on two smooth null intersecting hypersurfaces has been studied by several
authors [5},64[0k|15}/161[21}22}/34.(37,139]; compare, in different settings, [3,4,28]. The most
satisfactory treatment of the local evolution problem, for a large class of quasi-linear
wave equations and symmetric hyperbolic systems, has been given by Rendall |38], who
proved existence of a solution in a neighborhood of the intersection of the initial data
hypersurfaces. A similar result for a neighborhood of the tip of a light-cone has been
established by Dossa [17]. The region of existence has been extended by Cabet [12] for
a class of nonlinear wave equations satisfying certain structure conditions. In these last
papers existence of the solution in a whole neighborhood of the initial data hypersurfaces,
rather than of their intersection, is established. We will refer to this kind of results
as “the neighborhood theorem”. Similar results have been established by Dossa and
collaborators [18-20}29,|30] for various families of semilinear wave equations. Finally,
Luk [33] established the neighborhood theorem for the vacuum Einstein equations in four
space-time dimensions, through an argument which makes use of the specific structure
of the nonlinearities occurring in those equations.

The aim of this work is to show that no conditions on the nonlinearity are necessary
for existence near an (optimal) maximal subset of the initial data hypersurfaces for the
large class of nonlinear wave equations which can be written in a doubly-null form.

We further show that our result applies to Einstein equations in four space-time
dimensions, as well as to a version, due to Paetz 35|, of the conformal field equations of
Friedrich.

5]



6 1. Introduction

As a result we deduce that vacuum general relativistic characteristic initial data with
suitable asymptotic behavior (as analyzed in detail in [14}/36]) lead to space-times with
a piece of smooth Scri, without any smallness conditions on the data @ Moreover,
a global-to-the-future Scri is obtained if the data are sufficiently close to Minkowskian
ones.

Higher-dimensional Einstein equations can be handled by a variation of our tech-
niques; this will be discussed elsewhere.

Our analysis is tailored to a setting where the initial data are given on two transversely
intersecting smooth characteristic surfaces. The characteristic initial value problem with
initial data on a light cone issued from a point is readily reduced to the one considered
here, by first solving locally near the tip (see [10,[17] and references therein), and then
using the results proved here to obtain a solution near the maximal domain, within the
light-cone, of existence of solutions of the transport equations.

(*) Once this work was completed we have been made aware of a similar result in [32].



2. The basic energy identity

Let Y be an (n — 1)-dimensional compact manifold without boundary. We are interested
in quasi-linear first order symmetric hyperbolic systems of the form

Lf=G, (2.1)
on subsets of
M :={ue0,00), v €[0,00), y € Y} (2.2)

In , f is assumed to be a section of a real vector bundle over Mv, equipped with
a scalar product; similarly for G. We will use the same symbol V, respectively (-, ), to
denote connections, respectively scalar products, on all relevant vector bundles. Both the
scalar product and the connection coefficients are allowed to depend upon f, and we
assume that V is compatible with (-,-). Similarly, M will be assumed to be equipped
with a measure du, possibly dependent upon f. Furthermore, L is a first order operator
of the form

L=A"V,,
where the A*’s are self-adjoint, and are smooth functions of f and of the space-time
coordinates. The summation convention is used throughout.
Let g., r = 1,...,m, denote a collection of smooth vector fields on Y such that for

each y € Y the vectors ¢,(y) span T,Y; clearly m > dimY. For k € N let PF denote the
collection of differential operators of the form

o

Vi Vg, 0<l<k (2.3)
Here Visa fixed, arbitrarily chosen, smooth connection which is f-, u-, and v-independent.
We number the operators (2.3) in an arbitrary way and call them P,, thus
PF={(P,:r=1,...,N(k)}

for a certain N(k), with P; = 1, the identity map. We will often write V, for @QT.
Let w, be any smooth functions on M. We set
N(k)
XH(k) =" w(P,f, AP, f), (24)
r=1

so that
V. (X*H(k)) :Z { (P-f, A* P, )0, wy +wr( (Prf,(V,AMP.fY+2(P.f,LP,f) ) } (2.5)

I 1L, II1,.

(7]




8 2. The basic energy identity

Let
Qb =10,a] x[0,0] x Y |
N~ N
Su Sv e

and let du = dudv dpy be any measure, absolutely continuous with respect to the coor-
dinate Lebesgue measure, on 4, with smooth density function. From Stokes’ theorem
we have
XK dSa = [ 0u(X4(0k) d
0, Qa,b
so that

/ X°(k) dsa+/ X(k)dS. = | X°(k) dsa+/ X°(k) dSq
u=a v=b u=0 v=0

+/ Vu (X*(E)) dp. (2.6)

Qap

From now on we specialise to f’s which are of the form
2
= 5 2.7
=(7) 20
with AY and A" satisfying
w At 0 » 0 O . u

A = ( (s)w O) , AV = (0 Am) , and A, AL > 0. (2.8)

It is further assumed that the connections V and V preserve the splitting (2.7). We

will write
_(Gy
G = <G¢> . (2.9)

From ([2.7)—(2.8]) we obtain, for fields supported in a compact set K,

[ xwdsaz k)Y [ wnlPip. Pg) dvduy,

= C(K) Ek,{wr}[SD?a]a (210)
| xewds, = e(x) > [ wnpb P} dud
— oK) by [, 1], (2.11)

for some constant ¢(K). Equations (2.5)—(2.6) thus give
B tw, 3105 al + Ex gy [0, 0] < CLE){ B fuw, 3105 0] + Ek fu, 1 [10, 0]
+/ > 0+ w (I +101,)) ), (2.12)
Q

a,b
for some constant C; (K).
Let A > 0. We choose the weights to be independent of r:

w, = e MuFV), (2.13)
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and we will write Ej,  for Ej 1,3 with this choice of weights, and similarly for & x.

From ([2.10) we find

Epalp,al = > / Ve, -+ Vg, pla,0,)Pe ) dv dpy
0<j<k [0,6]xY

b
= [ e ol o) By (214)

where one recognises the usual Sobolev norms H*(Y) on Y. One similarly has

5k,/\[w7 b} = Z /[0 1%y |6¢Ir1 tee %qw ¢(’LL, b7 ')|26_)\(u+b) du d,u/Y
La]

0<j<k

= /0 e MO (u, b) |13k vy - (2.15)

We recall some general inequalities, which will be used repeatedly. Recall that Y is

a compact manifold without boundary (compare, however, Remark [3.10). First, we have
the Moser product inequality

gl oy < Crr(Yo k) (I fllooe vy lgll e vy + 1 Le vy gl oo vy ) - (2.16)

Next, we have the Moser commutation inequality, for 0 < r <k

12-(f9) — Pr(f)gllLzv)
< Cu (Y, B) ([l oy gl vy + I lle—ronlgllwrsvy)- (2:17)

We shall also need the Moser composition inequality:
IECFs ) e vy < C’M(K k,F ) flleeory) (IF(F = 0, ) ey + 1 e vy) - (2.18)
The constants Cj; and C’M also depend upon the connection V.
We return to the energy identity on a set U x Y, with U coordinatised by u and v. If
X (k) is given by (2.4), with w, = e~ M“+?) then writing LP, f as P,Lf + [L, P,]f, and
assuming
(@, Agpip) 2 clol®, (), Ayyt) > cl¥l?, (2.19)
with ¢ > 0, for k > (n — 1)/2 one obtains

Va(X*(k)) dp
UxY

S/Me)\(quv){(”v#AH”L‘x’(Y)C>‘)|f“?’ik(Y)JrC(Yvk”f”H’c(Y)HG”H’“(Y)

+2/ <Prf7[L,Pr]f>eA(“+”>du}. (2.20)
Uxy

Some special cases are worth pointing out:

1. The case of ODE’s in u with a parameter v, or vice versa, corresponds to Y being
a single point, and k£ = 0.

2. The usual energy inequality for symmetric hyperbolic systems is obtained when
U =1 is an interval in R.



10 2. The basic energy identity

To control the commutators we will assume (2.8). We identify (p,0) with ¢, and similarly
for (0,v) and v, and write

[ANVM Pr]f = [Auvuv Pr]f + [Avvvv Pr]f + [ABva Pr]f
= [A"V,, PJp + [A°V,, PJ¢ + [ABV g, P . (2.21)

Thus, it suffices to estimate [A%, V., Prle, [AY, Vo, P, and [APV g, P,]f. We define
the relative connection coefficients I', by the formula

T.f:=Vuf—Vuf (2.22)
By hypothesis the connections preserve the (¢,v) decomposition, so that I', can be
written as
T 0
r,=|[ *9* . 2.23
g ( 0 Fww,u) 223)

This leads to the following form of [A®V g, P,]f:

APV 5, P fll2vy = APV 5, B f + [APT 5, Pl L2y
By using (2.17)—(2.18)), the first term is estimated as

Cor (IAllwre 1 f Lze vy + A s oy L s (vy)

and the second as

Chr (IAPT llwreo )1 f 1l -1 vy + APl ey L f |2 (vy)
leading, by (2.16)), to an overall estimation

I[APV B, P fll2cvy < C(Y k1 f llwree vy, [Alw e vy, ITwee (v))
X (1l ee vy + 1Al e vy + T EE ) - (2.24)

Here we have written

Ay = D 1A ey, Ty = D ITullas - (2.25)
7 T
Writing V¢ as 0,9 + Ype,u We have

[AZ¢(3u + Yopu)s Prlo = [AZZW Py up + [A;q;’ﬂoga,ua Py
a Vup—=Yep,up

= [A% P’“]{(AZw)_l [ —AfLPVng - Afvaw + Gw} _7@%#90}

—AB, (VBT e, 5)p—AL, (VE+Tyy,B)¢

ay
+ [AfoVopus Prlo =1 a1 + az + as, (2.26)
—
a3
with ay defined by the last equality. Set

1 w \—1 1 uw 1L A u 1
Af%u = (Asw) AAED;W Afw = (Aqw) A5¢7 Go = (AWJ) Gy,

< .| N w \—1 ~ v \—1
Ao = (AYy) Al Ay = (A%y)  Afy, Gu=(4%y) Gy
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By f we have the estimate
leallzzvy < Caur (A lwroe () I Va Lzt vy + 1A e 0y [Vl oo (v))
< OV, k. | fllwreos vy 1A [wroe vy, |Al e vy Tl e vy |Gl e (v)
X (||f||Hk(Y) + 1A | e vy + ||1‘1||ka1(¥) T e—1¢vy + Hé<,0||H’“*1(Y))~
(2.27)
Similarly,
lazllL2vy < C (Yo k, ol oo vy 1A lwroe (v), IV ullos (v))
X (el e vy + 1A vy + 1ol mr-1v)) (2.28)
lesllL2vy < C(Yok, gl vy, 1A wroe (v)s vggullwnes (v))
X (el e vy + 1Az vy + 1vogullmxv))- (2:29)

By symmetry we have a similar contribution from [A},,V,, P;]¢. It follows that there
exists a constant

Ch = C(Y, k| fllwee vy Al wrss vy, HA”LOO(Y)v IYllwiee,
IT[[wree, [|Gllwree, [GllLe)  (2.30)

such that (2.20) can be rewritten as

| vt @du< [ (19,4 i) = )
Uxy u

+ él||f||Hk(Y)(||fHHk(Y) + [ Al e vy + ”A”H’C—l(Y)
T ax vy + v e vy + Gl Ex vy + HGHHk—l(Y))}dUdU- (2.31)



3. The iterative scheme

3.1. Outline of the iteration argument. For the purpose of the arguments in this
section, we let

N ={u=0,ve[0,b]} xY, NT:={ue0,a,v=0}xY;

we will see later how to handle general initial characteristic hypersurfaces for systems
arising from wave equations. The initial data f = f|x will be given on
N =N"UNT,

and will belong to a suitable Sobolev class. More precisely, we are free to prescribe
®(v) = »(0,v) on N~ and ¥(u) = 1(u,0) on N, and then the fields 1(0,v) on N~
and ¢(u,0) on AT can be calculated by solving transport equations. In this section we
assume that these equations have global solutions on N'*; this hypothesis will be relaxed
later.

Throughout we use the convention that overlining a field denotes restriction to N
(consistently with the last paragraph).

Our hypotheses will be symmetric with respect to the variables u and v, and therefore
the result will also be symmetric. We will construct solutions on a neighborhood of N/~
in

an,bo = {u € [0,(10}, GBS [0>b0]} XY,

and a neighborhood of 't can then be obtained by applying the result to the system in
which u is interchanged with v.

The method is to use a sequence f, of smooth initial data approaching f, and to solve
a sequence of linear problems: We let fj be any smooth extension of f, to Qg ,. Then,
given f;, the field f;y; is defined as the solution of the linear system

Lifit1 = Gy, (3-1)
where
and where we have used the symbol V(i) to denote V, as determined by f;. (The reader
may wonder why we do not replace V by an f-independent connection, putting all the
dependence of V upon f into the right-hand side of the equation. However, in some
situations the new connection might not be compatible with the scalar product, which

has been assumed in our calculations.) For smooth initial data and f;, (3.1)) always has
a global smooth solution on Qg 5, by [3§].

(12]



3.2. Bounds for the iterative scheme 13

By continuity, the f;’s will satisfy a certain set of inequalities, to be introduced shortly,
on a subset
Qi = {U S [O,ai}, v E [O,bo]} x Y.
We will show that there exists a, > 0 such that a; > a,, so that there will be a common

domain

Qo :={u€[0,as], v €[0,bg]} XY

on which the desired inequalities will be satisfied by all the f;’s. This will allow us to
show convergence to a solution of the original problem defined on 2,.

We note that our system implies a system of nonlinear constraint equations on f,
sometimes called transport equations. The solutions of these constraints might blow up in
finite time; see e.g. [1] for an example arising from a semilinear wave equation. It is part
of our hypotheses that the constraints are satisfied throughout A; in some situations this
might require choosing ag and by small enough so that a smooth solution of the constraint
equations exists.

3.2. Bounds for the iterative scheme. In order to apply the energy identity of
Section [2| we need to estimate the volume integrals appearing in (2.6). We could appeal

to (2.31), but it is instructive to analyse (2.12)) directly. All terms arising from L. in ([2.5)
give a negative contribution, bounded above by

a b
Ael®) [ [ eI s 0y, dud (3.3)

The terms arising from II,. give a contribution which, using obvious notation, is estimated

by
a b
||(VMAM)1'“L°°/O /O e—A(u+v)||fi+1(u,v)||§1k(y)dudv. (3.4)

The estimation of the terms arising from III,. requires care, as we need to control
A-dependence of the constants. One can proceed as follows:

a b
QZ/O A<Prfi+1aLPrfi+1>€_)\(u+v)dUdUd,UY
a b
222/ /<Prfi+1;PrGi+[Li»PT]fi+1>6_)\(u+U)dUdUdMY
—~Jo Jo

a b
< 2/ / e M| fin (u,0) || e vy
0 0

X ( |Gi(w, V)| vy + Z I[Li, Pr] fi1(w, )| 2(v) ) dudvdpy .
_’_/ r

11T,

I,
The term III; can be estimated by the usual Moser inequality on Y,

1G: (s )l vy < C (R, Y ity 0) oo () (G s 0) L vy + i 0) v )

where G = G(f = 0). Let 0 < ¢ < 1 be a constant which will be determined later.
The inequality ab < a?/(4¢) + €b? then leads to a contribution of III; in (2.12)) which is
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estimated by

Cs (k: Y, sup || fi(u,v ||Loo(y / / —A(utv)

u,v

X (||(°;'(u, U)HHk(Y) +€||fi(uvv)”H’€(Y) JFCl(ﬁ)Hle(u,U)H?{k(Y)) dudv, (3.5)

with ¢;(€) = 0o as € — 0. The analysis of III; proceeds as in (2.21)). Since the P,’s are
u-independent we have

[A%8u, Prlp = [AY, Pr]0up,

and, calculating as in , we can use the equation satisfied by ;11 to replace 0, p;11
by a first order differential operator in f;;1 tangential to Y (with coefficients that perhaps
depend upon f;); similarly for A?9,1;41. The Moser commutation inequality onY
can then be used to obtain the following estimation for the corresponding contribution

to €T2):

Cs (k. Yo sup || fi(u, v) [ vy, 5up || fir (, v) w2 (1))

u,v u,v

a b
x / / €M) (el £ty ) ey + 2(O fia (6 0) 2y + 1A 9

A1y + 1Tk ey + 15030y + 1G 1y + 1Gl k1 (y)) dudo, — (3.6)
where
Ap« = Au’|f:0, f‘# = F#|f:0, etc.,

with norms defined as in ([2.25]).
Define

Co=1+ sup 1fi(u, O)lwree vy
i€N, (u,v)€([0,a0] x{0}1)U({0} x[0,bo])

We assume that Cj is finite.

Let K be a compact neighborhood of the image of the initial data map f. We will
assume that the sequence f, converges to f in L°(N), and similarly for first and second
order derivatives. In particular we can assume that the image of f, lies in K.

Let

Caiv :=sup |V, A" + 1, (3.7)

where the supremum is taken over all points in N7 U AN~ and over all (p,, Vi, V))
satisfying

o 87
(o) €K, [Vpf(u,0)] <2C0,  |0u¢] < 2sup H 0 +1,
i || Ou Lo (N+UN—)
ErA (3.8)
|Ovp| < Zsup H 7 +1.
OV || Lo (At un)

(The suprema over i will be finite in view of our hypotheses on the sequence f,.) We note
that

VAl = 0y AF0, + 0, AY 0,0 + terms independent of derivatives of f, (3.9)
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so that to control Cg;y one needs to control those derivatives of f which appear in
0y At 0, + 0,A"9,p. Now, on the right-hand side of the values 0,9 and 0,9
can be algebraically determined in terms of other fields involved using the field equa-
tions: Indeed, using we can view Oy as a function, say F', of f and %Bf. Then,
when calculating Cyjy, we consider all values of F' with f € I and |V Bf| < 2C; similarly
for 0,1.

REMARK 3.1. It should be clear from (3.9) that the condition on 9,¢ in (3.8)) is irrelevant
if AY does not depend upon ¢. Similarly, the condition on 9,4 in (3.8) is irrelevant if A*
does not depend upon .

Let a; be the largest number in (0, ag] such that

||(V;LA#)i||L°°(Qai7b0) < Cdiv7 (310&)

sup | fi(w, v)[[wr.00 vy < 4Co. (3.10Db)
(u,v)€[0,a;]%x[0,bo]

For any ¢ > 0 we can choose A large enough, independent of ¢, so that the sum of

, , and of the f;4; contribution to and , is negative on
Qa, b0, Wwhere a; =min(aq,...,ai41)-
If we let My (u,v) be any function satisfying
My (u,0) 2 [1Gat, 0) s ) + 16t 0) By + 1Al v
A ) sy + 17000 gy + 100 ey (31)
we conclude that:

LEMMA 3.2. Let 0 < b < by < oo, and suppose that'Y is compact and (3.10)) holds. Then
for every 0 < e <1 there exist constants Ao(k, Co, Caiv, Y, €) and Cy(ag,bo, Y, k, Co, Caiv)
such that for all X > Xy and 0 < a < a; < ag we have

Erxlpit1,a] + Exa[ip1,b] < 04{Ek,,\[%+1] + Epa[Uig1]

a b
+ / / e~ Mutv) (M (u,v) + €| fi(u, v)||qu(y)) du dv}. n (3.12)
0o Jo

We need, next, to get rid of the i-dependent terms in the integrals on the right-hand
side of ([3.12). This can be done as follows: Set

C(a,b) := Cy {bup(Ek ABis1] + EenVira]) / / A+ N (u,v) du dv} (3.13)

ieN

note that this depends only upon the initial data and the structure of the equations.
Suppose that

a b
/0 /O e AF| i, 0) |3k vy dudv < 2C (ag + bo).- (3.14)

We then have, using (3.12)),



16 3. The iterative scheme

a b a
| el )y dudo = [ Bislors.ul du

< / (C 4 2eC4C (a0 + by)) du < (€ +26C1C(ag + bo))ao < 2Cap,
0

if € is chosen small enough. Similarly,

a b b
| [ e o)l dudo = [ Ealisa,oldo
0o Jo 0
< (é + 26046’((10 + bo))bo < 2@1)0
Adding, one obtains (3.14]) with i replaced by i 4+ 1. Decreasing e if necessary we obtain:

LEMMA 3.3. Let C be defined by . Under the hypotheses of Lemma one can
choose eg(ag, bo, Y, k, Co, Caiv) so that is preserved under iteration for all0 < b < by,
provided that 0 < a < a; < ag, with the right-hand side of being less than 2@'(@0, bo)
for all X > Xo(k, Co, Caiv, Y, €0). =

AH = (A%v A%w) .
Aw Aww

Since, by hypothesis, the only nonvanishing component of A% is AY . on any level set of

To continue, let us write

el
u the field ;41 is a solution of the symmetric hyperbolic system
(A% Vi)ivin = ALy (i )Va(vien = (Gy)i, (3.15)
where
(Gy)i = (Gy)i — (AL V,)ipirs == Gy(fir) — AL (fir )V (i) ita.
Set

Caiv,pp = sup [V, Ay, | < Caiv, (3.16)

where the sup is taken as in (3.7). A calculation similar to the one leading to the proof
of Lemmashows that for any 0 < § < 1 there exists A1 (k, Co, Caiv,py, Y 0) < 00 such

that for A > A; we obtain (recall that ;41 (u,0) =1, (u))

l[thig1 (u, U)”?{kfl(y) < C5(Y, k, Co, Cdiv,ww)e)m { ||Ez+1(u) ||2ch—1(y)

+5 / (1) s iy + M, ) + 1(Co)i ()i v ) ds}. (3.17)

*

The contribution of * can be estimated as follows:
| eds= [ e I0G0 = (A8 m)pi) ) Fyaos oy s
<2 / e (I(Ge)i(w )iy + 1ALV )it (s 9) s ) ds

< Cs(Y, k%Co)/O e*“(|\éw(u75)||§1k,1(y) + ||/i||ilk,1(y)

+ ||fH%{k—1(y) + ||fi(U75)||i1k—1(y) + ||goi+1(u,s)||%1k(y)) ds
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v
= Cﬁ(Y,k,CO){/O e N (1Gy (uy 8) -1 vy + AN =1 (v
+ ||f\|?qk—1(y) {1 fi(u, ) [ vy) ds + eAuEk,,\[SOiH,U]},

with Gy (-) = Gy (f =0, -). Tt follows that, for 0 < u < a < @; < ao,
67/\v||7/’i+1(“,v)||%1k71(y) < C7(Y,k7CO»Cdiv,ww){”wprl(u)”?qk1(y)

+/ e (M (u, ) + 0| fi(u, 8)[[Fx1(y)) ds JF@MEk,A[%’H»U]}-
0

By Lemma the ¢; part of the f; contribution can be estimated by eA“Ek_L)\[api, u] <
2e2C(u,v) < 2e*C(u,b), so that

i1 (1w, 0) | B vy < Cr(Ys ks Co, Cdiv,ww){wz'ﬂ(u)|%{k—1(y) +2e*C(u,b)

+ / e (M (u, s) + 6l[¢bi(u, 8) 31 (yy) ds + € By a[pis1, u]}. (318)
0

Integrating in v one obtains, for 0 < b < by,
b

| eIty do
0

b v
< Cy(u,b) + C7(Y, k, Co, Cdiv,ww)CS/ / e as (u, s)\\%k,l(y) dsdv, (3.19)
0o Jo

where

Cy(a,b) = Cr(¥ok, Co. Capy)  5UD {bnm(u)nzk-m
i€N, ue[0,a]

b v
+ / / e My, (u, 5) ds dv + 20eMC (u, b) + be " By x[@it1, u]}
0o Jo

Suppose that there exists a constant Caiy, gy such that
sup [(Vu Al )il < Caiv,pyp (3.20)
1

(note that we necessarily have Caiy yy < Caiv), and that
v
V0<w<b, /0 e |y (u, s)||%{k,1(y) ds < 2Cy(u,b). (3.21)
Equation ([3.19) shows that
b b v
| e a0y do < Cotut) 4 Cob [ [ et )l ds o

< éw (u, b) + 2(5b007é¢(u, b) < 26’¢(u, b), (3.22)

if & = 8(bo, Cy(ag,bo),Cr) is chosen small enough. It follows that (3.21) is preserved
under the iteration scheme if ((3.10) and (3.20) hold. With this choice of §, (3.18) gives
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€7M||7/Ji+1(uvv)||§1k71(y) < 07(Y7kacovcdiv){||7/’i+1(u)||i]k1(Y)

+2eMC (u, b) + / e My (u, s) ds 4 26C . (u, b) + M By \[@it1, u]} (3.23)
0

By an essentially identical argument using the symmetry of the equations under the
interchange of u and v, but still working with 0 < u < a;, 0 < v < by, if we let Caiv,
be a constant such that
sup [(V, AL, )il < Caivpp (3.24)
1

(note that Caiv,pp < Cdiv), then the condition
V0 <u<a, / e 15,0 Egs 1y s < 2C,o(a,0), (3.25)
0

where

é@(aab):07(Y7kacO7Cdiv,apap) sup {a||80i+1(1’)|%rk1(y)
1€N,v€(0,b]

+/ / eAsMk(s,v)dsdu+2ae>‘”CA’(a,v)+aeA”5k7>\[1/1i+1,v]},
o Jo

is preserved under iteration, and we are led to:

LEMMA 3.4. Under the hypotheses of Lemma[3.2] the inequalities ([3.21)) and (3.25) are
preserved under iteration, and there exist constants

Aa = Aa(k, Co, Caiy, Y, Cy (a0, bo), C(ag, bo)),

C7 = C7(Y, k, Cy, Caiv ),

CS = Cg(Y, ka CO7 Cdi\M ag, bo, Cw(a()a bO)a étp((;"Oa bO))
such that for all X > Aa we have, for (u,v) € [0,a;] x [0, bo],

I fi1 (u, U)H%rkfl(y) = C76A(a0+b0){||<P¢+1(U)||?Hk1(Y) + ||Ei+1(u)H§{k*1(Y)
ap b[)
—|—/ e My (s,v) ds+/ e~ M (u, s) ds
0 0

—i—Cg(é(Go,bo) —‘réw(@mbo) +é¢<a0,b0>)}. | (326)

From now on, we will use the inequalities

(3.12)), (3.17) and ([3.26)) with X chosen to be the largest of Ay, A\; and A

regardless of the value of the parameter A that might occur in the equation in which one
of these inequalities is being used. In what follows, the letter C' will denote a constant
which depends perhaps upon Cj, C’, C’w, C’W Y, ag, bp and k, and which may vary from
line to line; similarly, the numbered constants C,, that follow may depend upon all those
quantities, but not on i. We wish to show that we can choose 0 < a, < ag small enough
so that @; > a., hence for 0 < u < a, the inequalities (3.10), (3.20) and (3.24) hold.
Suppose

ki is the smallest integer such that &y > (n —1)/2 + 3. (3.27)
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For k > kq, from (3.26) with & = k; we obtain, by Sobolev’s embedding, for 0 < u < a;,
0 S v S b07

[ fit1(u,v)llc2(v) < C. (3.28)
It follows from the equations satisfied by f that
[0upit1(u,v)llcr vy < C, (3.29)
[0uit1 (u, v)[[cr(yy < C. (3.30)
Integrating in u from (0,v) to (u,v) we find that
lir1(u,v)||cryy < Co+ Cu < Cp + Ca < 2Cy (3.31)
for a small enough, namely
0 < a < min(a;, CoC™1). (3.32)
(Note that the bound is independent of k.) Further,
lpiv1(u,v)lcryy <2Co  for 0 <u < CoCh. (3.33)
Next, we u-differentiate the equation satisfied by ;41
(40,90 205, (A8, 9,0. i — 0u (A, V)t — (G))
= (B 9% 4 (b (3.31)

where, symbolically,

(By)i == =0y (A%, Vu)i) i1 — 9y (A4, Vu)igir — (Gp)i).
The system ([3.34)) is again a symmetric hyperbolic system of first order, linear in 9,

and Oy vit1, to which we apply (2.31) with ¢ = {u} x [0,v] and 0 < u < a;. Note that,
from the definition of a; (see 1-) the relevant constant C; there will be bounded from

above by a finite constant, say, C; > 1 which is i-, A-, and f;-independent. Thus, by
(2.31) with k there replaced by m,
e M 10341 (u, 0) [ Fm (yy < Cl{ A Outhisr (u, 0) 1 Fm (v
+/O e M (VLAY il Lo vy — A 10utbisa 3m vy + 10utbiza vy
x (||auwi+1||m(y> Ay + I Dilzm-s vy + 1Ol ey + 1l
B + o ) ash (3.35)
ou Hm=1(Y)

By)i by)i

G + 00

where (By); = (Azw)i_l(éw)i, (by)i = (Afw)i_l(l;w)i and (A);, the value of the matrix
A as determined by f;. Again from (2.18) we have

H™(Y)

(A illzrm vy + 1 (A)ill rm-2 vy + 1@l vy + 1)l e ()
< ¥, m, || fill oo ) (1 fill o+ 1Al g1 vy + I Al zrm—1 vy H T o () 3 1 (1))
< C(Y, k, Co) (I fill srm vy + /My (u,s))  for m < k. (3.36)
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Now, after eliminating 9,1;+1 and Vpd,p;+1 using the equations, we have (By); =
By (fis fiv1, VB fiy1) and
(by)i = by (fi, fiv1, VB fiv1, VBV fir1, upi),
which are affine functions of V Bfit1 and v B%c fi+1. Using again lb we have

O O
(By)i—— + (by):
H au HnL(Y) au anfl(y)

< C(Y,m, || fill oo | fia lw2.oe, [|0uill o)
X (18uthill gm vy + 1 fill e vy + | fisalzms2 vy + 10uill orm v
+ Byllzrm vy + byl vy + | Byllzrm vy + by llmmyy)- (3.37)

+ (by)s

+ H(Bw)i

For k > 3 let Mk (u,v) be any function such that
My (u,0) = My (u,0) + | By (u,0) [ Fre-s () + 100 (, 0) 305y
+ 1By (u, 0) sy + 100 (, 0) [3g-5y)- (3.38)

Then, by using simultaneously the inequalities (3.10)), and (3.26])—(3.29)) with i + 1 there
replaced by 7 (note that a; is decreasing by definition), for m 4+ 2 = k — 1 one obtains

|3 + 0, (B G+ G

"

HF=3(Y) HkE=3(Y)

< C10utillmsivy + /Mi(u,5) + C). (3.39)

Adding and we obtain
e MFN D i (u,0) 3e-a(yy < 09{6_/\u|auwi+1(u)”§{k3(Y)

+ /0 o~ Muts) {(||<VMAZ¢)Z-||LOQ(Y) — N)10uthiga l3e-s v

0tsalimnsr) (1054150 + 10l + v/ W) + Cao) s}
< O IOT Wl + [ N lOtilrscr

+ Mk(u, S) + 0120 + (||(VMAZ¢)Z||LOQ(y) — C)\ + C(E)) ||8u1p2+1 H?{kfd(y)) dS}, (340)

where in the last step we have used Cauchy—Schwarz with €. It then follows from ((3.20)
that there exists a constant A3 = A3(Y, k, Cp, Caiv) such that for all A > A3,

b1 (1) < Co{ 10T (Ol

+/ e—XS(Mk(%S)—i—CfO—Q—eHauwi%Ikg(y))ds}. (3.41)
0



3.2. Bounds for the iterative scheme 21

Set
bo
Cy = Cg{ sup sup ||8uEi(u)||%{k_3(y) —|—/ e (Mk(u, s) + 0120) ds} +1.

i€N ue(0,a0] 0
By an argument which should be standard by now, one can choose ¢ small enough such
that the inequality

18utbipr (s 0) [ Fras vy < 26N Cy (3.42)

is preserved under iteration on [0,a;] x [0,bg] X Y.

(This is not good enough yet for our purposes when A* depends upon 1, as we
will then need with 2Cy on the right-hand side to be able to make sure that the
contribution from (V,A"); can be estimated by Cg;y; therefore some more work will have
to be done in the general case.)

In any case, let

k2 be the smallest integer larger than or equal to (n + 7)/2. (3.43)

For k > ko we can use (3.42)) with k replaced by ko there and the Sobolev embedding to
obtain
V(u,v) € [0,a5] x [0,bo],  [|0uthit1(u,v)|lcr(yvy < C. (3.44)

By integration in u we therefore find that
Vi1 (u,v)|lcr vy < Co + Cu < 20, (3.45)

again in the range (3.32) (but note that the constant C' there might have to be taken
larger now, remaining independent of ¢ and k).
Keeping in mind (3.33]), we conclude that the condition
| fis1(u,0)||crvy £4C  for 0 < u < CoC~ (3.46)

is stable under iteration.
Moreover, after replacing the bound CyC~' by a smaller i-independent number,
say a, if necessary, integration in u shows that

fit1(u,v) cannot leave the neighborhood K for 0 < u < a, (3.47)
with K as in (3.8).

If AY does not depend upon ¢, and A* does not depend upon 9, then the conditions
on 0,¥ and O, in (3.8)) are irrelevant for all the estimates so far, and so

the bound (3.10b|) cannot be violated for 0 < u < a. (3.48)
Hence, by the definition of Cly;y,
the inequalities ([3.10|) cannot be violated for 0 < u < a,. (3.49)

Recall that a; was defined as either ag or the first number at which the inequalities (3.10)
fail for f; or fiy1. So, if we assume that (3.10) hold at the induction step 7 with a; > a.,
we conclude that a;+1 > a,. as well. Hence

&i Z Ay .

The above implies that (3.20) and (3.24) hold for 0 < u < a,. We have therefore
obtained:
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PROPOSITION 3.5. Let k > (n+7)/2, assume that A does not depend upon ¢, and that
A" does not depend upon 1. Suppose that there exists a constant C such that

sup {0y f;| + |0ufi] + H?i(uvv)”H"(Y) + M (u,v)} <C. (3.50)
N-UNT

There exists a constant 0 < as = ax(ag,bo,C,Y) < ag such that all the fields f; satisfy
the hypotheses of Lemmata on [0,a.] X [0,b9] X Y, as well as their conclusions
with a; replaced by a..

It remains to obtain the pointwise bounds , and in the general
case; these will follow from pointwise estimates on 0,¢p, and improved estimates on J,1.

We start by showing that the inequality

sup sup |Oui(u, v)| < 2sup sup |9, (0,v)| + 1
i (u,0)€[0,a.]x[0,bo] i vel0,bo]

is preserved under iteration, after reducing a, if necessary.

We consider the restriction of the u-differentiated equation satisfied by ;11 on N ™,
that is, for u = 0, which we write as

e i1 e i |
(Al Vi 5y~ (Bwlig, +(bs)i (3.51)
Setting ¥; = %u" aw’ and subtracting (3 from 1) gives an equation of the form
(AWV )7 i+l = (Bw)l\lll + &, (352)
where
o) Vi i ——
£ =~ (A, Vo)~ (AL, T,00) S0 4 (B — (B) Gt + (bu)i ~ o) (353)
Ag
Al A2

It is easy to see that both (By); and (by); are affine in %Bfi_l,_l and 63%0]”’1‘_‘_1 with
coefficients depending upon f; and f; 1, thus if k — 1 > (n — 1)/2 + 3 then by (3.26),

(13.28), (2.16) and (2.18)) we have
1(By)illae—20vy + 1 (0p)ill ae-s vy + 1By )illwroe vy + [(by)illwze vy <O (3.54)
Further,
iy vy ud¥it v : it
(AZ,lpv#)iW = ( ¢¢)iT + (( wp Yopw)i T (qufqp)z‘VB + (Afwaw,B)i) ou
Hence we have the following contribution to the first term in (3.53):
(( ) ) )(9 3v¢z+1

( pip/t
0
{ / X0 (0,1, 0) + (1= 0£:0,0)) dt + () = £(0,0))

LAY -
x /O (a?%)(tu,v,tfi(u,v) + (1= 1) £:(0,0)) dt}auavwm.

Now recall that by hypothesis sup,c(g y,) SUp; [|000ut)i| i+ (v is bounded and 9¢;11/0v
is an affine function of f;;; and v fi+1 with coeflicients depending upon f;. Thus there
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exists a constant

C= C(C’o, sup sup HavauwiHHk(y)) >0, (3.55)
ve[0,bo] i

which is é-independent, such that for all (u,v) € [0,a;] x [0, bg],
I ((Azwvu)i - (Alqzwvﬂ)i)auwiJrlHLQ(y) < Cu+ | fi(u,v) = fi(0,0)] L2 (vy)-
The L? norm of the remaining terms in the first term A; of (3.53) are estimated in the

same way with (A4 ); replaced successively by (A%, Ygy.v)is (A{Z’w)i%B, (A, Ty, B)is
and 9,0,v;+1 replaced by 9,¥;+1, leading to the following estimate for A;:

V(u,’u) € [0’&2] X [O,bo], ”Al(uav)”LQ(Y) < C(u + ”fl(uvv) - fi(ovv)||L2(Y))' (356)

We continue with the analysis of the second term As of . The explicit expression
of (By); shows that (By); is a collection of terms of the form I'; P, f;11, 0 < r < 1, where
the I';’s are smooth functions depending upon the fields f;. We order these terms in an
arbitrary way and write

p
(By)i = Y LimPr,, fis1;
m=1

where P, is either the identity or v B. We have

p

Ay = ((By)i — (By)i)Outh; = Z (Tiym Proy fiv1 — Dim Pr,, fig1) Outhi.

m=1

Thus,

(LiPr fixr — DiPr fig1)Ouths
=T4(P, fis1 — Prfis1)Ouths + (T — T3) Pr fiy10ut;

1 .
=T (P fir1 — P fis1)Outhi + U[/O 8822 (tu,tfi(u,v) + (1 =) f;(0,v)) dt] Py fi+10u1;

1 .
# (o) = F0.0)| [ G thia,0) + (1= 04:0.0) ] Pfridin

We then see that

(T3P, fiz1 — TiPr fis1)Outill L2 (v
< C(Co) (u+ || filu,v) = f(0, )| L2¢yy + || figr (w,v) = fig1(0,0)] 1 y))s

which gives
A2l L2¢vy < C(Co) (u]| fi(u,v) = f3 (0, v) || L2(v)y + || fir1 (w, 0) = fi1(0,0) || 1 yy) - (3.57)

As far as the last term As of (3.53) is concerned, we note that (by); is a sum of terms of
the form

f‘i%rl - 67‘_7‘ fi+1,

with 0 < j < 2 and T, depending upon f; and 9,¢;. Thus, as in the previous case, we
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see that

A3 22(vy < C(Co) (u+ || fi(u,v) — fi(0,0) | 2(y) + Oupi(u, v) — Bupi(0,v) |l L2(y)
+ || fisr(w,v) = fir1(0,0)]lg2(vy).  (3.58)

Now from ([3.29)) and (3.44) we find (note that from these inequalities and the equation
satisfied by ;1 1, the L norm of 92¢; is uniformly bounded) that

V(u,v) € [0,a5] x [0,b0] x Y [|&(u,v)|[12(v) < Cu. (3.59)
By (3.54)), the L? norm of the right-hand side of (3.52)) is estimated as follows:

(By)iVi + Eill2(vy < 1(By)iVill2(vy + €ille2 vy < Cu+ [[(By)ill oo () [ Will L2 (v
< O(u+ (¥l 2(vy)- (3.60)

Next, we write the energy estimate for the system (3.52). Consider the vector field (recall
— o—Mu+v)
w, =e )

Z“ = ’w7~<\111'+1, (Agw)ilpi-‘rl% (361)

so that

Vu(Z8) = {=2XM(Wit1, (AYy)iVis1)
(Wi, (VA )i¥is) + 2(Wip, (A7, V)i Wir) by

We apply Stokes’ theorem on the set {u} x [0,v] x ¥ and obtain
N0y < O (0. iy + [ 9,20 50) ddr |
< C{|‘I’i+1(%0)||%2(y) —2A /0” 67/\5(<‘I’i+17 (Ay)iVit1)
F (Wir1, (Vadly)iPiva) + 2P, (A5, V,)i¥ir1)) ds d#Y}
S
+ [ Tl =) = 200 Wi 05
2o (B + E) (w92 s .
Now from , we have
s .0y, < {1 (w0
s [ Tl i) = 200 a5y

g (ot 8) 2 (u + ||wz-<u,s>||m<y>>}ds}
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< c{||\111+1(u, 0)lIZ2(y)
+ /o e {(I(VLAL il L vy — 2eA + C(O) Wit (u, 5)[12(v)
+uﬁ+dWAmsmﬁoﬁ}“}

< C{”\I/iJrl(uuo)%?(Y) +/0 e (u? + €] Wy (u, S)|%2(y))d3}
for A large enough. Thus there exists Ac > 0 such that for all (u,v) € Q,,
Wit (4, 0)[[ 72y < C{”\I’i-i-l(uvo)H%?(Y) +/O e (WP + €| Wi (u, 8)[|72 () ds}-

Recall ;1 (u,0) = 0yth(u,0) — 9,1(0,0); thus,

6_)\‘1)

(Wis1(u,0)] <w-sup sup 024 (u, 0)]| Lo vy,
1€N ue(0,a0]

leading to

ef)\g'u

W1 (u, 0) |72y

< u? (ézuy(Y) + C’/ e Aes ds) + eC’/ e NS
0 0

Suppose now for the purpose of induction that (the constant Cy will be chosen shortly,

see ((3.64))

Ui(u, 8)[|72(yy ds-

(u,0) € [0,a] x [0,b0], [ Wi(u,v)|[72(yy < Coe =", (3.62)
Then by the previous inequality,
e =t | W, (u, v)||2L2(Y) <u? et (e%py (Y) + C/A) +eCCobo.

=:C(Xe)

We choose e small enough such that eCby < 1/2. Once this choice of € is made (then
C(Ae) is fixed) we see that u?C(\.) < C/2 provided that

0<u<To(v200N)) (3.63)
We have thus proved that in the range of the u-variable given by ,
@511 (u,0) |72y < Coete =0,
This proves that is preserved under iteration.
Now, recall from that
€| Buthigr (u, 0) [ a5 vy < 2Cy.
Note that the constant C’w in can be chosen independently of A, and that the A

here is independent of A, in the previous inequalities, but it is convenient to choose them
to be equal, and we shall do so. Thus we can write

€MW1, 0) ks < Co+ (20) /2 = C,
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By interpolation, there exists a constant ¢,, > 0 such that, for all m € (0,k — 3),

1Wi1 (e, 0) [ rm vy < mllWiea (u, 0) Gy [ Wi (0, 0) | 2y

Av/2

with a certain constant 6 € (0,1). Then multiplying by e~ we obtain

e 2 Wi (u,0) | g vy < emlle™ 2 Wag (u,0) | Gis oy e P Waa (u,0) | 12y
< OO (Toe0)1/21-0)

which can be rewritten as

e_A(U_bO)/QH\I/i_f_l(U,'U)”Hm(y) < e O (T) /200 (Ab0)0/2
For m = k—4 > (n — 1)/2 (which is possible if k > (n + 7)/2), from Sobolev’s embedding
theorem there exists a constant Cs > 0 such that

e—/\(v—bo)/z‘l%ﬂ(u)U)HLOC(Y) < 0509(60)1/2(1_9)(eM’“)e/Q.
Finally, we choose C small enough so that

CsC?(C)Y/2(1=0) (Ab0)0/2 < sup sup |9,%;(0,v)| + 1, (3.64)
t v€[0,bo]

and obtain

[Wis1(u,v)|[Loe(yy < eMv=bo)/2 (Sup sup |0ui(0,v)| + 1)7
i v€E[0,bo]

which leads to

0utiv1(w,v)| oo vy < 25up s{u;; ] |0u1: (0, )] + 1 (3.65)
i vel0,by

for all v € [0,bg] and all u in the range of (3.63), with C defined in (3.64). Thus we
conclude, as after (3.49)), that up to reducing a. if necessary,

sup sup |0uti(u,v)| < 2sup sup [9,¢;(0,v)] + 1.
i (u,0)€[0,ax]X[0,bo] i vel0,bo]

The estimate (|V,A*|); < Cqiv for all ¢ follows when A” does not depend upon ¢.
When A" depends upon ¢ it remains to obtain a pointwise estimate on 0,p. We start
by v-differentiating the equation satisfied by ¢:

i
(AL, V)i Pirl _ —0 (AL Vi) @i — 5v((AZ¢Vu)i¢i+1 —(Gy)i)

ov
A
=: (By); ai + (by )i (3.66)

where
(Bso)i = _6¢((A$<pvu)i>90i+1 - 8@((Ag1pvu)i7/)i+1 - (Gso)i)v
and with (b,); containing all the remaining terms. After replacing v-derivatives of ;41
using the field equations, (By); and (b,); become affine in %Bfiﬂ and ©B¢Cfi+1, with
coefficients depending upon f;.
Recall that ks has been defined in ; for k > ko by and we have the

estimate

I(By)illar—2cvy + 1(bg)ill zrx—s vy + [[(By)illwz.oe vy + [|(b)illwroe vy < Co. (3.67)
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Applying (2.31) with & replaced by k — 3, with U = [0,u] x {v}, f = Op;41/0v, etc., to
(3.66)), we obtain

2

o D 2
A(u+v) 901-"-1 (u’ ’U) < Clo{e)\v Pit+1 (O, U)H
v HE=3(Y) v HE-3(Y)
9%;
|| 5t ”)Hyk 3(v)

u 9 ; 2
+/0 e s+v){(||(VA )(S,U)HLoo(y)—c)\)Hg;l(s,v)‘

HE=3(Y)
0p; 0 1 0p;
+Cll SD+1 (s’v)‘ (H 80 S ,U) +H g0+1( 77}) +Cl2>}d8}.
81} HF=3(Y) HF=3(Y) 61} HF=3(Y)
(3.68)
As before, using the inequality ab < a?/(4¢) + €b?, one is led to
2 - 2
. 9%,
—Au 8()0’L+1 (u’ U) < OIO{ H Pi+1 (’U)
ov HE=3(Y) ov HE=3(Y)
u C o ; 2
# [T (1Tt e + 200+ G2 = er) | 252 6,0
0 v HE=3(Y)
0p; 2 9
+ eCh1 7(8 ’U) + 011012 ds . (3.69)
v =5 (¥)

Since (see ([3.10al))
(VAL )il < |[(VuA")il < Caiv,  V(u, ) € [0,a:] x [0, bo],

there exists a constant A3 = A3(C1o, Caiv, Co, k) which does not depend on 4 such that,
for all A > A3, the previous inequality implies

dp; ? %1 |
—\u g+1 (u,) < ClO{H Pi+1
v HE=3(Y) HF=3(Y)
u 2
+ C11/ e N { 8%(5,1;) + 0122} ds}. (3.70)
0 v HE=3(Y)

Integrating in u, for 0 < u < a; < ag, one obtains

2

/ ef)\t aSO’H*l (t, ”U) dtéclo{ao ng_;'_l( H
0 v HE=3(Y) ov He-3)
u t
+CH/ / eAS{ 9| +Cl22}dsdt}. (3.71)
o Jo dv HE=3(Y)
Let
o 6()0 2 u t
Colu) = clo{sup sup o %1 ) [ Cllcfgdet} (3.72)
1€N vE[0,bo) v H*=3(Y) 0 0

Proceeding as before, one gets rid of the dp; /dv terms in the integral appearing in (3.70)),
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for all 0 < u < a;, as follows: suppose that

t _ .
VO<t<u<a <ag / o s 3%(3,’0) ds < 2C,(t);
0 811 HE=3(Y)
then (3.71)) gives
u P 2 i .
/ e ﬂ(t,v) dt < Cy(u) + 2a0eC10C11Cy ().
0 v Hk=3(Y)

Thus, one can choose € = €¢(C1g, C11, C12, Cdiv, Co, k, A3) small enough so that
dt < 20, (u),

u 2
[ e
0 Hk=3(Y)

which shows that (3.73]) is preserved under iteration.
For any A > As|x=k, we deduce from (3.70) that

Bis1 ;)

v

dp; 2
o], <
a'U Hk273(Y)

Now, Sobolev’s embedding implies

’ Opir1 (u, 'U)H <C.
v Wiee(y)
As this holds for all ¢, (3.66]) proves that
0%p;
G@B—H (u,v) <C.
udv Lo (Y)
By integration
0 90, 5.
A (u,v)’ < ‘%H (0,?1)‘ +Cu < 2sup || 2 :
ov v i€N v L (N+TUN-)
provided that
OgugCl(sup 9% )
ieN || Ov Lo (N+HUN )

(3.73)

(3.74)

(3.75)

Now, we choose a, to be the smallest of ag and of the four constants appearing on
the right-hand side of inequalities (3.33)), (3.46)), (3.63) and (3.75)). Recall that a; was
defined as either ag or the first number at which the inequalities fail for f; or fiy1.
So, if we assume that the inequalities hold at the induction step ¢ with a; > a.,
we conclude that a; 11 > a. as well. Hence a; > a, for all i € N. The above implies that
(3.20) and hold for 0 < u < a,. Since a, is independent of k, we have obtained:

PROPOSITION 3.6. Let N 5 k > (n+7)/2, and suppose that there exists a constant C

such that for (u,v) € [0,aq] x [0,b] we have

sup {|T)fz| + |Wz| + [I1f; (w, V)| e vy + Mk(uvv)} <C.
N—UN+

(3.76)

There exists a constant 0 < a, = ax(ag,b,C,Y) < ag such that the fields f; satisfy the
hypotheses of Lemma|3.2l on [0, a.] x [0,b9] X Y. As a consequence, there exists a constant
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C = C(ag,bo,C,Y, k) such that for (u,v) € [0, as] x [0,bo] we have

ax bo
/0 ||wi(sav)“ilk(Y)d5+/0 i (s )17 vy ds + | fi(ws ) | ey

+ Havwi(uvv)”H’C*Q(Y) + ||au<Pi(U7U)||H’C*2(Y)
+ 10uthi(u, 0) || Hr—s vy + 100 @i (u, V)| r-3(vy < C. - (3.77)
REMARK 3.7. The result remains true for k € R; this can be established by commuting

the equation with an appropriate pseudo-differential operator in the Y -variables. How-
ever, this will be of no concern to us here.

3.3. Convergence of the iterative sequence. To prove convergence of the sequence,
we set

Ofit1 = fix1 — [i-
We have the equation
(AMV,)id fix1 = 0G;, (3.78)
with
0G; =G — Gi1 — ((A"V,)i — (A"V,0)ia) fi
The standard identity

1
h(x) = h(y) = (z —y) ; W (te + (1 —t)y) dt,

applied both to G; — G;—1 and (A*V,); — (A*V,);_1, leads to the straightforward esti-
mate, for all A and 0 < a < ay,
||67>\(U+U)5Gi”L2([0,a]X[O,bo]xY) < Cl||67>\(u+v)5fiHL2([O,a}><[0,b0]><Y)v

with a constant Cy; which depends upon sup;, || fi||w1., and which is independent of A
and of 7. Here we reset the numbering of the constants, so that the constant C; of this
section has nothing to do with the constant C; of the previous section, etc.

We apply the energy inequality with & = 0; there are then no commutator

terms in , leading to
le™ 805 11 (u)l| L2 (jo,5o)xy) + e F i1 ()| 22 (0,01 xv)
< Co{lle™ 001l 200l xy) + [l 0% 41 [l 220,001 xv)
+ (1(A*V )il oo = eM) e 6 fia 122 (10,00 ¢ 0,50)x¥)
+20e M6 fi 1|2 (0. x (0,00 x V) 1€ TN TG 12 (0,00 ¢ 0,00]x ) }
< Co{lle™ 681l 200l xy) + €08 41 |22 (10,0010 v)
+ (A" W)ill e + Cr = eX)lle™ 6 fii1 12 (0,001 x[0.00)x¥) }
+ C1Co )l e 5 £112 (0,001 [0.b0] x V) (3.79)

Now, for the purpose of proving Theorem the sequences (;)ien and (1,;)ien are
Cauchy sequences in the spaces H*([0,bg] x Y') and H*([0, ag] x Y) respectively, and thus
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in L2([0,bg] x Y) and L?([0,ag] x Y). Therefore, without loss of generality they can be

replaced by subsequences, still denoted as (%;)ien and (;)ien, such that

Cal|0%; (| L2 ([0,b0) x ) < 21% and  Co||69; | 12 ([0,a0) xv) < 21% (3.80)
Assuming that holds, we have
le™ 26011 ()| L2 (0,0l xv) + €801 (0) ] 22 (0,01 x)
< 5+ O (IA Tl + O = N e 6 B o0 o)
+ C1Calle™ M5 £i11 2 (0.0 1x 0.60] x Y- (3.81)

In particular, given any 0 < a < 1/2, for all A sufficiently large and for all (u,v) in
[0, ax] x [0,bg], we find that

“AMutv 1 —A(utv
le™ 8005 11 (W)l| 72 0 po) vy < 51 TC1Cz]le MG fill 72 (0, x 0,00] x ) (3-828)

“Autv 1 —A(utv
le™2 08 () [Z2a1xw) < 57 + CrCalle o ilz2 0.0, w00l xrys  (3:82D)

— uUT+v 1 — uUT+v
le™ 8 fialZa o tosnixy) < grgr T @l 0 fil T 0 xl0.00)xr)- (3:82¢)
Here X has to be chosen so that

& <1 (3.83)

0< <«
A = [[(AV )il — C1 2

We can now make use of the elementary fact: If (U, )nen is a sequence of positive real
numbers satisfying U, 1 < aU,, + /2", then

Un < a"Up + 26<W>. (3.84)

1-2a
Equations (3.82c])—(3.84)) show that
Z e M5 £, converges in L2([0, a.] x [0,bg] x Y).

This implies that f; converges in the same space to some function f. It further follows from
that for all 0 < u < a, the sum Y, e ¥+ §p, (u) converges in L2([0,bo] x V),
uniformly in u; this implies uniform convergence of ¢;(u) to some function p(u) in that
topology. Similarly for all v € [0, by] the sequence v;(v) converges, uniformly in v, to some
function ¥(v) in L2([0,a.] x Y).

For k > (n + 7)/2 the estimates of the previous section apply and show that the se-
quence of derivatives V f; is uniformly bounded so that, by Arzela—Ascoli, a subsequence
Ji; can be chosen which converges uniformly to some function which is Lipschitz contin-
uous in all variables on [0, a.] x [0,bo] x Y. It follows that f has a Lipschitz continuous
representative; this representative will be chosen from now on. Similarly, f;; 11 has a
subsequence, still denoted by the same symbol, uniformly converging to some Lipschitz
continuous function f’. Since f;, 41 converges to f in L? we must have f' = f, thus f; 11
converges uniformly to f.
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Now, by Propositionthe sequence f;, (u,v) is bounded in H k=1(Y’), and converges
uniformly to the continuous function f(u,v). By weak compactness

f(uvv) = ((p(u,v),w(u,v)) = (QO(’U,, v, ')a ¢(uv v, )) € Hkil(Y)'

By interpolation, for every s < k — 1 we have

fij (u7 U)afijJrl(uaU) - f(u,v) in H?(y)’ (385)
uniformly in v and v. In particular
fi; (us0), fiypa(u,0) = f(u,0)  in CH(Y), (3.86)

uniformly in v and v. Thus both ¢ and v are differentiable with respect to the z4’s
In the notation of Section (3-1) now shows that the sequence 9, ;, +1(u, v) converges
uniformly to the Lipschitz continuous function

() = (AL " [~ AL Vae = AL VBY + Gl = Yopup-

Similarly, 9,9, +1(u,v) converges uniformly to a Lipschitz continuous function, as deter-
mined by the right-hand side of the equation involving 0,%. From

Pi;+1(uz, ") — pi;+1(u, ) / auSDZJJrl ) ds (3.87)
~>(*

—)g&(u27-) A)W(ulv )

one finds that ¢ is differentiable in u. Similarly ¢ is differentiable in v, and (2.1)) holds.
From what has been said we have

feL%([0,a.] x [0, bo]; HE1(Y), (3.88)
daf, 0up, B € L2([0,a.] x [0, bol; H*(Y)), (3.89)
Do, Outp € L ([0, a4] x [0, b]; HF3(Y)). (3.90)
Thus
fe [ W([0,a.] x [0,bo]; H¥ 27 (Y)) € COM([0,a.] x [0,b0] x V). (3.91)
0<i<1
We note that the new field
@ (G

! ’_ O ’_ Oy
f = (1/}/) ,  where ¢ = D and ¢ = o | (3.92)

Oap Oav

is defined on [0, a.] x [0, bg] x Y and solves a system of equations satisfying our structure
conditions. By what has been said the initial data are of H*=3 differentiability class. So
if k —3 > (n+7)/2, the argument leading to (3.91)) applies to f’ and gives

f e L=([0,a.] x [0,bo]; H*1(Y)) N ﬂ W= ([0, a.] x [0,bo); HF34(Y))
0<i<2

c CHY([0,a.] x [0,b] X Y). (3.93)
This argument can be applied k; times, where

ky is the largest number such that k — 3k; > (n+7)/2. (3.94)
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Consequently,
fe L([0,a.] x [0,bo); H*H(Y)) N N W ([0,a.] x [0, bol; H*~*'(Y))
0<3i<k—(n+7)/2
c CM =110, a4] x [0,b] X V), (3.95)

where the last inclusion holds provided that k; > 1.
REMARK 3.8. For k > 6+ (n+ 7)/2 the first line of (3.95) can be partly improved to

£ e 0([0,a.]x[0,bo]; H*1(Y))N N C ([0, ax] x [0, bo]; HE 3 (Y)). (3.96)
0<3i<k—(n+7)/2—6

To see this, note first that the map
(u,v) = 9L0I f(u,v,-) € HF 301 (Y) (3.97)

is weakly continuous, being the limit of a bounded sequence of continuous maps. Using
the equation satisfied by f and the trivial identities

0L p(u,v) = 9L02p(0,v) —|—/ <8 0L0%p(s,0) + / Du0y 007 (5, 1) dt) ds,
0

9L 04 (u, v) = 0% 04p(u,0) +/ <a 0L.071(0,1) / Du 0y 0L 0Iah (5, 1) ds) dt,
0
one sees that the function
(uv ’U) = Haiaif(% v, ')HH’C*3(1‘+J'>(Y)
is continuous. This, together with standard arguments, implies that (3.97) is continuous,

and (3.96) easily follows.

3.4. Existence and uniqueness. In order to complete the proof of the existence of
a solution for the system ([2.1), we need to initialize the iteration and make sure that
condition ([3.76)) is fulfilled. Recall that in the current setting

N~ ={0} x[0,b] xY, NT=10,a0] x {0} x Y.
We have the following:

THEOREM 3.9. Let Y be an (n — 1)-dimensional compact manifold without boundary, let
ag and by two positive real numbers and set
Qo = [0, ag] x [0,b0] x Y.

Consider the symmetric hyperbolic system (2.1)) on Qo with the splitting (2.7) and assume
that (2.8) holds. Let B and 1 be defined respectively on N~ and N'F, providing Cauchy

data for (2.1)):

{@ =% o N7, (3.98)
=1 onNT.
Let L €N, £> (n+9)/2, and suppose that

e [) CU0,bo); HI(Y)) and ¢ e () C/([0,a0l; H(Y)). (3.99)

0<j<e 0<j<e
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Assume that the transport equations

Al«;gp|v:08u<ﬂ|v:0 = (_Agwau¢ + Gy)lv=o; (3.100)

Ay lum0utlumo = (— Ay 0o + Gp)lumos (3.101)
with initial data

Plu=v=0 = Plv=0  and Plu=y=0 = P]u=0,

have a global solution on ([0,ao] X Y) U ([0,bo] X Y'). Then there exists an £-independent
constant a, € (0, ap] such that the Cauchy problem (2.1), (3.98) has a solution f defined
on [0, a«] X [0,b0] XY satisfying (3.88)—(3.90) with k = £ —1. If £ > (n+ 12)/2 we further

have

f e L>([0,a.] x [0,bo); H*2(Y)) N ﬂ WH ([0, a.] x [0,bo]; H ' 3(Y))
0<3i<l—(n+9)/2

c ¢ 1[0, a.] x [0,b0] X Y), (3.102)

where £y is the largest number such that ¢ — 3¢,y > (n+9)/2. The solution f is unique
within the class of C* solutions, and is smooth if B and v are.

REMARK 3.10. Some remarks about the hypothesis that Y is compact without boundary
are in order. First, our analysis applies to compact manifolds with boundary without fur-
ther due when suitable boundary conditions are imposed on the boundary. For instance,
in the case of systems obtained by rewriting the wave equation as in Section [@ Dirichlet,
Neumann or maximally dissipative boundary conditions at 0Y are suitable. Next, again
for systems of wave equations, the case of noncompact Y’s can be reduced to the compact
one as follows: Let p € Y'; we replace Y by a small conditionally compact neighborhood
of p with smooth boundary. We solve the equation on the new Y imposing e.g. Dirichlet
conditions on [0, ag] x [0,bp] x Y. Arguments based on uniqueness in domains of de-
pendence show that there is a one-sided space-time neighborhood of the generators of
N4 through p on which the solution is independent of the boundary conditions imposed.
This provides the desired solution on the neighborhood. Returning to the original Y, the
union of such neighborhoods with the corresponding solutions yields the desired solution.

Proof of Theorem 3.9. Let (9;)ien and (¢;);en be any two sequences of smooth initial
data which converge towards @ and 1) respectively in the spaces
() C7([0,bo; H7(Y)) and (1) CY([0,a0l; H/(Y)).
0<j<¢ 0<j<¢
Set f_1 =0, and for i € N define f, = (©;,¢;). Given f;, we let f;11 be the solution of
the linear system ([3.1) with Cauchy data
Pi+1 = Pip on N,
Yiv1 =941 on N
We wish to apply Proposition [3.6] with & = ¢ — 1. For this we need to show that the
constant C of (3.76) is finite. We start by noting that the sequence (1;);eny has been
chosen to converge in the space [y< ;<o C7 ([0, al; H'77(Y)), and since £ > (n + 7)/2 the
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continuous embedding

() C70,a0l H7(Y) = [ CU([0,a0]; WH(Y)

0<j<2 0<j<2
ensures that this convergence also holds in (o<, C7([0, agl; W>*(Y')). Since convergent
sequences are bounded, we obtain

L5 (Tl )+ 1030 lwsoe ) + 10450 lwrom) < o0 (3.103)
€N, u€(0,a0

Similarly,

sup  ([8(0)lwroe vy + 1808;(0) lwroe vy + 1075 (0) [lwrevy) < oo.  (3.104)
€N, ve[0,bo]

By hypothesis, the transport equations with the initial data (,) have global solu-
tions on N'*. Continuous dependence of solutions of symmetric hyperbolic systems upon
data implies that the transport equations with (;, ;) will also have global solutions on
N* for all i large enough, bounded in C*(N) uniformly in i. We can thus use at

u = 0 to obtain, for all ¢ € N and all A sufficiently large,
e\ ||1/Jz(0, 'U) H%{é—l(y) < C7(Y7 £, Cy, Cdiv){ ||’(/JZ(07 O)H?Lﬂ,l(y)

+2C(0,b) + / e My(0,8) ds + 26C,(0,bo) + Eo 2\ [B:, 0]}.
0

The right-hand side is bounded uniformly in 4 and v € [0, bg]. Thus there exists a constant,
which we denote again by C, such that

Vie NVv e [0,bo], [[¢:(0,0)l[Fre1(y) < C.

We can repeat this process using the transport equation satisfied by 9y,1;41(0,v),
which is obtained by u-differentiating the equation satisfied by ;41. This leads to the
inequality at u = 0 for every i € N with & — 3 replaced by ¢ — 2; the gain of one
derivative here, as compared to , is due to the fact that ¢|,—g is directly given
in terms of initial data, and hence is controlled in H[(Y)7 while in we only had
uniform control in H*~1(Y'). That is, for all i € N,

Hauwl(07 U) ||?_114—2(Y)

bo

< 2eM [Cg{ sup sup |‘auai(0)||%f—2(y) + / e (Mq(0,5) + C) ds} + 1] .
1€N ue(0,a0] 0

An identical argument using @ gives the desired control of p(u,0) and 9,p(u,0). This

proves that the left-hand side of @ is finite.

We can now appeal to Section to conclude that the sequence (f;);en converges
towards a solution f of the Cauchy problem (2.1, in a space as stated in the
theorem. This requires choosing the sequences (¢;)ien and (1;);eny more carefully (see
(3-80))), which is possible because the constant Cy appearing in is the same for all
suitably bounded sequences, possibly after taking ¢ > iy for some iy large enough.
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Note that the neighborhood of A/~ on which the solution has been constructed is
independent of the Sobolev differentiability class of the data. This implies that smooth
initial data lead to smooth solutions.

We continue with uniqueness of solutions. Let f;, £ = 1,2, be two solutions of
with identical initial data . Setting 6 f = f1 — f2 leads to the equation

(APV )10 f = (G)1 — (G)2 — ((A“Vu)l — (A“VN)Q)fg, (3.105)

with § f vanishing on A. The calculation is now similar to that of Section [3.3] Equation

(3.105) can be rewritten as (3.78) with ¢ f; 11, and 0 f; there replaced by 0 f, A*(f;)V . (f:)
replaced by A*(f1)V,(f1), and dG; replaced by

5G = (G)l — (G)Q — ((A“V#)l — (AHV#)Q)fQ.
The current equivalent of (3.79) with d¢ = 6¢ = 0 reads

le 260 (u) | L2 (0.0 xv) + €76 (0) | L2 f0,0.1 1)
< (A DVl = M) leHIEF 112 0,0, 1x 0,60] 1)
+ Cille TG £ 1122 10,0 (0,50 x¥) - (3.106)
It then follows (compare with (3.82d)) that there exists a € (0,1) such that

||e_>\(u+v)6f||%2([0,a]X[O,bo]xY) < CY||€_A(u+v)5f||2L2([o,a]x[o,bo]xy)-

This means that f; = fo almost everywhere on [0,a] x [0,bg] x Y, and since f; and f,
are continuous, equality holds everywhere. m

The symmetry of the problem under the interchange of v and v shows that our
construction also provides a solution in a neighborhood of N'*:

COROLLARY 3.11. Under the hypotheses of Theorem[3.9] there exist constants 0 < a, < ag
and 0 < b, < by and a unique solution f of the Cauchy problem (2.1), (3.98) defined on
the neighborhood

(10, a.] x [0,b0] x Y) U ([0, ag] x [0,b,] X Y)
of N = NTUN™ such that
fe L([0,a.] x [0,bo); H*2(Y)) N N W5 ([0,a.] x [0,bo]; H 1 724(Y)),
0<3i<f—(n+9)/2
and similarly on [0, ag] x [0, b].
REMARK 3.12. Theorem can be used to obtain a solution of (2.1)), (3.98) when the
transport, equations can be solved globally on the hypersurfaces N~ = {0} x [0,00) x YV’
and N =[0,00) x {0} x Y as follows: Let ag and by be arbitrary positive real numbers.
Corollary shows that there exist constants 0 < a, < ag and 0 < b, < by and a unique
continuous solution f of the Cauchy problem ({2.1f), (3.98]) defined on
Uagbo = ([0, a:] x [0,b0] x Y) U ([0, ag] x [0,b] x Y).

Here a, and b, might depend upon ag and by. Uniqueness of solutions on each Uy, b,

shows that solutions defined on two such overlapping regions coincide on the overlap.
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This allows one to define a solution on
U= | Uan
ag,bpER ¢
in an obvious way. We thus obtain a neighborhood of the entire initial data hypersur-

face N = N~ U N*. Note that the thickness of the neighborhood might shrink to zero
when receding to infinity along N.

3.5. Continuous dependence upon data. The aim of this section is to prove that the
solutions obtained in Theorem are stable under small perturbations of the Cauchy
data. More precisely:

THEOREM 3.13. Let f be a solution of (2.1]) on [0,a0] x [0,bo] x Y, and let (f;)ien be a
sequence of solutions on [0, ag] x [0,bo] X Y such that the sequence of the associated initial
data (f,)ien converges to f in the topology determined by (3.99) with £ > (n + 15)/2.
Then:

(1) There exists 0 < ax < ag such that
the sequence f; is bounded in CH1(]0, a.] x [0,bg] X V).

(2) Suppose that 0 < a < ag is such that (f;)ien is bounded in C+1([0,a] x [0,0] x V).
Then for any 0 < s < £—(n+9)/2 the sequence (f;)ien converges to f in the topology
of
L>([0,a.] x [0,bo); H2(Y)) N () W ([0, a.] x [0,bo); H ' 7%(Y)).  (3.107)

0<3i<s

REMARK 3.14. The sequence (f;);en in (2) converges also in C1([0,a] x [0,bg] X Y).

Proof of Theorem 3.13. Let us denote by ||f||¢ the norm associated to , and by
llIf1lls the norm in the space . Let (f; ;)jen be a sequence of smooth initial data
such that

||f” - fz‘”f < 1/2]-

Let f;; be the (smooth) solution of with initial data f; ;. By the estimates of
Section for all 4, j large enough we can find 0 < a. < ag such that all the f; ;’s are
defined on a common set [0,a.] x [0,b] x Y, with a common bound in C**([0, a.] x
[0,b0] x Y).

By Arzela—Ascoli, when j tends to infinity the f; ;’s converge to a solution of ,
say g;, with initial data f,. By uniqueness g; = f;. This proves point (1).

Since ?l ; converges to f. and f, converges to f, there exists a sequence fl j(iy Which
converges to f as ¢ tends to infinity. By the argument just given, the associated solutions
fijay of (2.1) converge, as i tends to infinity, to a solution g of . By uniqueness,
g = f. Hence the f; j;)’s converge to f.

Thus, for every € > 0 there exists i, such that for ¢ > i, and j > jo(¢) we have

lfis = fllls < 3e.

But for j large enough ||| f;; — fillls < 3¢, which implies the claim. =
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3.6. A continuation criterion. What has been said so far easily leads to the following
continuation criterion for solutions with smooth initial data:

THEOREM 3.15. Suppose that (¢,v) is a C* solution on [0,a) x [0,by] XY of the equations
considered so far, for some a < ag, with smooth initial data on N. If (p,v) is bounded
in the C' norm on [0,a] x [0,by] x Y, then there exists € > 0 such that the solution can
be extended to a smooth solution defined on [0,a + €] x [0,b] X Y.

Indeed, for smooth data, if an a priori control of the C' norm of the fields is known,
for any k one obtains the estimate for the kth order energy directly from ,
and Gronwall’s inequality, with no need to introduce the iterative scheme of Section
We emphasize that in the current case the constant Cy of equation is controlled
directly.

One would like to have a similar continuation criterion for solutions of finite differen-
tiability class. However, due to the losses of differentiability occurring in our argument it
is not clear whether such a result can be established. We have not attempted to investigate
this issue any further.



4. Application to semilinear wave equations

4.1. Double-null coordinate systems. Let (M, g) be a smooth (n + 1)-dimensional

space-time, and let N* be two null hypersurfaces in M emanating from a spacelike

manifold Y of codimension two. We will denote by A+ the intersection of N#* with the
causal future of Y.

In order to apply our results above to semilinear wave equations with initial data

A

)

on N'* we need to construct local coordinate systems (u, v, z%), where the 24’s are local

coordinates on Y, near

N =NTUN~
so that
N ={u=0}, NT:={v=0} (4.1)
We will further need
9(Vu,Vu) =0 = g(Vu, Vv), (4.2)

wherever defined. Such coordinates can be constructed in a standard way, but we give
the details as specific parameterizations will be needed in the problem at hand.

Let /y and wy be any smooth null future pointing vector fields defined along Y and
normal to Y such that £y is tangent to N+ and wy is tangent to A/~ Then both A/+
and N* are threaded by the null geodesics issued from Y with initial tangent £y at Y.
These geodesics will be referred to as the generators of N T, respectively of NT. The
associated field of tangents, normalized in any convenient way, will be denoted by £7. Let
ry denote the corresponding parameter along the integral curves of £+, withr, =0at Y.
We emphasize that the normalization of ¢ is arbitrary at this stage, so that r* could
e.g. be required to be affine, but we do not impose this condition. Similarly N~ and N~
are threaded by their null geodesic generators issued from Y, tangent to wy at Y, with
field of tangents w™ and parameter r_.

Let x{} be any local coordinates on an open subset O of Y. They can be propagated
to functions 4 on N'* by requiring the x4’s to be equal to 24 along the corresponding
null geodesic generators of N*. Then (r,z%) define local coordinates on N'* near each
of the relevant generators.

On N+ we let wt be any smooth field of null vectors transverse to N+ and normal to
the level-sets of r1 such that wﬂy = wy. The function v is defined by the requirement
that u is constant along the null geodesics issued from N+ with initial tangent w™, equal
to ry at N+. We denote by w the field of tangents to those geodesics, normalized in any
suitable way. Thus

wu) =0, wuly-=0. (4.3)

(38]
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We claim that the level sets of u, say N, are null hypersurfaces. To see this, consider
a one-parameter family A — z(), s) of generators within A, . Then X := 9,z is tangent
to N, and solves the Jacobi equation along each of the generators s — x (), s). Further,
every vector tangent to N, belongs to such a family of vectors. We have

dig(X,w) _ (DX N\ _ (D 9z dx\ _ (D dx dx)\ 1 _
ds DAY 7 A 0s O\’ Os —9 O\ 0s’ ds ) 28,\(g(w,w))—0.
(4.4)

Now, on N, N N7 the vector X can be decomposed as X = X'+ aw, where Xl is
tangent to N7 NNt and a € R. Both X and w are orthogonal to w, hence g(X,w) =0
at the intersection. Equation gives g(X,w) = 0. This shows that all vectors tangent
to N are orthogonal to w, and since w is also tangent to N, we conclude that TN, is
null. Consequently, Vu is proportional to the null vector w, and thus

g9(Vu,Vu) = 0.

Similarly, on N~ we let £~ be any smooth field of null vectors transverse to N ™
and normal to the level-sets of r_ such that {~|y = ¢y. The function v is defined by
the requirement that v is constant along the null geodesics issued from N~ with initial
tangent ¢~, and with initial value r_ at N'=. We denote by £ the field of tangents to
those geodesics, normalized in any convenient way. Then

Lv) =0, wvly+=0, g(Vv,Vv)=0. (4.5)

By construction we have
+

lpe = 07F, Wiy = w™. (4.6)

So far the construction was completely symmetric; this symmetry will be broken now
by defining the functions 4 through the requirement that the z*’s be constant along
the null geodesics starting from N~ with initial tangent £~, and taking the values 24 at
the intersection point.

The construction just given breaks down when the geodesics start intersecting. How-
ever, it always provides the desired coordinates in a neighborhood of N. In particular,
given two generators of N'* emanating from the same point on Y, there exists a neigh-
borhood of those generators on which (u,v,z) form a coordinate system. We emphasize
that

g(w,w) = g(¢,0) =0, (4.7)
and that we also have
C=0=0" & (=09, w'=0¢& w=w"d,+wrds. (4.8)

The first group of equations in follows from the fact that both z# and v are constant
along the integral curves of ¢, while the second is a consequence of the fact that u is
constant along the integral curves of w.

Finally, once the coordinates u and v have been constructed, for some purposes it
might be convenient to rescale ¢, or w, or both, so that

g(w,0) = —1/2. (4.9)
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Such rescalings do not affect (4.7)—(4.8]), which are the key properties of ¢ and w for
us. Equation (4.9) determines ¢ and w up to one multiplicative strictly positive factor,
(= al, w— o lw.

4.1.1. R-parameterizations. Let us finish this section by providing a construction in
which the functions « and v run from zero to infinity on all generators of N and N .
Let U+ ¢ N+ x R be the maximal domain of definition of the map, which we denote
by
Ut(p,s): Ut - M, peNT seR,

defined by following a null geodesic from p € N+ with an affine parameter s € R in the
direction £ at p. Let VT C U™ be the domain of injectivity of . Then ¥ (V) is an
open subset of M containing N-.

Let the set U~ C N~ x R, the map ¥, and the set V= C U~ be the corresponding
constructs on N/~ using the integral curves of w. Then ¥~ (V™) is an open subset of M
containing N 7.

Set

O:=v"VHNe (V)oNTUN.
Let h be any complete smooth Riemannian metric on O. Rescale ¢ and w to new vector
fields on O, still denoted by ¢ and w, so that h(¢,¢) = 1 = h(w,w). Then the integral
curves of £ and w are complete in O. The corresponding parameters r4 on N# run over R
for all generators of N + as desired.

It should be pointed out that the above normalization of ¢ and w has only been
imposed for the sake of constructing u and v. Once we have the functions u and v on
O we can revert to any other normalization of the fields ¢ and w, in particular we can
assume that holds. It might then not be true anymore that ¢(u) = 1 on N/~ and/or
w(v) =1 on N'*, but these conditions are irrelevant for our purposes in this section. In
fact condition plays no essential role in what follows.

4.1.2. Regularity. Now, it is well known that coordinate systems obtained by shooting
geodesics lead to a loss of differentiability of the metric. The aim of this section is to
show that, in our context, the optical functions u, v are of the same differentiability
class as the metric @ As a result, after passing to a doubly-null coordinate system
one loses one derivative of the metric. While unfortunate, this is not a serious problem
for semilinear equations, as considered in this section. On the other hand, this leads to
difficulties when attempting to apply our techniques to the harmonically reduced Einstein
equations. This is why we will restrict ourselves to dimension four when analyzing the
Einstein equations, as then a doubly-null formulation of Einstein equations is directly
available, without having to pass to harmonic coordinates.

First, to avoid a conflict of notation, we will use the symbol x for the coordinate
u of Section [3} and y for the coordinate v used there, without assuming that x or y
solve the eikonal equation. Thus, we let (x,y,24) be any coordinate system such that

(*) The argument here has been suggested to us by Hans Lindblad. We are grateful to Hans
for useful discussions concerning this point.
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N~ ={z =0} and NT = {y = 0}. We assume that these hypersurfaces are characteris-
tic for the metric g. We have just seen how to construct solutions v and v to the eikonal
equation, and we wish to analyze their differentiability properties.

To obtain the desired estimates, we start by differentiating the eikonal equation:

g"0,v0,v =0 = ¢"0,v0,0,v = —%8a(g“”)8uv ov. (4.10)
Setting f = ¢ = (pq) := (04v), we obtain a symmetric-hyperbolic evolution system
9" 0p0vpa = —50a(9" oy & AMdup =G, (4.11)
with
Al = (Auozﬂ) = (_gHV¢V§g)7 G=(Ga) = (%aa(g/w)‘pu@u) (4.12)

(the negative sign above is related to our convention (— + ---+) for the signature of
the metric, together with the requirement that Vu and Vv are both past pointing). The
function v is required to vanish on N't.

An obvious corresponding equation can be derived for the second null coordinate u,
which is required to vanish on N ™.

We have:

THEOREM 4.1. Let (M, g) be a smooth space-time with a metric g with components
g € [ C7([0,a0] x [0,bo]; H/(Y))
0<j<¢e

in the coordinate system above, with some ¢ € N satisfying £ > (n+6)/2. Let uw, U be
continuous functions on N, with w =0 on N, differentiable on N and 8,u strictly
positive there, and v =0 on N, differentiable on N~ and d,v strictly positive there,
with
Uy € [ CU0,a0; HI(Y)), oly-€ () C7(10,bo]; HI(Y)).  (4.13)
0<j<t 0<j<e

There exist £-independent constants p. > 0 and a, € (0,ap], with by — prea. > 0, such
that the eikonal equations g(Vu,Vu) = 0 = g(Vuv, Vv) have unique solutions u and v,
realising the initial data uw and v, defined on

Qoi={ze0,a.],0<y<byg— ez} xY (4.14)

(see Figure , of differentiability class C3(Q4), with Vu and Vv without zeros and
linearly independent there, and satisfying

u € L=([0,bo — paaxl; H([0,a:] X Y))

N () C([0.b0 — peau]; H([0,a.] x Y)), (4.15)
1<j<e-1
v € L([0,a.); H ([0, by — psas] X Y))
N () C0,a.]; H7([0,by — pras] x Y)). (4.16)
1<j<e—1

The solutions u and v are smooth if the metric and the initial data @ and T are.
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Fig. 4.1. The set Q.

REMARK 4.2. The constant p. is only needed for the function v, and can be set to
zero if u only is considered. The functions u and v have differentiability properties

similar to those in (4.15)—(4.16)) on that part of €, which is not covered by (4.15])—
(4.16); we did not exhibit this because the result is somewhat cumbersome to write

formally.

Proof of Theorem 4.1. Since the metric is C?, existence follows from the arguments above,
and we only need to justify the regularity properties. The result is established through
a simplified version of the arguments from Section [3] Special care has to be taken in the
proof to make sure that there are no unwanted contributions to the energy from some
boundaries.

Let us start with the initial data for the function u. On Nt the inverse metric takes
the form, for any function Yy,

9V, Vi)l =77 (0:X)° + 29" 05X Oyx + 29" 0:X 04X + 704X 04X (4.17)

(see e.g. |7, Appendix A]). Since neither g*¥ nor 0,4 has zeros, it follows from (4.17) that
the equation
9(Vu, Vu)|y+ =0
allows us to calculate
due () C(0.a0;H 1Y)
0<j<e—1
on N'T in terms of § and the tangential derivatives of w, leading to
Pl = @uu)lws € (] CU((0,a0; HI7H(Y)).
0<j<e-1

Next, we will need to control Vu on N ~. This proceeds as follows: On N~ we have,
for any function ,

9(Vu, Vu) = g (0,1)* + 29°Y 0,1 Opu + 2G920,1 041 + G*P 0 41 DT (4.18)
Since u = 0 in our case, the equation g(Vu, Vu) = 0 holds identically. We further have
Vulp- = g*¥0,udy, (4.19)
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and we need an equation for 0,u|,—¢. For this we can use the u-equivalent of ,

9" 0,u 0,0, u = —%(%(g’“’)@uu oyu, (4.20)
which on N~ becomes

97 0,u 8y (0pu) = —50:9"" |\ (Oou)? (4.21)
(note that g** vanishes on N, but there is a priori no reason why 9,9*%|x— should
vanish as well). From this it is straightforward to obtain

Oouly-€ [ CU[0,bo]; HI71(Y)). (4.22)
0<j<t—1

Summarising:

Ul = @uu)lwr € () CU([0,a0 HITH(Y),

0<j<e-1
v () CU0.bo] HTTHY)).
0<j<e-1

We continue with the energy inequality. Let h = hogdz®dz” be any smooth Riemannian
metric on Q4 p, X Y. The L%-energy-density vector associated with (4.11)) can be defined
as

EF = h(yp, AMp) = —ph(2h,Y)) = —h*POqudguVtu. (4.23)

Similarly to Section [2 the energy inequality with & = 0 is obtained by integrating the

divergence of e * E* over a suitable set, say Qg b0, with 0 < a < ag, 0 < b < by, where

Qoo ={0<y<b,0<z<a-oy}, (4.24)

with Z to be defined shortly, and where 0 < o < ag/2bg is a small constant which will
also be determined shortly.

Indeed, for further purposes we will need to have good control of the causal character

of the level sets of z. This is achieved by modifying x so that, after suitable redefinitions,
09" | ;- = 0. For this, let us pass to a new coordinate system

T = X(%ZU@A)QT, y=1, :EA = xA = a:r = 8x(xX)85:7

with a function x which is determined as follows: We have

9" =g" (xax + (%x) ( Ox , Oz X)
ox¥

ozt ~ OxH xax”

Ix Ox ox
— 2 pv 2 gt zx . 2
v 8x”8x”+ 9 BxNX+g x5

leading to
TT 1 TT T TT
9zg |:c:0 - X =9 |:c:0 = 2¢7 |a-c:()ayX + iy |a::OX'
This will vanish if we set
1 [Y0,¢%% ou
(0,4, 2%) = exp<—2/0 gfy (s,xA)dx) x 3—5(0,079514)

e () €U0 bo); HI7HY)). (4.25)
0<5<e—-1

=0
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We let x(z,y,x4) be any extension of x(0,y, ) which is smooth in all its arguments
for x > 0; the existence of such extensions is standard. We pass to the new coordinate
system, and change the notation (Z,y,z") back to (z,y,x?) for the new coordinates.
The factor %(0, 0,z4) in () has been chosen to obtain

dpu(z =0,y = 0,2) = 1. (4.26)
In the new coordinates, from (4.21) we find
dpu(z = 0,y, ) = 1. (4.27)

Now, 025, takes the form
8Qa,b,a =N~ UN+ U ({y € [Oab]ax = a_Uy} X Y)

=:11,
U({y=0b,0<z<a—o0b}xY) (4.28)

=1,

(see Figure [4.2)). Before analyzing the boundary terms arising, recall that we wish to

X

Fig. 4.2. The set Qq,b9,0

obtain estimates on various norms of the field. This will be achieved by repeating the
inductive scheme of Section [3] but now using Sobolev spaces associated with the level
sets of y instead of H¥(Y"). For this we let %; be a sequence of smooth functions on N+
converging to %, with u; = 0 on N/, each u; solving a linear equation as done in Section
with coefficients determined by u;_1. Let ¢; and C be any positive constants such that

supsup (|0u;| + [0,0u;] + [070u;]) < Cy,  infinf dpu; > ¢ > 0. (4.29)
ieEN N ieN N

Note that a pair of such constants can be determined purely in terms of the initial data
for u on V.

To the definition of the sequence 0 < a;, given just before , we add the require-
ment that a; < 1, and that

i > 1 .
quj&f’ai dzu; > 5c1, (4.30)
sup (|8uz| + |0, 0u;| + |8§8uz\) <Ci+1. (4.31)

aj,bg,o;
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Consider the L*-energy identity on Qq, 4,0, associated with the equation satisfied
by u;,

/ e B!, = / V. (e7ME"), (4.32)
00, by,

Qai,bo,o‘

with E* given by

B* = h(y, AM (i) = =1 h(is i) = —hP0au; gui Vs (4.33)
On N~ = {z = 0} the conormal n,dz" satisfies n, =mns = 0, so by (4.19) the boundary
integrand vanishes:

h(iﬁl, wi)nﬂvl‘ui_l = h(?/}“ wl)nf Vmui_l =0 on Ni.
——
=0
On Nt the conormal n,dz" satisfies n, = ng = 0, so by (4.19) the boundary inte-

grand satisfies

h(i, i) VUil are = h(i, i) VY1 | are = B(i, i) g™ Oxti—1 my | ar+

~ h(’(/}'m wi)a

where “f ~ ¢” means that the functions f and g are bounded by positive constant
multiples of each other.

On II, the conormal n = n,dz* is proportional to dx 4 ody. Differentiability of the
metric implies that there exists a constant Cy such that, for z > 0,

‘g,uu(xa ) - g,LLl/(O’ )| < Chz.
By definition of a;, on g, p,,0 we have
|020u;| < 1+ Cy. (4.34)

Since wu; vanishes on N7, so do dyu; and dau,;. Further, from (4.27), 9,0,u; and 9,04,
vanish on N/~ as well and we obtain

|0aw;| + 0yui| < (14 Cy)a. (4.35)

If we write the conormal n,, to the level sets of II,, as n,da* = ng(dz + o;dy), the above
gives, with n, > > 0 and 0 < ¢; < 1, for any 1,

g"'ny, 0pu; = na (g"° + 0:9") 0,4

~— ~ ~— ~—
>6 O(22)>—CC3x2 >c¢  140(z)>1—(14+C1)z>1/2

+ (gyz + aigyy)(?yui + (gAx + oigAy)aAui )

>—C(14+C1)a?

)
2 §(CO'Z' — 0031'2 - 20(1 + Cl)$2) 2 0 (436)
<CCza;z §20(1+C1)wal
~—_————
>coi/2

for

< min ! € x 7 < w2 (4.37)
x = =X = .
- 2(1+Cl)7 2CC, CLi7 40(14’01) a; ’
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where C1 is as in (4.34]) and

Cs = sup |02g"|. (4.38)
Choosing
a;
P = 4'
o o (4.39)

leads to an ¢-independent bound in .

The II,, boundary integral now gives a contribution to the energy identity which we
simply discard, replacing equality by an inequality.

Note that with this choice we have

[0, 3a;] x [0,bg] X Y C Qq; 09,0, C [0,a5] x [0,b0] x Y. (4.40)

On I,, the conormal n,dx* takes the form n,dy, and from (4.18) the boundary
integrand takes the form

e MOy, ;) VHui_ nul,, = G_Aboh(?/)i,%)(gzyamuiq ny + O(2))y=b, ~ h(s, V).

As a result we obtain
VO<b<by &Epalthi,b] < C& A[Wi,0] +/ Vu(e—/\yEH)’ (4.41)
Qa; b0,

and similarly for higher-order energy inequalities, with

Ex i, b] = e Z / v Vg - %qrj OLay|? da dpiy
0

0<j+<k al*‘flb]xy

a;—oib

S [ 1@ D iy e (1.42)

0</<Ek

A simpler version of the arguments of Section [3| gives the result.

The estimates for v are essentially standard, as we only need to solve for a short-time
in the evolving direction. Should one want to use an iterative argument as in Section [3] we
note that given p, > 0 as in the statement of the theorem we can impose an i-independent
upper bound on the a;’s so that the boundary

{r €0,a.],0<y <by— ez} XY

gives a nonnegative contribution to the energy identity, and hence is harmless when
considering energy estimates. m

4.2. The wave equation in doubly-null coordinates. We are now ready to pass to

the PDE problem. Let W be a vector bundle over M. We will be seeking a section h

of W, defined on a neighborhood of A/~ and of differentiability class at least C? there,
such that the following hold:

Oyh = H(h,Vh,-) onIT(NTUNT), (4.43a)

h=nht on N'F, (4.43Db)

h=h" on N7, (4.43c)
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with the prescribed fields k™, for some map H, allowed to depend upon the coordinates.
For simplicity we assume H to be smooth in all its arguments, though the results here
apply to maps of finite, sufficiently large, order of differentiability in h and Vh, and of
Sobolev differentiability in the coordinates: the resulting thresholds can easily be read off
from the conditions set forth in Section 2l

Let (u,v,2) be a coordinate system as in Section and let w and ¢ be the vector
fields defined there, with

glw,w) =g, ) =0, gw,l)=-2. (4.44)
As already pointed out, ¢ and w are determined up to one multiplicative strictly positive

factor,

(=al, wealu, a=alu,v,z?)>0. (4.45)

Now, every vector orthogonal to ¢ is tangent to the level sets of v. Similarly, a vector
orthogonal to w is tangent to the level sets of u. Hence vectors orthogonal to both have no
u- and v-components in the coordinate system above. We can thus write (Vect{w, ¢})* =
Vect{ep : B=1,...,n — 1}, where the ep’s form an ON-basis of TY. Thus

g(eA,eB):(Sg, and es =esP05 & e " =0=-¢c4".

For further purposes, we note that the e4’s are determined up to an O(n—1) rotation:
ea—walep,  wa® :wAB(u,U,xC) €O0(n—1); (4.46)

this freedom can be used to impose constraints on the projection on Vect{ep : B =
1,...,n—1} of Vyeq or Vyeq.

The inverse metric in terms of this frame reads

gt = —%(€®w+w®€)+ZeB ® ep,
B
so that the wave operator takes the form
—3VuVe = 3VeVu+ Y Ve Voo 40,

c

“

where “---” denotes first- and zero-derivative terms arising from the precise nature of
the field h. This can be rewritten as

VoVt Y VeeVee = 3[Ve, Vol + -+,
C

or

ViV + Y VeeVee = 3[Vi, Vil + -+
C

“ »

(where the commutator terms can be absorbed in

wo=1o="h, pa=va=ca(h), oy =wh), Y_=Ih) (4.47)

in any case). Setting
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leads to the following set of equations:

Ly ) = o,
Zec H,,, (4.48)
5(@0) —ec(-) = Hye,
— Y eclpc) = Hy_, (4.49)
C
w(e) —ecl(pt) = Hye,
w(to) = o, (4.50)

where H,, etc. contain H and all remaining terms that do not involve second derivatives
of h.
This is a first-order system of PDEs in the unknown

©0 Yo
f:(i) with o= [, | and = [v_
YA YA

Let us check that it is symmetric hyperbolic, of the form considered in Section [2| We
have

ARV L f = G(f),
or equivalently
i 4w (0)- (@)
A A A/ =¥ (4.51)
" 9
<AZ<P A:wa ¥ Gy
with
Ag, =10"-1d,  Ag, = Ay, = Aj, =0, (4.52)
pp = w’ - 1d, o = Ayp = Agp =0, (4.53)
0 0 0o ... 0
0 0o & ... 65,
B
Asow — Agw —_10 & 0 ... 0], (4.54)
0 d2, 0o ... 0
AZ, =0, AW =w”1d, (4.55)
Hy_
o Gyle ) = | Hye | - (4.56)
¥o

4.3. The existence theorem. We denote by ¢ the restriction of a map ¢ to N~ and
by ¢ to NT.

In order to apply the results of the previous sections to the Cauchy problem (4.43])
we need to show, given smooth data h™ on N+ and h~ on N ~, how to determine the
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initial data for f on a suitable subset of AT NN ™, and that these fields are in the right
spaces. We recall that

TNt =Vect{l,e1,...,en_1} and TN~ = Vect{w,ei,...,en 1},
which implies

o) =wh™), W) =), eph) = ep(h®).

The remaining restrictions ¢(h) and w(h) " will be determined using the wave equation:
Indeed, considering the restriction of (4.48) to N* and the restriction of (4.49) to N~

leads to the following, in general nonlinear, transport equations for £(h) and w(h)+:

*w(f( ) )Jrg'ﬁc_verechi :Hw*(hi’ahiaé( ) a')a

B (4.57)
Uh) a+en— = L) o
and
(@) ) + gBC Ve, Vet = Ho (W, 00T, w(B) ), w5
W(B) nrow = w7
These are ODEs along the integral curves of the vector fields w and ¢.
For every generator, say I', of N~ let 'y be the maximal interval of existence of the

solution of the transport equation (4.58)). Thus the set
N07 = U FU C N_
r

is the largest subset of N~ on which the solution of the transport equation, with the
required data on N~ N N7, exists. By lower semicontinuity of the existence time of
solutions of ODEs the set A is an open subset of N ™.

The set N is defined analogously.

Applying the construction of Section to Ny UN, instead of N~ UNT, we
obtain a double-null coordinate system (u, v, z*) near Nj” UN; in which the function v
runs from 0 to oo along all generators of NV, , and the function u runs from 0 to co along
all generators of ./\/OJr . Theorem and Remark apply, leading to:

THEOREM 4.3. Let £ > (n+ 11)/2. Consider the Cauchy problem for a semilinear
system of wave equations, with H = H(h,Vh,-) of C* differentiability class in all argu-
ments. Without loss of generality we can parameterize N+ by [0,00) x Y, with the level
sets of the first coordinate transverse to the generators of N*. Given the initial data

4
ht e () C7([0,00); HI(Y)) (4.59)
j=0
denote by
No=NJUN; CNTUNT

the mazimal domain of existence on N~ UNT of the transport equations (4.57)—(4.58)).
There exists a neighborhood V of Ny and a unique solution h defined there with the
following properties: Reparameterizing the generators of ./\/Oi if necessary, we can obtain
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./\f()j[ ~ [0,00) X Y. Then for every i € N there exist a;,b; > 0 such that the set (see
Figure 4.3)
Vi i= (([0,a5] x [0,4]) U ([0,4] x [0,b;]) ) x V"

=:U;

is included in YV, and we have
he L (U H 2 (Y)) N W (U H 3 (Y))
N N WAoo ((y H2730(Y)) c ¢ Uy x YY), (4.60)
0<3j<b—(n+11)/2
with the last inclusion holding provided that £ > (n + 17)/2, with £; > 1 being the largest

integer such that £ — 3¢1 > (n+11)/2. The solution depends continuously on the initial
data, and is smooth if the initial data are.

Fig. 4.3. The neighborhood V of N/

REMARK 4.4. Condition (4.59) will hold for h* € C*([0,00) x Y).

REMARK 4.5. An obvious analogue of Remark [3.8] concerning further regularity of h
applies.
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In this section we will show that our existence theorems above can be used (in a somewhat
indirect manner) to establish neighborhood theorems for both the Einstein equations with
suitable sources and the Friedrich conformal vacuum Einstein equations.

One could try to analyse whether the harmonic coordinate reduction of Einstein
equations leads to equations with a nonlinearity structure to which Theorem applies.
Here a problem arises, because our iteration scheme requires a doubly-null decomposition
of the principal symbol of the wave equation, which is the wave operator. This in turn
requires going to harmonic coordinates, but those lead to a loss of derivative of the
coeflicients. It is conceivable that this can be overcome, but it appears simpler to work
directly in a formalism where the doubly-null decomposition of the equation is built-
in from the outset, namely the Newman—Penrose—Friedrich—Christodoulou—Klainerman—
Nicolo equations. We will show that this decomposition fits indeed in our set-up.

We use the conventions and notation of [11]. For the convenience of the reader we
include in Appendix A.1 a shortened version of a section in [11] which introduces the
relevant formalism.

5.1. The Einstein vacuum equations. We start with the vacuum Einstein equations,
which we write as a set of equations for a tetrad e, = e4"0,,, for the related connection
coefficients defined as
Viej = Fikjek, (51)
and for the tetrad components dijkg of the Weyl tensor. We assume that the scalar
products g;; := g(e;, e;) are point-independent, with the matrix g;; having Lorentzian
signature. We require that V is g-compatible, which is equivalent to
Lijk = —Tirj, where Tyjp i= gl (5.2)
Consider the set of equations due to Friedrich (see [26] and references therein)
1 1
[ep,eq) = Tp g =T p) e, (5.3a)
' ' ' 2 ‘ E
ep(Tg" ) —eq(Tp’5) =200 " ;T " g + 20 " 1ol ™ 5

= d' jpg + 0, Re)j — gjp Ry + ggj[péq]a (5.3b)
Did’ i1 = Jjk- (5.3¢)

Equation ([b.3a]) says that I' has no torsion. Recall that we have assumed that the T';;;’s
are anti-symmetric in the last two indices; together with (5.3a)) this implies that T is the
Levi-Civita connection of g. We will assume that d;;i; has the symmetries of the Weyl

(51]
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tensor; then the left-hand side of is simply the definition of the curvature tensor
of the connection I', with d;;; being the Weyl tensor, R;; being the Ricci tensor and R
the Ricci scalar.

In vacuum (R;; = Ag;; for some constant ), with Jjz; = 0 follows from the
Bianchi identities for the curvature tensor.

As shown by Friedrich |21, Theorem 1] (compare [35]), every solution of with
Jjri = 0 satisfying suitable constraint equations on the initial data surface is a solution
of the vacuum Einstein equations.

In Section [5.2] below we will consider a class of nonvacuum Einstein equations, in
which case we will complement the above with equations for further fields satisfying
wave equations, and then R;; and Jjz; in will be viewed as prescribed functions of
the remaining fields, their first derivatives, the tetrad, the Christoffel coefficients, and the
dijii’s, as determined from the energy-momentum tensor of the matter fields.

We would like to apply Theorem [3.9]to the problem at hand. The first step is to show
that we can bring a subset of to the form needed there. This will be done using the
frame formalism of Christodoulou and Klainerman, as described in Appendix A.1.

Before pursuing, we will need to reduce the gauge freedom available. For this we need
to understand what conditions can be imposed on coordinates and frames without losing
generality.

Given a metric g, we have seen in Section [4] how to construct a coordinate system
(u,v,x4) and vector fields e;, i = 1,...,4, with e3 proportional to the vector field £
constructed there, and e4 proportional to w there, so that the metric takes the form
below, with

e3 = Oy, es = e4°0, + €4A(9A. (54)

With this choice of tetrads e; = e;#0,, (5.3a) becomes an evolution equation for the
tetrad coefficients e;*:

[eg,ei] = 8u6iua# = (Fgli *Filg) €r. (55)
By construction, the d,e,’s have no u and v components, which gives the identities
0=T3%,-T%3=T3"—T."s. (5.6)
——
=0
Equivalently, in the notation of Appendix A.1,
Na = Ca) éa =0. (57)
Similarly, 0,e4 has no v component, which implies
O:F3347F433 < v=0. (58)
——
=0

Next, the vector fields e,, a = 1,2, are determined up to rotations in the planes
Vect{er, ea}, and we can get rid of this freedom by imposing

I's*, =0. (5.9)

By construction, the integral curves of the vector fields e and e4 are null geodesics,
though not necessarily affinely parameterized:

v€3€3 ~ €3, ve4€4 ~ €4. (510)
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In this gauge, using the notation of Appendix A.1 (see (A.8f])), we have
F3a3 =0=I4% & §a :Ozga. (511)

The vanishing of the rotation coefficients just listed allows us to get rid of the second
term in some of the combinations

e3(Tg" ) —eq(Ts" )
appearing in ([5.3b]). In this way, we can algebraically determine
0ul'q%s and 0,I;%s
in terms of the remaining fields appearing in (5.3b)). Similarly,
ea(Tg %) —eqTaa) = ea(Tg®a),  ea(Ty®3) —eq(Ta’3) = ea(Ty* ),
which gives equations for e4(I'y @ 4) and e4q(T'; 3 3).
In view of (5.7) and the symmetries of the I';7;’s, all the nonvanishing connection
coefficients satisfy ODEs along the integral curves of e3 = 0,, or of ey.

The analysis of the divergence equation (5.3c|) in Appendix A.1 leads in vacuum to
the following two collections of fields:

¢ = (e;, 1%, 1%, a, B, p, 0, ), (5.12)
¢ = ("4, 1%, 8,6,5,8,a), (5.13)
with the gauge conditions just given,
est =1, O=e3" =e3? =es" =e," = e,
33, =T%3, 0=T3% =14 =T3%, (5.14)

to which Theorem [3.9] and Remark apply. This will be used to establish our main re-
sult for the vacuum Einstein equations. However, before stating the theorem, an overview
of some initial value problems for the vacuum Einstein equations is in order.

As discussed in detail in |12], the characteristic initial data for the vacuum Einstein
equations on each of the hypersurfaces N'* consist of a symmetric tensor field § with sig-
nature (0,+,...,+), so that the integral curves of the kernel of § describe the generators
of N*. To the tensor field § one needs to add a connection x on the bundle of tangents
to the generators. In a coordinate system (r,24) on A such that 9, is tangent to the
generators we have Vg 0, = k0,. The fields § and « are not arbitrary, but are subject to
a constraint, the Raychaudhuri equation. If we write

G =gap(r,z®)de?da® (5.15)
and, in dimension n + 1, we set
T=39""0.9a5, 0aB=30:0ap— 570an> (5.16)

then, in vacuum, the Raychaudhuri constraint equation reads
2

6m’—m‘—|—|a|2+ T
n—1

Here it is appropriate to mention the alternative approach of Rendall [38], where one
prescribes the conformal class of § and one solves (5.17)) for the conformal factor, after
adding the requirement that s vanishes identically. Thus, in Rendall’s scheme the starting

= 0. (5.17)
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dx?dzB which is assumed
)

point is an initial data symmetric tensor field v = yap(r, )
to form a one-parameter family of Riemannian metrics r — ~v(r,z**) on the level sets
of r, all assumed to be diffeomorphic to a fixed (n — 1)-dimensional manifold Y. The

conformal factor §2 relating § and the initial data v, G.p = Q?yap can be written as

det s 1/(2n—2)
0= 5.18
w(dﬁ7> 7 (5.18)

where s = sap(2%)dzAdr? is any r-independent convenient auxiliary metric on the
surfaces r = const. Note that the field o4p defined in ([5.16]) is independent of ¢, thus is
defined uniquely by the representative v of the conformal class of g. One has

7= (n—1)0,log, (5.19)

which allows one to rewrite (5.17)) as a second-order linear ODE:
jo?

D2p — KOpp + ¢ =0. (5.20)

n—1
In this case, after solving , one has to replace the initial hypersurface by its subset
on which ¢ > 0.

Recall next that, again in the approach of Rendall (compare [7]), the remaining metric
functions on A are obtained by solving linear ODEs along the generators of A/. One
could then worry that the requirement that the resulting tensor has Lorentzian signature
might lead to the need of passing to a further subset of A/. This is indeed the case in
the original formulation of [38], but the problem disappears when handled appropriately,
as it can be reformulated in such a way that the remaining metric functions are freely
prescribable |12].

We finally note that the characteristic data on each of N'* have to be complemented
by certain data on Nt NN ~, the precise description of which is irrelevant here; the reader
is referred to [7,/12,38] for details.

To continue, it is useful to summarize some known results about Cauchy problems for
the Einstein equations:

THEOREM 5.1 (Rendall). Given smooth characteristic vacuum initial data on N =
NT UNT, complemented by suitable data on' Y = NT NN, there exists a unique,
up to isometry, vacuum metric defined in a future neighborhood of NT NN, as shown

in Figure[5.1]

Fig. 5.1. The guaranteed domain of existence of the solution in Rendall’s theorem
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The following result is standard:

THEOREM 5.2. Given smooth vacuum initial data on a spacelike hypersurface ¥ with
nonempty boundary 0% there exists a unique, up to isometry, vacuum metric defined in
a future neighborhood of 3, bounded near 9% by smooth null “ingoing” hypersurfaces
orthogonal to 0%, as shown in Figure[5.2]

Fig. 5.2. The guaranteed future domain of existence of the solution with initial data on a hy-
persurface with boundary

One has of course a similar domain of existence to the past of 3, but this is irrelevant
for our purposes.

From Theorems [5.1] and [5.2] one easily obtains existence of solutions of the mixed
Cauchy problems illustrated in Figures[5.3] and [5.4]

Vo

by

Fig. 5.3. The guaranteed domain of existence of solutions of a mixed Cauchy problem with
a “left” boundary and a characteristic initial data hypersurface emanating normally from the
“right” boundary

-
24

Fig. 5.4. The guaranteed domain of existence of solutions of a mixed Cauchy problem with
characteristic initial data hypersurfaces emanating normally from the boundaries of a spacelike
hypersurface

We are now ready to turn to our main result, which for simplicity we state for smooth
metrics. The interested reader can chase the losses of differentiability which arise at
various steps of the proof to obtain the corresponding theorem with initial data of finite
Sobolev differentiability (cf. [33]):

THEOREM 5.3. For any set of smooth characteristic initial data for the vacuum FEinstein
equations on two transversely intersecting null hypersurfaces N := N TUN T~ there exists
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a smooth vacuum metric defined in a future neighborhood U of N'. The solution is unique
up to diffeomorphism when U is appropriately chosen and when appropriate initial data
on NT NN~ are given.

Proof. As shown in Section without loss of generality we can parameterize each of
N7+ as [0,00) x Y. Symmetry under interchange of u and v, together with the argument
presented in Remark shows that it suffices to establish that given by > 0 there
exists a, > 0 and a solution of the vacuum Einstein equations defined in a doubly-null
coordinate system covering the set [0, a.] x [0,bg] X Y.

Theorem shows indeed that there exists such a constant a, and a set of fields
7 solving the equations described above with the initial data determined
from the general relativistic initial data by a standard procedure. The theorem would
immediately follow if one knew that every resulting set of fields f provides a
solution of the Einstein equations. While we believe that this is the case, such a direct
proof would require a considerable amount of work. Fortunately one can proceed in a less
work-intensive manner, adapting the idea of Luk [33] to use the function u + v as a tool
to “build up” the solution:

Let & be any maximal domain of existence of a solution of the vacuum Einstein
equations assuming the given initial data. (Note that the question whether a unigue such
maximal domain exists is irrelevant for our purposes.) As explained in Section there
exists a neighborhood Vy of N in U on which we can introduce a coordinate system
(u,v,x4) comprising a pair of null coordinates v and v. On Vy define

t:=u+wv; (5.21)

then Vt is timelike, and hence the level sets of ¢ are spacelike.
Define

t. := sup {t : the coordinates v and v cover the set
(10,a.] x [0,bo]) N{u+v < t}}. (5.22)

It follows from Theorem that ¢, > 0.
On the set

(([O, a.] x [0,b0]) N{u+v < t*}) XY (5.23)
we have a solution of the vacuum Einstein equations, and therefore corresponding fields
(p,1) as in — calculated from the vacuum metric, with B =8, é =p,0=o,
and p = p. Let us denote those fields by (¢g, ¥ ). But on this set we also have a smooth
solution (p,%) of the equations described in Appendix A.1, with initial data calculated
from the solution of the Einstein equation. Since both fields satisfy the same system of
equations and have identical initial data, uniqueness gives

(%) = (¢, ¥E).

Suppose that t, < a., as shown in Figure Since (p,%) extend smoothly to the
boundary ¢ = t., so do (¢g,¥g). The pair (¢g, ) at t = t, can be used to determine
smooth Cauchy data for the vacuum Einstein equations for a Cauchy problem as shown in
Figure [5.:4] The solution of this Cauchy problem allows us to extend the solution beyond
t = t,, contradicting the fact that ¢, was maximal.
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Fig. 5.5. The case a. > t.

The hypothesis that a, <, < by leads to a contradiction by an identical argument,
using instead the Cauchy problem illustrated in Figure see Figures and

S

JV+

Fig. 5.6. The case a. = t.

Fig. 5.7. The case a. < t« < bo

The hypothesis that by < . < as + by (see Figure [5.8) leads to a contradiction by an
identical argument, using Theorem [5.2; compare Figure [5.2
Hence t, = a4 + bg, and the result is established. m
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Fig. 5.8. The case a. < t. = bo

5.2. Einstein equations with sources satisfying wave equations. The analysis
of the previous section generalizes immediately to Einstein equations with matter fields
satisfying wave equations, such as the Einstein-scalar field system or the Einstein—Yang—
Mills-Higgs equations. More generally, consider a system of equations of the form

R
“9ur = TMV7 T,u,V = Tul/(q)u 8¢a 9, ag)a (524)

R, — >

with V, 7%, = 0 whenever the matter fields ® satisfy a set of wave equations of the form
0,% = F(®,09,g,09). (5.25)

As explained in Section one can obtain a doubly-null system of equations from .
The Einstein equations are treated as in the vacuum case, with nonzero source
terms Jj;r in the Bianchi equations determined by the matter fields. This leads to an
obvious equivalent of Theorem the reader should have no difficulties formulating a
precise statement.

5.3. Friedrich’s conformal equations. Let § be the physical space-time metric (not
to be confused with the initial data tensor field of ), let Q2 be a function and let g =
02§ be the unphysical conformally rescaled counterpart of §. (To make easier reference
to [211122,[24,125], throughout this section the symbol g denotes the unphysical metric.)
Consider any frame field ey, = e* |, 9, such that the g(e;, ex) = gir’s are constants, with
i, k, etc. running from 0 to 3. Using the Einstein vacuum field equations, Friedrich [21}22]
has derived a set of equations for the fields

ey, T, dju=9"C"ju, Lij=31iRy;— %Ry,
Q, s=1V;V'Q+ 4 RQ,

where T';7 ), denotes the Levi-Civita connection coefficients in the frame ey, Viep =
I';7 pej, while C* ji, R;;, and R stand respectively for the Weyl tensor, the Ricci tensor,
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and the Ricci scalar of g. Friedrich’s “conformal field equations” read

lep.eq) = (Tp' g —Tq'p) e, (5.26a)
ep(Tg’j) —eq(Tp'j) = 2Tk 5 T, kq] +2T " 5Ty "

=29"1p Ly — 29" gjip Lk + Q' jg, (5.26b)
Vid' jr =0, (5.26¢)
ViLji —V;Liy, = ViQd 1, (5.264)
ViV;Q=—-QLj; + 595, (5.26¢)
Vis = —Li;V'Q, (5.26f)
6Qs — 3V,;QV/Q = 0. (5.26g)

The first equation expresses the fact that the Levi-Civita connection is torsion-free; the
second is the definition of the Riemann tensor; the third is the Bianchi identity assuming
that g is Ricci flat. The remaining equations are obtained by algebraic manipulations
from the vacuum Einstein equations, using the conformal transformation laws for the
various objects at hand. In regions where 2 > 0 the system is equivalent to the vacuum
Einstein equations [21}[22].

We have seen in Section how to bring f to a form to which Theo-
rem applies. It remains to provide equations for the fields L;;, s and Q. For this we
can use a subset of the wave equations derived in [35]:

OyLij = 4L Li* — 95| L* — 2Qdim; L™ + 1V, VR, (5.27)
Ogs = QL|* — $VLRV*Q — 1sR, (5.28)
0,0 = 4s — LOR, (5.29)

with the conformal gauge R = 0. In order to control the first derivatives of the Christoffel
symbols that appear in O, L;; we add to the above set of equations the set of equations
obtained by differentiating 7 with respect to all coordinates. This collection
of fields will be referred to as Friedrich’s fields.

The wave equations f are rewritten as a doubly-null system as in Section
upon noting that the inverse metric g"¥ = g"e*;e”; is directly in a doubly-null form by
construction. This leads to a system of equations to which Theorem applies provided
that the initial data have the properties required there.

For this, we will assume that the characteristic initial data on two transversely inter-
secting null hypersurfaces N := N UN ™ are smoothly conformally extendable across
a boundary at infinity. The reader is referred to |14,[36] for a detailed description of this
class of initial data.

Given such initial data, we can use Theorem to solve the Einstein equations to
the future of A. The solution can be used to provide the initial data for Friedrich’s
collection of fields just described on A. We can then extend the resulting initial data to
a hypersurface which extends beyond the conformal boundary at infinity. Theorem [3.9]
guarantees the existence of a uniform neighborhood of the extended hypersurface and
a smooth solution of the Friedrich fields there. An argument identical to the one in the
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proof of Theorem [5.1| shows that the solution of the Einstein equations exists on a uniform
neighborhood of A in the region where € > 0. This leads to:

THEOREM 5.4. For any set of characteristic initial data for the vacuum FEinstein equa-
tions on two transversely intersecting null hypersurfaces N' := NT U N~ which are
smoothly conformally extendable across a boundary at infinity, there exists a smooth vac-
wum metric defined in a future neighborhood U of N such that the resulting space-time
has a smooth nonempty conformal boundary at null infinity. The solution is unique up

to diffeomorphism when U is appropriately chosen and when appropriate initial data on
NTNN™ are given.

An identical theorem applies to initial data given on a null cone. When the initial
data are sufficiently near to the Minkowskian ones, all causal geodesics will be future
complete in the resulting vacuum space-time, with the null geodesics acquiring an end
point on a conformal boundary at null infinity.



Appendix
Doubly-null decompositions of the vacuum Einstein equations

The material in this appendix follows closely the presentation in [11].

A.1. Connection coefficients in a doubly-null frame. Consider any field of vec-
tors e;, i = 1,...,4, such that

0 0 0
(9i5) == (g(eie5)) =0 0 =2, (A1)
0 -2 0
where indices i, j etc. run from 1 to 4, while indices a, b etc. run from 1 to 2. One therefore
has
o 0 0
(97):=g6"¢))=0 0 —1/2],
0 -1/2 0
where 6" is a basis of T* M dual to e;. If o;, i = 1,..., 4, is a usual Lorentzian orthonormal
basis of T'M,

g(a;, o) = n;; = diag(+1,+1,+1, -1),
then a basis e; as above can be constructed by setting
€q = Qq, €3=03+ 04, €4=04— Q3.

Let Vol, be the Lorentzian volume element of g, with the associated completely anti-
symmetric tensor €;;x;:

. 1 . .
Volg = 81 A B NBP A BY = Jreiia BN BT AN N B
where 3% is a dual basis to a;;. We have 6% = (82 + %) /2, 6* = (8*— %) /2, 8% = 03 — 0,
B% =63 + 6%, hence
1 . .
Vol, = 20" A 92 A 03 N 0* = icism 00 AT A AN
It follows that in the basis e; the entries of the € tensor are zeros, twos, and their negatives:
€1234 = 2. (A?)

We let
S = Vect({e1, e2}),

where Vect(X) denotes the vector space spanned by the elements of the set X.

(61]
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For any connection D we define the connection coefficients I';7j, by

T := 09 (De,ep),

so that
D..e;, = Fijkej.
The connection D has no torsion if and only if
D.,ex, — D, e; = [e;, ex],
and it is metric compatible if and only if
Digji = (De;g)(ej,ex) = —Lijp — Tigy = 0. (A.3)

Here and elsewhere,

Cijk = gjmDi "k

The null second fundamental forms of a codimension two submanifold S are the two
symmetric tensors on S defined as @

X(X,Y) =g(Dxes,Y), x(X,Y)=g(DxesY), (A.4)

where D is the Levi-Civita connection of (M, g), while X, Y are tangent to S. The torsion
of S is a 1-form on S, defined for vector fields X tangent to S by

((X) = —%Q(DX€3764) = %g(DXe47e3). (A.5)

In the definitions above it is also assumed that e3 and e4 are normal to S, so that S
coincides, over S, with the distribution 7'S of the planes tangent to S. (Throughout, the
indices are raised and lowered with the metric g.)

Following @ Klainerman and Nicolo, we use the following labeling of the remaining
Newman—Penrose coefficients associated with the frame fields e;:

€a = 29(Deyea, €a), (A.6a)
€, = 19(Deyes, ), (A.6b)
Mo = —39(Deyeares) = 2g(Deyea, eq), (A.6¢)
n, = _%g(ﬁmeaaeiﬁ) = %g(f)euﬂs,@a)’ (A.6d)
2w = —%g(ﬁe463,64)7 (A.6e)
2w = —3g(De,es, e3), (A.6f)
20 = —1g(De,e3, e1), (A.6g)
2v = —1g(D.,e1,e3). (A.6h)

(*) Those objects are only defined up to an overall multiplicative function, related to the
possibility of rescaling the null vector fields e3 and e4; some definite choices of this scale will be
made later.

(?) We are grateful to S. Klainerman and F. Nicold for making their TEX files available to us.
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(The principle that determines which symbols are underlined, and which are not, should
be clear from equations below: all the terms on the right-hand sides of those equa-
tions have a coefficient of e, which is underlined.) The above definitions, together with
the properties of the connection coefficients I';;, imply the following:

Xab = Taps = —Taap = 20%, = =200, (A.7a)
X,, = Labs = —Tazp = 200"y = —2Tp", (A.7b)
(=T = *%Fazlg =Tat, (A.7c)
¢, =Ta's=—4Tusa = —Tas®, (A.7d)
b =T4%0 = —T4® = ITsas = —3T s, (A.Te)
§, = I3ty = —T3.* = 2T303 = — 3334, (A.7f)
Na =3% = —1Ds40 = 30300 = —T3,°, (A.7g)
n, = Iy = —2iTu30 = 2Tu03 = —Tu”, (A.7h)
2w =4 = —1T43 = Tus?, (A7)
2w =T3%y = — T334 = T'33°, (A.7))
20 = I'3%; = —3T'343 = [as?, (A.7k)
20 =Tyt = —3Tu30 = Tu3®. (A7)
This leads to

Daey, = Yaey + 3Xab€3 + 3 Xabld, (A.8a)
Dseq = Vaea + nae3 + & €4, (A.8b)
Dyeq = Yaea + 1 €4 + Eae3, (A.8c)
Dges = xa"ep + (aes, (A.8d)
Daes = Xa"en + € €a, (A.8e)
Dses = 2%, + 2ves, (A.8f)
Dyey = 28%, + 2ve, (A.8g)
Dyes = 2ne;, + 2wes, (A.8h)
Dsey = 2n ey + 2wey. (A.8i)

Here and elsewhere, Y, e, Yae, and Ve, are defined as the orthogonal projection of
the left-hand side of the corresponding equation to S. We stress that no simplifying
assumptions have been made concerning the nature of the vector fields e,, except for the
orthonormality relations .

A.2. The double-null decomposition of Weyl-type tensors. Let d',j; be any tensor
field with the symmetries of the Weyl tensor,

dijii = ditigy  digle = —djirt, 97 dig =0, dijjr = 0. (A.9)
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We decompose d' jx; into its null components, relative to the null pair {es, 4}, as follows:

a(d)(X,Y) =d(X,es3,Y,e3), a(d)(X,Y)=d(X,e4,Y,eq), (A.10a)
é(d)(X) = %d(X, 63,63,64), ﬂ(d)(X) = %d(X, 64,63764)7 (AlOb)
p(d) = jd(es, eq, €3, €4), o(d) := p(**d) = 1*9d(es, e4,e3,€4), (A.10c)

where X,Y are arbitrary vector fields orthogonal to e3 and e4, while *¢ denotes the
space-time Hodge dual with respect to the first two indices of d;;:

*gdijkl = %Q‘j"mdmnkl- (A.ll)
The fields o and « are symmetric and traceless. From equations (A.10) one finds

da3bs = Qab, dadbs = Qab, (A.12a)
dazsa =20, daazs = 2, (A.12b)
d3a3s = 4p, dabsa = 20€ap, (A.12c)
dabes = €ab "B, dabes = —€ab e, (A.12d)
d%spa = —pdy + o€, dabed = —PEabEcd, (A.12¢)
where
€12 =—€21 =1, €11 =62 =0 (A.13)

Further, * denotes the Hodge dual on S with respect to the metric induced by g on S:
*By = €a°Bs. (A.14)

A.3. The double-null decomposition of the Bianchi equations. Recall the second
Bianchi identity for the Levi-Civita connection D,

DiRjkgm + Dijilm + DkRijgm =0. (A.15)
Contracting 7 with m one obtains
D;Rjxe" + DjRre — Dy Rjo = 0. (A.16)

Inserting into this equation the expression for the Riemann tensor in terms of the Weyl
and Ricci tensors,

Rjke'l9) = Wike' + 2(ge; Liy* — 0f; Lae) (A.17)
where
Lij == 3Rij — 15 Rgij, (A.18)
we obtain
DiW're = Jje, (A.19)
where
Jikt = Dy Ryge — §9e1Dj) R. (A.20)

Here and elsewhere, square brackets around a set of ¢ indices denote antisymmetrization
with a multiplicative factor 1/¢!.
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Recall that the dual *¢ Wijk@ of Wijkg is defined as
X Wijke := g€imnW™" ke
The well-known identity
€ijmnWmnkZ = 6k@mnVanija
together with (A.19)), leads to
Dy W' jre =" Jjne, (A.21)

where

*ngmn = %Emnke.]jkg = %EmnkZ(D[ij]g — %gg[ij]R). (A22)

Equations (A.19) and (A.21)) are often referred to as the Bianchi equations.

We use, as in Section A.2, the symbol d;j;1; for the Weyl tensor W;jx;. In vacuum,

(A.19) becomes

Di(gimd'mjkl) = gimDidmjkl =0. (A23)
Equation (A.23) with k£ = 3 and k = 4 implies

Dsdyspy = 2h* Dadysir — 2J351, (A.24a)

Dadsarr = 20 Dodpars — 2Jara, (A.24b)

which will give equations for 3, 3, o and p; we use the symbol h to denote the metric
induced on S by g: for all X,Y € TM,

MX,Y) =g(X,Y) + Lg(es, X)g(es, Y) + Lg(ea, X)g(es,Y). (A.25)
The equations for ag, and a4 can be obtained from
Did' aps = Japa. (A.26)

For any tensor field T, we denote by T,; the symmetric traceless part of T, and by
tr T its trace. As already pointed out, we set

WSﬂa = eS(ﬁa) - FSbaBln (A27>
W3aab = 63(aab) - F3Caacb - 1—‘361)05(10 (A28)

Following Christodoulou and Klainerman [8], we use the notation n ®; S for twice the
trace-free symmetric tensor product of vectors,

(X ®, V)% = XV + XPve — g? X, V*, (A.29)

and similarly for covectors. We let ¥ be the orthogonal projection on S of the relevant
covariant derivatives in directions tangent to S, e.g.

Waeb = I‘acbec. (A30)

Tedious but otherwise straightforward calculations allow one to obtain the equations
satisfied by the tensor field d, listed out as (A.34]) below. A useful symmetry principle,
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which allows one to reduce the number of calculations by half, is to note that under
the interchange of e3 with e4 the underlined rotation coefficients in are exchanged
with the nonunderlined ones. On the other hand, the null components of the tensor d
transform as follows:

asra, pep, e —f, o0 —o. (A.31)
A convenient identity in the relevant manipulations is
Veeab = —2fc€ap = —(Cc + € )€as, (A.32)
as well as
V.e,” = 0. (A.33)

The dynamical equations obtained by the doubly-null decomposition of equation

read [}

Yia = —3trxa—-Y®, 8+ (2w —2v)a

—3(xp—"X0) — (40— Q) ®; B+ 2J(-,-, e3), (A.34a)
ViB = —2trxB8—diva+2v8 —a-(n—2¢) + 3(—£p + *o)

— J(es, -, e3), (A.34b)
Vi = —trxB—Vp+*Vo +2x- B+ 2wB + 3(—np + o)

+(C+Qp—(C+Qo —&-a+ J(es,es,-), (A.34c)
Dsp = —$trxp—divB—3x-a+ (20 +¢—2n)- B

+26-B+4v+w)p+ 3334, (A.34d)
Dip = —3trxp+divB—3X-a—(2(+C—2n)-8

—26-B+4Av+w)p+ 5 Jaas, (A.34¢)
Dso = —Strxo —divB+2w+v)o— 3'x Ta—2(-78

+(C+2¢—2n) - "B - za(J(es, ")), (A.34f)
Dyo = —Strxo —divB+2w+v)o+ 3x-Ta—2(-78

+(C+2¢—2n) - *B — 36" Juap, (A.34g)
Y38 = —trxf+ Yo+ Vo+2x-B+2wB+3(np+ o)

—(C+Dp—(C+Qo+&-a—J(es ea,), (A.34h)
Vi = —2trxB+diva+2v8+a-(n—2¢) +3(5p + o)

— J(eq,-, eq), (A.34i)
Ve = —jtrxa+V®s B+ (2w — 2v)

—3(Xp+*X0) + (40— Q) @ B+2J (-, ea). (A.34j)

(3) Equations are essentially a subset of the Newman—Penrose equations written out in
a tensor formalism. The equations in [8] or in [31] can be obtained from by specialization
and straightforward changes of notation. We have corrected some inessential misprints in the
equations of [31].
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For the convenience of the reader we give a summary of the notation used: The operators
Y4 and Y5 are defined as the orthogonal projections on S of the D-covariant derivatives
along the null directions ez and ey, e.g.

W?:ea = FSbaeba W4ea = F4baeb-
In particular
Yzp = Dsp =-e3(p), Yso = Dszo=e3(0),

etc., with Y35 and Ysaus written out explicitly in equations (A.27) and (A.28). Next,
the V,’s are differential operators in directions tangent to S defined as the orthogonal
projection on S of the relevant covariant derivatives in directions tangent to S (cf. )
We use the symbol div to denote the “S-divergence” operator: if X = X%, and Y =
Ye, ® e, then

v X =V, X%  dvY = (YaY)ey.

We have also set
txab —_ Xba.
Next, a bar over a valence-two tensor denotes its symmetric traceless part, e.g.

Xap = %{Xab + Xba — QCchdgab},

a

while, for any two-index tensor s,

a’(X) = EabXab~

To avoid ambiguities, we emphasize that in equations ((A.34]) the free slot in J, whenever
occurring, refers to vectors in S, in particular

a(J(es, ")) == € Tyap,  a(J(es, ) = €Tz
Finally the symbol ®; has been defined in (A.29).
A 4. Bianchi equations and symmetric hyperbolic systems. Let us now turn to a

specific null reformulation of the equations at hand. Let «, 3, etc. be the null components
of d, and for reasons which will become apparent below introduce

Bi=8, B:=5 (A.35a)
gi=0, p:=p. (A.35D)

A convenient doubly-null form of equations (A.34]) is obtained, in vacuum, by rewriting

using as follows @

Yia+ ttrxa = ~V&, B+ (2w - 2v)a - 3(xp — *X0)

~ (40— Q) s B+2J( - e3), (A.36a)
a3 +2trx8 = —diva +2v8 —a- (n—2¢) + 3(={p + €o)

— J(es, s €3), (A.36D)

(*) There is a certain amount of freedom which undifferentiated terms on the right should
be decorated with “o”’s, which is irrelevant for our purposes in this work.
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YiB+trxB = —Vp+ V6 +2x- B+ 2wB + 3(—np + 16)
+(C+p—(C+Q)5 — & a+ (e e3,°), (A.37a)
Dys+3trys = —diviB+2(w+v)o - 3'x-"a— 2678
F(CH2¢—2n) "B~ La(J (e, ), (A.37h)
Dsp+3trxp = —divB—3x-a+(2C+C—2n)- 5
+26- B+ 4(v+w)p+ 534, (A.37c)
Dip+3trxp = divB—3x-a— (2 +(—2n)- 8
-2 B4+4u+w)p+ 5Jus, (A.38a)
Dyo+3trxo = —divB+2w+v)o+ix-"a—2(-78
+(C+2¢—2n) - *B — 36" Juap, (A.38b)
Va8 +trxB = Vp+*Vo+2x-B+2wB+3(np+ o)
—((+Qp—(CH+Qo+E-a—J(es, es,), (A.38¢)
Vi +2trx3 = diva+ 208 +a- (n—2¢) + 3(p + *¢0)
— J(ea,, €4), (A.39a)
Yaa+ s trya = V&, B+ (2w — 2v)a - 3(Xp + Xo)
+ (A=) @ B+2J (- ea). (A.39D)

We have kept the source terms J for future reference; however, in vacuum, which is of
interest here, we have J = 0.

Let us show that the principal part of each of the systems 7 is symmet-
ric hyperbolic, and of the form required in our analysis, when the scalar products are
appropriately chosen.

L. The (a, ) equations (A.36)). We have a;5 = aq; and a;; = —an,, hence the pair
(a, B) can be parameterized by f = (a1, a1, 8,,,). Equations (A.36) can be rewritten
as

APO f+Af=F (A.40)
with
€4 0 €1 —e€9
0 es eo e1
A9, = A4l
8“ el €y €3 0 ’ ( )
—€9 €1 0 €3
which is obviously symmetric with respect to the scalar product
(f, [y =aof +afs + B + B2 (A.42a)
= 3h*h*agyae +h*B B, (A.42b)

2. The (ﬂ, (6,p)) equations l) The analysis is obtained by obvious renamings

and permutations from that of (A.38)), leading to a system with identical principal part.
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3. The ((p,0),B) equations (A.38

. We set f = ((p’ 0)76) = (pa g, 61762)' Equation
(A.38) can be rewritten in the form (A.40) with

ey 0 —e1 —e
0 €4 —E€2 €1
Ar9, = A4
O —e1 —ex ez 0 )7 (A-43)
—€9 €1 0 €3

which is obviously symmetric with respect to the scalar product
(fof) =9+ 0%+ 5 + 53

=p* 40 + h*®Bufe.
4. The (B, ) equations (A.39

: . The analysis here is obtained by obvious renamings
and permutations from that of (A.36)), done above.
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